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Abstract
The present study analyzes fractal dimensions for the daily discharge data series of
12 karstic springs registered over two decades in Northeast Hungary. Fluctuation in
the observed data is frequent and irregular, producing rough time series. The level of
roughness is measured by the fractal dimension defned in different ways and corre-
sponds to the intensity of fuctuation. That, in turn, results from the structure of the
karstic aquifer, its conduits’ geometry, and the water migration in them. In the given
case of springs, p-variogram based fractal dimensions refect the karstifcation level
primarily. On the other hand, box-count and information dimensions are associated
with mixing karstic and hydrothermal components when the latter is present. There-
fore, the analysis of fractal dimensions of spring discharges may provide a way to
obtain information on the complexity of the hidden subsurface conduits and the water
fows in them in an exploratory and comprehensive way.

Keywords Fractal Dimension · Karstic aquifer · Multifractals · Spring discharges ·
Time series

1 Introduction

Karstic catchments are characterized by spatial and physical heterogeneity, very com-
plex fractured and porous structures, and water migration in these media appears to
be highly non-linear. Therefore, linear models are unable to reconstruct the temporal
variability of karstic springdischargewith suffcient accuracy. For a deeper understand-
ing of the processes, other methods must be used. Several studies (Tessier et al. 1993,
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1996; Pandey et al. 1998; De Lima and Grasman 1999) demonstrated that a strong
feature of rainfall and river discharge time series is their multifractal nature. Multifrac-
tal property characterizes fows through porous media (Veneziano and Essiam 2003),
rock roughness, cave labyrinths (Andreychouk et al. 2013), and many other geological
objects or phenomena.

To our knowledge, the multifractal properties of the discharge time series of karstic
springs were frst recognized in Labat et al. (2002), and subsequently further papers
(Márkus and Kovács 2002;Márkus 2003;Majone et al. 2004; Livina et al. 2007; Labat
et al. 2012) dealt with the fractal nature of karstic springs. In particular, in Márkus and
Kovács (2002), two of the current authors reported on the multifractal character of
some springs included in the present study. The word ”fractal” originates in Mandel-
brot’s works, e.g., Mandelbrot (1977). He intended to describe the rough, broken, and
irregular character of certain objects by this notion. It is characteristic of fractals that
roughness is present at all scales. Fractals fll the Euclidean topological space—the one
they are embedded into—more thickly than an object of lower topological (integer)
dimension. However, they still do not fll out completely any open set of that Euclidean
space. Hence they have a non-integer dimension, the so-called fractal dimension. The
scaling properties of spring discharges may shed light on important hydrogeological
characteristics of the corresponding aquifers. A comprehensive qualifer of scaling is
the fractal dimension.

The present study considers the fractal character of the observed daily discharge
time series of 12 karstic springs located in Northeast Hungary. The use of various
FD estimation methods emphasizes various aspects of roughness, and consequently,
signifcantly different FD values can be obtained.

The present paper analyses the box-count estimator, the power variogram (or p-
variogram for short), i.e., the variogram, madogram, rodogram, and Increment1 based
estimators (cf. Gneiting and Schlather 2004; Gneiting et al. 2010) for estimating and
comparing the FDs of discharge time series.

The Rényi or generalized Dq family of multifractal dimensions, defned in Balatoni
and Rényi (1956) (see also Rényi (1960), Rényi (1961)) and later in Hentschel and
Procaccia (1983), and independently of them inGrassberger (1983), lends itself also to
be considered. D0 is generally referred to as the capacity dimension, and it coincides
with the box-count dimension; hence it is among those mentioned previously and
subject of our analysis.
Frequent and sudden fuctuation in the spring discharge is needed to produce a rough
and irregular hydrograph. The level of roughness measured by fractal dimension cor-
responds to the intensity—in frequency rather than amplitude—of the fuctuation. The
fuctuation results from the irregular arrivals of water from precipitation—and other
underground sources when present—and is modifed by the fractured karstic aquifer
structure. The geometry - characterized by the fractal dimension - of its conduits reg-
ulates the modifcation and shapes the fnal water discharge. Hence this geometry is
responsible for the altered fuctuation, as compared to that of the precipitation. There-
fore, the analysis of fractal dimensions of spring discharges may provide a way to
obtain information on the hidden subsurface conduits and the fows of water in them
in an exploratory and comprehensivemanner the physical observations are not capable
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of. In the present paper, we analyze various fractal dimension estimations and relate
them to the complexity of the aquifer and water migration processes in them.

2 Theory andmethods, estimation of fractal dimensions

Ageometrically intuitive notion of dimension is an exponent that expresses the scaling
of an object’s bulk with its size (cf. Theiler 1990). It can also be interpreted as how
thickly an object flls part of the space of an integer topological dimension in which it
is embedded. Explicitly, for time series, the fractal dimension measures the roughness
(or conversely, smoothness) of the paths; the rougher the path, the higher the dimension
between 1 and 2. The earliest defnition of a non-integer dimension is Hausdorff’s;
since then, various defnitions have become known within this concept, refected in
the estimation methods. Several estimating methods are thematically described in
Gneiting and Schlather (2004) and Gneiting et al. (2010). Below we give a short
overview of those we use in the present paper.

The Hausdorff Dimension
Hausdorff (1918) gives a theoretically rigorous defnition of a non-integer dimen-

sion of a set. He covers the considered set with balls of a radius at most r , calculates
the sum of the d-th power of those radii, and takes its infmum over all coverings of
the type.

inf
coverings

��
ri <r

rd
i

�

As r → 0, the limsup of this infmum is either infnity or 0, and Hausdorff showed that
the transition happens at a unique value dimH as d grows. This transition value dimH
is the Hausdorff dimension of the set. For further details, see, e.g., Theiler (1990).

