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ABSTRACT

There are two popular ways to speed up simulations of planet formation via increasing the collision probability: (i) confine
motion to 2D, (ii) artificially enhance the physical radii of the bodies by an expansion factor. In this paper, I have performed 100
simulations each containing 10* interacting bodies and computed the collision parameters from the results of the runs. Each run
was executed for a lower and a higher accuracy parameter. The main goal is to determine the probability distribution functions of
the collision parameters and their dependence on the expansion factor. A simple method is devised to improve the determination
of the collision parameters from the simulation data. It was shown that the distribution of the impact parameter is uniform and
independent of the expansion factor. For real collisions, the impact velocity is greater than 1 mutual escape velocity, a finding
that can be explained using the two-body problem. The results cast some doubts on simulations of the terrestrial planets’ final
accretion that have assumed merge. Collision outcome maps were created adopting the fragmentation model of recent studies to
estimate the number of different types of collisions. A detailed comparison with earlier works indicates that there are similarities
as well as significant differences between the different works. The results indicate that as the planetary disc matures and the
masses of the bodies differ progressively than the majority of collisions lead to mass growth either via partial accretion or via
graze-and-merge collision.
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1 INTRODUCTION

According to the most widely accepted model, the nebular hypothesis
states that the formation process of the terrestrial planets is the result
of a series of three consecutive but partly overlapping stages (Lissauer
1993; Chambers 2004; Morbidelli et al. 2012). In the first stage, the
micrometre-sized dust grains coagulate into small aggregates through
pairwise collisions (Dullemond & Dominik 2005). The collisions
may proceed further to form 1-100 km-sized bodies, which are
called planetesimals. It must be noted that this process making
planetesimals can only be effective if the conditions are suitable
(Weidenschilling 1977, 1997). Weidenschilling (1977) has described
the dust motion in protoplanetary discs and showed that dust grains
from micron to a few metres in size experience a radial motion
towards the star. This radial drift strongly depends on the size and
bodies with a critical size spiral into the star in a fraction of the
disc lifetime. This loss of material quickly clears the disc preventing
planetesimal formation. This depletion process is called the ‘radial-
drift barrier’ of planet formation (Laibe, Gonzalez & Maddison 2012)
and was first studied in a minimum mass solar nebula in which the
critical size corresponds to metre-sized bodies and thus later was
inaccurately referred to as the ‘metre-size barrier’.

There exist an alternative hypothesis, where planetesimals or
even Mars-size embryos may form directly from small dust grains
concentrated by turbulence followed by gravitational collapse (Jo-
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hansen, Youdin & Mac Low 2009; Cuzzi, Hogan & Bottke 2010),
or in pressure maxima of protoplanetary discs (Lyra et al. 2008).
Moreover, if planetesimals are concentrated in a pressure maximum,
they can be quickly accreted by a growing embryo leading to the
rapid formation of a solid core and a giant planet (Lyra et al. 2008;
Séndor, Lyra & Dullemond 2011; Guilera & Sandor 2017). In this
study, I focus on the collision theory.

Despite of the radial-drift barrier, the Solar system and the ob-
served exoplanets prove the existence of an efficient and robust pro-
cess that creates planetesimals in large numbers. Once planetesimals
have formed their gravitational interactions control further growth,
which determines their velocities and the parameters of occasional
collisions. If turbulence is not too vehement, then dynamical friction
ensures that the largest planetesimals have low relative velocities.
This leads to runaway growth in which the largest objects grow more
rapidly than smaller ones (Wetherill & Stewart 1989; Kokubo & Ida
1996).

The next stage is the oligarchic phase when the largest objects
contain enough mass to dominate the velocity dispersion of smaller
planetesimals (Ida & Makino 1993). In the oligarchic growth mode,
the disc may partitioned into rings where each ring is dominated by a
single planetary embryo that sweeps up planetesimals in its vicinity
(Kokubo & Ida 1998). Nearby protoplanets grow at similar rates and
their orbits are separated by more than 5 Hill radius.

Oligarchic growth ends when the number of planetesimal drops
below such a threshold where their damping effect on protoplanet
orbits becomes insufficient to prevent orbit crossing. This initiates
the last phase of terrestrial planet formation, involving the collision
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and mutual accretion of protoplanets and embryos, the so-called
giant impacts phase. During this phase, the number of embryos
declines and the final planets forge, in stable non-crossing orbits.
Most of the evolution took place after the gas disc had dissipated,
so the processes mainly consisted of gravitational interactions and
occasional collisions between embryos.

In the early stages of planet formation, the vast number of objects
present in the dynamical system render the problem unfeasible for
direct N-body methods. But at the beginning of the last stage, the
number of significant bodies drops to a few 10% to 10* hence N-body
integrations become applicable for calculating the evolution of the
system. These methods are accurate and were used extensively to
study the final assembly of the terrestrial planets.

According to previous studies (Chambers 2001, 2013; Liu, Zhou
& Wang 2011), the time-scale of planetary systems formation is
~100 Myr. Integrating the motion of several 10 to 103 gravi-
tationally interacting bodies for ~100 Myr still requires a huge
computational effort consequently 2D model was frequently used.
Another method to speed up N-body simulations of planet formation
is to scale up the physical radii of the bodies by a factor. Both of
these techniques increase the collision probability between objects
and thus reducing the computational time.

The 2D integrations of planet formation (Cox & Lewis 1980; Lecar
& Aarseth 1986; Beaugé & Aarseth 1990; Alexander & Agnor 1998)
have notably contributed to our understanding of planetary accretion,
and motivated scholars to investigate the problem in more detail or
extend the model into 3D. On the other hand, there are findings
indicating that 2D simulations may not provide a feasible model of
a planet formation. According to Kokubo & Ida (1996), runaway
growth takes place in 3D simulations but not in 2D, although this
growth mode might have played a key role in planet formation.
Another result of Chambers & Wetherill (1998) indicated that the
time-scales of collision in 2D and 3D simulation differ significantly
(a factor of ~10) thus the evolution of large bodies — the major
concern in planet formation — follows different paths.

The numerical N-body simulations that assumed perfect accretion
have been successful at reproducing the broad characteristics of the
terrestrial planets in our Solar system (Wetherill 1994; Chambers
2001; Quintana et al. 2002, 2016; Raymond et al. 2004, 2006, 2009;
O’Brien et al. 2006; Quintana & Lissauer 2006, 2014; Liuetal. 2011).
These results were all based on a small (up to a dozen) number of
realizations performed for each set of initial conditions. A larger set of
50 simulations of planet formation around the Sun was recently per-
formed by Fischer & Ciesla (2014), who using the perfect-accretion
model, demonstrated the need for a larger suite of simulations in order
to infer results from a distribution of final planet configurations.

To date the late stage has been mainly investigated by accurate
N-body simulations while collisions were modelled generally by
perfect accretion. However, this oversimplified assumption breaks
for collisions with higher velocity and/or larger impact parameter
(Kokubo & Genda 2010). This simplification was necessary in order
to keep the number of bodies below the initial number and the lack
of detailed models on collisions between planetary mass bodies.
Having a better concept of collisions and how it influences the
evolution of the planets is a primary key in understanding how
planets emerge from a swarm of planetesimals. For this very reason,
Leinhardt & Stewart (2012, hereafter LS12) have conducted high-
resolution simulations of collisions between planetesimals and the
results were used to isolate the effects of different impact parameters
on collision outcome. Their model predicts the size and velocity
distribution of fragments as a function of the impact velocity, impact
angle, and projectile to target mass ratio. The authors identified the
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boundaries between different types of collision: (i) simple merger, (ii)
merger with some mass escaping as fragments, and (iii) hit-and-run
collisions. The analytical model developed by LS12 is a powerful tool
that has two major advantages: it improves the physics of collisions
in numerical simulations of planet formation and collision evolution,
and is easy to adapt to an N-body code.

The collision model of LS12 made possible to implement more
sophisticated, inter-particle gravity enabled N-body simulations of
late-stage planet formation. Lines et al. (2014) used this model to
simulate planet formation in the Kepler-34(AB) system’s circumbi-
nary protoplanetary disc to examine whether planets can form in a
hostile environment. The same collision model for gravity-dominated
bodies has been implemented into an N-body tree code (Bonsor et al.
2015) and used to examine planet formation.

Chambers (2013) implemented this comprehensive collision
model into the widely used Mercury integration package (Chambers
2001). Eight simulations of planet formation using the new collision
model were presented and compared to eight simulations that were
previously performed using the perfect-accretion collision model
(Chambers 2001). The new simulations form 3 to 5 terrestrial planets
moving on widely spaced orbits with growth complete by 400 My.
The final planets that formed in each of these sets were shown to
be comparable despite the significant difference in the number and
frequency of collisions. In addition, the accretion time-scales were
about twice as long when fragmentation was included.

Terrestrial planet formation is characterized by countless collisions
among bodies highlighting that collisions are the core agent of planet
formation. Impacts outcome span multiple regimes depending on
the collision parameters. The collision history of the final body can
largely influence the planet’s growth, stability, bulk composition, and
habitability (Chambers 2001, 2013; Bonsor et al. 2015).

In this paper, I present the results of 100 simulations of planet
formation in 2D started from the beginning of the stochastic stage.
The main focus of the work is to present a detailed and comprehensive
picture of the statistical distribution of the collision parameters. The
dependence of these statistics on the expansion factor is also studied
and a comparison of the results with others is presented. This is a
first step towards examining the statistical distribution of the collision
parameters. With a reliable statistics, one can assess the frequency
of different collision outcome and posterior estimate the number
of collisions lead to perfect merging. This is essential since in the
majority of the N-body simulations colliding bodies were assumed
to merge into a single new object; however, this basic premise has
not been thoroughly and deliberately tested. This is a very strong
assumption and can largely bias the result of planet formation, thus
there is an impetus to assess the occurrence of perfect merging.
The presented statistics can be also useful for N-body modellers to
perform Monte Carlo simulations of planet formation including the
model of LS12 (Stewart & Leinhardt 2012).

Using the scaling laws derived by LS12, Stewart & Leinhardt
(2012) presented a retrospective analysis of previous simulations to
estimate the range of true collision outcomes. In this work, a similar
analysis is performed on the collision data adopting the LS12 model
to estimate the occurrence of collision outcomes and the results are
compared to previous works.

The rest of this paper is organized as follows. Section 2 contains
a description of the simulations and initial conditions. Section 3
describes the results of these simulations, including the speed of the
runs, the description of the collision geometry, the collision data
and the distribution of the collision parameter. Section 4 contains a
simple analytical model which is used to discuss the observed impact
velocity distribution. Section 5 shows the collision outcome maps
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Table 1. The mass, radius, and the density of the protoplanets. In the second
column, the values are given in au and solar mass. In the third column, the
values are given in Earth mass and radius units, while in the last column in
SI units.

my 5.1230212063 x 10710 171 x 107 1.01903 x 10%!
R, 3.3120486271 x 1076 7.77 x 1072 4.95475 x 10°
Pp 3.3662582520 x 10° - 2.0 x 103

derived by the model of LS12 and the collisions of the simulations
are plotted on the maps. A comparison with other works is also
presented and the main results are summarized in Section 6.

