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A realization of a graph G is a pair (G, p) where p maps the vertices of G into Euclidean 
space Rd . The realization is injective if p is injective and quasi-injective if for each edge of 
G , p maps the endpoints of the edge to different points in space. The realization is globally 
rigid if any realization (G, q) in Rd with the same edge lengths is congruent to (G, p).
In this paper we characterize graphs that have an injective (quasi-injective, respectively) 
non-globally rigid realization in R1, and we show that the problem of recognizing 
these graphs is NP-complete in both the injective and the quasi-injective cases. Our 
characterizations are based on the notion of NAC-colorings, which have been used 
previously to investigate similar problems in the plane. We also give an overview of related 
results and open problems in rigidity theory.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A (bar-and-joint) framework in Rd is a pair (G, p) where G = (V , E) is a (simple) graph and p : V → Rd maps the 
vertices of G into Euclidean space. We also say that (G, p) is a realization of G . As the naming suggests, the vertices of the 
framework may be thought of as universal joints and the edges as rigid bars. A framework is rigid if it cannot be deformed 
continuously while keeping the bar lengths fixed. If this is true for non-continuous deformations as well, so that the bar 
lengths uniquely determine the configuration of the vertices in Rd , then the framework is globally rigid. We can formalize 
these notions as follows.

Two frameworks (G, p) and (G, q) in Rd are equivalent if for every edge uv ∈ E we have ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖, 
i.e. the corresponding edge lengths coincide in the two frameworks. If ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ holds for all pairs of 
vertices u, v ∈ V , then we say that the frameworks are congruent. A motion of a framework (G, p) in Rd is a family of maps 
pt : V →Rd, 0 ≤ t ≤ 1, continuous with respect to t , with p0 = p and such that (G, pt) is equivalent to (G, p) for all t . The 
motion is non-trivial if (G, pt) and (G, p) are non-congruent for all t > 0. If there exists a non-trivial motion of (G, p) then 
we say that it is flexible; otherwise it is rigid. We say that (G, p) is globally rigid if every equivalent framework (G, q) in Rd

is congruent to (G, p).
In general, it is NP-hard to decide the rigidity (global rigidity, respectively) of a framework in dimension Rd for any fixed 

d ≥ 2 (d ≥ 1, respectively) ([1,17]). On the other hand, for generic frameworks, in which the set of coordinates of p(v), v ∈ V
is algebraically independent over Q, rigidity and global rigidity is completely determined by the structure of the underlying 
graph, so that either all generic realizations are rigid in Rd (globally rigid in Rd , respectively) or none of them are (see 
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[3,4,6]). A combinatorial characterization of graphs with generic (globally) rigid realizations is known in d = 1, 2 dimensions 
but is a major open problem in d ≥ 3 dimensions.

It is natural to also consider the family of graphs whose realizations in a given dimension are all (globally) rigid. However, 
if we do not make any non-degeneracy assumptions on the realizations in question, then these families turn out to be rather 
uninteresting. In particular, if a graph G has a pair of non-neighboring vertices u, v , then a realization mapping u and v
to distinct points and the rest of the vertices to a third point is flexible in Rd, d ≥ 2 and non-globally rigid in Rd, d ≥ 1. 
This suggests only considering injective frameworks, in which different vertices are mapped to different points in space. 
More leniently, we may only require that neighboring vertices are mapped to different points (in other words, that the edge 
lengths are non-zero in the framework). We shall call such frameworks quasi-injective.

Thus, we are led to the question of characterizing graphs whose (quasi-)injective realizations in Rd are (globally) rigid. 
In the case of rigidity, this problem can be easily settled in the d = 1 and d ≥ 3 cases,1 while the d = 2 case is much more 
difficult. In [7], a combinatorial characterization was given for graphs that have a flexible quasi-injective realization in the 
plane in terms of the existence of a so-called NAC-coloring of its edges. In the case of injective realizations, only partial 
results are known. Graphs with no flexible injective realizations in the plane have been called absolutely 2-rigid graphs 
[15], or non-movable graphs [8]. In the latter paper, the authors give a necessary, but not sufficient, condition for movability 
that is also based on the notion of NAC-colorings.

