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Abstract
Given a continuous function f : R → R, we denote the so-called “big Lip” and
“little lip” functions by Lip f and lip f respectively. We are interested in the following
question. Given a set E ⊂ R, is it possible to fnd a continuous function f such that
lip f = 1E or Lip f = 1E? For monotone continuous functions we provide a rather
straightforward answer. For arbitrary continuous functions the answer is much more
diffcult to fnd.We introduce the concept of uniform density type (UDT) and show that
if E is Gδ and UDT then there exists a continuous function f satisfying Lip f = 1E ,
that is, E is a Lip1 set. In the other direction we show that every Lip1 set is Gδ and
weakly dense. We also show that the converse of this statement is not true, namely that
there exist weakly dense Gδ sets which are not Lip1. We say that a set E ⊂ R is lip1
if there is a continuous function f such that lip f = 1E . We introduce the concept of
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strongly one-sided density and show that every lip1 set is a strongly one-sided dense
Fσ set.

Keywords Lipschitz functions · Big and little lip functions · Uniform density
properties · One-sided density · Weak density · Strong uniform density

Mathematics Subject Classification 26A16 · 28A05

1 Introduction

Throughout this note we assume that f : R → R is continuous. Then the so-called
“big Lip” and “little lip” functions are defned as follows:

Lip f (x) = lim sup
r→0+

M f (x, r), lip f (x) = lim inf
r→0+ M f (x, r),

where

M f (x, r) = sup{| f (x) − f (y)| : |x − y| � r}
r

.

As far as we know the defnition of lip f frst appeared in [9] and later reappeared in
[12].

In order to connect these functions to more customary ones, after denoting the
Dini derivatives by D+ f (x), D− f (x), D+ f (x), D− f (x) (for the defnitions see for
example [3, p. 317]), one can easily check that

Lip f (x) = max
�
D+ f (x), D− f (x),−D+ f (x),−D− f (x)

�
.

Note also that if f is differentiable at x , then lip f (x) = Lip f (x) = | f ′(x)|.Moreover,
Lip f (x) = 0 if and only if f ′(x) = 0. The connection of lip f (x) to the Dini
derivatives is quite weak as the following example shows. Suppose that g(−1/2n

2
) =

g(1/2n
2
) = (−1)n/2n

2
, n = 1, 2, . . . , and g(x) = 0 otherwise. The function g is not

continuous, but one can easily see that by a slight modifcation of g one can obtain a
continuous function f for which D+ f (0) = D− f (0) = 1, D+ f (0) = D− f (0) =
−1 while lip f (0) = 0.

We also defne

L f = {x ∈ R : Lip f (x) < ∞} and l f = {x ∈ R : lip f (x) < ∞}.

The behaviour of the two functions, Lip f and lip f , is intimately related to the differ-
entiability of f . For example, the Rademacher–Stepanov Theorem [14] tells us that if
R\L f hasmeasure zero, then f is differentiable almost everywhere onR. On the other
hand, in ([1], 2006) Balogh and Csörnyei construct a continuous function f : R → R

such that lip f = 0 almost everywhere, but f is nowhere differentiable. However, in
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466 Z. Buczolich et al.

the same paper, they also show that ifR\l f is countable and lip f is locally integrable,
then f is again differentiable almost everywhere on R.

More recently, progress has been made on characterizing the sets L f and l f for
continuous functions ([8], 2018) and characterizing the sets of non-differentiability
for continuous functions with either L f = R or l f = R ([11], 2016). There are still
a number of open problems concerning the relationship between L f (l f ) and the
differentiability properties of f .

We also mention the very recent result ([15], 2019) about little Lipschitz maps of
analytic metric spaces with suffciently high packing dimension onto cubes in Rn.

It is an interesting problem to characterize the functions Lip f and lip f for con-
tinuous functions f . This is in the spirit of the well-known problem of characterizing
the functions f which are derivatives. (See [4,16,19,20].) In this note, we take a frst
step in this direction by investigating when it is possible for Lip f (or lip f ) to be a
characteristic function. Given a set E ⊂ R, we say that E is Lip1 (lip1) if there is
a continuous function f defned on R such that Lip f = 1E (lip f = 1E ). So we
are interested in determining which sets E are Lip1 or lip1. (See [13] for a related
problem.)

It turns out that it is straightforward to decide this in the special case where f is
monotone. We say that E is monotone Lip1 (lip1) if there is a continuous, monotone
function f such that Lip f = 1E (lip f = 1E ). In Theorems 3.1 and 3.4 we show that
monotone Lip1 and lip1 sets can be characterized using simple density conditions.
The details for this are laid out in Sect. 3.

In Sect. 4 we see that Lip1 sets are weakly dense Gδ sets (Defnition 2.1,
Theorem 4.1) and lip1 sets are strongly one-sided dense Fσ sets (Defnition 3.2,
Theorem 4.6). In Theorem 4.3 we show that a set E is Lip1 if and only if R can be
divided into three sets such that they give a ternary decomposition with respect to E in
the sense of Defnition 4.2. In Theorem 4.7 it is proved that countable disjoint unions
of closed and strongly one-sided dense sets are lip1.

In Sect. 5 we consider a more diffcult problem of characterizing general Lip1 sets.
Given a measurable set, we introduce a two-parameter family of sets describing its
levels of density and use this to defne uniform density type (UDT) sets.

Definition 1.1 Suppose that E ⊆ R is measurable and γ, δ > 0. Let

Eγ,δ =
�
x ∈ R : ∀r ∈ (0, δ], max

� |(x − r , x) ∩ E |
r

,
|(x, x + r) ∩ E |

r

�
� γ

�
,

where |E | denotes the Lebesgue measure of the set E .
We say that E has uniform density type (UDT) if there exist sequences γn ↗ 1 and

δn ↘ 0 such that E ⊆ �∞
k=1

�∞
n=k E

γn ,δn .

Our main result from Sect. 5, Theorem 5.6, states that Gδ sets which are UDT are
Lip1. As we show in [5], the converse of this statement does not hold. There exist
Lip1 sets which are not UDT.

Finally, in Sect. 6 we show that the UDT condition in Theorem 5.6 cannot be
replaced with one of the weaker density conditions from Sect. 3.
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Big and little Lipschitz one sets 467

Summarizing the main results of this paper, we show that

Gδ + UDT �⇒ Lip1 �⇒ Gδ + weakly dense,

and that the second implication cannot be reversed.

2 Preliminary definitions and results

The union of disjoint sets A and B is denoted by A�B. For any S, T ⊂ R and x ∈ Rwe
defne d(S, T ) to be the lower distance from S to T , that is inf {|x− y| : x ∈ S, y ∈ T }.
Let d(x, S) = d({x}, S). (We recall that we defned |S| to be the Lebesgue measure
of S.)

In the space of continuous functions defned on an interval I we use the supremum
norm ‖ f ‖ = sup{| f (x)| : x ∈ I } and the metric topology generated by this norm.

Definition 2.1 Given a sequence of non-degenerate closed intervals {In}, we write
In → x if x ∈ In for all n ∈ N and |In| → 0. The measurable set E is weakly dense
at x if there exists In → x such that |E ∩ In|/|In| → 1. The set E is weakly dense if
E is weakly dense at x for each x ∈ E . The set E is strongly dense at x if for every
sequence {In} such that In → x we have |E ∩ In|/|In| → 1. We say that E is strongly
dense if E is strongly dense at x for each x ∈ E .