2 THE SIMULATIONS

The equations of motion of 10* protoplanets around a star in the
barycentric coordinate system Oxy was integrated. The protoplanets
are confined to 2D and placed initially in the terrestrial region
extending from 0.5 to 1.5 au. In this model, each body was interacting
with all the other bodies and all bodies were modelled as a sphere.

In order to determine the total mass of solids in the ring, the
parameters of the minimum mass solar nebula (Hayashi 1981) were
used in which the surface density of solids is

T, =%, (1

where X = 7 gcm™2 is the surface density of solids at 1 au and r is

the distance from the star. Integrating equation (1) from 0.5 to 1.5 au
results in m = 5.123 x 107® Mg = 1.71Mg where Mg and Mg
denote the mass of the Sun and the Earth, respectively.

The simulations were started with N, = 10* bodies around a
star with 1 Mg. Each protoplanet has the same physical properties:
My = M/ Ny = 5.123 x 107" M & Mceres and the density is pp
= 2.0 gcm~? which corresponds to the mean density of Ceres and
consistent with silicon-rich rocky bodies. Consequently, the radius
of the bodies R, is approximately 500 km (see Table 1).

The semimajor axes a for this number of protoplanets are generated
randomly with probabilities weighted in order to reproduce the disc
surface density profile as defined by equation (1). Eccentricities e
are randomized from a Rayleigh distribution with rms values of 0.02
with an upper limit of 0.2. The mean anomaly M and argument of
pericentre w are randomized uniformly from [0, 27 ].

In the simulations, the gas disc had dissipated by this stage and all
collisions were assumed to be perfectly inelastic, forming a new body
by conserving mass and linear momentum. Most of the previous work
on planet formation used this oversimplified treatment of collisions.

The N-body systems are stochastic and so a large number of
simulations of a given system, with changes in the initial conditions,
are required in order to reach relevant conclusions. Most numerical
simulations designed to explore the stochastic stage lack the large
number of realizations needed to account for the stochastic nature
of N-body systems. I improve on this limitation by performing 100
simulations of planet formation around a Sun-like star. To study the
dependence on the expansion factor f used to artificially enhance
the physical radii of the bodies, I have preformed five different set
of simulations for f =1, 2, 3, 5, 10. In order to have statistically
meaningful results 10 sets of initial conditions were generated,
denoted by run id = 1, 2,..., 10. For each value of f, all these
10 initial conditions were integrated for T = 10° yr. The integrator
used an adaptive step size with a tolerance of € = 107! and € =
10~13 for all 50 cases, resulting in total 100 simulations.

The applied integrator is the Runge—Kutta—Fehlberg 7(8) algo-
rithm with adaptive step size, which has an acceptable speed and
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Figure 1. The run-time of all the 2 x 50 simulations for the two accuracy
parameters. The data are plotted for f = 1, 2, 3, 5, 10 as plus sign, asterisk,
diamond, triangle, and square symbols, respectively.

accurate in most situations (Fehlberg 1968). All simulations were
performed with an open source GPU code Rep. cupa! designed to
integrate planet and planetesimal dynamics in the framework of the
core accretion planet formation. The RED. cuDa is written in CUDA
C and runs on all NVIDIA GPUs with compute capability of at
least 2.0. All simulations were performed on Tesla K20Xm device
containing 2688 CUDA Cores and use CUDA driver version and
run-time version 7.0 and 6.5, respectively.

3 RESULTS

3.1 Speed of simulation run

I show how the typical CPU run-time of a simulation denoted by
T depends on f. Fig. 1 displays 7 for each f value and for each of
the 10 different runs. In the left-hand panel, the data correspond for
the € = 107" accuracy level, while the right one for € = 10713,
The statistics of the data are given in Table 2 where the minimum,
maximum, mean, and standard deviation of 7 is calculated from the
sample of the 10 runs belonging to a given f. The standard deviations,
denoted by sd are usually more useful to describe the variability of
the data. From Fig. 1 and Table 2, it is clear that the variation of the
run-time is the most significant for f = 1 and it gradually diminishes
as f gets larger.

The other observable fact is the decrease of T as fincreases. Each
mean run-time 7 (fourth and eighth columns in Table 2) were divided
by the maximum of the means:

() _T()
max(T(f))  T(1)’
and the ratios Q were plotted in Fig. 2 as a function of f for both
accuracy values. From the figure, it is clear that Q is approximately
inversely proportional to f, and the 1/f function (dotted curve) is
apparently a very good approximation of the measured data. In 2D,

o(f) = @

Uhttps://github.com/suliaron/red.cuda
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Table 2. The run-time in seconds for € = 1071 and € = 1073, In the second column the minimum, in the third the maximum, in the fourth
the mean, and in the fifth the standard deviation of the T'is given for € = 107!, The same values are given in sixth—ninth for e = 10713, In the

last column, ¢ is the ratio between the means, see equation (3).

e=10"10 e=10""
f min(7T) max(7) T sd(7) min(7) max(7T) T sd(7) q
1 5172 x 10°  7.147 x 10° 6224 x 10°  7.727 x 10* 8384 x 10°  9.046 x 10°  8.630 x 10°  2.061 x 10* 1.39
2 2772 x 10°  4.650 x 10°  3.009 x 10° 5773 x 10*  4.469 x 10°  4.620 x 10°  4.550 x 10° 5.753 x 10°> 1.51
3 1.895 x 105 1.966 x 10°  1.928 x 10° 1990 x 10°  3.051 x 10° 3.155x 10° 3.112x 10° 3.118 x 103> 1.61
5 1.167 x 105 1209 x 10°  1.186 x 10° 1.330 x 10> 1.849 x 10° 1.905 x 10°  1.882 x 10°  1.536 x 10° 1.59
10 5.843 x 10*  6.117 x 10*  5.965 x 10* 8770 x 10> 9.024 x 10*  9.330 x 10*  9.177 x 10*  1.040 x 10> 1.54
L I B L B L E A L . -10
[ run id =1, e = 10
1.0F 8 +€ =10 BN MARARREMRS Sococc..--=nua il RAAALAAAR) LARAAALAS! AAAAAAAM RAAAAAAEE)
- oe=10" . ]
3 % r ]
08 |- .......... 1 O/f — : :
[ % ] 3 ]
0.6 ‘:'a 7 L ]
o » - 1 [ ]
5 B - F
0.4 s = [ ]
r o 1 o 2
H T, 1 s} i ]
0.2+ . [ ]
| T o m _______ 1 : :
ool bbb v 1 ]
0 2 4 6 8 10 [ ]
f [ ]
Figure 2. The variation of Q as a function of f for € = 1071 is plotted with 0 L | | | | | l i
plus sign and for ¢ — 1013 plotted with square. The curve of 1/fis plotted
by dotted line. -1 0 1 2 3 4 5 6

one can state that increasing the collision cross-section of the bodies
by f will reduce the simulation time by f.
The g value in Table 2 is calculated for each f as

T(f;e=10"")

q(f) = T(frc = 10-10)°

(3)
which has a mean of 1.527, indicating a 53 per cent increase in the
mean run-time for a 3 orders of magnitude higher accuracy.

The run-time can be written as

n n
T(f)=>_ Ti(f)=nY_ N, ), “
i=0 i=0
where n is the number of collisions, N(z;, f) is the number of bodies
at time t;, §t; is the simulation time between the ith and (i + 1)th
collision, and 1 is a parameter characterizing the hardware. The
number of bodies versus time is depicted in Fig. 3 for different f on
logarithmic scale. We have an almost identical figure for € = 10713,
These curves are piecewise constant functions since each collision
reduces the number by 1. Itis visible that the curves inthe < 1 and ¢
>10° yrintervals are similar and in between their behaviour are alike,
but the bigger fis the smaller the time when the fast decrease begins.
These curves match very well with previous 2D simulations e.g.
Lecar & Aarseth (1986) and Alexander & Agnor (1998). According
to equation (4), the t < 1 part hardly contributes to the total run-time
since it is only 1 yr (8¢ is small), while in the ¢ > 10° interval N is a

log t

Figure 3. The logarithm of the number of protoplanets as a function of the
logarithm of time. The f = 1 case is shown by black solid line, f = 2 dotted
purple, f= 3 blue dashed, f = 5 light blue dot—dashed and the f = 10 green 3
dot—dashed line.

few dozens for all f values therefore it takes the same amount of time
to complete.

In order to demonstrate the dependence of the run-time on f shown
in Fig. 2, let’s write the ratio of the instantaneous run-time belonging
to f= 1 and ffor specific simulation time epochs as follows

T f) (N DY,
T@.) \N@. D)’

Ou(f) = =0,....,4, (%)
where 7, = 10%. The results are depicted in Fig. 4 for the five different
time epochs. We have an almost identical figure for € = 10713, It
is clearly visible that with increasing ¢ the Qy ratios fit better and
better to the 1/f function. The best fit is for k = 2, 3, and 4 (the
Qs and Q4 curves overlap). According to equation (4) and Fig. 3,
it is obvious that in these cases both N and §¢ are large, therefore
principally this interval determines the run-time. This reasoning is
not an exact proof why the run-time depends on the reciprocal of fbut
clearly demonstrates the underlying cause, i.e. the specific decrease
of N as shown in Fig. 3.
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Figure 4. The variation of Qy as a function of f. The curve of 1/fis plotted
by dashed line.
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Figure 5. Schematic of the collision geometry.

3.2 Collision geometry and parameters

In the model initially all bodies have the same mass, but as collisions
take place the masses will differ. Fig. 5 shows the geometry of a
collision. In what follows the target is the body with the larger mass
m, and the other body is called the projectile with mass m,. In the
figure, the target is stationary and the projectile is moving from right
to left with speed Vj, the units on the x and y axes are in km. The
impact angle 6, is defined at the time of first contact as the angle
between the line connecting the centres of the two bodies and the
impact velocity vector (when 6 = 0° the collision is referred as head-
on, while the & = 90° case corresponds to a grazing collision). The
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Figure 6. A collision of equally massive bodies from the simulation with f
= land runid = 1 and € = 1079 is depicted. For details see the text.

impact parameter b is
b=sinf = B/d, (6)

where B is the y coordinate of the projectile’s centre and d is distance
between the centres of the bodies.

The impact parameter has a notable influence on the collision
outcome, because the kinetic energy of the projectile may only
partially intersect the target for oblique impact, e.g. in the collision
geometry shown in Fig. 5, the top of the projectile does not directly
hit the target. Consequently, a portion of the projectile may shear off
and only the kinetic energy of the lower part of the projectile will be
involved in disrupting the target. According to LS12, the outcome of
a collision is dependent on the kinetic energy of the interacting mass
that strongly depends on b.