Our aim in this paper is to examine the analogous questions regarding global rigidity. Here, the only non-trivial case is 
when d = 1: for a non-complete graph G with distinct non-neighboring vertices u, v , we can construct a non-globally rigid 
injective realization in Rd, d ≥ 2 by mapping the vertices other than u and v onto a line injectively, and mapping u and v
to distinct points not on this line; then reflecting u through a hyperplane containing the line but not containing u and v
gives an equivalent, non-congruent realization.

The d = 1 case turns out to be related to the planar rigidity case discussed above. In particular, a graph has a non-
globally rigid quasi-injective realization in R1 if and only if it has a flexible quasi-injective realization in R2 (Theorems 2.1
and 2.2). As an analogue to Theorem 2.2, we also give a characterization of graphs that have a non-globally rigid injective 
realization in R1 (Theorem 2.4).2 This graph family, however, is not the same as the family of movable graphs; in fact, the 
former is a strict subset of the latter.

We also prove that in both the injective and quasi-injective case, the problem of recognizing such graphs is NP-complete. 
In the case of injective realizations this is simply done by reformulating the characterization given in Theorem 2.4 as a 
known NP-complete problem (Corollary 3.1), while in the case of quasi-injective frameworks, we prove that the 3-SAT

problem can be polynomially reduced to the problem of deciding whether a graph has a NAC-coloring (Theorem 3.5).
The rest of the paper is laid out as follows. In Section 2 we recall the definition of NAC-colorings, as well as introduce 

grid-like frameworks and characterize graphs that have a non-globally rigid (quasi-)injective realization in R1 in terms of 
these notions. In Section 3 we give the aforementioned hardness proofs. Finally, in Section 4 we consider more generally 
the type of questions studied in this paper. These questions have the form “which graphs have a non-degenerate realization 
with a given rigidity property?” A survey of these problems in the case of various non-degeneracy and rigidity notions is 
given in Tables 1 to 3, with the purpose of highlighting open problems.

2. NAC-colorings and grid-like frameworks

Let G be a graph. Following [7], we say that a 2-coloring of the edges of G is a NAC-coloring if both colors are used and 
no cycle has exactly one edge of a given color. We shall always refer to the two colors as red and blue. The name stands 
for “no almost (unicolored) cycles”. As we shall see, NAC-colorings are related to the following, special kind of frameworks.

Let us say that a framework (G, p) in R2 is grid-like if each edge in (G, p) is either vertical or horizontal. We say that 
a grid-like framework is non-trivial if there is at least one horizontal and at least one vertical edge. More generally, we 
could consider realizations of G in Rd that use exactly d linearly independent directions, for some d ≥ 2. However, a graph 
that has such a realization also has a non-trivial grid-like realization. This follows from the observation that a non-trivial 
grid-like realization is always flexible: one can “fold” it onto the line (or, in the case of a realization that uses d directions 
in Rd , into a realization in Rd−1 that uses d − 1 directions). We shall give a concrete description of this folding motion in 
the next proof.

The following is the main result in [7]. Since we shall use it, we recall the proof of the first two implications, but omit 
the third (which is the most difficult one).

Theorem 2.1. [7, Theorem 3.1] For a graph G = (V , E), the following are equivalent:

a) G has a NAC-coloring,

1 See Tables 1 to 3 at the end of this paper for an overview of these different graph families, among others.
2 Jim Geelen gave essentially the same characterization for these graphs, although in a different formulation, see [11, Theorem B.1]. Thus, our main 

contribution in the injective case is in clarifying its relationship with the quasi-injective case, as well as with the notions of NAC-colorings and grid-like 
frameworks.
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b) G has a quasi-injective, non-trivial grid-like realization in R2,
c) G has a quasi-injective realization in R2 that is not rigid.