Note: E being strongly dense at x , just means that x is a point of density of E . (See
Remark 3.3.)

In this paper a.e. always means almost everywhere with respect to the Lebesgue
measure.

Lemma 2.2 If E ⊂ R and f : R → R such that lip f � 1E then | f (a) − f (b)| �
|[a, b] ∩ E | for every a, b ∈ R (where a < b) so f is Lipschitz and hence absolutely
continuous.

Proof Let ε > 0. For every x ∈ R we fx rx ∈ (0, ε) such that M f (x, rx ) < 1 + ε.
We select a fnite set H ⊂ R for which {(x − rx , x + rx ) : x ∈ H} is a minimal cover
of [a, b]. Then every y ∈ R is contained by at most two of these open intervals. If
x ∈ R, r > 0 and y ∈ (x − r , x + r), we have | f (x) − f (y)| � rM f (x, r). Thus

| f (a) − f (b)| �
�

x∈H
2rx M f (x, rx ) �

�

x∈H
2rx (1 + ε) � 2(b + ε − (a − ε))(1 + ε).

Hence f is Lipschitz as a, b and ε were chosen arbitrarily.
Since f is Lipschitz, it is absolutely continuous. Therefore f ′ exists almost every-

where and f (b) − f (a) = 	 b
a f ′(t) dt . Since | f ′| � 1E a.e., we obtain that

| f (b) − f (a)| �
	 b
a 1E (t) dt = |[a, b] ∩ E |.
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468 Z. Buczolich et al.

3 Necessary and/or sufficient conditions for monotone Lip1 and lip1
sets

For monotone Lip1 and lip1 sets it is rather easy to obtain necessary and suffcient
conditions.

Theorem 3.1 The set E is monotone Lip1 if and only if E is weakly dense and Ec is
strongly dense.

Proof Assume that E is monotone Lip1. Then we can choose a continuous, monotone
increasing function f such that Lip f = 1E . By Lemma 2.2, f is Lipschitz and
therefore differentiable a.e. Since Lip f = 1E and f is increasing, we conclude that
f ′(x) = 1E (x) a.e. and we have

f (y) − f (x) =

 y

x
1E (t) dt = |E ∩ [x, y]| for all x < y. (1)

From (1) and the defnition of Lip f it is straightforward to show that E is weakly
dense and Ec is strongly dense.

Now assume that E is weakly dense and Ec is strongly dense. Then let f (x) =	 x
x0
1E (t) dt by selecting an arbitrary x0. It is straightforward to show that Lip f = 1E

and therefore E is monotone Lip1.

For the characterization of monotone lip1 sets we need a few new defnitions.

Definition 3.2 Suppose that In → x . If each In is centered at x we say that {In} center
converges to x and we write In

c→ x .
The set E is weakly center dense at x if there exists a sequence {In} such that

In
c→ x, and |E ∩ In|/|In| → 1. The set E is weakly center dense if E is weakly

center dense at every point x ∈ E .
The set E is strongly one-sideddense at x if for any sequence {In} = {[x−rn, x+rn]}

such that rn ↘ 0 we have max {|E ∩ [x − rn, x]|/rn, |E ∩ [x, x + rn]|/rn} → 1. The
set E is strongly one-sided dense if E is strongly one-sided dense at every point x ∈ E .

Remark 3.3 It is easy to see that if E is right- or left-dense in the ordinary Lebesgue
density sense then it is strongly one-sided dense. The reverse implication is not true.
Indeed, it is not diffcult to see that the set

E =
∞�

n=1

�
1

2(2n+1)2
,

n

2(2n)2


∪

�
− n

2(2n+1)2
,− 1

2(2n+2)2



is strongly one-sided dense at 0 according to our notation but it is not right- or left-dense
in the ordinary Lebesgue density sense.

The observant reader will note that we have not defned strongly center dense or
weakly one-sided dense. The reason for this is that defning these terms in the obvious
way would be redundant since strongly center dense sets would be equivalent to
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Big and little Lipschitz one sets 469

strongly dense sets and weakly one-sided dense sets would be equivalent to weakly
dense sets. We also observe that the following implications hold:

strongly dense �⇒ strongly one-sided dense,

weakly center dense �⇒ weakly dense.

Note that neither of the above implications is reversible: a closed interval is strongly
one-sided dense and weakly dense, but not strongly dense or weakly center dense.

Theorem 3.4 The set E is monotone lip1 if and only if E is strongly one-sided dense
and Ec is weakly center dense.

Proof The proof of Theorem 3.4 is straightforward and similar to the proof of Theo-
rem 3.1. We leave it up to the reader.

4 Necessary and/or sufficient conditions for general Lip1 and lip1
sets

In Theorem 4.1 we give a necessary condition for a set to be Lip1. We will see in
Sect. 6 (Theorem 6.3) that this condition is not suffcient.

Theorem 4.1 If E ⊂ R is Lip1 then E is a weakly dense Gδ set.

Proof Suppose that E is Lip1. Lemma2.2 implies that E is weakly dense. Let f : R →
R be such that Lip f = 1E . Since

E =
∞�

n=1

�
x ∈ R : there exists r ∈

�
0,

1

n

�
such that M f (x, r) > 1 − 1

n

�

and the sets on the right are open, we obtain that E is Gδ .

The next defnition will be used to obtain a necessary and suffcient condition for Lip1
sets in Theorem 4.3.

Definition 4.2 Let E be a measurable subset of R and suppose that E1, E0, E−1 are
pairwise disjoint measurable sets whose union is R. Then we say that E1, E0, E−1 is
a ternary decomposition of R with respect to E if the following conditions hold:

• for all x ∈ E either E1 or E−1 is weakly dense at x ,
• for all x /∈ E and ∀In → x we have ||E1∩In |−|E−1∩In ||

|In | → 0.

If E1, E0, E−1 is a ternary decomposition of R with respect to E we write E ∼
(E1, E0, E−1).

Theorem 4.3 A set E is Lip1 if and only if there is a ternary decomposition of R with
respect to E.
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470 Z. Buczolich et al.

Proof Suppose that E ∼ (E1, E0, E−1). Defne

f (x) =

 x

0
1E1(t) − 1E−1(t) dt .

Then straightforward calculations show that Lip f = 1E .
Working in the opposite direction, now assume that Lip f = 1E . Then by

Lemma 2.2, f is Lipschitz and hence f is differentiable almost everywhere and
wherever f ′(x) is defned f ′(x) is equal to either 1, 0 or −1. For i = 1,−1 defne
Ei = {x : f ′(x) = i} and let E0 = R\(E1 ∪ E−1). By absolute continuity of f we
have that

f (x) = f (0) +

 x

0
f ′(t) dt = f (0) +


 x

0
1E1(t) − 1E−1(t) dt

and it is straightforward to show that E ∼ (E1, E0, E−1).

Remark 4.4 Suppose that E ∼ (E1, E0, E−1). Then we can fnd F1, F0, F−1 such that
E ∼ (F1, F0, F−1) and E = F1 ∪ F−1.