In order to describe the dependence of catastrophic disruption on
impact angle, two geometrical collision groups were introduced by
LS12: non-grazing, where most of the projectile interacts with the
target and grazing where less than half the projectile interacts with
the target. Following Asphaug (2010), the critical impact parameter

R,

bert = -,
crit Rt—f—RP

@)
is reached when the centre of the projectile is tangent to the surface
of the target. Grazing impacts are defined to occur when b > b

In Fig. 6, a non-grazing collision from the simulation with f= 1,
run id = 1 and € = 107'9 is plotted. The reference frame is fixed
at the target whose centre is marked by O, the Owx and Oy axes
are parallel with the Ox and Oy axes, respectively. In the figure,
O, marks the centre of the projectile. The solid circles denote the
colliding bodies. The origin of the impact velocity vector V; is at
O,. To better visualize the impact geometry, the system is rotated
until the impact velocity vector became parallel with the Owx axis
and points towards left (as in Fig. 5). The rotated projectile is plotted
by a dashed blue circle and its centre is denoted by Oy = (x;, yp).
The impact parameter b and angle 6 are

rij

6 = arcsin(b), 8)
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Figure 7. Same as Fig. 6 but for e = 10713,
where rj = |rj — rj| is the mutual distance of the point masses, and

r; is the particle’s barycentric position vector.

The projectile and the target are overlapping which is a conse-
quence of the collision detection method applied in the numerical
code. After each integration step, the mutual distances of the bodies
are calculated and compared against the sum of the bodies’ radii
multiplied by f. A collision happens whenever the

rj < f(Ri+ Ry )

criterion fulfilled.

When solving the equations of motion, the particles are treated as

point masses therefore two bodies can get arbitrary close. Since the

collision detection is done after the integration step, the collision can

be detected only after the real physical contact hence overlapping is

inevitable. The extent of the overlap can be defined as
i

21—7’
f(Ri+R))

when o = 0 the two spheres just touch each other. A consequence
of the overlap is that the parameters defining the collisions cannot
exactly determined from the data produced by the numerical simu-
lation. An improvement to this problem is described in Section 3.3.

The impact velocity is given in mutual escape velocity unit which
is defined as follows (Genda et al. 2012):

my + mp
Vese = k 1/27, 11
esc G R1+RP ( )

where k¢ is the Gaussian constant of gravity. In the literature on
planetary collisions, Qr denotes the specific energy of impact and it
is given by

(10)

1 mlvt2 =+ mpv2

= - L 12
Or 2w, (12)

where v, and vy, are the speed of the target and projectile with respect
to the centre of mass, respectively. The specific impact energy is
shown in the upper left corner of Figs 6 and 7. The projectile-to-
target mass ratio, y = my,/m; and the overlap o are displayed in the
upper right corner.
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Table 3. Summary of parameters with their values from Figs 6 and 7. In the
last two columns, the absolute A and relative change A; is given where the
reference values are taken from the € = 10717 case.

e=10"10 e=10"1 unit A A; (per cent)

0 0.223 0.118 - —0.105 47.1
b 0.465 0.416 - —0.049 10.5
b 0.361 0.367 - 0.006 1.7
Vi 2222 2.187 [Vesc] —0.035 1.6
v/ 2.206 2.180 [Vese] —0.026 1.2
Or 169.39 164.16 Deg'l  —-524 3.1
Or 166.92 163.01 Dg 'l =391 2.3
Y 1.0 1.0 - 0 0

3.3 Improve the parameters

The difficulty caused by the overlap of the bodies can be overcome
by the following method. Let us assume that the direction of the
relative velocity vector v;; does not change during the last integration
step (after which the collision was detected). This assumption was
checked with additional simulation where the step size was 10 s and
vij was monitored. It was found that v;; hardly changed after the
first contact. In this case, it is possible to shift the rotated projectile
(dotted blue circle on Fig. 6) along the x-axis (i.e. parallel with V;)
until the first contact of projectile and target. The xg—coordinate of
the shifted projectile is (see Figs 6 and 7)

x) = \/fz (R + Rp)2 -2 (13)

and the improved collision parameter b and the associated collision
angle 0" can be computed as
, [yl , L
b =—7—"—"-——, 0" = arcsin(b"). (14)
f(R+Ry)

In Fig. 6, one can see that b = 0.465 and 6 = 27.74°, while the
numeric values of the improved parameter is » = 0.361 and §' =
21.19°. Since rij < f(R; + R,) therefore it follows that b <b<1land
6" < 0 which means that the real impacts tend to be more head-on
collisions than the ones detected from the raw numerical data.

To check this method, the results from the € = 10! simulation
are used and the same collision is displayed in Fig. 7. As expected
by using higher accuracy, the collision detection happens with a
significantly smaller overlap of 0.118. The computed b = 0.416
is smaller than in the € = 107'° case. From Fig. 7, the improved
parameter b = 0.367, which agrees very well with the value
computed from the € = 107! case using equation (14) proving
the efficiency of the method.

Using the above procedure and applying the law of energy
conservation, the impact velocity and specific impact energy can
also improve. The total mechanical energy E; when the collision is
detected (blue circles on Figs 6 and 7) and the energy of the shifted
projectile (red circles) E; are equal and it allows one to compute the
improved impact speed of the shifted projectile:

1 1
v kem (o
"= \/Vi o ("ij f(Ri + Rj)>. (1>

Table 3 presents the parameters discussed in detail above for the
two accuracy parameters. The value of o decreased by 47 per cent, b
by 10 per cent, and b’ increased by 2 per cent for the higher precision.
The Vi, V], Or, and Qy are almost the same for the two precisions,
the relative changes are less than 3 per cent. From equation (15), it
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follows that the real impact velocity is slightly less than the measured
one.

3.4 Description of the collision data

During the simulations, the r; and v; vectors and the physical
properties of the colliding bodies were recorded in a data base.
Hereafter, I refer to a data set as single run data when 1 select
from the data base records with a specific f and a single run id, and
to a data set as multiple run data when I select from the data base
records with a specific f and multiple run ids. For the multiple run,
data I always selected the run ids from 1 to 10.

In general, at the end of each simulation ~10 bodies remained so
for each single run the number of collisions 7, i.e. the sample size is
n ~ 9990 therefore a multiple run data set contains approximately
99900 collisions. In total for the 50 runs, there were 499 507 and
499455 collisions for € = 107!° and € = 103, respectively. In this
paper, I used this data base to study the distribution of the collision
parameters. The details of the samples are given in Table A1l for € =
107!% and € = 10~'3, where the rows with run = 1-10 correspond to
multiple run data, while the others correspond to single run data. In
the table, the minimum and maximum values of V; and Qg are also
listed. For ¢ = 10719, the values are on the left side, while for € =
103 on the right side.

According to the results, the minimum value of 5" is 9.22 x 1077
and 2.99 x 1072 for € = 107'% and € = 1073, respectively, while
the maximum is 1 for both €. This parameter has a theoretical range
of [0, 1]. From the data, it is clear that it does not depend on f. To
save space b’ is not listed.

In Table Al with f = 1, the smallest value of V;' is 0.978 while
the biggest is 19.517. The variation of min(V}’) is minor for a fixed f
and its value decreases with increasing f from 0.99 to 0.2. The values
of max(V/) do not decrease with increasing f, they are 8.35613-%9!
except for one case for f= 1 and run id = 6 when max(V;’) = 19.517.
In Table A1, the data for this specific run without the 19.517 value
are also presented (empty cells have the same value as above). It
turns out, that the maximum of V; drops down to 8.299, which is
well in the other runs’ range. This is an extreme value and in this
single run data all other impacts are within the above range.

The minimum of Qf is 1.23 x 10* J kg~! while the maximum is
1.31 x 107 J kg~! for f = 1. The minimum values fall in a rather
narrow range for a specific f that decreases with increasing f. The
maximum values fall in a limited range for a specific f that shows a
decreasing trend with increasing f.

For each f, the table shows the range for the multiple run data,
designated by 1-10 in the run column. For ' = 1, the data are listed
containing the extreme impact speed and without it.

As reported by Table A1 in the case of € = 107!3, the sample sizes
are in almost perfect agreement with the lower accuracy runs, the
ranges of the parameters are very similar and the data show analogous
behaviour. In this case, there is no extreme value. Comparing the
results for the two accuracy parameters, one can conclude that the
size of the populations, the ranges of the impact speed, and specific
impact energy are very similar.

In Table 4, the mean of the minimum and maximum values of b
are calculated and listed along with their standard deviations. It is
clear that these values practically do not depend on f: the minimum is
very close to 0 while the maximum to 1, the standard deviation is very
limited for both quantities, the deviations around the mean is small.
The figures are alike for ¢ = 107'3, therefore they are not shown.

In Table 5, the mean of the minimum and maximum values of V;
are calculated from the values given in Table A1l and listed along
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Table 4. The mean of the minimum (second column) and maximum (fourth
column) of b’ for multiple run data and their standard deviations in the third
and fifth columns, respectively.

f min(®’) sd(min(b)) max() sd(max(b'))

1 1.56 x 10~* 1.28 x 10~* 0.999985 474 x 1073

2 6.80 x 1077 5.84 x 1072 0.999686 3.88 x 1074

3 122 x 107+ 9.77 x 1073 0.999404 6.96 x 1074

5 5.94 x 1073 6.32 x 1073 0.999093 7.41 x 1074

10 1.40 x 10~* 8.73 x 1077 0.999274 4.04 x 1074

Table 5. The same for V/ as in Table 4.

! min(V;) sd(min(V/)) max(V/) sd(max(V}))
e=10"10

1 0.991 0.005 8.712 0.805

2 0.689 0.016 8.268 0.587

3 0.559 0.008 8.119 0.517

5 0.418 0.016 8.401 0.743

10 0.275 0.029 8.278 0.484
e=10"1

1 0.990 0.004 8.322 0.641

2 0.686 0.020 8.260 0.789

3 0.554 0.015 8.062 0.779

5 0.423 0.009 8.134 0.643

10 0.279 0.015 8.105 0.520

Table 6. The same for Qp, as in Table 4.

f min(Qg) sd(min(Qg)) max(Qy) sd(max(Qg))
e=10"10

1 1.312 x 10* 1.485 x 103 4415 x 10°  7.681 x 10°

2 7.670 x 103 7.084 x 102 2,665 x 10°  5.158 x 10°

3 5.473 x 103 7.611 x 102 2378 x 10 3.368 x 10°

5 3.489 x 103 3.670 x 102 2454 x 10 4300 x 10°

10 1.789 x 103 2.761 x 102 2.358 x 10 2.778 x 10°
e=10"1

1 1.279 x 10* 1.756 x 103 4.498 x 10° 1.125 x 10°

2 7.127 x 103 5.111 x 10% 2957 x 10  8.200 x 10°

3 5.123 x 103 6.030 x 10* 2459 x 10 6.417 x 10°

5 3.030 x 103 4.610 x 10% 2282 x 10°  3.684 x 103

10 1.776 x 103 3311 x 10% 2262 x 10 2.803 x 10°

with their standard deviations for € = 107'9 and € = 107'3. The
mean of the minimum value depends strongly on £, it decreases from
0.99 to 0.28 in both cases, while the maximum essentially does not
depend on it, but stays around 8.3. The standard deviation is confined
to a narrow interval for both the minimum and maximum, indicating
modest variability of the values.

