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Abstract
The Kalman filter is a workhorse of dynamical modeling. But there are chal-
lenges when using the Kalman filter in environmental science: the complexity of
environmental processes, the complicated and irregular nature of many environ-
mental datasets, and the scale of environmental datasets, which may comprise
many thousands of observations per time-step. We show how these challenges
can be met within the Kalman filter, identifying some situations which are
relatively easy to handle, such as datasets which are high-resolution in time,
and some which are hard, like areal observations on small contiguous poly-
gons. Overall, we conclude that many applications in environmental science are
within the scope of the Kalman filter, or its generalizations.

K E Y W O R D S

areal observations, basis expansion, local linear trend, sequential updating, truncation error,
upscaling

1 INTRODUCTION

The Kalman filter (Kalman, 1960) has been a workhorse of dynamical modeling for half a century. Despite enormous
changes in computing power and architecture, it is still a core tool in statistics, including spatio-temporal modeling
(Cressie & Wikle, 2011), and machine learning (Murphy, 2012). The “vanilla” Kalman filter has a linear state equation
and a linear observation equation. It is a platform for many generalizations. For example, the Ensemble Kalman filter
(EnKF, Evensen, 2007; Katzfuss et al., 2016) and the Unscented Kalman filter (Julier & Uhlmann, 1997) accommodate a
nonlinear state equation. There are various approaches to accommodate a nonlinear observation equation, including the
EnKF and dynamical Generalized Linear Models (Katzfuss et al., 2020).

This article explores the scope of the vanilla Kalman filter for applications in environmental science. We examine
three fundamental challenges. First, environmental processes are complex, and may require rich highly-parameterized
models in order to capture dynamical behavior over a spatially diverse domain. Second, environmental datasets are com-
plicated, and often fail to conform to the simple temporal regularity of the Kalman filter, which proceeds in a sequence of
equally-spaced time-steps. Third, environmental datasets can be “massive”, by which we mean that they may comprise
thousands or tens of thousands of observations per time-step.

[Correction added on 29 December 2022, after first online publication: The copyright line was changed.]
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The outline of the article is as follows. Section 2 presents a simplified version of an application we have been work-
ing on for several years, to provide illustrations of the various challenges. Sections 3 and 4 present our vanilla Kalman
filter, which captures a wide variety of model structures suitable for environmental science. Section 3 states the model
and the computational cost of inference; Section 4 reviews some aspects of the model that are relevant for environmen-
tal science. In particular, this section introduces the “sequential update” (SU) condition which is necessary for massive
datasets. Sections 5 and 6 are about “upscaling” datasets which are high-resolution in time and in space. The first of these
does not present too many difficulties, but the second can violate the SU condition, and so needs to be carefully imple-
mented for massive datasets. Section 7 is about areal observations, where violating the SU condition is more difficult to
avoid. Section 8 generalizes the model of Section 3 to allow for local trends not captured by covariates, and also considers
differencing as a “quick-and-dirty” approximation. Section 9 is a brief conclusion, including a summary of the argument
in the paper.

2 APPLICATION

Here is a skeleton application, which is already rich in complications, and which reflects the type of inference involved
in a project aimed at resolving and attributing contributions to sea level rise at the global scale (the GlobalMass project,
https://www.globalmass.eu/). The latent process of interest is North American land elevation relative to the WGS-84
ellipsoid (see, e.g., Kaplan & Hegarty, 2017).

There are two sources of data. First, global positioning system (GPS) stations which report their time, longitude,
latitude, and elevation (see, e.g., Blewitt et al., 2018). These are irregularly located in space and time, although when a
GPS station is operating at a site it tends to run for several years, and report roughly daily. It is reasonable to assume
that the observation errors at well-separated stations are independent, although observations at nearby stations might be
correlated by local processes, including those connected with urbanization.

Second, data from the GRACE satellites (see, e.g., Watkins et al., 2015). GRACE denotes “Gravity Recovery and Climate
Experiment”. This pair of satellites measures gravity anomalies with a typical spatial resolution of about 300 km, and
these can be converted to vertical land motion (VLM) by making some assumptions about the density of the lithosphere
and mantle. After processing, the GRACE dataset takes the form of monthly changes in monthly mean elevations over
specified spatial polygons, and is available for a set of polygons which tile North America each with typical width of a few
100 km. Since the GRACE observations are extensively processed from their raw state, it is questionable to assume that
the observation errors for GRACE are independent in space or in time on small polygons, although this dependence will
be diminished by aggregating to annual differences, and to larger polygons.

Much more could be said about both of these datasets, which would be important in practice, but not germane for this
article; for example, for GPS, see He et al. (2020), while for GRACE, see Chao (2016) and Vishwakarma et al. (2022). We will
refer to both datasets as “observations”, recognizing that in environmental science, preprocessing of raw measurements
into quantities that might have been observed is standard, and there is little benefit in distinguishing between “true”
observations and derived or analogue observations.

3 THE KALMAN FILTER

This section states our statistical model, a “vanilla” Kalman filter, and outlines how the cost of inference scales with the
size of the dataset, and the complexity of the model. Section 4 reflects on the use of the model in environmental science,
and Section 8 gives an important generalization. For familiarity, the notation is similar to Cressie and Wikle (2011, ch. 7).

3.1 The model

There is a spatio-temporal latent process of interest, denoted Y , where the value of Y at location s ∈  and time t ∈
{0, … ,T} is denoted Yt(s). That is, Y is treated as discrete in time, for modeling purposes; nevertheless, the underlying
Y may be continuous in time (see Section 5). For simplicity, treat Y as a scalar process: for the application in Section 2,
Y is elevation. In the sections that follow we will assume one latent process and one type of dataset, but in practice the
model allows multiple latent processes and multiple types of dataset, which can be stacked together within the same
model structure.
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First, assume that the latent process Y can be represented as a basis expansion,

Yt(s) − yt(s) =
d∑

j=1
𝜙j(s) ⋅ 𝛼tj + 𝜈t(s) =∶ 𝝓(s)T𝜶t + 𝜈t(s), (1)

where y is a mean function for Y , 𝝓 is a specified finite set of time-invariant basis functions with coefficients 𝜶t, and 𝜈
is a spatio-temporal Gaussian process which represents truncation error. Thus Y is linearly related to the coefficients 𝜶,
which will be discussed further in Section 4. There is no presumption that 𝜶t is a small set of coefficients; it might have
thousands of components, in an application like that in Section 2.

In (1), the mean function y may be specified, or it may itself have uncertain coefficients; for example,

yt(s) = 𝛽0 +
k∑

j=1
xj(s, t) ⋅ 𝛽j, (2)

where x represents specified covariates, and the 𝜷 coefficients are treated as time-invariant. Covariates can be crucial in
practice; for example, they can account for large-scale effects and discontinuities, and thus allow the basis functions to
be smooth and localized (Bolin et al., 2019). Alternatively, the 𝜷 coefficients could vary through time, like 𝜶t; or some
of the 𝜶t might be time-invariant. These generalizations do not create any complications and will be ignored in what
follows.