The Box-count Estimator
The infmum taken over all coverings in the Hausdorff dimension makes it diffcult,

if not impossible, to implement it numerically. Box-counting is the simplest way to
overcome this diffculty. Under light regularity conditions, this estimation converges to
the Hausdorff dimension. In this method, the path of a time series is initially covered
by a single box (square, cube, hypercube, depending on the envelope dimension),
which is then divided into smaller boxes of equal size. The method counts how many
of them still covers the path. This procedure is to be continued until the box width
equals the resolution of the data. For fractals, the growth of the number of boxes is
power-like. The standard procedure to obtain the exponent of the power-like growth
goes by regression. Regressing the number of boxes on their width on the log-log
scale, the regression line’s slope, i.e., the regression coeffcient, gives the estimated
box-count dimension.

Variogram Based Estimators
For a time dependent stochastic process {Xt : t ∈ R

+} with stationary increments,
the Vp(t) (semi)variogram function of order p is
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Vp(t) = 1

2
E|Xu − Xu+t |p

and its method of moments estimator at lag t = 1
n is

Vp
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���p
. (1)

When p = 2, we recover the usual variogram, the case p = 1 provides the madogram,
while p = 1

2 gives the rodogram. The FD estimator based on the p-th order variogram
can be obtained from the regression ft of log(Vp)(t) on log t .

The Increment1 estimator is created similarly using p = 1 and in (1) second order
differences instead.

In case of p = 1 the relationship between the madogram and fractal dimension is
particularly universal and can be explained through the Lipschitz-Hölder heuristics of
Mandelbrot (1977), page 304, see also Carvalho and Caetano (2012). A real function
f (x) is Hölder continuous in x with exponent 0 < β < 1, when

| f (x) − f (y)| < const · |x − y|β ∀y : |x − y| < ε

holds for its increments around x . Kahane (1985) Chap. 10 Sec.7 relates Hölder con-
tinuity to the Hausdorff dimension. A special case of the result in one dimension, i.e.,
for real functions over R is that a Hölder continuous function with the supremum of
its Hölder exponents β with 0 < β < 1 has a fractal graph, and its Hausdorff fractal
dimension is (2−β). Such a function is irregular, and in general, it cannot be given by
a formula. The trajectory of the fractional Brownian motion may serve as an example.
Now, let’s take the case of the madogram. When regressing log(V1)(t) on log t we get
the regression coeffcient β, this means a power like growth of the increments around
t with exponent β, i.e. Hölder continuity with maximal exponent β. Hence the fractal
dimension of the observed path is 2 − β. The relationship of FD with the variogram
and the rodogram is less straightforward; see Gneiting et al. (2010).

The following assertion is important to us for the interpretation of our results.
The sum of two Hölder continuous functions with (maximal) exponents p and q is
again Hölder continuous with (maximal) exponents min(p, q). Hence, the sum of
two independent fractal processes’ fractal dimension is equal to the larger fractal
dimension.

The mentioned estimators are available in the [R package ‘fractaldim’],1 whereas
the generalized fractal dimension estimators are available in the [R package ‘fractal’].2

As is well-known (Adler and Taylor 2007), the Brownian paths are nowhere differ-
entiable, not even Lipschitz continuous. However, they are Hölder continuous in all t
with any of the exponents 0 < β < 1

2 and their Hausdorff dimension is 3
2 . The paths

of the fractional Brownian motion of Hurst exponent H are Hölder continuous in all

1 https://CRAN.R-project.org/package=fractal.
2 https://CRAN.R-project.org/package=fractaldim.
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t with any 0 < β < H while their Hausdorff dimension is 2 − H , showing, that the
bound in Kahane’s theorem is sharp.

The fractal dimensionof independent identically distributed (i.i.d) series is a specifc
issue, since i.i.d random variables indexed by continuous time constitute a non-
measurable process; hence they are not a usual subject for probabilistic analysis.
Nevertheless, for i.i.d. random variables with a continuous distribution, the “limiting
graph” as the index set tends to continuum, covers a full segment of the plane and
therefore its fractal dimension is 2.

The Rényi or generalized Dq Family of Multifractal Dimensions
In computing the box-counting dimension of a set, no provision is made for

weighting the box count according to how many points are inside. The generalized
(multifractal) dimension Dq does take into account the number of points in the box.
For a monofractal or uniform fractal, Dq does not vary with q. For a non-uniform
fractal, i.e., multifractal, the variation of Dq with q quantifes the non-uniformity.
Hence the set of Dq -s is also regarded as multifractal dimensions. For q = 2 Dq is
called the correlation dimension, while for q = 1 the information dimension. Let us
note that q = 0 corresponds to the plain box-counting dimension defned above and
is often also referred to as the capacity dimension.

In order to analyze the relationship between the multifractal dimensions and the
fractal dimensions previously mentioned, the concept of phase space embedding will
require some elaboration (for more details, see, e.g., Theiler (1990), Addison (1997),
Kantz and Schreiber (2004), and references therein.) Instead of studying the temporal
course of spring discharge through the hydrograph, it is possible to regard the phe-
nomenon as the output of a dynamical system driven by a random noise generator and
then consider its time evolution in some phase space. Given the system’s mentioned
non-linearity, irregularity naturally presents itself in the output, often creating a mul-
tifractal object or attractor in the phase space. Although the state space description is
highly benefcial from the theoretical perspective, an immediate question to face in
practice is the state space’s unknown dimension. Several embedding theorems clarify
the proper phase space dimension choice when the geometrical object formed by the
phase vectors in the phase space is equivalent to the trajectory, the hydrograph. Under
quite general circumstances, this dimension is larger than twice the box-counting
dimension (Addison 1997). When the dimension of the underlying phase space is not
known (Addison 1997), advocates a practical method to calculate information and
correlation dimensions, the focus of our interest, in embedding spaces of successively
larger dimensions. The estimated dimension (the slope in the log-log plot) will initially
increase with the growing embedding dimension, reaching a limiting value when the
embedding space is large enough. When the increase of the embedding dimension
stops growing the slope, the obtained value can be regarded as the estimation of the
true correlation dimension. The paper follows this methodology.