In Table 6, the extreme values and the mean of Qy derived from
the data given in Table Al are shown along with their standard
deviations for the two accuracy parameters. As expected, the mean
of the minimum value depends strongly on f, it decreases from
~13 x 10% to ~1.8 x 10° in both cases, while the maximum drops
from ~4.4 x 10° to ~2.7 x 10° and then stays constant around this
value as fincreases.

As a final note the mean, median, and sd for all multiple run data
were calculated for the two accuracy parameters. These results are
presented in Table 7. The median is the value separating the higher
half from the lower half of a data sample. The impact parameters’
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Table 7. The mean, median, and standard deviation of b/, Vi’ , and Q;{. The results are given for all multiple

run data.
f b Med(®)  sd(d) Vi Med(VY) sd(V) 0h Med(Qf) sd(Qf)
x 10° x 100 x10°
e=10"10
1 0.486 0.482 0.283 1.836 1.517 0.903 1.964 1.311 2.184
2 0.487 0.485 0.284 1.627 1.309 0.961 1.541 0.941 1.777
3 0.489 0.488 0.284 1.550 1.234 0.991 1.406 0.804 1.707
5 0.486 0.483 0.282 1.479 1.173 1.023 1.298 0.686 1.686
10 0.485 0.483 0.282 1.419 1.129 1.051 1.216 0.600 1.673
e=10""1
1 0.494 0.492 0.286 1.826 1.508 0.907 1.947 1.286 2.159
2 0.494 0.491 0.286 1.624 1.302 0.969 1.535 0.927 1.782
3 0.495 0.494 0.287 1.544 1.224 0.998 1.402 0.793 1.721
5 0.495 0.495 0.287 1.480 1.173 1.033 1.304 0.685 1.710
10 0.493 0.491 0.287 1.424 1.131 1.062 1.229 0.599 1.699

mean and median values are close to 0.5, which is the middle of its
range. In the case of V;, the mean is definitely larger than the median
for all data sets. This implies that there are some large values that
affect the mean and most of the values are closer to the median than to
the mean. This fact also reflects in the relative large sd values. Since
the specific impact energy is a strong function of the impact speed,
the median of Qj, is significantly smaller than the mean. Again this is
visible from the larger spread of the data, given the larger sd values.

3.5 The bin size

To construct the histograms, the first step is to bin the range of values
and then count how many values fall into each interval. In this paper,
the bins are consecutive, adjacent, and non-overlapping intervals of a
variable. The bins have equal size. Since there is no ultimate method
to determine the number of bins, after some experimentation I found
that the Rice rule gives the best number of bins:

max — min

k=[2n3], bs= — (16)

where bs is the bin size, min, max denotes the minimum and
maximum of the underlying variable and the braces indicate the
ceiling function. Throughout this paper, I use normalized histograms
to display relative frequencies which is the proportion of cases that
fall into each of several categories, with the sum of the heights
equalling 1. Histograms give an approximation of the probability
density function, pdf, of the underlying variable.

A cumulative histogram refers to the running total of the values.
That is, the cumulative histogram H; of a histogram #; is defined as:

H = Zhj. 17)
Jj=1

Since the collision parameters have continuous probability distribu-
tion hereafter I will use the terms pdf and cdf.

3.6 Distribution of collision parameters

3.6.1 Analysis of the correction for the overlap

In Section 3.3, a method was presented to improve the impact
parameter, speed, and specific impact energy (see equations 14 and
15). Here, I show how it influences their distribution. In Fig. 8, I
have summarized the result for f = 1 and run id = 1 with € =

1071, Panel (a) shows the pdf of 6 (solid black curve) and 6" (red
dotted curve), panel (b) displays the pdf of b (solid black curve)
and b (red dotted curve). The number of collision is n; = 9991
and the bin size is bs(6") = 2.045° and bs(b) = bs(b') = 0.023. The
bin size for 6 is ~2.4° which is larger than for . The reason for
this difference originates from that max(6) = 105° which is larger
than the theoretically allowed 90°; another reason to improve the
parameters.

In Fig. 8 from panel (a) it is clearly visible that the distribution of
6’ is different from that of 6. For 6 < 40°, the relative frequency of 0
is similar to that of §', while for & > 40° the pdf curves diverge more
and more, the relative frequency of  is higher than 6. Our 2D results
do not support the observation of Shoemaker (1962), who concludes
that a 45° impact angle (b = 0.707) is most probable. Preliminary
results of 3D runs show evidence of a peak around 45° therefore it
seems that there is a significant difference between 2D and 3D model
when collision parameter is an important aspect. The causes of this
discrepancy should be discussed in a separate paper. From Table 8,
cdf(0") reaches 90 per cent at @ ~ 61° and 99 per cent at 8" ~ 77°.
These values are shown with dotted and solid black vertical lines
denoted by 6, and 6y, respectively.

In Fig. 8 panel (b) the distribution of b and b are depicted. These
are very similar for b < 0.8 (*53°): the frequency of b is about
5-10 per cent higher than b. For b > 0.9, the difference becomes
prominent. For the last bin, the relative frequency of b is 0.06 while
itis 0.01 for . From Table 8, the cdf(h") reaches 0.9 at b~ 0.864 and
0.99 at b ~0.977. These values are shown with dotted and solid black
vertical lines denoted by by, and by, respectively. By eyeballing the
data, it is reasonable to state that the distribution of 4 is uniform in
the range [0, 0.95], and has a sharp decrease in the last bin.

In Fig. 8 panel (c) the distributions of V; and V;" are shown. The
pdf and cdf functions for these quantities are very similar. According
to Table 8, one gets that 90 per cent of V/ are less than 2.908 and
99 per cent are less than 4.824. These values are shown with dotted
and solid black vertical lines denoted by V/o, and V{ o9, respectively.
There are no data with V;/ < 0.993, the maximum of the pdf is around
1 than it decreases fast as V;" gets larger. For V; > 5, the probability
of a collision is less than 1 per cent.

Panel (d) shows the distribution of Qg and Qf. The pdf and cdf
functions are almost identical. From Table 8, cdf reaches 90 per cent
at Qp ~3.07 x 10% and 99 per cent at Qy ~ 10° J kg~'. These
values are shown with dotted and solid black vertical lines denoted

by Of g9 and Qg g9, respectively.
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Figure 8. Comparison of the distribution of the impact parameters with their improved version for € = 107! and run id = 1. On the left vertical axis, the
relative frequency is shown and the corresponding pdf curves are plotted with solid black and dotted red line segments for the raw and the improved quantity,
respectively. The cdf curves computed from equation (17) for the raw and improved quantities are also plotted with thin black and dotted red lines. The scale
for the cdf is given on the right vertical axis. On panel (a) 6 and 0 are compared. The two vertical lines denote the location where cdf reaches 90 per cent and
99 per cent, respectively. On panel (b) the b and b, on panel (c) V; and V; while on panel (d) Or and Qy are plotted. The legends are the same for each panel.

Table 8. Summary of the values for f= 1 and run id = 1 at which the cdf
reaches 90 per cent and 99 per cent for € = 10710 and € = 10713,

e=10"10 e=10""
cdf 90 per cent 99 per cent 90 per cent 99 per cent
0 (deg) 61.364 77.727 61.364 79.773
b 0.864 0.977 0.886 0.977
Vi (Vese) 2.908 4.824 3.084 5.176
or @ kg™h) 307734 996513 335928 1066 795

As it is apparent from Fig. 8 the difference between the
raw and improved quantities is not negligible, primarily in
the case of the impact angle, parameter (panels a and b)
and speed (panel c). This finding provides a further argu-
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ment to use the correction for the overlap method described in
Section 3.3.

In Fig. 9, the same quantities for € = 10~'3 are shown. The overall
behaviour of the curves is very similar to the € = 107!° case but, as
expected, the difference between the raw and improved quantities is
smaller.

To compare directly the results produced by the runs with € =
1071 and € = 10~"3 in Fig. 10 the distribution of " are presented on
the left-hand panel for both accuracy values. Apart from a random
variation, the pdf curves are akin and fluctuate around the same mean
while the cdf curves practically cannot be distinguished from each
other. From the right-hand panel of Fig. 10, there is apparently a
notable difference between the pdf curves of V," around 1, where
the red dotted curve is about 0.05 higher than the solid black one
indicating more frequent collision with lower velocity when the
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Figure 9. The same as Fig. 8 but for e = 1013,

accuracy is higher. Beyond 1 the shape of the two curves is very
similar, although the dotted curve is slightly above the black curve,
consequently there are more impact with lower velocity for the higher
accuracy. The cdf curves are almost identical.

From these comparisons and analysis, it is evident that one
should always correct the impact parameters as it was described
in Section 3.3 and from a statistical point of view it is enough to
follow the evolution of the system with a lower accuracy parameter
if one is interested only in the collision statistical properties of the
system. The only exception is the frequency of collisions around 1,
where the lower accuracy simulations provide lower frequency.

3.6.2 Comparison of statistics derived from single runs

It is instructive to compare the results of the 10 different runs for
a given f. In Fig. 11, the left-hand panel shows the pdfs and cdfs
of b for f = 1 for all the 10 runs. The pdf curves are akin and all

have a slight decrease at b > 0.95. The mean of the pdfs is 0.0222
which is shown by the thick horizontal line. Lets assume a uniform
distribution between [0, 1] with X = 44 bins then the mean of it
is 1/k = 0.0227 which is very close to the observed value. Except
for a random variation around the mean all the pdfs are similar to
each other. Furthermore, the cdf curves are essentially identical and
have a slope of 1. These properties strongly indicate that the impact
parameter has a uniform distribution within [0, 0.95], for b > 0.95
the pdf drops off slightly.

As noted earlier the impact parameter has a notable influence on
the collision outcome. For equal size bodies y = 1 and b = 0.5
which is shown by a solid thick black vertical line on the left-hand
panel of Fig. 11, denoted by y.;. According to the figure and make
use of the result that b has a uniform distribution, the probability of
a grazing impact is

P(grazing) = 1 — bt (18)
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Figure 11. Summary of the results for € = 10713 forrun = 1, ... ., 10. On the left-hand panel, the distribution of b is displayed. The thick black horizontal line

is the mean of all the 10 pdfs. The vertical lines denote the threshold of grazing impacts between equal-sized bodies () 1.1) and between bodies with y = 1: 40.

On the right-hand panel, the pdfs of V; are shown. For details see text.