Let s1, … , sm be any set of locations in. Define

Yt ∶=
⎡
⎢
⎢
⎢⎣

Yt(s1)
⋮

Yt(sm)

⎤
⎥
⎥
⎥⎦
, yt ∶=

⎡
⎢
⎢
⎢⎣

yt(s1)
⋮

yt(sm)

⎤
⎥
⎥
⎥⎦
, 𝝂t ∶=

⎡
⎢
⎢
⎢⎣

𝜈t(s1)
⋮

𝜈t(sm)

⎤
⎥
⎥
⎥⎦

(3a)

and

Φt ∶=
⎡
⎢
⎢
⎢⎣

𝜙1(s1) … 𝜙d(s1)
⋮ ⋱ ⋮

𝜙1(sm) … 𝜙d(sm)

⎤
⎥
⎥
⎥⎦
. (3b)

Then (1) implies that

Yt = yt + Φt𝜶t + 𝝂t. (3c)

Assume that the basis expansion in (1) is sufficiently rich that a simple statistical model suffices for the truncation error
𝜈, independent of 𝜶, with expectation 0 and

Cov
(
𝜈t(s), 𝜈t′ (s′)

)
=

{
𝜅

2 ⋅ C(s, s′) t = t′,
0 t ≠ t′,

(4)

where 𝜅 is a parameter and C is a spatial correlation function. This assumption implies that

Var(𝝂t) = 𝜅2Ct, (5)

where Ct is the m ×m Gram matrix for C at locations s1, … , sm; that is,

(Ct)ij ∶= C(si, sj), i, j = 1, … ,m.

The truncation error 𝜈 is a source of difficulty, and will reoccur several times below.
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Dynamics for Y are induced by a time-invariant Gaussian dynamical model for 𝜶:

𝜶t = M𝜶t−1 + 𝜼t 𝜼t
ind∼  (0,Q)

𝜶0
ind∼  (m0, S0), (6)

where the matrices M and Q are parameters, or parameterized in some fashion. Assume that the spectral radius of M (the
largest modulus of the eigenvalues of M) is less than 1, which implies that both E(𝜶t) and Var(𝜶t) have stationary values
(Wendland, 2018, ch. 4). These are easily found to be

m0 = 0, SV
0 = (I −M ⊗ M)−1QV

, (7)

where SV
0 is the vectorization of S0 by column, similarly for QV , and ⊗ is the Kronecker product (see, e.g., Mardia

et al., 1979, appendix A). Setting m0 and S0 in this way eliminates the need to specify or estimate a mean and variance
for 𝜶0, and make the prior process for 𝜶t stationary. In this model, with stationary 𝜶t, Yt will tend to yt, in the absence of
shocks.

Let

Zt ∶=
⎡
⎢
⎢
⎢⎣

Zt1

⋮

Ztn

⎤
⎥
⎥
⎥⎦
, 𝝐t ∶=

⎡
⎢
⎢
⎢⎣

𝜖t1

⋮

𝜖tn

⎤
⎥
⎥
⎥⎦

(8)

denote a set of n observables at time-step t, with observation errors 𝝐t. We write “observables” for random variables, and
“observations” for the measured values of those random variables, where this distinction is meaningful. Assume there
exists a specified set of locations s1, … , sm, a specified n ×m incidence matrix Ht, and a specified variance matrix Σt, for
which

Zt = HtYt + 𝝐t, 𝝐t
ind∼  (0,Σt). (9)

We term (9) the direct observation equation. In the simplest case, Zti = Yt(si) + 𝜖ti, and Ht = I, but more complicated
cases are necessary, as discussed below. Along with Ht and Σt, both s1, … , sm and n can vary in time, but this has been
suppressed in the notation to reduce clutter.

The observation error variance Σt is usually treated as diagonal. In fact there are practices which suggest that Σt ought
not to be diagonal, such as data processing and smoothing, but the effect of these practices is seldom quantified and passed
on to users of the observations. Assume that Σt is diagonal, for simplicity.

Expanding (9) out using (3),

Zt = Ht
(

yt + Φt𝜶t + 𝝂t
)
+ 𝝐t. (10)

Collecting the stochastic terms together gives the final form of the observation equation,

Zt = Ht
(

yt + Φt𝜶t
)
+ 𝜸t, 𝜸t

ind∼  (0,Rt) (11a)

with

Rt ∶= 𝜅2HtCtHT
t + Σt, (11b)

where Ct is the Gram matrix of the correlation function C at the locations s1, … , sm, as above. We term (11) the indirect
observation equation. It is helpful to make this distinction between the natural relationship connecting the observables and
the latent process (direct), and the model-based relationship connecting the observables and the state vector (indirect).

This completes the dynamical spatio-temporal model (DSTM) for the latent process Y and the observables

Z1∶T ∶= (Z1, … ,ZT),
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which comprises the basis representation (1), the state equation (6), and the direct observation equation (9), although in
practice the last of these is replaced by the indirect observation equation (11). The mean function y and the basis functions
𝝓 are specified, as are the incidence matrices H1, … ,HT and the (diagonal) observation error variances Σ1, … ,ΣT , along
with the locations necessary to instantiate them. The parameters of the DSTM are M and Q from the state equation, and
𝜅 and C, representing truncation error in the basis expansion.

Various generalizations of this model are possible. In the state equation it is not necessary that M is time-invariant,
and if it is time-invariant, it is not necessary that M is stationary: these assumptions are made for simplicity, and to reduce
the number of parameters that need to be estimated. On the other hand, it is crucial that the truncation error in the
observation equation is localized in time, because it is fundamental to the Kalman filter that time-dependence passes
through the mean function and the coefficients. Having said that, the hope is that the basis expansion for the latent process
is sufficiently rich that the detailed structure of the truncation error does not matter for the inference.

3.2 Inference

Suppose that inference comprises estimating point values for the parameters 𝜃 ∶= {M,Q, 𝜅,C} by maximum likelihood,
denoted ̂𝜃, and conditional distributions for Y0, … ,YT given observations zobs

1∶T , using the plug-in 𝜃 = ̂
𝜃. This can be carried

out using the equations of the Kalman filter; see Murphy (2012, sec. 18.3) or Cressie and Wikle (2011, sec. 8.2). The Kalman
filter is used here to provide a benchmark for computational cost, and to highlight those features of the observables which
compromise computational efficiency.