To verify that Remark 4.4 is true assume that E ∼ (E1, E0, E−1). By the Lebesgue
density theorem, almost every element in a set is a density point of the set and hence it
follows from the defnition of a ternary decomposition that |Ei\E | = 0 for i = 1,−1
and |E0 ∩ E | = 0. Thus, if we defne F1 = E\E−1, F−1 = E−1∩ E , and F0 = R\E ,
then we have E ∼ (F1, F0, F−1) and E = F1 ∪ F−1.

Remark 4.5 Although Theorem 4.3 gives a characterization of Lip1 sets, it is not
always easy to verify whether or not a given set E has a ternary decomposition. One
simple example is E = (0,∞). In this case, one can verify that E0 = (−∞, 0],
E−1 = �∞

n=1(1/(2n + 1), 1/2n], E1 = ��∞
n=1(1/2n, 1/(2n − 1)]� ∪ (1,∞) gives a

ternary decomposition of R with respect to E and therefore E is Lip1.

Next we want to fnd some necessary and some suffcient conditions for lip1 sets. For
this purpose we will need to use Lemma 2.2.

Theorem 4.6 If E ⊂ R is lip1 then E is a strongly one-sided dense Fσ set.

Proof Suppose that E is lip1. Lemma 2.2 implies that E is strongly one-sided dense.
Let f : R → R such that lip f = 1E . As

Ec =
∞�

n=1

�
x ∈ R : there exists r ∈

�
0,

1

n

�
such that M f (x, r) <

1

2

�

and the sets on the right are open, the set Ec is Gδ hence E is Fσ .

Theorem 4.6 provides a necessary condition for a function to be lip1. The following
result provides a suffcient condition.

Theorem 4.7 Suppose that E = �∞
n=1 En where for each n ∈ N, En is closed and

strongly one-sided dense. Then E is lip1.
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We should note that simple examples show that the converse of Theorem 4.7 does not
hold. For example, non-empty, open sets are lip1, but no non-empty, open set can be
expressed as a disjoint, countable union of closed sets.

We note that apart from unions of non-degenerate closed intervals, it is not com-
pletely trivial to construct closed and strongly one-sided dense sets. However, in [5,
Theorem 3.1] we construct a nowhere dense closed set which has SUDT and hence is
strongly one-sided dense.

Remark 4.8 A result analogous to Theorem 4.7 for Lip1 sets is not true. If E is dense in
R and each En is nowhere dense, then E is not Lip1. Indeed, according to Theorem4.1,
if E were Lip1, it would be Gδ as well. However, a dense Gδ set cannot be written as
a countable union of nowhere dense sets according to Baire’s category theorem.

The proof of Theorem 4.7 depends on the following:

Lemma 4.9 Suppose that E is closed and strongly one-sided dense. Let ε > 0. Then
there exists a continuous function f such that

(i) lip f = 1E ,
(ii) 0 � f (x) � ε for all x ∈ R.

Proof For every i ∈ Z defne Ei = [(i − 1)ε, iε] = [ai−1, ai ] and choose xi ∈ Ei

such that |E ∩ [ai−1, xi ]| = |E ∩ [xi , ai ]|. For each i ∈ Z defne E+
i = E ∩ [ai−1, xi ]

and E−
i = E ∩ [xi , ai ] and let E+ = �∞

i=−∞ E+
i and E− = �∞

i=−∞ E−
i . Defne

f (x) = 	 x
0 1E+(t) − 1E−(t) dt . It is easy to verify that (i) and (ii) hold.

Proof of Theorem 4.7 Assume that E = �∞
n=1 En , where each En is closed and

strongly one-sided dense. Redefning E1, E2, . . . we can suppose that if n � 2 then
En is bounded.

Using Lemma 4.9 we choose f1 such that (i) and (ii) of Lemma 4.9 hold with f
replaced by f1, E replaced by E1 and ε = 1. Using Lemma 4.9 for each n ∈ N∩[2,∞)

we recursively choose fn � 0 such that (i) holds with f replaced by fn and E replaced
with En such that

0 � fn(x) � 2−n min

�
1, d

�
En,

n−1�

k=1

Ek

��
(2)

(we note that the right-hand side is positive, as En is compact and
�n−1

k=1 Ek is closed).
Obviously, for every n ∈ N,

fn is constant on each interval contiguous to En . (3)

Let f (x) = �∞
n=1 fn . Suppose that x ∈ En0 for some n0 ∈ N, and ε > 0. Using

fn(s) � 0 for any n and s (4)
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472 Z. Buczolich et al.

we infer

��| f (x)− f (y)|−| fn0(x)− fn0(y)|
�� �

����
�

n �=n0

( fn(x)− fn(y))

���� �
(4)

�

n �=n0

sup
t∈R

fn(t). (5)

Let

n1 ..= max {n0 + 1,−�log2(ε)�} and r ∈
�
0, d

�
{x},

�

n∈N∩[1,n1]\{n0}
En

��
. (6)

For every y ∈ [x − r , x + r ] we have
����
| f (x) − f (y)|

r
− | fn0(x) − fn0(y)|

r

���� �
(3),(5)

r−1
�

n �=n0
En∩(x−r ,x+r) �=∅

sup
t∈R

fn(t)

�
(2)

r−1
�

n �=n0
En∩(x−r ,x+r) �=∅

2−nd(En, En0) � r−1
�

n �=n0
En∩(x−r ,x+r) �=∅

2−nd(En, {x})

� r−1
�

n �=n0
En∩(x−r ,x+r) �=∅

2−nr �
(6)

∞�

n=n1+1

2−n = 2−n1 � ε.

Thus lip f (x) = lip fn0(x) = 1.
Now let x /∈ E and ε > 0 be arbitrary. If x is not an accumulation point of

E then obviously lip f (x) = 0. Otherwise, set n1 ..= max {1,−�log2(ε)� + 1} and
r ..= d

�{x},�1�n�n1 En
�
. For every y ∈ [x − r , x + r ],

| f (x) − f (y)|
r

�
(3),(4)

r−1
�

n∈N
En∩(x−r ,x+r) �=∅

sup
t∈R

fn(t)

�
(2)

r−1
�

n∈N
En∩(x−r ,x+r) �=∅

2−nd

�
En,

�

1�k�n1

Ek

�

� r−1
�

n∈N
En∩(x−r ,x+r) �=∅

2−n · 2r �
∞�

n=n1+1

2 · 2−n = 2 · 2−n1 � ε.

Since r → 0 as n1 → ∞ (and n1 → ∞ as ε → 0), we obtain lip f (x) = 0.

The refereeing procedure for this paper took a while and during this time in [6] we
managed to obtain a characterization of lip1 sets as countable unions of closed sets
which are strongly one-sided dense. The above special case in Theorem 4.7 has a
simpler proof than the main result of [6].
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5 Gı uniform density type sets are Lip1

In this sectionwe prove ourmain result: Theorem 5.6, which asserts thatGδ sets which
are also UDT are Lip1. Recall that the sets Eγ,δ were defned in Defnition 1.1.

Lemma 5.1 For any γ, δ > 0 the set Eγ,δ is closed.

Proof For r > 0 we introduce the notation

Eγ
r =

�
x ∈ R : max

� |(x − r , x) ∩ E |
r

,
|(x, x + r) ∩ E |

r

�
� γ

�
.

Then we obviously have

Eγ,δ =
�

r :0<r�δ

Eγ
r .