There are other methods readily available for fractal dimension estimation. How-
ever, those have not proven to be useful for the present study. E.g., frequency domain
and wavelet-based estimators unanimously gave 2 for the fractal dimension for quite
a few springs. That is obviously anomalous behavior.
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3 Geological and hydrological settings

Aggtelek Karst is located on the Hungarian Slovakian borderland, in Gömör-Torna
Karst, which belongs to the InnerWest Carpathians. Gömör-TornaKarst is divided into
Slovak Karst (northern part) and Aggtelek Karst (southern part) (see Fig. 1). The area
is a geographically homogeneous region extending over 600 km2. The Hungarian side
consists of East–West orientated limestone plateaus, having a surface area of about
200 km2 and a height of 400–600 meters a.s.l. Deep valleys are incised between the
plateaus, with their lowest points being at an elevation of 150–260 meters. On the
other side of the state border, the highest plateaus of the Slovak Karst have a height up
to 800 meters, and to the north, the mountain range is even higher (Haas 2012). More
than 1000 caves of this karst area were listed as part of UNESCO’s World Cultural
and Natural Heritage in 1995.

The diverse geology of the Aggtelek Karst inspired numerous studies, and as a
result, it became Hungary’s best-explored karst area (see, e.g., Láng (1955), Jakucs
(1977), Hevesi (1991), Telbisz et al. (2020), and references therein). The main mass
of the mountain is built up from Triassic carbonate rocks, which were deposited on
the carbonate platforms of the Neotethys Ocean (see Fig. 2). The Lower Triassic
layers are mainly aquicludes; they contain clay and sandstones, covering about 62
km2. Above them, the Middle and Upper Triassic layers consist of well karstifable
limestones (Wetterstein Formation is the widest formation), and to a lesser extent, of
less karstifable dolomites with an area of about 105 km2. Sand and gravel layers from
theMiocene age are much smaller in the southern part of the area. In theMiocene, this
area was fooded by the Pannonian Sea. The Sea later gradually decreased, became a
lake, and lacustrine sediments were deposited on the carbonated area (Less 2000). In
the secondpart of this period, karstifcationbeganunder subtropical climate conditions.
In the Pliocene, the north part of the Karst area started to uplift, and due to the tectonic
forces, the present-day dominant north-south sloping surface was formed. Pliocene
sediments (clay, sand, gravel) cover an area of approximately 35 km2. The Pleistocene

Fig. 1 Location of the springs studied, Aggtelek Karst, NE Hungary
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Fig. 2 Geological map of the Aggtelek Karst. Abbreviations: Dev-Carb = Devonian-Carboniferous, ANP
= Aggtelek National Park (Source: Telbisz et al. 2020, with the authors’ kind permission)

level is represented by the 0.2–1.0 m thick clayey soil on the plateaus’ top. In the
valleys, the Holocene alluvium consists of gravel and sand. According to Grill et al.
(1984), themountain structure canbedescribedby assuming the existence of overthrust
folds. Four different overfelds can be distinguished. The plateaus are situated above
pseudo-synclines,where they remained untouchedbetween the uplifted tectonic zones,
which brought to the surface the Lower-Triassic layers.

The mean cumulated annual precipitation is around 600mm. The greater part of the
precipitation infltrates the dolina-covered plateaus and arrives at the springs via the
fracture-system network. The biggest karst springs rise along the foot of the hills or
at the end of closed valleys and the contact of karst and non-karst areas, while smaller
ones can be found at higher altitudes. The area has a humid continental climate, with a
long summer and a substantial effect on the mountain’s climate due to the proximity of
the Carpathians. The mean annual air temperature is 9.1 ◦C. In a karstic environment,
the air temperature in caves and conduits is almost constant throughout the year and
is nearly equal to the mean annual surface air temperature. The area is characterized
by 120–130 days of freezing temperature and 40 snow-covered days in a year. The
average annual cumulated snow depth is 0.5 m.

4 Data description

Measurement of the daily spring discharge of the most signifcant karstic springs in
the Aggtelek Karst was carried out by the Hungarian Water Resources Research Plc.
from the early 1960s to the 1990s, see Maucha (1998). We could select 12 springs
with non-missing daily observations for 6205 days in the period of 1 March 1974 to
23 February 1993. The basic descriptive statistics of these decades of uninterrupted
hydrological data series are shown in Table 1.
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ő