Assuming equal density, the critical parameter can be express with
y as
1

bcrit = TJ/IB’ (19)

so the probability of a grazing impact as a function of y is

y\3

T (20)

P(grazing) =
which yields 50 per cent for equal size bodies. For e.g. y = 1: 40
the by = 0.77 which is denoted by y .40 on Fig. 11. This implies
that less than 23 per cent of the collisions lead to grazing impact
for bodies with a y < 0.025. As the protoplanetary disc matures and
larger and larger bodies emerge from the swarm y may reach smaller
values and the chance of a grazing impact reduces.
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The right-hand panel of Fig. 11 shows the pdfs and cdfs of V, for
the same 10 runs. There are no collisions with impact speed less than
0.993, the maxima of the pdfs are at ~1.07, beyond it the pdfs drop
off quite steeply at first, but then more slowly and finally the trend
levels off around 5. Evidently, there is a strong negative correlation,
as V' gets larger than ~1.07 the relative frequency of collisions drop
off quite steeply. From the figure, it is obvious that the pdfs are very
similar, while the cdfs look identical.

3.6.3 Dependence on f

In this section, the distribution of the collision parameters is
compared for all the f values. The distribution of the impact
parameters is displayed in Fig. 12 for f = 1, 2, 3, 5, 10 with
€ = 10713, Again, the pdf curves show a very similar behaviour
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Figure 12. The pdf and cdf of b fore =10"'3 with runid = 1 forf=1,2,
3,5, 10.
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Figure 13. The same as Fig. 12 for V;. The thick solid black curve shows
the pdf of f= 1. The inset plot shows the shifted pdfs; see text for details.

while the cdf curves are practically identical. It is evident that
the impact parameter does not depend on f, it has a uniform
distribution.

The distribution of the impact velocity for f = 1, ..., 10 is
shown in Fig. 13 for € = 10~'3. Apparently the pdf of the impact
velocity strongly depends on f. The domain of the pdf is equal to
[min(V;), max(V;)] (see Table A1) and min(V;) shift towards lower
values with increasing f, but the shape remains very similar as it is
apparent from the inset plot, which was created by shifting all the
pdfs right to the location of minimum belonging to f = 1 which is
approximately 1. The lower boundary of the domain, min(V;) and
location of the pdfs’ maxima which is denoted by Vi, are listed in
Table 9 .
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Table 9. For each f, the minimum value of the impact speed (second column),
the location of the pdfs’ maxima (third column), the calculated impact speed
Vr/el from equation (28; fourth column), and the minimum distance fy and dy
from equation (30) are listed for € = 10~'3.

f min(V;) Viim Vr’el min(fp) min(dp) [au]
1 0.993 1.0801 1 71.68 240 x 1074
2 0.693 0.7686 0.707 50.63 1.69 x 107+
3 0.561 0.6435 0.577 53.73 1.80 x 10~*
5 0.427 0.5181 0.447 56.59 1.89 x 107*
10 0.284 0.3754 0.316 51.69 1.73 x 10~*
t=t,
Pl PZ
R do = 2foR R
m uy =0 BC m vy =0
t
Pl PZ
d =2fR
u BC v

Figure 14. The two-body problem in the centre of mass reference frame. BC
denotes the barycentre.

4 TWO-BODY APPROXIMATION TO MODEL
THE IMPACT VELOCITY

The observed behaviour of the lower boundary of the domain and
the location of pdfs’ peak of the impact velocity can be explained by
a simple model described below.

I have applied a straightforward physical model based on the two-
body problem and used conservation laws to estimate the impact
velocity as a function of the mutual distance d. In this model only
the two colliding bodies P, and P, are considered and the effects of
all others are neglected. In order to simplify the calculations, I have
assumed that the colliding bodies have the same mass m and radius
R. The model is depicted in Fig. 14 where the coordinate system is
fixed to the barycentre of the system denoted by BC in the figure.

At time t = #; bodies P, and P, are d apart from each other, and
both bodies are in rest, uy = vy = 0. Let us calculate the velocity
u and v of P; and P, at time ¢ when their distance is d. I note that
the relative velocity plays the role of V;. If P, is the target then the
impact speed is u — v.

From the conservation of the linear momentum, it follows that u
= —v and from the conservation of energy:

2 1 1 2
R = smi S m? — kG 1)
2f/oR 2 2 2fR
where I have parametrized the distance with f > 1 such that d = 2fR.
Substituting v = —u into equation (21) one gets

ki) [ (22)
2R fof

The escape velocity of P, with respect to P; is

m
Ve=ky/2—, 23
V2% (23)

therefore u can be written as

‘= %ve,/f;o‘ff. (24)
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Figure 15. The lower boundary of the domain min(V;) and the location of the
maximum V; ,, versus f'shown by asterisk and triangle symbols, respectively.
The solid blue curve is the graph of the function in equation (28).

The relative velocity Vi of Py with respect to P, is

Ve = —v =V [ =L, (25)
fof
and introducing V,,; = VV%‘ than equation (25) can be written as
v, = fo—f' 26)
fof

I remark that V., is measured in escape velocity unit and plays
the role of the impact speed in the preceding text. If one knows the
initial distance dy and thus f; than the velocity V,,; at a distance of

d can be computed from equation (26). If fy > f'then fo — f =~ fo,
therefore

fo—f 1

~—, 27
Jfof S
and then equation (26) becomes
Ve & f712 (28)

This result gives an approximation of the minimum of the impact
speed. Real physical impacts happen when f= 1, substituting this into
equation (28) results V,; = 1, i.e. the impact speed is approximately
1 escape velocity unit. This is exactly in line with the distribution of
the impact velocities (see e.g. Figs 8 and 9, and the right-hand panel
of Fig. 11 and explains the lack of impact velocity less than about 1
forf=1.

In Fig. 15, the blue curve is the graph of equation (28). The min(V;)
data points match very well to this curve so this model explains
nicely the shift observed on Fig. 13. From Fig. 15, one can see that
the minimum values are just below the blue curve, which is a natural
consequence of that some of the bodies are close to each other, i.e.
the assumption fy > f breaks down. Substituting f; > f = 1 into

MNRAS 503, 4700-4718 (2021)

equation (26), one gets

ro_ fO_ 1
rel f()

Using the formula of equation (28) for the different f values, the
results are listed in the fourth column of Table 9.

The initial distance characterized by f; can be expressed from
equation (26)

__f
1= fVE

rel

< 1. (29)

Jo (30)

Substituting the minimum of the impact speed into Vy from the
second column of Table 9 into equation (30) then the initial distance
of the two bodies can be estimated and the resulting f; is displayed

in the fifth column of Table 9.

5 COLLISION OUTCOME MAPS

Recent works (LS12; Genda et al. 2012) based on the combination
of hydrocode and N-body gravity code computations studied the
impacts between planetary mass bodies and the outcome of planetary
collisions have been parameterized in terms of the masses and
velocities of the colliding bodies. According to these calculations,
the authors devised formulae for the mass of the largest remnant
denoted by M), produced in a collision as a function of the masses
of the bodies involved, the impact velocity and impact angle. The
authors also identified the boundaries between different types of
collision:

(i) perfect merging (M}, = My)

(ii) partial accretion with some mass escaping as fragments (M,
< M)

(iii) partial erosion of the target (M, < my)

(iv) pure hit-and-run (M), = my) and erosive hit-and-run (lead
to some erosion of the target and more significant damage of the
projectile.)

where Mo, = my + m,.

Using the analytical model of LS12 with adopted values of
i =0.36 and ¢* = 1.9, I derived example collision outcome maps. I
present an analysis of the simulations to assess the range of true
collision outcomes. For this purpose, two colour-coded collision
outcome maps were calculated that are shown in Fig. 16 for mass
ratios of y = 1 (left-hand panel) and y = 1: 2 (right-hand panel).
In the figure, dark blue denotes perfect merging, light blue partial
accretion, white colour net erosion to the target, and finally green
hit-and-run region. In every case, the simulation data were used
to calculate the collision parameters and to determine the outcome
based on the LS12 model. The vertical red line denotes the onset of
hit-and-run events at b;.

The details of the calculation of the collision regimes are given in
the Appendix of LS12. The model assumes a sudden transition be-
tween grazing and non-grazing impacts, which is of course, artificial.
In Fig. 16, the thick red curve corresponds to the critical velocity for
catastrophic disruption, where the largest remnant contains half the
total mass, M), = 0.5M,,. Note that this curve corresponds to the
target erosion boundary for y = 1 cases (the transition from partial
accretion or hit-and-run to the erosion region). The lower red dot—
dashed curves correspond to the impact velocity needed to disperse
10 per cent and the upper red dashed curve to 90 per cent of m,.

Fig. 16 also shows details of all the collisions that occurred in
the simulations for f = 1 and € = 10~!3 for a single run data set,
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Figure 16. Predicted collision outcome maps using the analytical model of LS12 for strengthless planets (& = 0.36 and ¢* = 1.9). Impact velocity is normalized
by the mutual surface escape velocity assuming a bulk density of 2000 kg m~3. Coloured regions denote perfect merging (dark blue), partial accretion (light
blue), net erosion to the target (white), and hit-and-run (green). The vertical red line denotes the onset of hit-and-run events at b;. Thick black red denotes
the critical disruption velocity for half the total mass (0.5My) remaining; red dashed curve denotes 90 per cent (0.9m;) and 10 per cent (0.1m;) of target mass
in largest remnant. The different symbols indicate the outcome of each collision: diamonds for mergers, squares for hit-and-run collisions, filled circles for
collisions in which the target gained mass, and triangles for collisions in which the target lost mass.

Table 10. Predicted collision outcome ratios in percentages for different
y with f = 1 and € = 10713, The total number of listed cases is 67716
representing 68 per cent of the sample.

y=1 y=7% y=1% y=% v=1
n 36656 18564 7866 4088 542
Mol 0.05 0.11 022 0.24 0.55
Hpaln 17.16 2421 32.43 3777 6347
neln 39.79 35.35 27.77 2400 627
el 43.00 40.33 39.59 3799 2970
Her/n 39.79 2343 10.39 5.04 0.37
nealn 37.39 29.83 2021 1436 092
nes/n 2329 9.87 2.81 0.76 0.00

run id = 1 with each symbol representing a single collision with
y =1 (left) and y = % (right). The symbols indicate the type of
collision involved: diamonds for mergers, squares for hit-and-run
collisions where the target survives intact, circles for collisions that
increased the mass of the target body (possibly with some mass from
the projectile escaping as fragments), and triangles for collisions that
eroded mass from the target. From the figure, it is apparent that there
is no correlation between V; and b. The number of the different type
collisions are summarized Table 10.

In Table 10, the total number of collisions n and the ratios of
the different types of outcomes are given for five y values. The
number of perfect merging, partial accretion, erosion, and hit-and-
run events are denoted by 7y, np,, ne, and ny,, respectively. In the
table, the subscript el denotes collisions where My, < 0.5M,q, i.e. the
catastrophic disruption, e2 denotes collisions where M), < 0.9m, and
e3 denotes collisions where M), < 0.1m,, i.e. the supercatastrophic
collision. The number of merging collisions is very low, less than
1 per cent for all listed y values.

According to the table, there is a clear trend which is visualized
in Fig. 17, where I have plotted the number of the different type
collisions against y .