Note that the functions x �→ |(x−r ,x)∩E |
r and x �→ |(x,x+r)∩E |

r are obviously continu-
ous for any r and hence

x �→ max

� |(x − r , x) ∩ E |
r

,
|(x, x + r) ∩ E |

r

�

is also continuous, which immediately yields that each upper level set Eγ
r is closed.

Consequently, their intersection Eγ,δ is also closed.

Proposition 5.2 UDT sets are strongly one-sided dense.

Remark 5.3 There are strongly one-sided dense sets which are not UDT, however the
construction of such sets is not that easy. We wrote a short note, [7] on this topic.

Proof Suppose E is UDT. Then there exist sequences γn ↗ 1 and δn ↘ 0 such that
E ⊆ �∞

k=1
�∞

n=k E
γn ,δn . Let x ∈ E and γ < 1. Choose k such that γn > γ when

n � k. Then there exists n(γ, x) � k such that x ∈ Eγn(γ,x),δn(γ,x) , that is

max

� |(x − r , x) ∩ E |
r

,
|(x, x + r) ∩ E |

r

�
> γn(γ,x) > γ holds for 0 < r < δn(γ,x).

Since this is true for any 0 < γ < 1, we see that E is strongly one-sided dense at x .

The following notion is closely related to UDT.

Definition 5.4 We say that E has strong uniform density type (SUDT) if there exist
sequences γn ↗ 1 and δn ↘ 0 such that E ⊆ �∞

k=1
�∞

n=k E
γn ,δn .

For the following proposition assume that all sets which occur in its statement are
measurable subsets of R.

Proposition 5.5 (i) If a set E has SUDT then it also has UDT.
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(ii) Any interval has SUDT (and hence UDT).
(iii) If E1, E2, . . . have UDT (resp. SUDT) then E = �∞

m=1 Em also has UDT (resp.
SUDT).

(iv) There exists E which has SUDT but its closure E is not strongly one-sided dense
and hence does not have UDT.

Proof Statements (i) and (ii) are obvious.
In (iii) we will examine the UDT case, the proof of the SUDT case is basically

the same. For each set Em choose a pair of sequences (γm,n)
∞
n=1, (δm,n)

∞
n=1 such that

γm,n ↗ 1 and δm,n ↘ 0 such that Em ⊆ �∞
k=1

�∞
n=k E

γm,n ,δm,n . Then a straight-
forward diagonalization argument shows that we can choose sequences (γn)

∞
n=1 and

(δn)
∞
n=1 such that γn ↗ 1 and δn ↘ 0 and for every m ∈ N there is an nm ∈ N for

which
for all n > nm we have 0 < δn < δm,n and γn < γm,n < 1.

Thus for every m ∈ N and n > nm we have that Eγm,n ,δm,n ⊆ Eγn ,δn , hence

Em ⊆
∞�

k=1

∞�

n=k

Eγm,n ,δm,n =
∞�

k=nm

∞�

n=k

Eγm,n ,δm,n

⊆
∞�

k=nm

∞�

n=k

Eγn ,δn =
∞�

k=1

∞�

n=k

Eγn ,δn .

This implies

E ⊆
∞�

k=1

∞�

n=k

Eγn ,δn ,

that is E has UDT.
Finally, for (iv) consider

E =
∞�

n=−∞
[2n − 2n−2, 2n ].

By (iii), E has SUDT as it is a countable union of intervals. Note that its closure is
E = E ∪{0}. But in intervals of the form (0, 2n −2n−2), n ∈ Z, the set E has density

1

2n − 2n−2

n−1�

k=−∞
2k−2 = 2n−2

2n − 2n−2 = 1

3
,

and for any interval of the form (−r , 0) for r > 0 the set E has density 0. Consequently,
E is not strongly-one sided dense at 0 and therefore not UDT.

The following theorem is the main result of this paper.

123



Big and little Lipschitz one sets 475

Theorem 5.6 Assume that E is Gδ and E has UDT. Then there exists a continuous
function f satisfying Lip f = 1E , that is, the set E is Lip1.

In order to prove the theoremwewill need a pair of defnitions and a couple of technical
lemmas.

Definition 5.7 By a vicinity U of a function f : R → R we mean the set of functions
of the following form:

U = {g : ∀x | f (x) − g(x)| � r(x)},

where r(x) is a fxed, continuous, non-negative function, called the radius of U .

Definition 5.8 Suppose that f is continuous on the interval [a, b] and fl , fu are con-
tinuous on [a, b] with fl < f < fu on (a, b) and fl(a) = fu(a) = f (a) and
fl(b) = fu(b) = f (b). Then we say that ( fl , fu) is an envelope for f on [a, b] and
we write f ∈ ( fl , fu) on [a, b].
For each of the following lemmas we assume that E is as in the statement of Theo-
rem 5.6 and that φ(x) = 	 x

0 1E (t) dt . Observe that φ(y) − φ(x) = |[x, y] ∩ E | for
x � y.

Lemma 5.9 Assume that f is continuous and monotone on [a, b] and f ∈ ( fl , fu) on
[a, b]. Furthermore, let 0 < δ < ε � 1 and assume that

| f (x) − f (y)| � (1 − ε)|φ(x) − φ(y)| for all x, y ∈ [a, b]. (7)

Then, there exists a continuous function g on [a, b] such that

• g ∈ ( fl , fu) on [a, b],
• g is locally piecewise monotone on (a, b), that is any compact subinterval of (a, b)
can be divided into finitely many subintervals on each of which g is monotone,

• on any interval of monotonicity of g there exists a constant K depending only on
the interval such that g = K ± (1 − δ)φ.

Proof We frst note the following useful fact, which follows from the inequalities
0 < δ < ε and inequality (7):

Given any interval [r , s] ⊂ (a, b), we can choose t ∈ (r , s) such that

(1 − δ)
�|E ∩ [r , t]| − |E ∩ [t, s]|� = f (s) − f (r). (8)

Next, we note that in order to prove the lemma it suffces to prove that for any subin-
terval [c, d] ⊂ (a, b) we can construct a continuous function g on [c, d] such that

(i) fl(x) < g(x) < fu(x) on [c, d],
(ii) g(c) = f (c) and g(d) = f (d),
(iii) g is piecewise monotone on [c, d],
(iv) g = K ± (1 − δ)φ on each interval of monotonicity of g, recall that we use

constants K which depend on the interval considered.
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Assume that [c, d] ⊂ (a, b). Let

γ = inf
c�x�d

min
�
( fu(x) − f (x)), ( f (x) − fl(x))

�
> 0.

Using the uniform continuity of fu and fl on [c, d] choose a positive integer n such
that

d − c

n
<

γ

3
and for x, y ∈ [c, d], |x − y| <

d − c

n
we have

max
�| fu(x) − fu(y)|, | fl(x) − fl(y)|

�
<

γ

3
.

(9)

For i = 0, 1, 2, . . . , n let c2i = c+ i(d − c)/n so we have c = c0 < c2 < c4 < · · · <

c2n = d. Using (8) for each i = 1, 2, . . . , n we choose c2i−1 ∈ (c2i−2, c2i ) such that

(1 − δ)
�|E ∩ [c2i−2, c2i−1]| − |E ∩ [c2i−1, c2i ]|

� = f (c2i ) − f (c2i−2).