C
so

2.
7

11
21

.4
61

.2
8.
6

11
.8

11
.1

Jó
sv
a

Jo
s

34
.4

14
50

8.
5

28
.9

7.
5

14
.7

10
.1

K
as
té
ly
ke
rt
i

K
as

3.
5

14
57

.0
95

.6
10

.2
11

.6
11

.2

K
ec
sk
ek
út

K
ec

0.
8

28
6.
5

45
.0

8.
4

10
.6

9.
5

K
is
-T
oh

on
ya

K
iT

3.
7

13
99

.7
72

.0
8.
9

10
.2

9.
7

K
om

ló
s

K
om

2.
5

84
6.
3

90
.0

9.
3

12
.1

10
.3

K
op

ol
ya

K
op

3.
4

12
24

.2
85

.7
10

.0
11

.2
10

.6

M
el
eg
ví
z

M
el

0.
5

25
5.
1

3.
1

11
.3

19
.4

17
.8

N
ag
y-
To

ho
ny
a

N
aT

24
.4

85
40

.0
19

.2
9.
6

16
.6

13
.5

Ta
po

lc
a

Ta
p

1.
2

51
8.
7

15
.4

12
.2

16
.9

15
.2

V
ec
se
m

V
ec

4.
8

19
87

.1
16

0.
0

10
.4

12
.2

11
.8

123



GEM - International Journal on Geomathematics (2021) 12 :4 Page 9 of 27 4

The surface area of the catchments is spread over various scales ranging from 0.5
km2 to 34.4 km2. The springs can be found at altitudes between 165–268 m a.s.l.
The primary source of water in the springs is the local karstic infltration from the
surface. The average and maximum water temperature of the springs is around 10 ◦C,
just as the mean annual air temperature in Hungary mentioned in the previous chapter.
However, as Table 1 shows, signifcantly higher average and maximum temperatures
were observed at several springs. The most extreme is Melegvíz (”Warm Water”,
coded as Mel) spring with an average water temperature of 17.8 ◦C, and maximal
water temperature of 19.4 ◦C.
The springs are locatedwithin a relatively small area, close to each other. Nevertheless,
signifcant differences of scale can be observed in their discharges: the multiannual
averages vary between 255 and 14509 m3/day, see Table 1. The lowest average dis-
chargewasmeasured atMel spring, while the two springs having the largest catchment
areas, Jósva (Jos) and Nagy-Tohonya (NaT), have the highest averages. The appear-
ance of extreme discharges can be characterized by comparing the usual discharge –
Qmed represented by the median discharge value in order to circumvent the biasing
effect of high values in the mean – with the Qmax maximal ones by the Qmax/Qmed

ratio. The ratio varies between 3.1 and 160 and is the smallest for springs Mel, Tap,
NaT, Jos (being 3.1, 15.4, 19.2, and 28.9, respectively) having higher than usual max-
imum temperature. Again, this may be the effect of the fow systemmentioned earlier,
which provides a steady water supply in these springs and does not allow for low
values in the denominator, keeping the ratio low.

Cave systems of varying lengths are to be found in connection with some of the
springs (Kordos 1984; Székely 2003). At Jos and Mel springs, water comes to the
surface from the 25 km long Baradla-Domica cave system, the second-longest cave
in Hungary. Kom spring is connected to Béke cave, of length approximately 7.2 km.
Szabadság cave of approx. 3.2 km belongs to the aquifer of Kec spring. NaT spring
transports water from the 1.4 km long Kossuth cave to the surface. The Vass Imre
cave of length approx. 1.1 km can be found at KiT spring. Caves of much shorter
confrmed lengths – typically a few hundred meters, as cave researchers put it by
current knowledge – lie behind Cso (Csörgő cave), Kop (Kopolya cave), Bol (Róka
cave) springs.

5 Results of fractal dimension estimations

Fractal dimensions of spring discharges are computed as described in Sect. 2. Their
values are given in the Appendix, in Table 2.

The various methods emphasize different aspects of fractality or scaling, and as a
result, the obtained values differ signifcantly (Fig. 3). It is not possible to single out
one particular method that would suffciently comprise the information provided by
all of them.

Concerning the Rényi Dq family, the embedding dimensions turn out to varywidely
for the springs. The obtained information dimensions vary between 1.74 and 3.57,
and the correlation dimensions between 1.83 and 3.52. The magnitude of values is not
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Fig. 3 Fractal Dimension values for 12 springs in alphabetical order of their codes (abbreviated from their
Hungarian names). The codes, appearing in the horizontal axes are the same as the ones used in Fig. 1.
Upper panel: p-Variogram based Fractal Dimensions; variogram (blue solid line), madogram (red dashed
line), rodogram (green dotted line) and Increment1 (orange dotdashed line) values. Lower panel: Box-count
(red solid line) and linearly rescaled information dimension (blue dotted line) values (color fgure online)

Fig. 4 Scatterplot of Boxcount versus Information Dimensions of Spring Hydographs. The red line is the
regression line as information dimension is regressed to box-count dimension. The good ft shows a strong,
almost linear relationship of the two quantities (color fgure online)

surprising since these are FDs of objects in the phase space that are only equivalent
in the sense of Sect. 2 to that of the trajectories.

So, mixing them with the FDs of the trajectories in the analysis would not be
meaningful. However, in order to have a visual impression, we display the box-count
(D0 or capacity in the multifractal terminology) and the linearly rescaled – for the
sake of better visual comparability – D1 or information dimensions on the lower plot
of Fig. 3. It is apparent that the values of the estimated D1 information dimension have
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Fig. 5 Results of cluster analyses presented bydendrograms.Upper panel:Grouping of Springs byBoxcount
Dimension. The dendrogram represents the results of cluster analysis. Lower panel: Grouping of Springs
by p-Variogram-based Fractal Dimension. The dendrogram represents the results of cluster analysis

an almost perfect linear relationship with the box-count values for these springs, and
Fig. 4 visualizes it.

When computing correlation dimension D2 for the springs, the procedure did not
converge for 2 of them, Vec and Kas, meaning that the values kept steadily growing
with the increase of the embedding dimension up to 16. For three other springs: NaT,
Mel, and Tap, the FD stabilized over embedding dimensions 9, 10, and 12, which
seems to be suspiciously high. On the other hand, for Jos, Kec, KiT, and Kom, the
correlation dimension almost coincides with the information dimension—just as is
typical for monofractals. Since at least fve springs do not have reliable correlation
dimension values, it makes more sense to go on with the analysis and interpretation
of the results without the values of D2.