The initial single mass distribution relaxes into a continuous
power-law mass distribution in ~100 yr which is in line with the

f=1.0, runid = 1-10, ¢ = 107"
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Figure 17. The frequency of different types of collision as a function of y.
Note that the horizontal axis is reversed in order to reflect the progress of
time, as it is shown by the upper arrow. The symbols indicate the type of
collision: diamonds for mergers, blue circles for partial accretion, triangles
for collisions that eroded mass from the target, and squares for hit-and-run.
The collisions were collected from multiple run data with f = 1 and € =
1078

results of Kokubo & Ida (1996). As the simulation time proceeds
the largest body of the continuous mass distribution separates from
it. In the beginning of the simulation y = 1 and as the continuous
power-law mass distribution develops the decreasing minimum of
y reflects the time evolution of the system, at least early in the
simulation. Later on this relationship breaks and all we can say is
that the minimum value of y is indicative of the minimum age of the
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system. In order to reflect this initial relationship between time and
min(y ), the horizontal axis y is reversed and the time is shown by
the black arrow in the top of the figure.

Itis clearly shown in Fig. 17 that the number of merging collisions
remains very low, below 1 per cent and shows a very modest increase
as y decreases. As time proceeds and the bodies grow via collisions
y may reach smaller values therefore in later times the chance of a
merging collision slightly increases. The number of partial accretion
depends strongly on y. As min(y) decreases the chance of partial
accretion events increases and for y < 0.5 the increase speeds up
such that the proportion of partial accretion reaches =~ 70 per cent
for y = 0.1. On the other hand, the number of erosion declines
with decreasing y just as ny, which follows a similar pattern but
it decreases with a smaller pace. If the collision rate is maintained
by gravitational focusing and/or additional material is coming from
outer space via migration than y may reach smaller values and the
chance of a grazing impact reduces, see equation (20). For y < 0.2
partial accretion dominates and consequently as the disc matures and
time increases the larger bodies grow faster, i.e. the rich get richer.

The importance of hit-and-run collisions was recognized by
Asphaug, Agnor & Williams (2006), namely in these events, a
pair of objects collides at an oblique angle. Momentum causes the
bodies to graze each other while exchanging some mantel material
and afterwards they separate again. Generally, the final bodies have
similar masses to the original pair but smaller relative velocities.
Hit-and-run collisions can be further divided into two subclasses.
When the first collision speed is only slightly larger than the mutual
escape velocity, the bodies collide, separate but in a second collision
they merge. These are the so-called graze-and-merge collisions. On
the other hand, when the initial impact velocity is higher, the two
bodies separate with a relative speed larger than the escape velocity,
which is not followed by a second impact. These are true hit-and-
run collisions. The boundary between these two regimes has been
clearly identified in a second series of impact simulations carried out
by Genda et al. (2012).

According to the definition of Kokubo & Ida (1996), runaway
growth means that the largest body in its feeding zone grows more
rapidly than the second largest one and the ratio of the mass of the
largest body M.« and the mean mass (m) grows monotonically with
time. In their 3D calculations, they presented evidence of runaway
growth and the results in this work summarized in Fig. 17 also
support this observation. As the single mass distribution relaxes
into the continuous power-law mass distribution more and more
collisions may involve a larger and smaller body, ie. y < 0.2
hence partial accretion dominates therefore the larger the body is
the faster it grows. The numerical simulations of Aarseth, Lin &
Palmer (1993) showed that runaway coagulation occurs and can lead
to the formation of protoplanetary cores. In their 2D simulations in
the case of larger eccentricities (hot accretion), the degree of runaway
growth can be the same as in 3D. In the 3D simulations of Kokubo
& Ida (1996), the ratio My, /(m) ~ 140 at r = 20000 yr, in their
2D one the ratio ~15, while in the work of Aarseth et al. (1993)
it was &13. Using the data of this work, preliminary calculations
show that M, /(m) ~ 10 at t = 20000 yr. It must be noted that
the above mentioned works cannot be directly compared because
on one hand of the significant differences between the treatment of
the gravitational forces and the collisions and on the other hand the
different initial conditions. However, the general conclusions and
trends are similar. In this work, the main focus is on the statistics
of the collision parameters and hence growth is studied from the
collision point of view, therefore these results are valid for both 2D
and 3D cases. The issue about the orderly and runaway growth as
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well as the mass distribution of the bodies and its time evolution will
be investigated in a next paper.

5.1 Comparison with previous works

A direct comparison to previous works is hard to present because of
the different simulation setups. The most important is that the present
simulations were performed in 2D while the others in 3D. The initial
conditions, the f expansion factor of the radii differs from work to
work and the values in the tables or figures are given for different y
or y is not exactly specified in the papers.

To estimate the effects of including the collision model of LS12
on planet formation, Stewart & Leinhardt (2012) analysed the
impact parameters of previous N-body simulations that used only
perfect accretion (O’Brien et al. 2006; Raymond et al. 2009). The
authors divided the collision outcomes from the simulations into
three groups: group 1 consists of all collisions from eight different
simulations in O’Brien et al. (2006), group 2 includes all collisions
from 40 simulations by Raymond et al. (2009) while group 3 contains
only giant impacts from the latter simulations. Groups 1 and 2 were
subdivided into two subclass containing collisions between embryos
and planetesimals (y < ﬁ) and between only embryos (y > % .
The predicted collision outcome statistics from table 1 of Stewart
& Leinhardt (2012) is summarized in the columns from 5 to 9 in
Table 11.

The simulations of Chambers (2013) also include the LS12 model
to take care of fragmentation and hit-and-run collisions. The collision
statistics of these calculations using table 1 and figs 5 and 6 of
Chambers (2013) are reported in the tenth and eleventh columns of
Table 11.

In a recent work, Bonsor et al. (2015) performed N-body simula-
tions to track the change in the bulk Mg/Fe and Si/Fe ratios of the
protoplanets. The N-body code used the LS12 model to realistically
model collisions. However, the paper did not present the collision
statistics in a tabular form, this kind of data could be extracted from
fig. 4 of the paper. The approximate values are presented in the last
2 columns of Table 11. Similar runs were performed by Carter et al.
(2015) and the collision statistics derived from fig. 5 of the paper is
qualitatively the same as in Bonsor et al. (2015).

The impacts for multiple run data with f= 1 and € = 107'% of
this work is presented in the first three columns of Table 11, where
the second column list data for all y, third column for giant impacts
with y > 1—'0 and the third column shows for planetesimal impacts
with y < ﬁ. These specific values were selected since the initial y
between the planetesimals and embryos were similar in Stewart &
Leinhardt (2012).

Comparing the giant impacts of this work (third column of
Table 11) with that of Stewart & Leinhardt (2012; fifth—seventh
columns), one sees similarities and significant differences. The
perfect merge ratios roughly agree in all cases except in group 1
where 0 merge event was detected, but the sample size in that group
is at least an order of magnitude smaller than in the other ones. The
hit-and-run case represents 29.9 per cent of all events in this work
and this value agrees well with that of group 1 (31.3 per cent), 2
(27.7 per cent), and 3 (28.2 per cent). The partial accretion measured
in this work is typically larger by a factor of &1.5, the best agreement
is with group 2: 44.7 per cent versus 39.2 per cent. Significant
differences were found in the case of erosion: this study found
24.9 per cent while this quantity is less than 3 per cent in all the
groups. The reason for this large difference is unclear since the impact
velocity distribution measured in this study (see Figs 10, 11, 12, and
15) and those presented in Stewart & Leinhardt (2012; figs 2 and
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Table 11. Predicted collision outcome ratios calculated from the work of Stewart & Leinhardt (2012), Chambers (2013), Bonsor et al. (2015), and from the
present simulations. The number of graze-and-merge events is denoted by ngpy.

This work Stewart & Leinhardt (2012) Chambers (2013) Bonsor et al. (2015)

[table 1] [table 1, figs 5 and 6] [figs 3 and 4]
All Giant Planet. Giant Planetesimal all coll. all coll. t=0 r=6x10°

y €(0,1] y > % y < % y > IL y < ﬁ (1 sim) (em - em) all coll. all coll.
n 99899 93330 1530 67 544 1165 1140 3142 ~386 92 - -
nm/n 0.32 0.3 0.9 0.0 0.7 0.6 0.0 0.6 3.6 25 6 5
Npaln 29.82 447 76.8 26.9 39.2 36.1 72.6 69.4 324 37 41 43
ne/n 24.14 24.9 0.1 3.0 0.6 1.3 0.0 1.9 19.7 0 3 16
nhe/n 45.72 29.9 22.2 31.3 27.7 28.2 23.6 25.4 443 38 50 36
Ngm/n - - - 38.8 31.8 33.8 3.8 2.7 - - - -
nes/n 12.07 0.2 0 1.5 0 0.3 0.0 0.0 - - 1 10

Note. In the work of Chambers (2013), the n,/n contains also the graze-and-merge events.

10) show good agreement. This large discrepancy deserves careful
further studies since erosion plays a crucial role in the formation and
the final bulk composition of the terrestrial planets. Notwithstanding,
the special case of erosion the supercatastrophic events ratio of this
work (0.2 per cent) matches quite well with the value in group 3
(0.3 per cent).

Analysing the planetesimal collisions detected in this work
(see the fourth column) and that of Stewart & Leinhardt (2012;
eighth, nineth columns), a very good agreement can be ob-
served: partial accretion 76.8 per cent versus 72.6 per cent and
69.4 per cent, hit-and-run events 22.2 per cent versus 23.6 per cent
and 25.4 per cent and there was no supercatastrophic event in all three
simulations.

Comparing all impacts of this work (second column) with that
of Chambers (2013; tenth column), one sees that in overall the
probabilities of different collision outcomes are similar. The results
for partial accretion and erosion should be highlighted, 29.8 per cent
versus 32.4 per cent and 24.1 per cent versus 19.7 per cent,
respectively. These present a far better agreement than in the previous
comparison. Also the hit-and-run events match closely: 45.7 per cent
versus 44.3 per cent. On the other hand, the comparison of giant
impacts (third column versus eleventh) shows significant differences:
the perfect accretion calculated in this work is 0.3 per cent much less
than the 25 per cent reported by Chambers (2013), the erosion in
this work is 24.9 per cent versus O per cent. The values for partial
accretion and hit-and-run broadly agree. It must be noted that in the
work of Chambers (2013) y was not specified, these values were
derived from the embryo—embryo collisions taken from the last row
of table 1 in Chambers (2013). Since the collision outcome depends
strongly on y, these values are only approximate and therefore they
are only indicative.

The last 2 columns contain the collision statistics compiled from
figs 4 and 5 of Bonsor et al. (2015) both containing collision events
with y € (0, 1]. The + = 0 means the beginning of the simulation
while £ = 6 x 107 is the end of it. These values should be compared
with the second column and one sees that in this work, perfect
merging is about 20 times less than in Bonsor et al. (2015). The
partial accretion is almost equal, while the hit-and-run ratio of this
work is 45.7 per cent which is in between the values of 50 per cent
and 36 per cent at = 0 and 1 = 6 x 103, respectively. Again the
erosion is largely different: at r = 0 it is 24 per cent versus 3 per cent,
but this difference decreases and the erosion reaches 16 per cent at
the end of the simulation.