The Kalman filter provides the sequence of filtering distributions

p
𝜃

(
𝜶t | zobs

1∶t
)
, t = 1, … ,T,

which, in the linear Gaussian DSTM of Section 3.1, are Gaussian distributions represented by expectation vectors and
variance matrices. The baseline cost of filtering is O(Tn3), where n is the number of observations in each step (assumed
to be the same each time-step, to reduce clutter). The Kalman filter also provides the log-likelihood value

log L(𝜃) ∶= log p
𝜃

(
zobs

1∶T
)

at no extra cost.
After filtering, the Kalman smoother provides the sequence of smoothing distributions

p
𝜃

(
𝜶t | zobs

1∶T
)
, t = T, … , 0,

each of which is also Gaussian. The cost of smoothing is O(Td3), where d is the length of the state vector 𝜶t, a measure of
model complexity. Applying the basis expansion, (1), the Kalman smoother also provides

p
𝜃

(
Yt | zobs

1∶T
)
, t = 0, … ,T,

where Yt is the latent process at time t at any finite set of sites, also Gaussian. The truncation error 𝜈 is not updated, but
its correlation structure contributes to the covariance of Yt | zobs

1∶T . In principle, 𝜈 could be also be updated, which would
decrease the smoothing variances by up to 𝜅2, but this would be a lot of extra effort, and we are hoping that 𝜅2 is small.

In summary, the inference would comprise many runs of the Kalman filter, to maximize log L(𝜃) and find a plug-in
value ̂𝜃, and then one run of the Kalman smoother at 𝜃 = ̂

𝜃, to compute the smoothing distributions of the latent process.
The alternative to using a numerical optimizer on log L(𝜃) is to use the EM algorithm; see Murphy (2012, sec. 17.5) or
Cressie and Wikle (2011, sec. 8.3.1). This achieves potentially better performance of the optimizer (always traveling uphill)
but at the cost of higher cost per iteration, because filtering and smoothing are required at every iteration.

4 REFLECTIONS ON THE DSTM

Here are some initial reflections on the linear Gaussian DSTM in Section 3, to be clear about what it can and cannot do.

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2773 by T

est, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 19 ROUGIER et al.

(1) It is a common feature of environmental datasets that observables can have very different spatial footprints, and
the challenge of merging these, or making predictions for footprints different from those of the datasets, is termed the
change of support problem (COSP, see, e.g., Cameletti, 2013). In the application in Section 2, the GPS observations are
point-referenced, while the GRACE observations are areal averages. However, there is no COSP for a continuous repre-
sentation of Yt, as in (1), because a spatial integral is a linear transformation of Yt. In Section 7 we will approximate spatial
integrals with a numerical integration rule. This is straightforward in principle but, as discussed in Section 7, it can cause
computational problems with massive datasets.

(2) The DSTM cannot handle observables which are emphatically discrete, such as Binomial, or Poisson with small mean.
In this case the Gaussian approximation to the observables is hopeless. A more bespoke treatment is required, such as the
package FRKv2 (Sainsbury-Dale et al., 2021) in the R statistical computing environment (R Core Team, 2020), which uses
a Laplace approximation for the observed data likelihood, and Monte Carlo simulation for prediction and uncertainty
quantification.

Sign-constrained observables are common in environmental science: typically observables that must be positive.
These pose less of a problem for the DSTM. If the mean of these observables is well above zero, then a Gaussian distri-
bution centered around the mean function y will work reasonably well, because it will assign only a small probability
to a negative value, and this can be ignored for the purposes of reporting a predictive mean and standard devia-
tion. If the probability of negative values is too large to ignore, then modeling in logarithms is a possibility. However,
this breaks down for areal observables, because the integration needs to be over Yt, not log(Yt). In this case, a more
general nonlinear model is required (e.g., Katzfuss et al., 2020). Cressie (2006) is a useful reference for modeling in
logarithms.

Finally, there will be latent processes whose spatio-temporal dynamics are too complex for the Markov structure of
the DSTM state equation, in which case the DSTM will fit poorly and its predictions will be unreliable. This might be
a single latent process which the client wants to model at high resolution, or it might be two or more latent processes
which couple in a complicated way, like temperature and precipitation. But the DSTM is not useless in this situation.
First, if the mean function y is a dynamical simulation from a computer model of the latent processes, then the DSTM
can be used to model limitations in the simulator, which will be systematic in space and time (Sha et al., 2019). Sec-
ond, the state equation in the DSTM can be replaced by a simulator-based dynamical model, as in the Ensemble Kalman
filter or the Unscented Kalman filter (Evensen, 2007; Julier & Uhlmann, 1997; Katzfuss et al., 2016). In this case, for
massive datasets it will still be helpful for computational efficiency to consider the Sequential Updating condition,
discussed next.

(3) There is a crucial condition in the DSTM which enables inference with datasets which are “massive”, by which we
mean comprising many thousands of observations every time-step. These massive datasets are common in environmental
science, for example from ground-based stations on large spatial domains, like the GPS network in North America, or
from remote sensing.

Let (Z1
t ,Z

2
t ) be a partition of the observables Zt. A standard and simple result states that if Z1

t and Z2
t are conditionally

independent given 𝜶t, then the Bayesian update of 𝜶t by Zt can proceed sequentially, first by Z1
t and then by Z2

t . The
one-line proof is (suppressing 𝜃)

p
(
𝜶t | zt

)
=

p(zt | 𝜶t) ⋅ p(𝜶t)
p(zt)

=
p
(

z1
t | 𝜶t

)
⋅ p
(

z2
t | 𝜶t

)
⋅ p(𝜶t)

p
(

z2
t | z1

t
)
⋅ p
(

z1
t
)

=
p
(

z2
t | 𝜶t

)
⋅ p
(
𝜶t | z1

t
)

p
(

z2
t | z1

t
) . (12)

If applicable, this would reduce the computational cost of one time-step from O
(
(n1 + n2)3

)
to O

(
n3

1 + n3
2
)
. On a

current desktop, n ∼ 104 is on the edge of computability, while n1,n2 ∼ 5 × 103 is very doable. Obviously, if Zt
can be partitioned into more conditionally independent components, the reduction in computational cost is even
larger.
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A similar condition is used in the “spatial partitioning” approach for Gaussian Process models for massive spatial
datasets (see, e.g., Heaton et al., 2018), although in this case the conditional independence structure is used to factor the
likelihood, so that the calculation of the log-likelihood can be dispatched in parallel over several nodes.

For the linear Gaussian DSTM with the parameters fixed, the conditional independence property is equivalent to the
covariance property Cov(Zi

t,Z
j
t | 𝜶t) = 0 where i and j are different components of a partition of Zt. Since Var(Zt | 𝜶t) =

Var(Ht𝝂t + 𝝐t), the crucial condition for sequential updating in the DSTM is:

Definition 1 (Sequential updating, SU). Assuming that Σt is diagonal, sequential updating is available at time-step t
whenever Var(Ht𝝂t) is block-diagonal, with each block of observables being processed in turn. In the case where Var(Ht𝝂t)
is diagonal, any computationally-efficient arrangement of blocks is available.