Grouping of springs may help in explaining the variability of FD values across
springs. As the box-count dimension of spring hydrographs shows a different pattern
across springs from the rest, two different groupings were made and represented by
their dendrograms in Fig. 5. The upper dendrogram is based on box-count FD values.
For this single variable, clustering reduces to a ranking by the magnitude of values.
This practice may not be regarded as a proper cluster analysis—even though the
mathematical procedure is meaningful in this case, too. It is a standard procedure in
the literature (mainly medical or biological statistics) for obtaining the segmentation
of non-homogeneous observations. The other clustering, represented by the lower
dendrogram in Fig. 5, has been made by all p-variogram-based FDs. The calculations
were done by Ward’s method, and since the p-variogram related FDs are correlated,
Mahalanobis’ distance has been used.
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Fig. 6 Spring hydrographs ordered by box-count dimension based grouping. Observation day index (x-
axis) grows from 1 to 6205. Discharges (y-axis) are presented in m3/day. The different colors of the spring
names correspond to different groups. (Green = the stand alone Jos spring, blue = frst group, red = second
group). The roughness/complexity of the hydrographs is visibly different in the different groups (color
fgure online)

To help understand and interpret the results of cluster analysis the hydrographs of the
groups are displayed in Fig. 6 in accordance with the upper dendrogram in Fig. 5, i.e.,
the box-count dimension.

It is well observable in Fig. 6 that roughness, i.e., the intensity of the hydrograph’s
fuctuation, is similar within groups. The hydrograph is visibly the smoothest for the
standalone Jos spring and the roughest for the second group. This is well in line with
the fact that the box-count dimension estimates the Hausdorff dimension, which is
just the roughness’s theoretical measure. The difference between the two subgroups
of the frst group does not seem perceptible from the hydrographs by naked eyes.

6 Discussion, interpretation of the results

Similar approaches in the literature
River networks have long been noted for their fractal and multifractal nature (La

Barbera and Rosso 1989). In this context, generalized fractal dimensions have been
assessed through different methods. It was shown that the multifractal approach char-
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acterizes the river network and also the food hydrograph as the basin response to heavy
rainfall events (Gaudio et al. 2004). Similarly, the karst media (matrix rock porosity,
fracture network, and karst conduit network) are also fractal (Pardo-Igúzquiza et al.
2014). A recent review of the topic with rich references to the literature is Pardo-
Igúzquiza et al. (2019). However, the karst media and spring hydrographs are not
directly comparable to the river networks and hydrographs, although similar method-
ologies in the analysis may be applied. The functioning of the karst system is a widely
studied feld (cf., e.g., Bauer and Tóth (2015)). Veneziano and Essiam (2003) have
shown that for an aquifer with a multifractal hydraulic conductivity feld, the resulting
hydraulic gradient and specifc discharge are also multifractal felds; see also (Florea
2001; Skoglund and Lauritzen 2011). Hence, an analysis focusing on the fractal or
multifractal characteristics of the discharge of springs may shed light on certain prop-
erties of the karst media that would otherwise be diffcult to infer directly. In some
cases, eventual inconsistencies with existing geological knowledgemay point to insuf-
fcient information in certain aspects and thus inspire and direct further researches,
e.g., further exploration of caves, etc. In Robledo-Ardila et al. (2014), four springs
are taken in different carbonate massifs, and their fractal property is analyzed in the
above-mentioned spirit. Their results show that each spring’s temporal distribution
of fow has a low and varying fractal dimension. When translated to the graph of
the discharge hydrograph as a planar object, it turns out to be in the range of 1.3–
1.45, just as our springs with a simple fow system, i.e., without mixing with a
hydrothermal or any other component. They claim that, on the whole, the fractal
dimension is low. However, there are temporal periods when the fractal dimension
is high, indicating multifractal properties. We do not consider temporal periods but
establish the multifractal property for some of the considered springs by the moment
scaling.

Hergarten and Birk (2007) present an analytic theory for the recession of spring
hydrographs after precipitation events, focusing on short time scales. In order to val-
idate their theoretical considerations, they analyze two recession curves of 10 days
length of the spring Gallusquelle. They fnd 1.4 as the box-count fractal dimension,
which is similar to our fndings; however, the two approaches are entirely different.
Our 6502 days long observations contain hundreds of recession curves, allowing for a
recession curve analysis only of exemplary nature. Therefore, this approach, followed
also in Fiorillo (2014), is not followed here.

Mono- or multifractal
Since we intend to analyze fractal dimension estimations, a detailed multifrac-

tal analysis is very much beyond the scope of the present paper. Nevertheless, we
present the multifractal spectra of the springs in the Appendix, in Fig. 9, computed by
the [R package ‘MFDFA’]3 (its code is identical with the corresponding package of
MATLAB). Those can be compared to the fractional Brownian motions’ multifractal
spectra, also given in the Appendix, in Fig. 10. It is noteworthy that the peak of f (α)

occurs at or very close to 1 + H = 3 − D0. For this reason, we draw a vertical line
at three minus the box-count dimension: 3 − D0 when displaying the multifractal
spectrum of the spring hydrographs in Fig. 10 in the Appendix. The picture does not

3 https://CRAN.R-project.org/package=MFDFA.
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change much with the changing of the scale and the power orders (those are input
parameters of the computational package). For the two springs with no convergent
correlation dimension, a clear peak happen to be missing in the graph, and the vertical
line does not ft for the location of the peak of a hypothetical curve ftting to the points.
This discrepancy may give a hint of why the correlation dimension estimations do not
converge for these two springs. Beyond that, however, no apparent pattern seems to
explain the very high embedding dimensions. Again, we do not go into the analysis
of this question.