Proof. a) ⇒ b): Fix a NAC-coloring of G and let R1, . . . , Rk and B1, . . . , Bl be the vertex sets of the connected components 
of the subgraph of red and blue edges, respectively. We claim that the framework (G, p) in R2 defined by p(v) = (i, j) if 
v ∈ Ri ∩ B j is a quasi-injective, non-trivial grid-like realization of G . Indeed, consider an edge uv ∈ E in G . Without loss 
of generality we may suppose that it is colored red. Then there cannot be a path of blue edges between u and v , since 
together with the edge uv this would give a cycle with precisely one red edge. This shows that (G, p) is quasi-injective. It is 
also clear that each red edge is vertical and each blue edge is horizontal, so that (G, p) is grid-like. Finally, it is non-trivial, 
since there exists at least one edge of both color classes.

b) ⇒ c): As we have noted, non-trivial grid-like frameworks are always flexible; for completeness, we give a concrete 
example of their motion in R2. Let (G, p) be a quasi-injective, non-trivial grid-like realization in R2 and let p(v) = (xv , yv)

denote the coordinates of each vertex v . Identify R2 with the complex plane C so that p(v) = xv + iyv . Now the intuitive 
“folding” motion of (G, p) is given by pt(v) = xv + ieit yv , 0 ≤ t ≤ π

2 . This preserves the edge lengths of (G, p): horizontal 
edges are only translated, while vertical edges are translated and rotated throughout the motion. This observation also 
shows that the angle between horizontal and vertical edges changes during the motion, so it is non-trivial. �

The framework (G, pπ/2) in the previous proof lies on a line in R2. We can also fold the framework into R1 in the 
other direction via the motion pt , 0 ≥ t ≥ −π

2 . It is not difficult to see that if the grid-like framework was non-trivial, then 
these one-dimensional realizations are non-congruent. Thus we have that graphs with a NAC-coloring have quasi-injective 
non-globally rigid realizations in R1. It turns out that the reverse implication is true as well.

Theorem 2.2. A graph G = (V , E) has a quasi-injective realization in R1 that is not globally rigid if and only if it has a quasi-injective 
non-trivial grid-like realization in R2.

Proof. ⇒: If G is not connected, then the statement is trivial since we can just draw one connected component of G on 
a vertical line in R2 and the rest of the graph on a horizontal line to obtain a non-trivial grid-like realization. Thus, let us 
suppose that G is connected. Let (G, p) be a quasi-injective framework in R1 and (G, q) equivalent, but not congruent to 
(G, p).

Consider the framework (G, p′) in R2 defined by

p′(v) =
�

p(v) + q(v)

2
,

p(v) − q(v)

2

�
, v ∈ V .

Let uv ∈ E be an edge. Since (G, p) and (G, q) are equivalent, we have that |p(u) − p(v)| = |q(u) −q(v)|. It is immediate from 
the definition of p′ that if p(u) − p(v) = q(u) −q(v) then uv is horizontal in (G, p′), while if p(u) − p(v) = q(v) −q(u), then 
it is vertical, so (G, p′) is indeed grid-like. Moreover, it is non-trivial, since if (for example) every edge was horizontal, then 
p(u) − p(v) = q(u) − q(v) for all edges uv; but since G is connected, this would uniquely determine q up to translations, 
so (G, p) and (G, q) would be congruent, contradicting the choice of (G, q). The same reasoning applies in the case when 
every edge is vertical. Finally, note that (G, p) and (G, p′) are equivalent, so (G, p′) is quasi-injective as well.