Comparing the works enumerated in Table 11 with each other,
the differences are large and the results vary in large intervals. On
one hand, this is a natural consequence of the different simulation

setup, applied numerical integrator method and expansion factor but
on the other hand, this issue has to study further in detail; especially
the cause behind the large difference in the measured erosion and
perfect accretion.

I note that the model of LS12 applies a different definition for the
escape velocity:

V.. =ka/2M'JR’,

where M = my + Mineract. The Minerace denotes the interacting mass of
the projectile estimated to be involved in the collision. Since Miygeract
< my,, therefore it may be a contributing factor in the difference of
perfect mergers in Bonsor et al. (2015) and Chambers (2013).

(31

6 CONCLUSIONS

I have performed 2D N-body simulations of planetary accretion. The
statistics of the collision parameters is investigated with 10 000 equal-
mass protoplanets under perfect and gas-free accretion. In this paper,
the detailed statistics of the collision parameters are presented along
with a simple method to improve the collision parameters. Using the
two-body problem and the conservation laws, I explained the main
features of the observed impact velocity distributions. The collision
outcome maps are shown for specific projectile-to-target mass ratios.
Combining the results of the simulations with the model developed
by LS12 estimates for the different type of collisions are given as well
as detailed comparisons with previous works on collision outcomes
and frequencies.
The main conclusions of this study are:

(i) Using the two-body approximation for the colliding bodies
a simple method was presented to improve the impact parameter
b to b by equation (14) and the impact velocity V; to V/ by
equation (15). Using V; the improved specific energy Qy can be
computed.

(ii) It is apparent from Figs 8 and 9 panel (b) that the pdf curves
of b and b are similar and from a statistical point of view they do
not deviate, i.e. the improvement of the impact parameter is not too
remarkable in their pdfs. Similarly the pdfs of the improved impact
velocity from panel (c) of the same figures show little difference,
although the largest discrepancy is for the most important interval.
These findings are also supported by Fig. 10, where the results are
directly compared for € = 107'% and € = 10~'3. I emphasize that the
correction is important for the individual cases and it is obvious that
the improvement of b and V; is essential and all future simulations
that use the model of LS12 (or similar) should incorporate it to
provide more reliable results.
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(iii) It was shown that in 2D the impact parameter has a uniform
distribution within [0, 0.95], and for b > 0.95 the pdf drops off
slightly.

(iv) According to Fig. 11, the different runs produce the same
distribution of b, V/, and Q% therefore it is enough to do only one
run to obtain creditable statistical data.

(v) Making use of the two-body approximation it was possible to
explain the hiatus of impact speed less than 1 Ve, for f = 1 which
is a consequence of the conservation laws. The derived formula
gives an excellent approximation of the minimum impact speed for
different f.

(vi) It was shown that the impact parameter b does not depend on
fas it is presented by Fig. 12. On the other hand, the distribution of
Vi is a strong function of £, the pdf of the impact speed shifts towards
zero as fincreases, see Fig. 13. This behaviour was explained by the
two-body approximation shown in Fig. 15.

(vii) The model of LS12 was used to determine the number of
different types of collisions, see Fig. 16 and Table 10. For equal-mass
bodies, the majority of collisions (43 per cent) are hit-and-run events
and erosion (40 per cent). Partial accretion constitutes 17 per cent of
all cases and 0.05 per cent mergers were measured. The frequencies
of different events are summarized in Fig 17.

(viii) A thorough comparison with previous works was presented
and promising similarities along with significant differences were
found. The most significant difference is in the case of erosion,
where this work reports 25 per cent, while all the others are much
smaller, less than 3 per cent except for one case of Chambers
(2013) where it reaches approximately 20 per cent. The ratio of
perfect merge roughly agree with those of Stewart & Leinhardt
(2012) but differs largely from the results of Chambers (2013) and
Bonsor et al. (2015). The hit-and-run values match reasonably, while
the partial accretion ratios broadly agree with other values. It was
also shown that serious differences are present among the previous
works.

(ix) The proportion of partial accretion increasing more and more
steeply as min(y ) decreases, i.e. as the time increases, see Fig. 17. For
y < 0.1, the majority of collisions (=70 per cent) is partial accretion
and 25 per cent is hit-and-run events (comparable values were found
by Stewart & Leinhardt 2012). A significant fraction of the latter
events are graze-and-merge collisions that also leads to accretion.
These results provide a independent evidence for the runaway growth
mode described in detail by Kokubo & Ida (1996). The implications
for planet formation are that the larger the difference between the
masses of the objects (y is small) the larger the probability for
collisions in which M, grows. This can further decrease min(y)
and thus induce a positive feedback favouring more intensive mass
growth.

Below I summarize some technically important findings:

(1) The run-times for the two accuracy parameters were compared
and it was shown that the simulations for ¢ = 10~'3 takes about
40 per cent more time to complete than those with € = 10719

(ii) It was shown that the scaled mean run-time is in-
versely proportional to f for both accuracy parameters. The ba-
sic cause of this is the specific decrease of the number of
bodies.

(iii) Using the model described in Section 3.3, the parameters
of the collision computed from the simulations can be improved.
Comparing the improved values, it turned out that there are not too
significant difference between the distributions, i.e. from a statistical
point of view the lower accuracy simulations already provide useful
statistical data.

MNRAS 503, 4700-4718 (2021)

ACKNOWLEDGEMENTS

This work was partly supported by the UNKP-19-4 New National
Excellence Program of the Ministry for Innovation and Technology,
partly by the Janos Bolyai Research Scholarship of the Hungarian
Academy of Sciences. I acknowledge the support of the Hungarian
National Research, Development, and Innovation Office (NKFIH),
under the grant K- 119993 and the joint Stiftung Aktion Osterreich-
Ungarn program through project 956ul0. I would like to thank the
support of NVIDIA Corporation with the donation of a Tesla C2075
and K40 GPUs. The N-body calculations were run using the National
Information Infrastructure Development supercomputer facility.

DATA AVAILABILITY

The data underlying this paper will be shared on reasonable request
to the authors.

REFERENCES

Aarseth S. J., Lin D. N. C., Palmer P. L., 1993, ApJ, 403, 351

Alexander S. G., Agnor C. B., 1998, Icarus, 132, 113

Asphaug E., 2010, Chem. Erde/Geochem., 70, 199

Asphaug E., Agnor C. B., Williams Q., 2006, Nature, 439, 155

Beaugé C., Aarseth S. J., 1990, MNRAS, 245, 30

Bonsor A., Leinhardt Z. M., Carter P. J., Elliott T., Walter M. J., Stewart S.
T., 2015, Icarus, 247, 291

Carter P. J., Leinhardt Z. M., Elliott T., Walter M. J., Stewart S. T., 2015, ApJ,
813,72

Chambers J. E., 2001, Icarus, 152, 205

Chambers J. E., 2004, Earth Planet. Sci. Lett., 223, 241

Chambers J. E., 2013, Icarus, 224, 43

Chambers J. E., Wetherill G. W., 1998, Icarus, 136, 304

Cox L. P, Lewis J. S., 1980, Icarus, 44, 706

Cuzzi J. N, Hogan R. C., Bottke W. F., 2010, Icarus, 208, 518

Dullemond C. P., Dominik C., 2005, A&A, 434,971

Fehlberg E., 1968, NASA Technical Report, 287

Fischer R. A., Ciesla F. J., 2014, Earth Planet. Sci. Lett., 392, 28

Genda H., Kokubo E., Ida S., 2012, ApJ, 744, 8

Guilera O. M., Sandor Zs., 2017, A&A, 604, A10

Hayashi C., 1981, Prog. Theor. Phys. Suppl., 70, 35

Ida S., Makino J., 1993, Icarus, 106, 210

Johansen A., Youdin A., Mac Low M.-M., 2009, ApJ, 704, L75

Kokubo E., Genda H., 2010, ApJ, 714, L21

Kokubo E., Ida S., 1996, Icarus, 123, 180

Kokubo E., Ida S., 1998, Icarus, 131, 171

Laibe G., Gonzalez J. F., Maddison S. T., 2012, A&A, 537, A61

Lecar M., Aarseth S. J., 1986, AplJ, 305, 564

Leinhardt Z. M., Stewart S. T., 2012, AplJ, 745, 79 (LS12)

Lines S., Leinhardt Z. M., Paardekooper S., Baruteau C., Thebault P., 2014,
ApJ, 782, L11

Lissauer J. J., 1993, ARA&A, 31, 129

Liu H., Zhou J.-L., Wang S., 2011, ApJ, 732, 66

Lyra W., Johansen A., Klahr H., Piskunov N., 2008, A&A, 491, L41

Morbidelli A., Lunine J. I., O’Brien D. P., Raymond S. N., Walsh K. J., 2012,
Annu. Rev. Earth Planet. Sci., 40, 251

O’Brien D. P., Morbidelli A., Levison H. F., 2006, Icarus, 184, 39

Quintana E. V., Lissauer J. J., 2006, Icarus, 185, 1

Quintana E. V., Lissauer J. J., 2014, ApJ, 786, 33

Quintana E. V., Lissauer J. J., Chambers J. E., Duncan M. J., 2002, ApJ, 576,
982

Quintana E. V., Barclay T., Borucki W. J., Rowe J. F., Chambers J. E., 2016,
AplJ, 821, 126

Raymond S. N., Quinn T., Lunine J. L., 2004, Icarus, 168, 1

Raymond S. N., Quinn T., Lunine J. I., 2006, Icarus, 183, 265

220z 1oqwiavaq 0 Uo 1sanb Aq GLOY/ L9/00.L/¥/E0G/2I0HE/SEIUW/ W09 dNo"01WapeD.//:SdjlYy WOy papeojumMod


http://dx.doi.org/10.1086/172208
http://dx.doi.org/10.1006/icar.1998.5905
http://dx.doi.org/10.1016/j.chemer.2010.01.004
http://dx.doi.org/10.1038/nature04311
http://dx.doi.org/10.1016/j.icarus.2014.10.019
http://dx.doi.org/10.1088/0004-637X/813/1/72
http://dx.doi.org/10.1006/icar.2001.6639 
http://dx.doi.org/10.1016/j.epsl.2004.04.031
http://dx.doi.org/10.1016/j.icarus.2013.02.015
http://dx.doi.org/10.1006/icar.1998.6007 
http://dx.doi.org/10.1016/0019-1035(80)90138-4
http://dx.doi.org/10.1016/j.icarus.2010.03.005
http://dx.doi.org/10.1051/0004-6361:20042080
http://dx.doi.org/10.1016/j.epsl.2014.02.011 
http://dx.doi.org/10.1051/0004-6361/201629843
http://dx.doi.org/10.1143/PTPS.70.35 
http://dx.doi.org/10.1006/icar.1993.1167
http://dx.doi.org/10.1088/0004-637X/704/2/L75
http://dx.doi.org/10.1088/2041-8205/714/1/L21
http://dx.doi.org/10.1006/icar.1996.0148
http://dx.doi.org/10.1006/icar.1997.5840
http://dx.doi.org/10.1051/0004-6361/201015349 
http://dx.doi.org/10.1086/164269
http://dx.doi.org/10.1088/0004-637X/745/1/79
http://dx.doi.org/10.1088/2041-8205/782/1/L11
http://dx.doi.org/10.1146/annurev.aa.31.090193.001021
http://dx.doi.org/10.1088/0004-637X/732/2/66 
http://dx.doi.org/10.1051/0004-6361:200810626
http://dx.doi.org/10.1146/annurev-earth-042711-105319
http://dx.doi.org/10.1016/j.icarus.2006.04.005
http://dx.doi.org/10.1016/j.icarus.2006.06.016
http://dx.doi.org/10.1088/0004-637X/786/1/33
http://dx.doi.org/10.1086/341808
http://dx.doi.org/10.3847/0004-637X/821/2/126
http://dx.doi.org/10.1016/j.icarus.2003.11.019 
http://dx.doi.org/10.1016/j.icarus.2006.03.011