Next, for each j = 0, 1, 2, . . . , 2n − 1 we defne g in [cj , cj+1] by

g(x) =
�

(1 − δ)(φ(x) − φ(cj )) + f (cj ) if j is even,

−(1 − δ)(φ(cj+1) − φ(x)) + f (cj+1) if j is odd.

We see that for j = 0, 1, 2, . . . , n−1we have g ismonotone increasing on [c2 j , c2 j+1]
and monotone decreasing on [c2 j+1, c2 j+2]. Furthermore, g = Ki ± (1−δ)φ on each
interval [ci , ci+1] for i = 0, 1, 2, . . . , 2n − 1 with suitable constants Ki . We also see
that (ii) holds and (i) follows from inequality (9).

Lemma 5.10 Suppose that f is continuous on [a, b], f ∈ ( fl , fu) on [a, b], and H is
a closed set such that H ⊂ (a, b)\E. Furthermore, assume that 0 < δ < ε � 1 and
(7) holds. Then there exists a function g continuous on [a, b] with
(i) g ∈ ( fl , fu) on [a, b],
(ii) g(a) = f (a), g(b) = f (b),
(iii) g′ = 0 on H,
(iv) |g(x) − g(y)| � (1 − δ)|φ(x) − φ(y)| for all x, y ∈ [a, b].
Proof Write (a, b) as a countable union of non-overlapping closed intervals [c, d]
which satisfy

fl(x) < min { f (c), f (d)} � max { f (c), f (d)} < fu(x) for all x ∈ [c, d]. (10)

Assume that [c, d] is a closed subinterval of (a, b) satisfying (10). It suffces to show
that we can defne g on [c, d] such that

g(c) = f (c) and g(d) = f (d), (11)

g′ = 0 on H ∩ [c, d], (12)

(iv) holds with [a, b] replaced by [c, d], (13)
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and
fl(x) < g(x) < fu(x) for all x ∈ [c, d]. (14)

We treat the casewhere c, d ∈ H . If either c or d is not in H , one can proceed similarly:
this argument is left to the reader. We note that if |E ∩ (c, d)| = 0, then it follows
from inequality (7) that f is constant on [c, d] and we simply defne g = f on [c, d].
Thus we may as well assume that |E ∩ (c, d)| > 0. We also assume without loss of
generality that f (d) � f (c). Next we choose fnitely many intervals Ii = (c2i−1, c2i ),
i = 1, 2, . . . , n, which are contiguous to H ∩ [c, d] and such that c � c1 < c2 �
c3 < c4 � · · · � c2n−1 < c2n � d and

(1 − δ)

����E ∩
� n�

i=1

[c2i−1, c2i ]
����� > (1 − ε) |E ∩ [c, d]| � f (d) − f (c).

Furthermore, we choose γ so that

γ

����E ∩
n�

i=1

[c2i−1, c2i ]
���� = f (d) − f (c),

and note that γ < 1 − δ. Using this fact, on each interval [c2i−1, c2i ] one can defne
a monotone function gi so that

g′
i (c2i−1) = g′

i (c2i ) = 0,

gi (c2i−1) = 0 and gi (c2i ) = γ |E ∩ [c2i−1, c2i ]|,

and

|gi (x) − gi (y)| � (1 − δ)|φ(x) − φ(y)| for all x, y ∈ [c2i−1, c2i ].

We also extend gi to the entire interval [c, d] by defning gi = 0 on [c, c2i−1] and
gi = gi (c2i ) on [c2i , d]. Finally, we defne g = f (c) + �n

i=1 gi on [c, d]. Then
using (10) it is straightforward to verify that (11)–(14) hold and we are done with the
proof.

Proof of Theorem 5.6 Throughout this proof the value of the constant K will depend
on the interval with which it is associated. Fix sequences γn and δn witnessing the
UDT property of E . Let E = �∞

n=1 Gn , where each set Gn is open and Gn+1 ⊂ Gn

for all n ∈ N. We also assume, as we may, that each component of Gn intersects E .
We also denote the complement of Gn by Fn . Thus (Fn)∞n=1 is an increasing sequence
of closed sets. Let φ(x) = 	 x

0 1E (t) dt be the integral function of the characteristic
function of E . We will construct a sequence of functions ( fn)∞n=1 together with a
sequence of vicinities (Un)

∞
n=1 with the following properties (recall that the vicinity

was defned in Defnition 5.7):

(i) fn is differentiable on Fn and its derivative vanishes there.
(ii) For any m � n we have fm�Fn = fn�Fn .
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Fig. 1 Defnition of f1 on (a, b)

(iii) For any x, y ∈ R we have | fn(x) − fn(y)| � (1 − 2−3n)|φ(x) − φ(y)|.
(iv) If (a, b) is an interval contiguous to Fn , then for any x ∈ Eγn ,δn ∩ (a, b) there

exists yn(x) ∈ (a, b) such that |x − yn(x)| � δn and | fn(x) − fn(yn(x))| >

(1 − 2−2n)γn|x − yn(x)|. Moreover, yn(x) may be chosen so that |yn(x) − x |
is bounded away from 0 on each compact subset of (a, b). Additionally, fn is
locally monotone on (a, b) and on each interval of monotonicity we have fn =
K ± (1 − 2−3n)φ.

(v) Each Un has a continuous radius rn satisfying rn(x) � min {2−n, d(x, Fn)2} for
all x ∈ R and rn(x) > 0 for all x ∈ Gn and rn(x), rn(yn(x)) < 2−2nγn|x−yn(x)|
for all x ∈ Eγn ,δn . Moreover, fm ∈ Un for all m � n and Un+1 ⊂ Un for all
n ∈ N.

(vi) For any m � n and x ∈ Gn ∩ Eγn ,δn we have

| fm(x) − fm(yn(x))| > (1 − 2−n)γn|x − yn(x)|.

(vii) For any g ∈ Un we have g′ = 0 on Fn .

Assume for the moment that we have established (i)–(vii). From (v) it follows that
the fns converge uniformly to some function f . Then, f ∈ Un for all n ∈ N so by
(vii) we may conclude that f ′ = 0 on

�∞
n=1 Fn = R\E and therefore Lip f = 0 on

R\E . On the other hand, if x ∈ E , we have x ∈ Eγn ,δn for infnitely many choices of
n as E has UDT. Hence by (iv) and (vi) there exists yn(x) satisfying |x − yn(x)| < δn
and | fm(x) − fm(yn(x))| > (1 − 2−n)γn|x − yn(x)| for all m � n, which yields
| f (x) − f (yn(x))| � (1 − 2−n)γn|x − yn(x)|. As we have (1 − 2−n)γn → 1, we
deduce that Lip f (x) � 1. On the other hand, by (iii), Lip f � 1 everywhere and we
have Lip f (x) = 1 for x ∈ E which concludes the proof.

In the following we construct the fns andUns and verify that (i)–(vii) are valid. We
begin by constructing f1 and then defne the other functions recursively.
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To begin we set f0 = f ∗
0 ≡ 0 and we also defne f1 = 0 on F1. Set

E1(x) = d(x, F1)
2 and E1(x) = − d(x, F1)

2.