Sequential updating in the Kalman filter is efficiently implemented using the canonical parameterization of the Mul-
tivariate Gaussian distribution; see Rue and Held (2005, ch. 2). The Kalman filter in the canonical parameterization is
sometimes termed the “information filter” (Murphy, 2012, ch. 18).

(4) The SU condition indicates that the truncation error 𝜈 is a source of difficulty, as will be illustrated below. But
dropping the truncation error (i.e., imposing 𝜅 = 0) should be avoided except in extremis. We do not expect to be able
to capture Y in a basis expansion of our choosing, and may sometimes be forced to limit the number of basis func-
tions for computational efficiency. So a truncation error of some sort is nearly inevitable, and we have to learn to
work with it.

When Σt is diagonal, the SU condition requires that HtCtHT
t is block-diagonal, where Ct is the Gram matrix of the

correlation function C at time-step t. This is more likely to occur if Ct is diagonal, or, failing that, sparse. So the correlation
function C ought to have compact support to promote sparsity. The default choice for an isotropic C might be the spherical
correlation function

C(s, s′) = 𝜓
(
||s − s′||
𝓁

)
, (13a)

where

𝜓(x) ∶=

{
1 − (3∕2)x + (1∕2)x3 0 ≤ x ≤ 1,
0 x > 1,

(13b)

see Gneiting (2002) for this and other options. Another approach would be to take a more general correlation function
and “taper” it (Kaufman et al., 2008). This allows for more generality, including control over anisotropy. Below, 𝓁 will
denote the correlation length of C, the value such that C(s, s′) ≈ 0 for all s, s′ which are at least 𝓁 apart. While 𝓁 could be
treated as an uncertain parameter in a specified C, it is more efficient to specify 𝓁, and then to reorganize the observation
equation, as discussed in Section 6 and Section 7.

One beneficial side-effect of including a truncation error with an unknown scale 𝜅 is that it can absorb observation
error. On balance, the reported observation errors are more likely to understate than overstate the uncertainty induced by
preprocessing and its assumptions. If Σt quantifies the reported observation error, then extra error in the observables has
to go somewhere, and 𝜈t is the natural receptacle, having a similar (but not identical) spatio-temporal structure. Therefore
in practice it may be better to think of 𝜅 as a lumped parameter, even though adjusting for under-reported observation
error is not its primary purpose. But if 𝜅 = 0 has been imposed, it would be prudent to introduce a new parameter to scale
Σt in the observation equation.

(5) Finally, there is no reason to think that M in the state equation will be sparse. Cressie and Wikle (2011, ch.
7) describe models in which it is natural for M to be dense, although it might have a low-dimensional parame-
terization. More generally, 𝛼tj is the coefficient of the basis function 𝜙j and we fully expect different basis func-
tions to have different temporal behavior. For example, 𝝓 might be a multiresolution basis, and perhaps the local
basis functions behave differently to the global basis functions. Or else 𝝓 might be localized tent functions, and
perhaps high latitude basis functions behave differently to low-latitude basis functions. Or else 𝝓 might capture
physical features like coastlines, plains, mountain ranges, or river basins, and perhaps plains behave differently to
mountains.
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There is a huge computational advantage to the simplest representation M = 𝜌I for some 0 < 𝜌 < 1, which follows
from the Kronecker product structure of Var(𝜶), where

𝜶 ∶=
⎡
⎢
⎢
⎢⎣

𝜶0

⋮

𝜶T

⎤
⎥
⎥
⎥⎦
.

If M = 𝜌I, then 𝜶 ∼ (0,R ⊗ Q), where R is the AR1 variance matrix with elements Rij = 𝜌|i−j|∕(1 − 𝜌2). R−1 is sparse
(tridiagonal), and this would lead to an efficient calculation if Q−1 was also sparse, as it would be if an SPDE approach
is used (Lindgren et al., 2011), and every Σt is diagonal. Then the INLA approach can be applied to integrate out the
parameters (Rue et al., 2009). This highly attractive package is described and used in Cameletti et al. (2013), to model
daily particulate matter concentrations in the Piemonte region of northern Italy.

However, M = 𝜌I is unlikely to be widely applicable in environmental science, as already discussed. For example, in
the application in Section 2, the basis functions might be localized tent functions and the spatial domain might be divided
into k large-scale river basins, for which

M = bdiag
(
𝜌1I1, … , 𝜌kIk

)
,

where “bdiag” denotes “block diagonal”, 𝜌1, … , 𝜌k are parameters to be estimated, one for each basin, and I1, … , Ik are
identity matrices, one for each basin, after the basis functions have been ordered by basin. This breaks the Kronecker
product structure for Var(𝜶). So M does not have to be complicated, but it is restrictive to assume that M = 𝜌I.

5 HIGH RESOLUTION IN TIME

There will be applications where the observations have higher resolution than the DSTM in Section 3 can cope with.
This section and the next explore two common cases. First, the observations may have higher temporal resolution than
the time-step of the state equation, in this section. Second, the observations may be closer together in space than the
correlation length of the truncation error, which violates the SU condition (Definition 1), in Section 6. In both cases
one solution is to process the observables into “quasi-observables” that play the role of Zt in the observation equation.
Quasi-observables are distinguished from actual observables by writing ̃Zt rather than Zt.

This section and Section 6.2 are examples of “upscaling”, in which high resolution observables (Zt) are used to create
low-resolution summaries ( ̃Zt); this section is upscaling in time, and Section 6.2 is upscaling in space.

Consider the case where Y is continuous in time. To reduce clutter, fix a location s and write Y (𝜏) ∶= Y (s, 𝜏), where
𝜏 is the continuous index of time. Despite the underlying process being continuous, the statistician has decided to model
Y (⋅) discretely, say annually, usually for computational efficiency but also, perhaps, to filter out higher-frequency effects
which are not of interest, including seasonality. This requires an aggregation function to map Y [t, t + 1) to Yt, adopting
the “calendar” convention that year t comprises the time interval [t, t + 1). There are two natural choices:

Yt = Y (t) annual start, (14a)

Yt =
∫

t+1

t
Y (𝜏) d𝜏 annual mean. (14b)

In the application in Section 2, GPS observations are available at a specified set of locations, roughly daily, although
there are intervals of drop-out. Some temporal aggregation is unavoidable, because the computation cost of daily
time-steps is too high. If the client only needs elevation annually, then for computational efficiency it seems natural to
aggregate the GPS observations to annual time-steps.

Observations on the time-continuous process Y (⋅) at location s are made over the interval [0,T + 1), of the general
form

Zi = Y (𝜏i) + 𝜖i, 𝜖i
ind∼  (0, 𝜎2

i ), i = 1, … ,n. (15)
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ROUGIER et al. 9 of 19

Here is one approach for mapping these observables to the annual summary Yt, for the case where Yt is the annual mean;
the modification for the case where Yt is the annual start is straightforward.