⇐: Let (G, p) be a quasi-injective non-trivial grid-like realization in R2 and let us consider the mappings f , g :R2 →R1

defined by f (x, y) = x + y and g(x, y) = x − y. We claim that (G, f ◦ p) and (G, g ◦ p) are equivalent but non-congruent 
quasi-injective frameworks. Note that, using the notation in the proof of Theorem 2.1, f ◦ p = pπ/2 and g ◦ p = p−π/2. Thus, 
both frameworks are equivalent to (G, p). The fact that they are non-congruent follows from the fact that (G, p) is non-
trivial: indeed, this implies the existence of vertices u, v of G with p(u) = (xu, yu), p(v) = (xv , yv) and such that xu �= xv

and yu �= yv . Then it is easy to see that

| f (p(u)) − f (p(v))| = |xu − xv + yu − yv | �= |xu − xv − (yu − yv)| = |g(p(u)) − g(p(v))|,
so (G, f ◦ p) and (G, g ◦ p) are non-congurent, as desired. �
Corollary 2.3. A graph has a quasi-injective realization in R1 that is not globally rigid if and only if it has a NAC-coloring. �

We can also use NAC-colorings and grid-like frameworks to give an analogue of Theorem 2.2 for injective frameworks. 
The first implication in the following proof can be found in [8, Lemma 4.2]. The equivalence of the first two conditions has 
been independently observed multiple times, see e.g. [9, Appendix A] and references therein.

Theorem 2.4. For a graph G = (V , E), the following are equivalent:

a) G has a NAC-coloring for which |Ri ∩ B j| ≤ 1 for all i ≤ i ≤ k, 1 ≤ j ≤ l, where R1, . . . , Rk and B1, . . . , Bl are the vertex sets of 
the connected components of the subgraph of red and blue edges, respectively,
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b) G has an injective non-trivial grid-like realization in R2,
c) G has an injective realization in R1 that is not globally rigid.

Proof. a) ⇒ b): The proof is the same as in Theorem 2.1; the condition on the coloring ensures that the grid-like realization 
constructed there is injective.

b) ⇒ a): Given an injective non-trivial grid-like realization (G, p), color the edges of G that are vertical in the realization 
red, and the horizontal edges blue. It is easy to see that this is a NAC-coloring with the desired property.

b) ⇒ c): Let (G, p) be an injective non-trivial grid-like realization in R2. As in the proof of Theorem 2.2, the frameworks 
(G, f ◦ p) and (G, g ◦ p) are equivalent and non-congruent; we only need to make sure that (G, f ◦ p) is injective. In other 
words, we need that xu + yu �= xv + yv for any pair of vertices u, v ∈ V with p(u) = (xu, yu) and p(v) = (xv , yv). We can 
ensure this by stretching (G, p) vertically, i.e. by considering the framework (G, q) defined by q(v) = (xv , tyv), v ∈ V , for 
some t > 0, instead of (G, p). Suppose that xu + tyu = xv + tyv for some pair of vertices u, v ∈ V . If t is sufficiently large, 
then this implies tyu = tyv and thus xu = xv as well, contradicting the assumption that (G, p) is injective.

c) ⇒ b): The proof is the same as in Theorem 2.2, noting that if (G, p) is injective in R1, then the grid-like framework 
(G, p′) constructed in that proof is injective as well. �

Note that in contrast to the quasi-injective case, Theorem 2.4 does not give a characterization of movable graphs, i.e. 
ones with an injective flexible realization in R2. Indeed, it is well-known that the complete bipartite graph K3,3 is movable, 
while it is not difficult to see that it does not have an injective non-trivial grid-like realization in R2.

3. Hardness results

The characterizations given by Corollary 2.3 and Theorem 2.4 leave open the question whether the recognition of graphs 
with these properties is algorithmically tractable. To be more precise, we may consider the following decision problems.

Problem. Has NAC-coloring.

Input: a graph G.
Output: YES if G has a NAC-coloring, NO otherwise.

Problem. Has grid-like realization.

Input: a graph G.
Output: YES if G has an injective non-trivial grid-like realization in R2, NO otherwise.