Now, consider an interval (a, b) contiguous to F1 see Fig. 1. We need to ensure that f1
has derivative 0 at a and b. Note that f0 ∈ (E1,E

1) on [a, b]. Now applying Lemma 5.9
with f = f0, δ = 2−3, ε = 1 and ( fl , fu) = (E1,E

1) we can defne f1 on [a, b] so
that

f1 ∈ (E1,E
1) on [a, b],

f1 is locally monotonic on (a, b), (15)

and on any interval of monotonicity [c, d] of f1 we have

f1 = K ± (1 − 2−3)φ.

Note that by defning f1 in this fashion on each contiguous interval of F1 we ensure
that f1 is differentiable on F1 with f ′

1 = 0 on F1. It follows that (i) is satisfed for
n = 1 and it is easy to see that (iii) holds as well. (Regarding these properties, in
the upcoming steps of the construction we will require that fn ∈ (E1,E

1) on [a, b]
as well. This will make sure that the limit function f is differentiable on F1 and its
derivative vanishes there as desired.)

We next demonstrate that (iv) holds. We assume without loss of generality that
γ1 � 1/2 and let x ∈ Eγ1,δ1∩(a, b). Choose amaximal interval of monotonicity [c′, d]
of f1 containing x . We can assume without loss of generality that x is in the left half of
[c′, d] so that x ∈ [c′, (c′ + d)/2]. Since x ∈ (a, b), it is impossible that x = a. In case
of c′ �= a we set c = c′. If c′ = a then we set c = c′ + (x − c′)/2 = a + (x − a)/2.
In both cases x ∈ [c, (c + d)/2]. Using (15) set

e = min
�
e′ ∈ [a, c) : f1 is monotone on [e′, c]�.

Choose

δ = 1

101
min {c − e, d − c, δ1}. (16)

Suppose frst that x ∈ [c+ δ, (c + d)/2]. In this case f1 is monotone on [x − δ, x + δ]
and using the defnition of f1, the fact that x ∈ Eγ1,δ1 and the fact that δ � δ1, we see
that | f1(x)− f1(y)| � (1− 2−3)γ1|x − y| > (1− 2−2)γ1|x − y| must hold for either
y = x − δ or y = x + δ.

Now suppose that x ∈ [c, c + δ]. Since x ∈ Eγ1,δ1 and 100δ � δ1 we have
that max {|E ∩ [x, x + 100δ]|, |E ∩ [x − 100δ, x]|} � 100γ1δ. Suppose frst that |E ∩
[x, x + 100δ]| � 100γ1δ and let y = x+100δ. In this case, since [x, y] ⊂ [c, d], by the
defnition of f1, we obtain | f1(x)− f1(y)| � (1−2−3)γ1|x−y| > (1−2−2)γ1|x−y|.
Now suppose that |E ∩ [x − 100δ, x]| � 100γ1δ. Note that [x − 100δ, c] ⊂ [e, c].
Setting y = x − 100δ, S1 = 	 c

y (1 − 2−3)1E (t) dt and S2 = 	 x
c (1 − 2−3)1E (t) dt ,

we get | f1(x) − f1(y)| � S1 − S2. On the other hand, we know that S2 � (1 − 2−3)
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Fig. 2 fn−1 on (a, b)

(x − c) � (1 − 2−3)δ and S1 + S2 = (1 − 2−3)|E ∩ [y, x]| � (1 − 2−3)100γ1δ.
Using the fact that γ1 � 1/2, we see that

| f1(x) − f1(y)| � S1 − S2 � (1 − 2−3)(100γ1 − 2)δ

> (1 − 2−2)100γ1δ = (1 − 2−2)γ1|x − y|.

Summing up, we see that in each of the two cases considered: x ∈ [c, c + δ] or
x ∈ [c + δ, (c + d)/2], we can choose y = y1(x) such that δ � |x − y| � δ1 and
| f1(x)− f1(y)| � (1−2−2)γ1|x− y|. Note that the defnition of δ in (16) ensures that
|x − y1(x)| is bounded away from 0 on each compact subset of (a, b). This establishes
(iv).

Using the fact that |x − y1(x)| is bounded away from 0 on each compact subset
of (a, b), we see that we can defne a continuous, non-negative function r1 � E1 so
that r1 = 0 on F1, r1 > 0 on G1 and r1(x), r1(y1(x)) < 2−2|x − y1(x)| for all
x ∈ Eγ1,δ1 ∩ G1 and ‖r1‖∞ � 1/2. Letting U1 be the vicinity of f1 with radius r1
we see that for any g ∈ U1 we have g ∈ (−E1,E1) on any interval [a, b] contiguous
to F1. It follows that (v)–(vii) have been established provided that we assume that at
later steps fm ∈ Um ⊂ U1 for m > 1.

Now assume that we have already defned the functions f1, f2, . . . , fn−1 and the
decreasing sequence of vicinities U1,U2, . . . ,Un−1 with radii r1, r2, . . . , rn−1 for
some n � 2 so that they have the prescribed properties. Since rn−1 is continuous
and positive on Gn−1, it follows that rn−1 is bounded away from 0 on all compact
subsets of Gn−1. Now we would like to defne fn andUn . First we defne an auxiliary
function f ∗

n . Roughly f ∗
n will be defned so that it has the same increment as fn−1 in

any interval of monotonicity of fn−1, but has vanishing derivative on Fn .
To this end consider an interval (a, b) contiguous to Fn−1. See Fig. 2. On this fgure

the function fn−1 is drawn with a continuous line, the boundaries of the vicinityUn−1
are marked with dotted lines, the envelope boundaries En−1 and En−1 used in step
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Fig. 3 fn−1, f ∗
n on (α, β)

n − 1 are marked with dashed lines, fnally the auxiliary function f ∗
n−1 used at the

previous step is marked with a dash-dot line.
By assumption we have

| fn−1(x) − fn−1(y)| �
�
1 − 2−3(n−1)�|φ(x) − φ(y)| in [a, b]

and clearly fn−1 ∈ ( fn−1 − rn−1/3, fn−1 + rn−1/3) on [a, b]. Let δ′ satisfy 2−3n <

δ′ < 2−3(n−1). Then by Lemma 5.10 used with ε = 2−3(n−1) and δ = δ′ we can defne
f ∗
n on [a, b] so that

f ∗
n ∈

�
fn−1 − rn−1

3
, fn−1 + rn−1

3

�
on [a, b],

f ∗
n (a) = fn−1(a) and f ∗

n (b) = fn−1(b),

( f ∗
n )′ = 0 on Fn ∩ (a, b),

| f ∗
n (x) − f ∗

n (y)| � (1 − δ′)|φ(x) − φ(y)| for all x, y ∈ [a, b].

(17)

Now defne εn(x) = min {d(x, Fn)2, rn−1(x)/3} and let En = f ∗
n − εn and En =

f ∗
n + εn . Let (a′, b′) be contiguous to Fn in (a, b) so we have f ∗

n ∈ (En,E
n) on

[a′, b′]. See Fig. 3. Noting that (17) holds, we can apply Lemma 5.9 with ε = δ′ and
δ = 2−3n to defne a function fn such that on each [a′, b′] we have that fn ∈ (En,E

n),
that fn is locally monotone and that on each interval of monotonicity we have fn =
K ± (1 − 2−3n)φ.