Moment scaling, presented in the Appendix in Fig. 12, indicates that most hydro-
graphs are monofractals rather than genuine multifractals (cf. Schertzer and Lovejoy
(2011), section 6.3). Hence, a single number for the fractal dimension is informative.
That may also explain why box count and information dimensions’ relation is lin-
ear. Theoretically, for monofractals, they should coincide. In our case, they differ by
roughly 1, precisely the difference in the embedding dimension (remember the graphs
are shifted in Fig. 4 for better visibility only). Therefore, they similarly characterize
the springs, and as a result, information FD does not provide valuable new information
but strengthen that of the box-count (capacity) dimension, which is also important.

Uncertainty of the FD estimation
Addressing the computed values’ uncertainty is essential, but there is currently

no available distribution theory for fractal dimension estimators. The few existing
uncertainty estimates aremodel specifc, and thosemodels have to beftted beforehand.
In the present study, we do not ft anymodel to the hydrographs but address the issue by
a general approach.Weonly try to obtain an idea about uncertaintywhen the true fractal
dimension is known. We consider a simulation from fractional Brownian motions of
the Hurst coeffcient H and compute the FD estimates’ deviation from the theoretical
value 2− H . Those estimated FD values are displayed in Fig. 13 in the Appendix, and
the average values and standard deviations are presented in the Appendix in Table 3. It
could be claimed with high certainty that the differences between the FDs of springs
are well above the random fuctuations caused by error or noise in the observations,
were those values valid for the hydrographs.

FD of precipitation data
The discharges of karstic springs are infuenced primarily by precipitation. So, even

though we do not intend to model the discharge–precipitation relationship, it is worth
determining the FD of precipitation data for a starting point. Because of the relatively
small study area, the discharges of springs are infuenced by very similar precipitation
in terms of both quantity and character (rain, snow, etc.). Thus, one monitoring sta-
tion’s daily registered precipitation data (Jósvafő) located in the region is suffciently
representative for our purposes. Besides, for the given time period, no other uninter-
rupted monitoring data for precipitation is available. The average fractal dimension
computed for these data by the paper’s methods is 1.81, a high value. The standard
deviation of 0.08, so the values are close to each other. In Gneiting et al. (2010), the
authors argue for using the madogram as the most reliable fractal dimension estima-
tion. In the given case, the madogram value is 1.83, underlining again that the graph of
precipitation has high FD and agrees well with FDs of i.i.d. series. The non-zero val-
ues of daily precipitation are known to be close to probabilistic independence, and the
zeros have no dominating role in shaping the graph’s smoothness. This circumstance
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manifests in the fact that the graph flls almost completely a segment of the plane, i.e.,
the mentioned fractal dimension is close to 2.

Effect of infltration
The process of infltration and migration of water in the karstic environment holds

back a signifcant amount of water arrived in the precipitation and, as a result, creates
much smoother hydrographs for springs than precipitation data. Consequently, the
hydrographs have much smaller FD than precipitation. However, the smoothing effect
is not uniform in the study area. It depends on the structure of the spring’s aquifer,
particularly the conduits’ geometry, and on the mixing of water from other sources
or subsurface fows if they exist. Therefore, despite the similarities in the territorial
distribution of precipitation and the area’s large-scale geological structure, the springs’
FDs vary signifcantly. E.g., madogram FD values vary from 1.13 to 1.61, and box-
count values vary from 1.31 to 1.69, representing the differences between the springs.

Effect of additional sources of water
Examining the graphs of FDs in Fig. 3, a striking difference between the box-

count dimension and the variogram-based dimensions catches the eye. Therefore,
the two types of fractal dimensions are likely to represent different characters of the
aquifers of springs. The results of cluster analysis may help to explore this difference.
Consider frst the box-count dimension and the clustering of springs according to it as
displayed in the upper graph of Fig. 5. The three rightmost springs:Mel,NaT, Tap in the
dendrogram have a signifcantly higher maximum water temperature than the others
(see Table 1). The elevated temperature can be explained by the fact that another water
source controls these springs’ outfow beyond the immediate effect of infltration.
Probably, intermediate fow systems bring the water of somewhat higher temperature
and combine with the water arriving from infltration (Goldscheider et al. 2010).
The presence of additional water source is supported, e.g., by tritium examinations
of the waters of Nagy-Tohonya spring, where 1 to 4 years old water is found to
reach the surface (Deák and Dénes 1981), postulating a complex system with more
components. The fow system is more or less independent of infltration; therefore, its
effect can particularly well be observed at low discharge when supply from infltration
is low and outfow temperature is higher. Furthermore, their maximum discharges
are low compared to the usual discharges; the Qmax/Qmed ratios are 3.0, 19.2, and
15.4, respectively. That suggests that another, more steady, subsurface fow system
mixes with the infltrating water, as described in Sect. 4. The superposed effect of
two water sources, – the infltration and the intermediate fow—creates a complex
fuctuation pattern in the hydrograph and results in higher box-count FD. Indeed
the box-count FD is 1.69, 1.54, 1.49 for these springs. The bulk of the springs is
arranged in two subgroups of the largest group at a relatively low level of separation.
Remarkably, one of the subgroups (Kas, Bol, Kit, Kop) has the smallest difference
between the maximum and minimum temperatures of their water, 1.4, 1.3, 1.3, 1.2
◦C, respectively. The temperature differences for the other subgroup (Kom, Cso, Vec,
Kec) are 2.8, 3.2, 1.8, 2.2, ◦C, respectively. We do not know any particular geological
or hydrogeological character that would justify just this separation. However, in the
frst mentioned subgroup, the maximumwater temperature adapts slightly more to the
region’s general cave temperature than the second subgroup (except for Kec). That
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suggests, the water either spends more time in the conduits of the aquifers or the
conduits’ structure is fner to accelerate heat exchange.