Raymond S. N., O’Brien D. P., Morbidelli A., Kaib N. A., 2009, Icarus, 203,
644

Sandor, Zs., Lyra W., Dullemond C. P., 2011, ApJL, 728, L9

Shoemaker E. M., 1962, in Kopal Z., ed., Physics and Astronomy of the
Moon. Academic Press, New York, p. 283

Stewart S. T., Leinhardt Z. M., 2012, ApJ, 751, 32

Weidenschilling S. J., 1977, MNRAS, 180, 57

Statistics of collision parameters

Weidenschilling S. J., 1997, Icarus, 127, 290
Wetherill G. W., 1994, GeCoA, 58, 4513
Wetherill G. W., Stewart G. R., 1989, Icarus, 77, 330

APPENDIX A: SIMULATION SUMMARY
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Table A1l. Summary of simulation outcomes and results. Each row corresponds to one single run data, while the run with 1-10 to multiple run data and gives
the range within which the sample values fall for e = 10710 and € = 10~!3, 1 is the number of collision.

e=10"10 e=10"1
f run n min(V}) max(Vy) min(Qg) max(Qg) n min(V{) max(V/) min(Qg) max(Qg)
[Vese] [Vesel [ kg™'] Dkg™'] [Vesel [Vesel Dkg™'] Jkg™']

1 1 9991 0.993 10.357 1.25 x 10*  4.34 x 10° 9988 0.993 8.661 1.11 x 10*  3.58 x 10°
1 2 9993 0.995 9.803 1.24 x 10+ 5.02 x 10° 9988 0.991 7.950 1.25 x 10*  3.72 x 10°
1 3 9993 0.993 8.313 152 x 10 5.13 x 10° 9991 0.991 7.552 1.35 x 10*  4.18 x 10°
1 4 9990 0.978 8.624 1.28 x 10 4.50 x 10° 9992 0.978 8.417 1.24 x 10*  5.69 x 10°
1 5 9991 0.993 8.184 123 x 10 4.05 x 10° 9990 0.991 9.030 1.09 x 10*  3.52 x 10°
1 6 9991 0.994 19.517 1.64 x 10* 1.31 x 107 9991 0.993 8.018 1.48 x 10*  5.23 x 10°
1 6 9990 8.299 4.11 x 100

1 7 9988 0.988 8.222 1.23 x 10* 5.99 x 10° 9990 0.991 8.374 1.66 x 10*  3.46 x 10°
1 8 9990 0.992 8.017 122 x 10 3.67 x 10° 9990 0.990 7.264 1.26 x 10*  4.83 x 10°
1 9 9989 0.985 9.190 1.18 x 10* 3.82 x 10° 9989 0.992 8.609 1.19 x 10*  3.93 x 10°
1 10 9990 0.995 8.111 133 x 100 3.51 x 10° 9990 0.992 9.346 1.17 x 10*  6.83 x 10°
1 1-10 99906 0.978 19.517 1.18 x 10* 1.31 x 107 99899 0.978 9.346 1.09 x 10*  6.83 x 10°
1 1-10 99905 10.357 5.99 x 10°

2 1 9989 0.700 7.627 7.75 x 103 2.07 x 10° 9991 0.693 7.338 744 x 10> 4.33 x 10°
2 2 9990 0.697 8.921 7.96 x 103 3.28 x 100 9989 0.697 9.138 6.44 x 10> 2.86 x 10°
2 3 9991 0.677 9.099 8.90 x 10> 2.84 x 10° 9987 0.696 7.492 743 x 10> 2.03 x 10°
2 4 9990 0.691 7.795 8.37 x 10° 2.38 x 10° 9989 0.674 9.653 6.71 x 10> 3.20 x 10°
2 5 9991 0.693 7.953 6.28 x 10> 2.62 x 10° 9991 0.693 8.710 7.64 x 10> 2.60 x 10°
2 6 9992 0.696 7.412 7.61 x 103 2.01 x 10° 9985 0.695 7.502 7.06 x 10> 2.02 x 10°
2 7 9988 0.696 8.028 753 x 10> 2.63 x 10° 9992 0.692 8.411 6.20 x 10> 2.43 x 10°
2 8 9992 0.696 8.410 7.19 x 103 2.43 x 10° 9989 0.696 8.519 7.66 x 10> 3.95 x 10°
2 9 9991 0.648 8.856 723 x 10> 2.69 x 100 9989 0.632 8.341 742 x 10> 239 x 10°
2 10 9992 0.694 8.577 7.88 x 103 3.70 x 100 9988 0.692 7.500 7.27 x 10> 3.76 x 10°
2 1-10 99906 0.648 9.099 6.28 x 10° 3.70 x 10° 99890 0.632 9.653 6.20 x 10> 433 x 10°
3 1 9993 0.565 7.856 561 x 10> 2.12 x 100 9990 0.561 7.791 421 x 10> 2.08 x 10°
3 2 9990 0.565 8.372 5.43 x 103 2.40 x 10° 9991 0.559 7.646 5.15x 10> 2.01 x 10°
3 3 9991 0.560 7.478 4.69 x 10° 3.00 x 10° 9989 0.559 8.105 520 x 10> 225 x 10°
3 4 9989 0.560 7.793 6.08 x 103 2.08 x 10° 9987 0.541 8.416 539 x 10> 2.43 x 10°
3 5 9990 0.564 8.490 460 x 10> 2.47 x 10° 9987 0.563 7.462 476 x 10> 3.82 x 10°
3 6 9988 0.565 8.362 5.09 x 103 2.40 x 10° 9990 0.563 8.362 454 x 10> 2.40 x 10°
3 7 9989 0.563 8.900 6.00 x 10> 2.72 x 10° 9988 0.563 9.958 5.49 x 10> 3.40 x 10°
3 8 9991 0.561 7.210 6.26 x 103 1.78 x 100 9991 0.558 7.403 6.40 x 10> 2.08 x 10°
3 9 9989 0.540 8.358 440 x 10> 2.40 x 10° 9988 0.514 8.185 4.83 x 10> 230 x 10°
3 10 9990 0.548 8.371 6.59 x 103 2.40 x 10° 9991 0.557 7.290 525 % 10> 1.82 x 10°
3 1-10 99900 0.540 8.900 4.40 x 10 3.00 x 10° 99892 0.514 9.958 421 x 10> 3.82 x 10°
5 1 9989 0.426 7.915 280 x 10> 2.15 x 10° 9986 0.427 8.430 272 x 10> 2.44 x 10°
5 2 9990 0.422 8.549 3.08 x 10> 251 x 105 9987 0.429 9.260 2.68 x 10> 2.94 x 105
5 3 9988 0.428 7.527 3.16 x 10° 1.94 x 100 9985 0.429 9.100 276 x 10> 2.84 x 10°
5 4 9990 0.391 8.837 348 x 100 268 x 10° 9991 0.397 7.775 3.60 x 103 2.07 x 10°
5 5 9991 0.429 8.513 373 x 100 249 x 10° 9989 0.424 7.451 3.14 x 10> 1.90 x 10°
5 6 9988 0.423 8.992 3.96 x 10 277 x 10° 9989 0.423 8.356 242 x 10° 240 x 105
5 7 9989 0.384 7.643 351 10° 200 x 10° 9990 0.422 7.637 3.69 x 10°  2.00 x 10°
5 8 9990 0.425 7.762 3.82 x 103 2.22 x 10° 9991 0.424 7.757 3.63 x 10 2.06 x 10°
5 9 9989 0.429 9.954 3.62 x 100 3.40 x 10° 9988 0.425 8.065 270 x 10> 2.23 x 10°
5 10 9990 0.425 8.322 3.72 x 103 2.38 x 10° 9989 0.428 7.507 296 x 10> 1.93 x 10°
5 1-10 99894 0.384 9.954 280 x 10> 340 x 10° 99885 0.397 9.260 242 x 10> 2.94 x 10°
10 1 9990 0.287 9.232 1.54 x 100 2.92 x 10° 9988 0.284 8.362 229 x 10° 240 x 10°
10 2 9990 0.288 8.667 206 x 10> 258 x 10° 9989 0.287 8.667 1.73 x 10*  2.58 x 106
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Table A1 — continued
e=10"10 e=10""1
f run n min(V;) max(Vy) min(Qg) max(Qg) n min(V{) max(Vy) min(Qg) max(Qg)
[Vese] [Vese] Dkg™! [T kg™ [Vesc] [Vese] Tkg™" kg™

10 3 9990 0.284 7.525 1.98 x 103 1.94 x 100 9988 0.272 7.520 225 % 103 1.94 x 10°
10 4 9990 0.247 7.763 2.09 x 103 2.07 x 10° 9989 0.238 7.804 1.33 x 10> 2.09 x 10°
10 5 9990 0.289 8.246 1.96 x 10> 233 x 10° 9991 0.286 8.373 1.49 x 10° 240 x 10°
10 6 9992 0.288 8.358 1.60 x 103 2.40 x 10° 9990 0.282 8.355 144 x 10> 2.39 x 10°
10 7 9990 0.291 8.580 1.59 x 103 2.53 x 10° 9989 0.282 8.576 1.87 x 10° 252 x 10°
10 8 9990 0.288 8.020 1.30 x 103 2.21 x 10° 9989 0.286 7.004 1.91 x 10> 1.68 x 10°
10 9 9989 0.286 8.064 1.71 x 10° 2.23 x 10° 9988 0.290 8.065 1.54 x 10> 2.23 x 10°
10 10 9990 0.200 8.326 2.05 x 103 2.38 x 10° 9988 0.283 8.325 1.90 x 10> 2.38 x 10°
10 1-10 99901 0.200 9.232 130 x 10> 2.92 x 10° 99889 0.238 8.667 133 x 10° 258 x 10°
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