From our construction we see that (i)–(iii) hold. On the other hand, (iv) is verifed in
a similar way as in the case n = 1. Finally, we consider (v)–(vii). We can defne rn ∈
C[a, b] such that rn � min {2−n, εn} and rn > 0 on each interval (a′, b′) contiguous to
Fn . Moreover, as |x − yn(x)| is bounded away from 0 on each compact subset of each
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such contiguous interval (a′, b′), we can choose rn such that if the vicinityUn has radius
rn we have for any function g ∈ Un that |g(x)− g(yn(x))| > (1−2−n)γn|x − yn(x)|.
Note that rn � εn guaranteesUn ⊆ Un−1. Thus, for a suffciently small rn the condition
rn(x), rn(y(x)) < 2−2nγn|x − yn(x)| is satisfed for all x ∈ Eγn ,δnand therefore (v)
is verifed. Moreover (vi) and (vii) follow easily as well.

Byour earlier observations this concludes the proof: (v) guarantees that the sequence
( fn) has a uniform limit function f , for which Lip f (x) = 1 in E by (iv) and (v).
On the other hand, Lip f (x) = 0 in the complement of E by (ii) and (v), as f has a
vanishing derivative there by the choice of the vicinities.

Note that sets of full measure are trivially UDT sets so an interesting consequence of
Theorem 5.6 is thatGδ sets of full measure are Lip1, yielding the following surprising
corollary.

Corollary 5.11 The set of irrational numbers is Lip1. That is, in terms of Dini deriva-
tives, there exists a continuous function f with

max
�
D+ f (x), D− f (x),−D+ f (x),−D− f (x)

� = 1R\Q.

6 Aweakly denseGı set which is not Lip1

Recall that in Sect. 4we proved that Lip1 sets areweakly dense,Gδ sets (Theorem4.1).
In this section (Theorem 6.3) we show that weakly dense, Gδ sets need not be Lip1.
For the proof of the theorem we will need the following:

Lemma 6.1 Suppose that E ⊂ R, f : R → R and Lip f = 1E . Then for every x ∈ E
and ε > 0 there is a y ∈ E ∩ (x − ε, x + ε) for which | f (x)− f (y)| > (1− ε)|x − y|.
Proof. Take y′ ∈ R such that | f (x)− f (y′)| > (1−ε/2)|x − y′| and |x − y′| < ε. We
can assume that ε < 1 and y′ < x . There is a y ∈ E ∩ (y′, x) for which |E ∩ (y′, y)| <
ε
2 | f (x) − f (y′)| and Lemma 2.2 implies that

| f (x) − f (y)|
|x − y| � | f (x) − f (y′)| − |E ∩ (y′, y)|

|x − y|
>

| f (x) − f (y′)| − ε
2 | f (x) − f (y′)|

|x − y|
�

(1 − ε
2 )

2|x − y′|
|x − y′| � 1 − ε.

Remark 6.2 Recall Defnition 2.1. It is easy to see that the following two statements
are equivalent:

• E is weakly dense at x ,
• for every ε > 0 there is an r ∈ (0, ε) such that

max

� |E ∩ (x − r , x)|
r

,
|E ∩ (x, x + r)|

r

�
> 1 − ε.
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Theorem 6.3 There exists a weakly dense, Gδ set E ⊂ R which is not Lip1.

Proof We use recursion to defne E . Set F1 ..= [0, 1]. Suppose that n is a non-negative
integer and for some (i0, . . . , in) ∈ {1}× · · · ×{1, . . . , 4n} we have already defned
a non-degenerate closed interval Fi0,...,in (see Fig. 4). Let Ui0,...,in be the left half of
Fi0,...,in , that is

Ui0,...,in
..=

�
min Fi0,...,in ,

min Fi0,...,in + max Fi0,...,in
2


.

For every in+1 ∈ {1, . . . , 4n+1} let

Fi0,...,in ,in+1
..=

�
(2 · 4n+1 − 2in+1 + 1)maxUi0,...,in + (2in+1 − 1)max Fi0,...,in

2 · 4n+1 ,

(2 · 4n+1 − 2in+1)maxUi0,...,in + (2in+1)max Fi0,...,in
2 · 4n+1


.

We defne Ui0,...,in and Fi0,...,in recursively in this way for every n ∈ N and
(i0, . . . , in) ∈ {1}×{1, . . . , 4}× · · · ×{1, . . . , 4n}. We are now ready to defne E .
First defne

I = {1}×{1, 2, 3, 4}× · · · ×{1, 2, . . . , 4n}× · · ·

and let I1 = {(in) ∈ I : in = 1 for infnitely many n ∈ N}. Set

F ..=
�

(in)∈I1

∞�

n=1

Fi1,i2,...,in (18)

and

U ..=
�

(in)∈I

∞�

n=0

Ui0,i1,...,in .

The set F is a Cantor set minus countably many Cantor sets, hence it is Gδ . For every
n ∈ N and (i0, . . . , in) ∈ {1}× · · · ×{1, . . . , 4n} there is an open set U ′

i0,...,in
such

that Ui0,...,in ⊂ U ′
i0,...,in

⊂ (R\U ) ∪Ui0,...,in . Thus U is also Gδ . This implies that

E ..= U ∪ F

is also Gδ .
If x ∈ U then E is clearly weakly dense at x . If x ∈ F and ε > 0 then using (18)

take n ∈ N and (i0, . . . , in) ∈ {1}× · · · ×{1, . . . , 4n} such that x ∈ Fi0,...,in ,1 and ε >

min {|Fi0,...,in |, 4−n−1}. By the defnition of Fi0,...,in ,1 we have 4 · 4n+1|Fi0,...,in ,1| =
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F1,1 F1,2 F1,3 F1,4U1

F1,2,1 F1,2,16U1,2

Fig. 4 The frst two steps of the recursion

|Fi0,...,in |, hence

|(min Fi0,...,in , x) ∩ E |
x − min Fi0,...,in

� |Ui0,...,in |
max Fi0,...,in ,1 − min Fi0,...,in

=
1
2 |Fi0,...,in |

1
2 |Fi0,...,in | + 2|Fi0,...,in ,1|

=
1
2 |Fi0,...,in |� 1

2 + 2
4·4n+1

�|Fi0,...,in |
= 4n+1

4n+1 + 1

= 1 − 1

4n+1 + 1
> 1 − ε.

(19)

By (min Fi0,...,in , x) ⊂ (x − ε, x) and (19) we obtain that E is weakly dense at x .
We use proof by contradiction to show that E is not Lip1. Assume the exis-

tence of a function f : R → R such that Lip f = 1E . We will show that there is
a point x∗ ∈ R for which 0.1 � Lip f (x∗) � 0.9. We will defne (i0, i1, . . .) ∈ I

recursively so that {x∗} = �∞
n=0 Fi0,...,in . Set a0

..= 0 and i0 ..= 1. Suppose that
n ∈ N and we have already defned a non-negative integer an−1 and im ∈ {1, . . . , 4m}
for every m ∈ {0, . . . , an−1}. Let yn = min (F ∩ Fi0,...,ian−1

) ∈ E . Observe that

{yn} = �∞
l=1 Fi0,...,ian−1 ,1l , where 1

l =1, . . . , 1� �� �
l times

. By Lemma 6.1 used with x = yn and

0 < ε < min {|Fi0,...,ian−1
|, 1/10} we can fnd an xn ∈ E satisfying |yn − xn| < ε and

| f (xn) − f (yn)| > 0.9|xn − yn|. (20)

This implies that xn ∈ Fi0,...,ian−1
. Since xn �= yn there exists an > an−1 such that

xn ∈ Fi0,...,ian−1 \Fi0,...,ian−1,1 while yn ∈ Fi0,...,ian−1,1. The property xn ∈ Fi0,...,ian−1

defnes im form ∈ {an−1+1, . . . , an−1}.Wemight be able to fndmany xns satisfying
the above property but we select an xn for which an is minimal among the possible
choices. Then im = 1 for every m ∈ {an−1 + 1, . . . , an − 1}.