It turns out that both of these problems are NP-complete. In the case of Has grid-like realization, this can be shown 
by reformulating the problem in the following way. Given two graphs G, H , their Cartesian product, denoted by G�H , is 
the graph on vertex set V (G) × V (H) in which there is an edge between the vertices (u1, v1) and (u2, v2) precisely if 
either u1 = u2 and v1 v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G). This graph can be visualized as a V (G) × V (H) grid in which 
each row is a copy of H and each column is a copy of G . The product Kn�Km is also called the m × n rook’s graph. It is 
immediate from the definitions that for any graphs G and H , G�H is a subgraph of the |V (G)| × |V (H)| rook’s graph. A 
subgraph of G�H is non-trivial if it is not contained in any row or column. A graph is said to be S-composite if it can be 
written as a non-trivial subgraph of G�H for some graphs G and H ; by the previous remark, we can equivalently consider 
non-trivial subgraphs of Kn�Km for some n, m ≥ 1. A graph is S-prime if it is not S-composite. The “S” in the name stands 
for “subgraph”.

Now a graph is S-composite if and only if it has an injective non-trivial grid-like realization in R2. Indeed, by adding all 
horizontal and vertical edges, any grid-like realization can be augmented to Kn�Km for some n and m, while the definition 
of Kn�Km immediately suggests a grid-like realization on the n × m grid. This gives the following corollary to Theorem 2.4.

Corollary 3.1. A graph has an injective realization in R1 that is not globally rigid if and only if it is S-composite. �
Thus, Has grid-like realization is equivalent to the following problem, shown to be NP-complete in [10].

Problem. Is S-composite.

Input: a graph G.
Output: YES if G is S-composite, NO otherwise.

Theorem 3.2. [10, Theorem 2.12] Is S-composite is NP-complete.

Corollary 3.3. The recognition of graphs that have a non-globally rigid injective realization in R1 is NP-complete.

4



D. Garamvölgyi Discrete Mathematics 345 (2022) 112687

xi

xi

xi

(a)
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Fig. 1. (a) A connecting element, made up of a “prism graph” with three copies of K4 attached to it. We shall refer to the labeled edges as the ends of 
the connecting element. (b) In a coloring of a connecting element with no almost unicolored cycles, each of the solid edges and each of the dotted edges 
must have the same color. In particular, either all of the edges have the same color, or the top and bottom ends have the same color and the left end has 
a different color.

The rest of this section is devoted to showing that Has NAC-coloring is NP-complete. First, the following observation 
implies that this problem is in NP.

Lemma 3.4. [7, Lemma 2.4] A partition of the edges of a graph G into two non-empty sets Eb, Er is a NAC-coloring if and only if each 
connected component of G[Eb] and G[Er] is an induced subgraph of G.

We shall show that the well-known NP-complete 3-SAT problem can be reduced to Has NAC-coloring:

Problem. 3-SAT.

Input: A boolean formula ϕ in conjunctive normal form in which each clause contains at most three literals.
Output: YES if ϕ is satisfiable, NO otherwise.

Essentially the same reduction works for any boolean formula in conjunctive normal form, regardless of the number of 
literals in each clause.

Theorem 3.5. Has NAC-coloring is NP-complete.

Proof. Given a 3-SAT instance ϕ with variables x1, . . . , xn and clauses L1, . . . , Lk , we shall construct a graph Gϕ of size 
O (n + k) such that ϕ is satisfiable if and only if Gϕ has a NAC-coloring. During the construction we shall label the edges 
of Gϕ with the literals xi and xi , as well as the true literal t and false literal f , in such a way that if two edges have the 
same label, then in any NAC-coloring of Gϕ they must have the same color. First, we shall create a number of disjoint edges 
and cycles, and then we connect some triplets of edges by gluing onto them a connecting element in a particular way. In the 
following, we will use the notation x1

i = xi and x−1
i = xi , as well as t = f and f = t .