First, specify an intervalt containing [t, t + 1), and suppose that within this window the process Y (⋅) has a temporal
basis representation

Y (𝜏) =
k∑

j=0
gj(𝜏) ⋅ 𝛽tj =∶ g(𝜏)T𝜷 t, 𝜏 ∈t, (16)

where g is a specified finite set of basis functions, and 𝜷 t are unknown fixed basis coefficients which belong to the window
t. Adding a truncation term to (16) would be superfluous, because we expect to fit Y (⋅) well within the window t,
and any truncation error will be dominated by observation error. Now use the observations to fit the estimator ̂𝜷 t, for
which

̂𝜷 t(Zt )
app∼ 

(
𝜷 t, ̂V t

)
, Zt ∶= {Zi ∶ 𝜏i ∈t} , (17)

where “app∼ ” denotes “approximately distributed as” and ̂V t is the estimated sampling variance. If the observation errors
𝜎i in (15) are not given, or are unreliable, then ̂𝜷 t can be fitted by ordinary least squares (OLS); otherwise, by generalized
least squares (GLS). GLS can also be used if the 𝜖i are not independent, although it would be unusual for observations to
be reported along with a nondiagonal variance matrix for the errors. Either way, ̂V t will scale with the observation errors
{𝜎i ∶ 𝜏i ∈t}.

Define

gj ∶=
∫

t+1

t
gj(𝜏) d𝜏, j = 0, … , k, (18a)

̃Zt
(

Zt

)
∶= gT

̂𝜷 t
(

Zt

)
, (18b)

where g is the vector of gj values. ̃Zt will be the quasi-observable, whose direct observation equation is derived as follows.
Suppress the ‘(Zt )’ argument on ̃Zt and ̂𝜷 t, to reduce clutter. Then

̃Zt = gT
̂𝜷 t

= gT(
̂𝜷 t − 𝜷 t + 𝜷 t

)

= gT(
̂𝜷 t − 𝜷 t

)
+ gT

𝜷 t

= gT(
̂𝜷 t − 𝜷 t

)
+ Yt, (19)

where the last equality follows from (14b) and (16):

Yt =
∫

t+1

t

∑

j
gj(𝜏) ⋅ 𝛽tj d𝜏 =

∑

j
∫

t+1

t
gj(𝜏) d𝜏 ⋅ 𝛽tj = gT

𝜷 t. (20)

Then (17) and (19) imply that ̃Zt | Yt is approximately Normal, with

E
(
̃Zt | Yt

)
≈ Yt, Var

(
̃Zt | Yt

)
≈ gT

̂V t g. (21)

The direct observation equation for ̃Zt becomes

̃Zt = Yt + 𝜖t, 𝜖t ∼
(
0, gT

̂V t g
)
, (22)

where the approximation error has been buried in the quasi-error term 𝜖t.
Thus, at a given location, the time-series of observations is processed into a sequence of estimated

{
̂𝜷 t, ̂V t

}
values,

from which z̃obs
t = gT

̂𝜷 t, with the direct observation equation (22).
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F I G U R E 1 Illustration of the approach for aggregating observations that are high-resolution in time, using synthetic data. In this case,
the window for [t, t + 1) ist = [t − 1, t + 1), and the basis functions are the first four Legendre polynomials (i.e., up to cubic). The dots show
zobs

t , the solid lines show the fitted polynomials using OLS, the dashed lines show the quasi-observation z̃obs
t using annual means, and the

grey polygons show ±2 standard deviations of the quasi-observation observation error.

The safest choice of window for ̃Zt ist = [t, t + 1), because in this case the observation error on each Zi occurs in
exactly one ̃Zt. Otherwise the observation errors will be replicated in consecutive ̃Zt, which violates the property that 𝝐t
is independent across time. But this small covariance is likely to be ignorable. In the absence of better judgments, one
option is to use the windowt = [t − 1, t + 1) for ̃Zt, and the basis functions

gj(𝜏) = Pj(𝜏 − t), 𝜏 ∈ [t − 1, t + 1), (23)

where Pj is the jth order Legendre polynomial (see, e.g., Kreyszig, 1978, sec. 3.7.1). These basis functions have the mild
advantage of producing a roughly orthogonal model matrix for OLS when the observations are roughly evenly-distributed
through [t − 1, t + 1). A cubic, for which j = 0, … , 3, will often be sufficient to capture the behavior of Y (⋅) in this narrow
window. Figure 1 illustrates this approach using synthetic data.

Both the window and the set of basis functions can vary with t at the same location, and if there are few or no obser-
vations in an interval [t, t + 1) then ̃Zt can just be dropped. If there is seasonality in the time-series, it can be absorbed by
additional seasonal basis functions added to (16). The main effect of these is to reduce the size of ̂V t; that is, to prevent
seasonality from contributing, wrongly, to uncertainty about ̃Zt.

The generalization of these quasi-observations to multiple locations is straightforward, with each location being pro-
cessed separately, and then stacked together into each ̃Zt. Overall, high resolution in time at fixed locations does not seem
to cause any difficulties in the DSTM, and nearly all of the observations get used, albeit after processing into a reduced
set of quasi-observations.

Unfortunately, this upscaling approach does not generalize to the case where the observations are scattered in both
space and time, like observations from ocean drifters, which report with a high frequency in time, but from a different
location each time. One superficially attractive solution would be to shorten the time-step until nearly every observation
can be mapped to the start of a time-step. This increases the computational cost of filtering and smoothing, but only
linearly. However, the first-order dynamical model for 𝜶t, which might seem natural on a time-step of a year, might
be much less appropriate for a time-step of, say, a week. A higher-order dynamical model for 𝜶t would require many
more components in the state vector, and this would substantially increase the cost of smoothing. Modeling ocean drifter
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ROUGIER et al. 11 of 19

observations at their natural resolution is very demanding, and one current approach uses nonlinear methods (particle
filters) and high-performance computing (Holm et al., 2020).

6 HIGH RESOLUTION IN SPACE

In the application in Section 2, GPS locations are not uniformly distributed across the domain: in some regions they are
highly concentrated, with separations of just a few kilometers. This means that C(s, s′) is not approximately zero for many
pairs of locations, where C is the correlation function of 𝜈, the truncation error. Therefore there will be a clash between
including the truncation error, and meeting the SU condition; see Section 4.

In basic terms, there are three possible cases:

1. The dataset is not massive, in which case the SU condition is not required for computational feasibility, although it
will still provide computational efficiency.

2. The dataset is massive, but the truncation error is ignored (i.e.,𝜅 = 0). In this case the SU condition holds automatically,
under the assumption that Σt is diagonal.

3. The dataset is massive, and the truncation error is included. In this case the dataset must be preprocessed in some way
for computational feasibility.

Here, we focus on the third case. There are two simple solutions: “subsampling” and “aggregating”. Both of them
require a specified spatial length, denoted 𝓁, the correlation length of C. Aggregating also requires a specified form for C,
such as the spherical correlation function in (13).