If k ∈ N, ( j0, . . . , jk) ∈ {1}× · · · ×{1, . . . , 4k}, jk+1, j ′k+1 ∈ {1, . . . , 4k+1},
jk+1 < j ′k+1, z ∈ Fj0,..., jk , jk+1 and z′ ∈ Fj0,..., jk , j ′k+1

, then by Lemma 2.2 and the
elementary fact

0 � a < b and 0 � c imply
a

b
� a + c

b + c
(21)
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we obtain

| f (z) − f (z′)|
|z − z′| � |E ∩ [z, z′]|

|z − z′|
�

z − min Fj0,..., jk , jk+1 + |E ∩ [z, z′]| + max Fj0,..., jk , j ′k+1
− z′

max Fj0,..., jk , j ′k+1
− min Fj0,..., jk , jk+1

�
(| j ′k+1 − jk+1| + 1)|Fj0,..., jk , jk+1 |
(2| j ′k+1 − jk+1| + 1)|Fj0,..., jk , jk+1 |

� 2

3
.

(22)
This applied with z = yn , z′ = xn and k = an − 1 would imply that for xn /∈
Ui0,...,ian−1 we would have | f (xn) − f (yn)| � 2

3 |xn − yn|, contradicting (20). Hence
xn ∈ Ui0,...,ian−1 .

For every x ∈ Ui0,...,ian−1 and y ∈ Fi0,...,ian−1,4an again Lemma 2.2 and (21) imply
that

| f (y) − f (x)|
y − x

� |E ∩ [x, y]|
y − x

�
|E ∩ [x, y]| + (x − min Fi0,...,ian−1) + (max Fi0,...,ian−1 − y)

y − x + (x − min Fi0,...,ian−1) + (max Fi0,...,ian−1 − y)

�
|Ui0,...,ian−1 | + �4an

m=1 |Fi0,...,ian−1,m |
|Fi0,...,ian−1 |

= 3

4
.

Next we defne ian . We select an integer ian ∈ {1, . . . , 4an } (let it be the least one) such
that for every�x ∈ Ui0,...,ian−1 and�y ∈ Fi0,...,ian we have

| f (�y) − f (�x)|
�y −�x

� 0.9. (23)

Since xn ∈ Ui0,...,ian−1 and yn ∈ E ∩ Fi0,...,ian−1,1 by (20) we have that ian is larger
than one.

As there are w ∈ Fi0,...,ian−1,ian−1 and v ∈ Ui0,...,ian−1 for which

| f (w) − f (v)|
w − v

> 0.9 and hence

|[v,w]\E | = w − v − |[v, w] ∩ E | � w − v − | f (w) − f (v)| � w − v

10
, (24)

(see Fig. 5 below) for every�y ∈ Fi0,...,ian we obtain

| f (�y) − f (v)|
�y − v

� | f (w) − f (v)| − |E ∩ [w,�y]|
�y − w + w − v

� | f (w) − f (v)| − |E ∩ [w,�y]|
max Fi0,...,ian − min Fi0,...,ian−1 + w − v

� | f (w) − f (v)| − |E ∩ [w,�y]|
3|Fi0,...,ian | + (w − v)
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Ui0,...,ian−1

w

Fi0,...,ian

yv

Fig. 5 The position of v, w and�y

�
| f (w) − f (v)| − 2|Fi0,...,ian |

3|Fi0,...,ian | + (w − v)
�

0.9(w − v) − 2|Fi0,...,ian |
3|Fi0,...,ian | + (w − v)

�
0.9(w − v) − 2|Fi0,...,ian |

4(w − v)
�
(24)

0.9 ·10 |[v,w]\E | − 2|Fi0,...,ian |
4 ·10 |[v,w]\E |

�
0.9 ·10 (min Fi0,...,ian−1,1 − maxUi0,...,ian−1) − 2|Fi0,...,ian |

4 ·10 (min Fi0,...,ian−1,1 − maxUi0,...,ian−1)

= 0.9 ·10 |Fi0,...,ian | − 2|Fi0,...,ian |
4 ·10 |Fi0,...,ian |

= 7

40
> 0.1. (25)

We defne an and i0, . . . , ian recursively for every n ∈ N.
Set {x∗} ..= �∞

n=1 Fi0,...,in . From (25) we have Lip f (x∗) > 0.1. We claim that

| f (�x) − f (x∗)|
|�x − x∗| � 0.9 (26)

for every �x ∈ R\{x∗}. Suppose that an �x does not satisfy (26). Since f is con-
tinuous and it is constant on every complementary interval of the closure of E , we
can assume that �x ∈ E . By (22) there is a k ∈ N such that �x ∈ Ui0,...,ik−1 and
x∗ ∈ Fi0,...,ik−1,ik . Since ian > 1 for every n ∈ Nwe have x∗ �= min (F ∩ Fi0,...,ik−1) =�∞

l=1 Fi0,...,ik−1,1l . This implies

| f (�x) − f (x∗)|
|�x − x∗|

� max

� | f (�x) − f (min (F ∩ Fi0,...,ik−1))|
|�x − min (F ∩ Fi0,...,ik−1)|

,
| f (x∗) − f (min (F ∩ Fi0,...,ik−1))|

|x∗ − min (F ∩ Fi0,...,ik−1)|
�
.

(27)
Since (23) shows that k �= an for any n ∈ N, from the defnition of (an)∞n=0 we obtain

| f (�x) − f (min (F ∩ Fi0,...,ik−1))|
|�x − min (F ∩ Fi0,...,ik−1)|

�0.9. (28)

Moreover (22) implies that

| f (x∗) − f (min (F ∩ Fi0,...,ik−1))|
|x∗ − min (F ∩ Fi0,...,ik−1)|

� 2

3
. (29)
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Hence by (27), (28) and (29) we have

| f (�x) − f (x∗)|
|�x − x∗| � 0.9,

which is impossible.
Thus Lip f (x∗) �= 1E (x∗), which is a contradiction.

7 Open problems

As mentioned in the introduction, there are a number of problems in this area which
are still open. We list some of these below.

• Characterize Lip1 sets. This paper and [5] provide progress in this direction, but
there is still more work to be done.

• Characterize the sets E ⊂ R for which there is a continuous function f such that
{x : lip f (x) < ∞} = E . See [8] for a partial result on this problem. The corre-
sponding problemwith Lip f in place of lip f turns out to be quite straightforward.

• Characterize the sets E which are sets of non-differentiability for continuous func-
tions f : R → R such that lip f < ∞ everywhere. See [11] for partial results in
this direction.
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