The leftmost (in the dendrogram) standalone spring Jos is in a unique situation.
It has the largest aquifer and collects the highest amount of water that manifests in
very high discharges. Consequently, its hydrograph has very high peaks related mostly
to large precipitation events (Fig. 6). Compared to those peaks, the regular regime’s
fuctuation is small, and therefore, the hydrograph’s geometry is smoother at this
resolution. The high peaks and small fuctuation create a uniquely low box-count FD
of 1.31 for this spring. At the same time, both the higher maximum temperature and
the lower Qmax/Qmed ratio (28.9) would associate this spring to the second, rightmost
group. Relations of the box-count and madogram FDs with the water temperatures
and the discharge ratios are displayed in the scatterplots given in the Appendix, Fig.
8. The hydrogeological situation is that its aquifer overlaps with that of Mel spring;
therefore, the intermediate fow infuences it, but the huge amount of water supply
from infltration suppresses its effect.

Effect of karstifcation
It lends itself to study the dependence of the FDs on karstifcation, as introduced in

Sect. 3.When precipitation reaches the area, under suitable conditions, the cave system
gives way to a quick outfow of a large amount of water, creating very high peaks in the
hydrograph.On the other hand, the karst’s fractured systemholds back part of thewater
anddischarges itwith a non-uniformdelay, dependent on the structure. These processes
are similar, and the created water discharges decay with different exponents over time
(Maucha 2005); their superposition forms the spring discharge. This superposition
creates variable similarities when varying scales are considered, typical of how fractal
andmultifractal processes are constructed by nature. As noted in Sect. 2, the Lipschitz-
Hölder heuristics shifts the fractal dimension of superposition of functions towards the
highest FD of the components. Therefore, more variable delayed discharge of water
creates more complex fuctuation patterns in the hydrographs refected by increased
FDs.

When the springs are clustered according to the Vp family-related FDs: variogram,
madogram, rodogram, and Increment1 based ones, three groups are clearly distin-
guished, as shown in the lower dendrogram in Fig. 5. The springs of the frst group:
Mel, Jos, NaT, Kec, Kom, and Cso all have large cave systems in their aquifer, an indi-
cator that the level of karstifcation of their aquifer is higher. Note here that the known
length of the cave in the aquifer Cso is smaller than that of the others. The springs in
this group have high FDs, e.g., madogram FDs vary from 1.29 to 1.61. All springs of
the other group have aquifers with a low karstifcation level. Their discharges present
less complex fuctuation patterns, and the result is a smoother hydrograph refected in
lower fractal dimension changing between 1.13 and 1.21.

All four types of FDs contain valuable information because leaving out any of them
results in a similar but not identical grouping. When omitting any of the springs from
the analysis, the grouping of the remainder does not change. Hence the grouping is
stable and refects the known geological structure infuencing the springs.
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Fig. 7 Grouping of springs by their full hydrographs. The dendrogram represents the clustering

Combined effects
Ideally, the two types of fractal dimension estimations considered in this section are

meant to estimate the same quantity. In the limit of infnitely frequent observations—
practical nonsense—they are supposed to give the same values. The fact that the
different procedures still provide different values may either be due to the data’s
fnite resolution or the violation of the ideal conditions. As a result, the different
methodologies emphasize different effects. However, it does not mean they would
be independent characteristics, and they would ignore the other effect. The effects’
combined appearance is refected in the lower dendrogram of Fig. 5. The group of six
springs with the highest karstifcation is divided into two subgroups. That division is
nothing to do with the karstifcation level. Instead, the subgroup on the right-hand side
consists of NaT and Mel, where the fow mixing effect is strongly present, and (Jos)
where it exists but weak, while the mixing effect is lacking in the left subgroup (Kom,
Kec, and Cso).

Calculation of fractal dimensions was essential for obtaining the grouping by the
mentioned principles. Clustering by the hydrographs themselves would lead to the
result presented in Fig. 7. Remarkable that Jos and NaT separated at a very high level
from the rest happen to create fash foods while the others do not do. Beyond this,
however, it does not seem easy to interpret this result geologically.

7 Conclusions

Discharge data registered daily over more than two decades for 12 springs of the Agg-
telek karst were analyzed with a focus on the fractal properties of the graphs of the
registered time series, i.e., the hydrographs. The springs are located in a geographically
compact and thoroughly explored area of a similar lithological structure.

The infltration and migration of water in the fractured karst make the temporal
course of the amount of discharged water in springs much smoother than the course
of precipitation refected in a hydrograph of much lower FD. The estimations of FD
capture different aspects of fractal nature. The p-variogram based estimations may be
associated with the karstifcation level. At the same time, box-count and information
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dimensions may refect the mixing of discharge sources like regional fow components
acting independently of infltration. The analysis of FDs can therefore strengthen or
broaden our knowledge on the aquifers of springs. An FD not in line with our prior
knowledge may indicate that the aquifer is more complex, including not well-explored
areas or multiple, not well-explored sources that also provide water to the springs.
These are critical aspects of aquifer vulnerability as contamination in an area not
known to be associatedwith the aquifermay pollute its water. Similarly, contamination
may arrive with subsurface fows. The lack of their adequate exploration precludes
the implementation of suitable protection measures and the aquifer’s water resources
may be spoiled (Fehér et al. 2016). Having this in mind, the FDs’ presented analysis
has a potential to be an invaluable environmental research tool.

Further work may concern the proper modeling of the discharges. As theory says,
linear models such as diffusions described by stochastic differential equations invari-
ably create processes with paths of FD value 1.5. So, modeling has to go beyond those
and to fnd the proper class of models is undoubtedly a challenge.
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8 Appendix

See Tables 2, 3 and Figs. 8, 9, 10, 11, 12, 13.