In both solutions, the net effect is to discard some of the information in the dataset, for computational feasibility and
efficiency. From another point of view, we are addressing the question: if it is necessary to discard information in order
to attain computational feasibility/efficiency, what is a principled way to proceed, which takes account of the structure of
the DSTM? Our answer is that it depends on the correlation length of the truncation error.

6.1 Subsampling

The simplest solution is to selectively subsample the locations, until all distances exceed the spatial correlation length
𝓁. Subsampling can proceed deterministically, once a correlation length has been specified. First, discard locations with
dubious observations, or for which there are likely to be unmodeled influences. Then proceed sequentially, at each stage
taking the pair of locations with the smallest separation, and deleting the one with the larger observation error. Terminate
when the smallest separation exceeds the correlation length.

Deterministic subsampling can be applied separately to each time-step, but if the locations are the same or nearly
the same for every time-step, then subsampling may permanently exclude some locations. An alternative is to subsample
stochastically, which produces a different subset of locations for each time-step, and has the effect of ensuring that most
locations get used at least once (which could be enforced, if required). The “kmeans++” algorithm is one possibility
(Arthur & Vassilvitskii, 2007). One location is chosen uniformly at random as the first location. The second location
is chosen at random using probabilities proportional to the square of the distance to the first location. The algorithm
proceeds sequentially, using distance to the nearest already-selected location. When subsampling locations, this algorithm
should be modified to set the probability of selection for locations within 𝓁 of the already-selected locations to zero.
Figure 2 illustrates this approach.

Let ̃Zt be the subsampled set of observables, at locations s1, … , sm. The indirect observation equation is

̃Zt = (yt + Φt𝜶t) + 𝜸t, 𝜸t
ind∼  (0,Rt), (24a)

where

Rt = 𝜅2I + ̃Σt, (24b)

where ̃Σt is the observation error variance Σt subsampled from Zt to ̃Zt. The first term in Rt is Var(𝝂t) when all of
the locations are separated by at least 𝓁. If Σt is diagonal, then Rt is diagonal. The SU condition is satisfied, and the
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F I G U R E 2 Four stochastic subsamplings of the same 100 points distributed uniformly at random in the unit cube, with a correlation
length of 𝓁 = 0.1, using a modification of the “kmeans++” algorithm.

Kalman filter update at time-step t can be performed sequentially, in whatever arrangement of observations is most
efficient.

6.2 Aggregating

In “aggregating”, the spatial domain is tiled using n polygonal tiles each of which are at least 𝓁 in their minimum width.
Within each tile, the observables are merged into an arithmetic mean, which becomes the quasi-observable for the tile.
These quasi-observables are treated as if their locations were at least 𝓁 apart. This is spatial upscaling, with the objective
of satisfying the SU condition.

Here are the details; the critical assumption is at (27). Let

Zi
t ∶=

(
Zi

t1, … ,Zi
tki

)

be the ki observables within tile i, with locations si
1, … , si

ki
. Let s1, … , sm be the full set of all locations for all n

tiles, ordered by tile, and let Zt and Yt be the corresponding vector of observables and latent process values. The
quasi-observable for tile i is the arithmetic mean of the observables in tile i, which gives the direct observation equation

̃Zi
t = Hi

tZt = Hi
t
(

Yt + 𝝐t
)
, i = 1, … ,n, (25)

where the 1 ×m matrix Hi
t is 1∕ki for the locations in tile i, and zero elsewhere. Stack these n quasi-observables together

to get the indirect observation equation

̃Zt = Ht(yt + Φt𝜶t + 𝝂t + 𝝐t), (26a)
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ROUGIER et al. 13 of 19

where

Ht ∶=
⎡
⎢
⎢
⎢⎣

H1
t

⋮

Hn
t

⎤
⎥
⎥
⎥⎦
, (26b)

and Ht is block-diagonal, because each location occurs in exactly one tile.
The simplifying assumption is

Cov
(

Hi
t𝝂t,Hj

t𝝂t
)
= 0, for i ≠ j, (27)

to a good approximation. In other words, the arithmetic means of the truncation errors within tiles of minimum width 𝓁
are uncorrelated across tiles (see below, and Figure 3). This implies that

Var(Ht𝝂t) = 𝜅2 ⋅ diag
(
(k1)−21TC1

t 1, … , (kn)−21TCn
t 1
)
=∶ Ct, (28)

where Ci
t is the ki × ki Gram matrix for C at the locations si

1, … , si
ki

. The indirect observation equation becomes

̃Zt = Ht
(

yt + Φt𝜶t
)
+ 𝜸t, 𝜸t

ind∼  (0,Rt) (29a)

where

Rt ∶= Ct +HtΣtHT
t , (29b)

and Ct is diagonal. If Σt is diagonal, then the block-diagonal structure of Ht implies that HtΣtHT
t is diagonal, so that

Rt is diagonal. Just as in subsampling, the SU condition is satisfied, and the Kalman filter update at time-step t can be
performed sequentially.
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(a) Example with n = 25
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(b) Correlation between arithmetic means

Square root of n

F I G U R E 3 Two contiguous square tiles with edge length 𝓁. The top panel shows the layout of n = 25 evenly-spaced locations for each
tile. The bottom panel shows the correlation between the arithmetic means of the values at the locations from the two tiles, using the
spherical correlation function, (13). The calculation is exact, and the irregularity in the bottom panel reflects the discrete nature of the grid of
locations, interacting with the compact support of the correlation function.
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A back-of-the-envelope calculation suggests that tiles with minimum width 𝓁 suffice, based on the spher-
ical correlation function in (13). Figure 3 shows the correlation between two contiguous square tiles with
evenly-spaced locations, for different numbers of locations. Although there will be some configurations of tiles
and locations where the correlation is high (e.g., where the edge of the tile goes through an isolated clump
of locations), these ought to be avoidable because the tiling is adjustable. According to Figure 3, applying (27)
with tile widths of at least 𝓁 will zero-out correlations in the quasi-observables which are not more than
about 0.07.

In summary, aggregating requires a specified correlation length, a specified tiling of the spatial domain, and a specified
correlation function, introducing quantities about which the domain experts may have only weak judgments. Subsam-
pling, on the other hand, requires just a correlation length, used qualitatively. From this point of view, subsampling seems
less intrusive, from a modeling point of view, if the client can tolerate using only a subset of the observations. On the
other hand, if the observation errors are not quite Gaussian, then aggregation has the advantage of tending to make the
pseudo-observable observation errors more Gaussian, through the same mechanism as the Central Limit Theorem (see,
e.g., Grimmett & Stirzaker, 2001, sec. 5.10).

7 AREAL OBSERVATIONS

In the case of observations which are high resolution in space, subsampling and aggregating are two approaches to
satisfying the SU condition; see Section 6. Subsampling side-stepped the form of C, the correlation function of trun-
cation error, while aggregating did not. So at least there was the option of side-stepping C. Unfortunately, with areal
observations there is no side-step, except for the extreme one of assuming that the truncation error can be ignored
(i.e., 𝜅 = 0).