The construction goes as follows. First, take 2n + 2 disjoint edges with the labels t, f , xi, xi, i = 1, . . . , n; we shall refer to 
the edge with label xεi

i , εi ∈ {−1, 1} as the terminal of the literal xεi
i ; similarly, the edges with labels t and f will be referred 

to as the true terminal and false terminal, respectively. Then for each variable xi we create two cycles Ai and Bi of lengths 
5 and 4, respectively. We label the edges of Ai with t, xi, xi, xi, xi in order and the edges of Bi with t, f , xi, xi . Also, for 
each clause Li = {xε1

1 , xε2
2 , xε3

3 } we create a cycle Ci of length 7 with edge labels t, xε1
1 , xε1

1 , xε2
2 , xε2

2 , xε3
3 , xε3

3 . Let G0 denote 
the union of the cycles Ai, Bi, i = 1, . . . , n and C j, j = 1, . . . , k.

Finally, we connect each edge in G0 with the corresponding terminal via connecting elements, graphs isomorphic to the 
one depicted in Fig. 1. Let e ∈ E(G0) be an edge and let l denote the literal with which e is labeled. We attach a connecting 
element so that its bottom edge (as drawn in the figure) is e, its top edge is the terminal corresponding to l, and its left-
most edge is the terminal corresponding to l (the negation of the literal). We shall refer to these three edges as the ends of 
the connecting element. We do this for each edge separately in G0. Denote the graph obtained in this way by Gϕ .

We would like to show that Gϕ has a NAC-coloring if and only if ϕ is satisfiable. Suppose first that there is a NAC-
coloring δ : E(Gϕ) → {blue, red} of Gϕ . We may assume that the true terminal is colored blue. Note that the construction 
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of the connecting elements ensures that each edge labeled with the literal l must have the same color as the terminal 
corresponding to l (see Fig. 1b). Now from the cycles Ai, B j, Cl we have the following properties of δ.

Claim.

a) If there is a literal xεi
i such that its terminal is colored red, then the terminal of x−εi

i is colored blue. Indeed, otherwise the cycle Ai
would have precisely one blue edge.

b) If there is a variable xi such that the terminals of xi and xi have different colors, then the true and false terminals must have 
different colors as well (i.e. the false terminal must be colored red); otherwise the cycle Bi would have only one red edge.

c) Similarly, if the false terminal is colored red, then for each variable xi, the terminals of xi and xi must have different colors.
d) Finally, in each clause L j there must be a literal xεi

i such that its terminal is colored blue, since otherwise C j would contain only 
one blue edge. �

By definition, there must be at least one red edge in Gϕ . Note that each edge is contained in some connecting element, 
so, as shown in Fig. 1b, one of the terminals must be red as well. Then a) and b) in the previous claim imply that the 
false terminal must be colored red. Now from c) it follows that the terminals of xi and xi have different colors, for every 
i = 1, . . . , n. Consider the truth assignment in which xi is true if and only if its terminal has color blue under δ; claim d)

implies that this truth assignment satisfies ϕ , as needed.
Now we work in the other direction. Given a truth assignment satisfying ϕ , we construct a coloring δ of Gϕ by coloring 

the terminals labeled with true literals (including t) blue and the rest of the terminals red, and then coloring the edges 
in each connecting element according to the colors of its end terminals as in Fig. 1b. We claim that this is a NAC-coloring 
of Gϕ . To the contrary, suppose that there is an almost unicolored cycle C in Gϕ . For convenience, orient the edges of C
cyclically.

It is immediate from the construction that δ is a NAC-coloring of each cycle Ai, B j, Ck and each connecting element, so 
C cannot be contained in either of these subgraphs. It follows that C must enter some connecting element K in the sense 
that there is an end uv of K , a vertex w not in K and a vertex w ′ in K such that wu and uw ′ are oriented edges of C . 
Now C must exit K through some vertex of an end of K . If it exits through v , then we can shortcut C through uv without 
destroying the almost unicolored property. Thus, we may assume that C enters and exits K at different ends. Then C must 
either enter and exit K twice, or enter and exit another connecting element as well. But a path that enters and exits a 
connecting element through different ends must contain edges of both colors, so the existence of two such (disjoint) paths 
contradicts the assumption that C is almost unicolored. �
Corollary 3.6. The recognition of graphs that have a non-globally rigid quasi-injective realization in R1 is NP-complete.