Table 2 Estimated fractal dimensions of springs. Variogram-, (Variog.), madogram-, (Madog.), rodogram-,
(Rodog.), increment1-based (Incr1), box-count, and information (Info) dimension values for 12 springs

Spring Fractal Dimension Estimates

Name Code Variog. Madog. Rodog. Incr1 Box-count Info

Bolyamér Bol 1.36 1.15 1.00 1.13 1.45 2.40

Csörgő Cso 1.45 1.31 1.06 1.34 1.40 2.21

Jósva Jos 1.74 1.46 1.09 1.68 1.31 1.74

Kastélykerti Kas 1.38 1.15 1.03 1.14 1.41 2.41

Kecskekút Kec 1.56 1.31 1.00 1.47 1.41 2.29

Kis-Tohonya KiT 1.34 1.13 1.03 1.11 1.44 2.23

Komlós Kom 1.62 1.29 1.07 1.58 1.37 1.88

Kopolya Kop 1.38 1.17 1.00 1.13 1.44 2.37

Melegvíz Mel 1.7 1.61 1.52 1.64 1.69 3.57

Nagy-Tohonya NaT 1.38 1.49 1.47 1.25 1.54 2.59

Tapolca Tap 1.36 1.21 1.02 1.25 1.49 2.42

Vecsem Vec 1.33 1.16 1.02 1.00 1.40 2.23

Table 3 Estimated fractal dimensions of fractional Brownian motion (fBm) paths. 50-50 fBm paths of
length 6205—the same as the spring hydrograph length—are simulated for each Hurst coeffcient of the
set H = 0.1, 0.3, 0.5, 0.7, 0.9, 0.98, and their p-variogram based, and box-count fractal dimensions are
computed. The mean and the standard deviation of these values are presented in the table. The box-count
estimator’s standard deviation is signifcantly, eventually two to fve times higher than the p-variogram
based FDs’, associating greater uncertainty with this estimator

Hurst Coeffcient H Estimates of the Fractal Dimension

Variogram Madogram Rodogram Box-count

Mean SD Mean SD Mean SD Mean SD

0.1 1.900 0.012 1.900 0.013 1.901 0.017 1.757 0.030

0.3 1.700 0.010 1.701 0.012 1.700 0.016 1.605 0.041

0.5 1.500 0.008 1.501 0.011 1.503 0.014 1.421 0.048

0.7 1.300 0.008 1.300 0.010 1.299 0.012 1.259 0.063

0.9 1.105 0.018 1.103 0.021 1.103 0.024 1.105 0.069

0.98 1.036 0.025 1.031 0.029 1.029 0.031 1.033 0.042
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Fig. 8 Scatterplots of Maximum water temperatures of springs (upper row) and maximum and median
discharge proportions (lower row) plotted againstMadogram (left) and Box-count (right) Fractal Dimension
values. The red lines in the right two fgures separate the standalone Jos spring and the two main groups
according to the upper dendrogram in Fig. 5
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Fig. 9 Estimated multifractal spectra of spring hydrographs obtained usingMultifractal Detrended Fluctua-
tion Analysis (MFDFA). The f (α) spectrum (y axis) is plotted against α (x axis). The magenta vertical line
has been drawn at 3− D0, where D0 is the box-count FD value. For the most of the springs the curve peak
appears near this line, just as in the case of the fractional Brownian motions, see below. Striking exceptions
are Kas and Vec. Exactly these are the springs with non-convergent correlation dimension
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Fig. 10 Multifractal spectra of simulated fractional Brownian motion (fBm) paths of the same length as the
spring hydrographs. The Hurst coeffcient of the fBm is set as: H = 0.1, 0.3, 0.5, 0.7, 0.9, 0.98. The f (α)

spectrum (y axis) is plotted against α (x axis). The peak of f (α) occurs close to 1 + H = 3 − D, with D
denoting the Haussdorff dimension - which is a known theoretical quantity for fBm. The magenta vertical
line has been drawn at this value
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Fig. 11 Log-log plot of aggregated moments of spring hydrographs. The aggregation steps are the powers
of 1.25, the (natural) logarithm of the aggregation degree (x axis) varies from 3 to 7. For every spring the
logarithm of the hydrographs’ moments (2nd red, 3rd green, 4th blue, 5th magenta, 6th lightblue, 7th black)
are computed at every aggregation level and are displayed against the logarithm of the aggregation degree.
The almost perfect linear growth on the log-log scale is an evidence of fractal/multifractal scaling (color
fgure online)
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Fig. 12 Moment scaling for spring hydrographs. For every spring the logarithm of the hydrographs’ 1st-8th
moments are computed at every aggregation level, and it is regressed on the logarithm of the aggregation
degree. The slope of the regression line is displayed against the degree of moments (blue dots) and an
asymptotic line determined by a regression on the last 5 dots is drawn (red solid line). The better the dots
ft to the line the simpler the scaling, the hydrograph is closer to a fractal rather than a multifractal (color
fgure online)
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Fig. 13 Estimated fractal dimensions of fractional Brownian motion (fBm) paths. 50–50 fBm paths of
length 6205–the same as the spring hydrograph length – are simulated for each Hurst coeffcient of the
set H = 0.1, 0.3, 0.5, 0.7, 0.9, 0.98, and their p-variogram based, and box-count fractal dimensions
are computed. These values are displayed against the simulation index: variogram-based FD – blue line,
madogram-based FD – red line, rodogram-based FD – green line, increment1-based FD – orange line,
box-count-based FD – lightblue line. In every panel, the midpoint of the y-axis is the theoretical Haussdorff
dimension. While p-variogram based FDs seem to be unbiased estimators of the theoretical Haussdorff
dimension of 2 − H , the box-count estimator seem to have a bias, in particular for low Hurst exponent
values. In the simulation, the box-count estimator’s variance is signifcantly higher than the p-variogram
based FDs’ (color fgure online)
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