Consider an areal observable with the definition

Zti ∶=
1
|i| ∫i

Yt(s) ds + 𝜖ti

= 1
|i| ∫i

{
yt(s) + 𝝓(s)T𝜶t + 𝜈t(s)

}
ds + 𝜖ti, (30)

where i is the “footprint” of the ith observable, assumed to be the same for every time-step, to reduce clutter.
In principle, the space-integral can be taken over each of yt, 𝝓 and 𝜈t, to create an exact indirect obser-

vation equation for Zti, as proposed by Fuentes and Raftery (2005). But this is computationally demand-
ing, and likely to involve approximations if any of these three functions can only be evaluated pointwise. So
instead the space-integral is replaced by a numerical integration rule, for which a midpoint rule is the simplest
implementation.

Therefore, let  be an axially-aligned grid with horizontal and vertical spacing d, which covers i, and leti = i ∩ .
Then, provided that  is sufficiently fine (i.e., d is sufficiently small),

∫
i

Yt(s) ds = d2
∑

s∈i

Yt(s), |i| = d2|i| = d2ki, (31)

to a good approximation, where ki is the number of gridpoints ini. Hence,

Zti = Hi
tY

i
t + 𝜖ti (32a)

where

Hi
t ∶= k−1

i 1T
, Yi

t ∶=
⎡
⎢
⎢
⎢⎣

Yt
(

si
1
)

⋮

Yt
(

si
ki

)

⎤
⎥
⎥
⎥⎦
, (32b)
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and si
1, … , si

ki
are the grid locations ini. Stack these together to get the direct observation equation

Zt = HtYt + 𝝐t, 𝝐t
ind∼  (0,Σt), (33a)

where

Zt ∶=
⎡
⎢
⎢
⎢⎣

Zt1

⋮

Ztn

⎤
⎥
⎥
⎥⎦
, Yt ∶=

⎡
⎢
⎢
⎢⎣

Y1
t

⋮

Yn
t

⎤
⎥
⎥
⎥⎦

(33b)

and

Ht ∶= bdiag
(
(k1)−11T

, … , (kn)−11T)
, (33c)

where “bdiag” denotes “block diagonal”. There is no requirement that the footprints are disjoint, and in fact it is
a powerful feature of the DSTM that it can merge point and areal observations in complete generality, including
overlaps.

Unfortunately, though, there may be trouble ahead. Let s1, … , sm be the full set of gridpoints in the direct observation
equation at time-step t. The indirect observation equation is

Zt = Ht(yt + Φt𝜶t) + 𝜸t, 𝜸t
ind∼  (0,Rt), (34a)

where

Rt ∶= 𝜅2HtCtHT
t + Σt, (34b)

and Ct is the Gram matrix of the correlation function C for s1, … , sm. Unfortunately Rt is unlikely to be block-diagonal,
especially if the footprints are small and contiguous, like the GRACE polygons from the application in Section 2. There-
fore the SU condition is likely to be violated, in which case there is no sequential updating in the Kalman filter at
time-step t.

There are several options to recover the SU condition with areal observations. First, if the footprints are disjoint and
their minimum widths are typically larger than 𝓁, the correlation length of C, then the off-diagonal blocks of HtCtHT

t
could be zeroed-out, exactly as in Section 6.2. Second, if their minimum widths are typically smaller than 𝓁, contigu-
ous footprints could be merged in order to increase the minimum width to at least 𝓁, and then apply the first option.
This would be the natural solution for the GRACE polygons in the application in Section 2. Third, if merging is unpalat-
able to the domain experts, then the footprints could be subsampled, exactly as in Section 6.1. Of course subsampling
might be unpalatable to the client. Finally, the truncation error might simply be ignored (i.e., 𝜅 = 0), which may not
compromise the model if 𝜅 is small, and if an additional parameter is introduced to rescale Σt, as discussed in Section 4,
item (4).

8 LOCAL TRENDS

The only source of trends in the DSTM is the mean function y: in the absence of shocks, 𝜶t tends back to 0 and Yt tends
back to yt. Most environmental processes contain trends, some of which may be extensive in space and enduring in
time, such as the trends from climate change. But many will be local in space and limited in time. In the application in
Section 2, elevation contains local trends, because it responds to processes which have durations and response times of
several years, such as weather patterns like El Niño, which affect water storage in lakes, reservoirs, and aquifers. Ideally,
y would contain covariates which represent these trends, but in practice that is challenging. Therefore we will often want
to give the DSTM the flexibility to include local trends, which means, in effect, that if Yt−2(s) ≤ Yt−1(s), then it is more
probable that Yt−1(s′) ≤ Yt(s′), for s′ in some neighborhood of s.
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8.1 Local linear trend model

A natural way to introduce a local trend is to use the basis expansion on the differences in Yt(s):

Yt(s) − Yt−1(s) = 𝝓(s)T𝜶t + 𝜈t(s), (35)

where the mean function y has now canceled out (but will reappear below). (35) could also include a mean function for
the differences, which does not create any complications, and so we have dropped it to reduce clutter. In the application in
Section 2, GRACE includes a contribution from glacial isostatic adjustment (GIA), an annual change which is effectively
constant in time over a decade or so, but varies in space (Vishwakarma et al., 2022). So we might include a specified GIA
mean function in (35), estimated from a simulation such as ICE6G (Peltier et al., 2015). More generally, this mean function
might include space- and time-varying covariates for the change in the latent process, with uncertain coefficients.

What is the implication of modeling the differences? Represent Y0 as

Y0(s) − y0(s) = 𝝓(s)T𝜶0 + 𝜈0(s), (36)

where the original mean function at time t = 0 has reappeared. Expanding out using (35),

Yt(s) − y0(s) =
(

Y0(s) − y0(s)
)
+ (Y1(s) − Y0(s)) + · · · + (Yt(s) − Yt−1(s))

= 𝝓(s)T𝜶0 + · · · + 𝝓(s)T𝜶t + 𝜈0(s) + · · · + 𝜈t(s)
= 𝝓(s)T(𝜷 t + 𝜶t) + 𝜈0(s) + · · · + 𝜈t(s), (37)

where 𝜷0 ∶= 0, and 𝜷 t ∶= 𝜷 t−1 + 𝜶t−1. Therefore, the original state equation (6) must be augmented to allow 𝜷 t to
accumulate 𝜶t−1:

[
𝜶t

𝜷 t

]
=

[
M 0
I I

][
𝜶t−1

𝜷 t−1

]
+

[
𝜼t

0

]
, 𝜼t

ind∼  (0,Q), (38)

where the role of M and Q are not the same as in Section 3, because they apply to differences of Y , not to Y itself. The
indirect observation equation, (11), has to be changed to

Zt = Ht
[
y0 + Φt(𝜶t + 𝜷 t)

]
+ 𝜸t, 𝜸t

ind∼  (0,Rt), (39a)

where 𝜸t ∶= Ht(𝝂0 + · · · + 𝝂t) + 𝝐t, and so

Rt ∶= (t + 1)𝜅2HtCtHT
t + Σt, (39b)

where Ct is the Gram matrix of C for the locations at time t, and making the convenient (but suspect) assumption that
Var(𝜈0(s)) = 𝜅2. The state equation (38) might also include a stochastic term for 𝜷 t, represented as a nonzero variance
matrix which would be added to the parameters.