4. Concluding remarks

In this section we survey more generally the type of questions considered in this paper. These questions have the fol-
lowing general form: which graphs are such that, in a given dimensions, all realizations subject to a given non-degeneracy 
condition have a given rigidity property? Similarly, which graphs have, in a given dimension, a non-degenerate realization 
with a given rigidity property? In this paper we have encountered three such non-degeneracy conditions (genericity, in-
jectivity and quasi-injectivity), but there are other natural choices as well. One that has been considered in the literature 
before is general position: a framework in Rd is in general position if no k +1 points in it lie on an affine (k −1)-dimensional 
subspace for all 1 ≤ k ≤ d. Note that in R1 this notion coincides with injectivity.

Table 1
Graph properties relating to rigid realizations.

d = 1 d = 2 d ≥ 3

∃ rigid realization connected

∃ rigid (quasi-)injective realization connected 2-connected

∃ rigid general position realization connected open

∃ rigid generic realization
⇐⇒
∀ generic realization is rigid

connected ∃ spanning Laman
subgraph [16,14]

open

∀ general position realization is rigid connected open

∀ injective realization is rigid connected open complete graph

∀ quasi-injective realization is rigid connected � NAC-coloring [7]
(co-NP-complete)

complete graph

∀ realization is rigid connected complete graph

6
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Table 2
Graph properties relating to globally rigid realizations.

d = 1 d = 2 d ≥ 3

∃ globally rigid realization connected

∃ globally rigid (quasi-)injective realization 2-connected

∃ globally rigid general position realization (d + 1)-connected [2]

∃ globally rigid generic realization
⇐⇒
∀ generic realization is globally rigid

2-connected 3-connected and
redundantly rigid 
[12]

open

∀ general position realization is globally rigid S-prime
(co-NP-complete)

open

∀ injective realization is globally rigid S-prime
(co-NP-complete)

complete graph

∀ quasi-injective realization is globally rigid � NAC-coloring
(co-NP-complete)

complete graph

∀ realization is globally rigid complete graph

Table 3
Graph properties relating to universally rigid realizations.

d = 1 d = 2 d ≥ 3

∃ universally rigid realization connected

∃ universally rigid (quasi-)injective realization 2-connected

∃ universally rigid general position realization (d + 1)-connected [2]

∃ universally rigid generic realization
⇐⇒
∃ globally rigid generic realization

2-connected 3-connected and
redundantly rigid 
[12]

open

∀ generic realization is universally rigid open

∀ general position realization is universally rigid open

∀ injective realization is universally rigid open complete graph

∀ quasi-injective realization is universally rigid open complete graph

∀ realization is universally rigid complete graph

These questions and their answers, where known, are catalogued in Table 1 in the case of rigidity and Table 2 in the 
case of global rigidity. The results without citations are either simple constructions, considered folkore, or can be found in 
this paper.

There is also a third rigidity notion, universal rigidity, which has received considerable attention in recent years. A 
framework in Rd is universally rigid if it is globally rigid when viewed as a framework in RD for all D ≥ d. This form 
of rigidity is less well-behaved than those considered in this paper in that the existence of a generic universally rigid 
realization of a graph G does not guarantee that every generic realization of G in the same dimension is universally rigid. 
Indeed, the former of these conditions is shown to be equivalent to G being globally rigid in [5]; on the other hand, no 
characterization is known for graphs that are “generically universally rigid”, even in R1. See [13] for a discussion of this 
problem and several related conjectures. Questions related to universal rigidity are summarized in Table 3.
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