This approach is similar to using a local linear trend in state-space modeling (see, e.g., Harvey, 1989). It is the “right”
way to include a local trend in Yt, because it does not change the underlying structure of the model, and so any method
which has been developed to do inference about the DSTM can still be used, including the upscaling methods of Section 5
and Section 6. However, it doubles the length of the state vector, from 𝜶t to (𝜶t, 𝜷 t). As discussed in Section 3.2, this
increases the cost of smoothing eight-fold. So it is possible that this approach may be too expensive for some applications,
in which case the computationally cheaper option in Section 8.2 might be useful.

8.2 Differencing

Perhaps there is a quick-and-dirty way to implement local trends, without doubling the length of the state vector? Gener-
ally, there is not, but there is one special case, where the same set of observables is used at every time-step (to be generalized
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below). In this case the direct observation equation is

Zt = HYt + 𝝐t, 𝝐t
ind∼  (0,Σt), (40)

where Yt and Zt are always evaluated at the same specified locations. Differencing both sides of (40),

̃Zt ≔ Zt − Zt−1

= H(Yt − Yt−1) + 𝝐t − 𝝐t−1

= H(Φ𝜶t + 𝝂t) + 𝝐t − 𝝐t−1, (41)

from (35). The 𝜷 t have dropped out of the indirect observation equation, and they are now superfluous in the state
equation, and can be dropped there as well. Now the calculation is the same size as the DSTM in Section 3. Unfortunately,
information about the level of the latent process has been lost. So differencing would only be a way to include local trends
in the latent process if the client was uninterested in the level of the latent process, but only in the time-differences.

For completeness, note that differencing does not require that the incidence matrix H is time-invariant: differencing
can be extended to keep more observations, but it is still necessary to discard every observable which does not have a
corresponding value one time-step before.

There is one statistical caveat for differencing, concerning the error term in (41),

𝜸t ∶= H𝝂t + 𝝐t − 𝝐t−1. (42)

The modeling assumption is that 𝜸t and 𝜸t−1 are independent. But now they are dependent, because of the appearance of
the same observation error in consecutive 𝜸t:

Cov(𝜸t, 𝜸t−1) = −Σt−1 ≠ 0. (43)

So to summarize, if most observations are available at most time-steps, and the client does not care about the level of
the latent process but only about the time-differences, and the observation error is small, then differencing the observables
is a computationally efficient way to include local trends in the latent process, within the DSTM.

This is quite a restrictive set of conditions, especially in environmental science. The datasets for many environmental
applications have limited duration, and have to be overlapped, or sometimes there is a gap of a year or more. Remote
sensing products for example, change with the satellites which produce them (see, e.g., Schröder et al., 2019). Other
datasets are attached to sensors which change location through time, like ocean drifters, mentioned in Section 5. Other
datasets are collected with targeted campaigns at a specific time and location, like plane-based LIDAR. In these cases,
differencing discards a lot of observations. Furthermore, many environmental processes are complicated and hard to
measure, so we can expect the observation errors to be large (or, as discussed above, under-reported). Indeed, perhaps the
most compelling reason for a statistical approach is precisely because the observations are sparse and time-varying, and the
observation errors are large. Therefore the local linear trend approach in Section 8.1 should be favored over differencing,
where possible.

8.3 Observables which are differences

In the application in Section 2, the GPS observations are on the latent process, elevation, but the GRACE observations are
on the time-differences of the latent process. The indirect observation equation in (11) cannot handle the GRACE obser-
vations, and therefore the DSTM in Section 3 is not appropriate for merging GPS and GRACE into an spatial-temporal
process for elevation. Although, as discussed in Section 8.2, it may be suitable for merging GRACE and a subset of GPS
into an updated spatial-temporal process for time-differences in elevation, after time-differencing the GPS observations.

The good news is that this issue has already been solved in the local linear trend model of Section 8.1, because
time-differences in the latent process are explicitly modeled by 𝜶t. So GPS observables, which measure Yt, are attached
to 𝜶t + 𝜷 t in the indirect observation equation, while GRACE observables, which measure Yt − Yt−1, are attached to 𝜶t in
the indirect observation equation.
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9 CONCLUSION

The three challenges outlined in Section 1 were that environmental processes are complex, that environmental datasets
are often complicated and irregular, and that environmental datasets are often massive. The interaction of these three
challenges severely constrains the types of statistical model and inference than can be used in environmental science.
We have shown that the “vanilla” Kalman filter, the DSTM outlined in Section 3, can, with careful implementation,
handle these three challenges. That is, many spatio-temporal applications in environmental science are in the scope of
the Kalman filter.

The argument in the paper runs as follows. The complexity of environmental processes implies that it is hard to capture
their spatio-temporal behavior in a specified set of basis functions. Therefore we must expect a truncation error in the
model which should not be treated in a simplistic fashion; for example, it should not be merged with an IID observation
error in the observation equation. But if we recognize the possibility of structure in the truncation error, even in quite a
primitive fashion, then we risk violating the Sequential Updating (SU) condition which is crucial for handling massive
datasets, discussed in Section 4.

The central part of the article, Section 5 to Section 7, is about how to incorporate massive datasets without violating
the SU condition. The biggest difficulty is with areal observations that are supplied on small contiguous polygons, like the
GRACE dataset in our application in Section 2. In this case, and in other cases involving datasets which are high resolution
in space, some form of subsampling or aggregation can recover the SU condition. These both involve discarding some of
the information in the dataset, for computational feasibility and efficiency.

Finally, Section 8 is a generalization of the model in Section 3, which once again reflects the complexity of environ-
mental processes. In many cases, the latent process (representing the quantities of interest) is driven by other processes,
which can be included in the model as covariates. But these other processes may not have been measured, or even known.
In this case, the dynamical behavior of the latent process will often be more complex than the model in Section 3 can
capture. In the first instance, the latent process may have trends that are local in space or time. These trends can be
accommodated by taking the model up a level, in a mathematical sense, going from a stochastic process on the levels to
a stochastic process on the differences, known as a “local linear trend”. However, this adjustment is expensive, because
it doubles the number of coefficients, which increases the cost of the inference eightfold. So it is tempting to adjust the
datasets rather than the model, by differencing. This may be the only option but, as we explain, it comes with caveats, and
caution is advised.
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