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ARTICLE INFO ABSTRACT

Editor: Fernando A.L. Pacheco Empirical evidence shows that climate, deforestation and informal housing (i.e. unregulated construction practices
typical of fast-growing developing countries) can increase landslide occurrence. However, these environmental
K"’)’W"fd-‘: o changes have not been considered jointly and in a dynamic way in regional or national landslide susceptibility assess-
Landslide susceptibility ments. This gap might be due to a lack of models that can represent large areas (>100km?) in a computationally effi-
Informal housing . R P . o . . .
Climate change cient way, while simultaneously considering the effect of rainfall infiltration, vegetation and housing. We therefore
Humid t.ropioi suggest a new method that uses a hillslope-scale mechanistic model to generate regional susceptibility maps under
changing climate and informal urbanisation, which also accounts for existing uncertainties. An application in the Ca-

Data paucity
Uncertainty ribbean shows that the landslide susceptibility estimated with the new method and associated with a past rainfall-
Global sensitivity analysis intensive hurricane identifies ~67.5 % of the landslides observed after that event. We subsequently demonstrate

that the hypothetical expansion of informal housing (including deforestation) increases landslide susceptibility more
(+20 %) than intensified rainstorms due to climate change (+6 %). However, their combined effect leads to a
much greater landslide occurrence (up to + 40 %) than if the two drivers were considered independently. Results dem-
onstrate the importance of including both land cover and climate change in landslide susceptibility assessments. Fur-
thermore, by modelling mechanistically the overlooked dynamics between urban growth and climate change, our
methodology can provide quantitative information of the main landslide drivers (e.g. quantifying the relative impact
of deforestation vs informal urbanisation) and locations where these drivers are or might become most detrimental for
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slope stability. Such information is often missing in data-scarce developing countries but is key for supporting national
long-term environmental planning, for targeting financial efforts, as well as for fostering national or international in-
vestments for landslide mitigation.

1. Introduction

Worldwide empirical evidence shows that landslide incidence can in-
crease under expanding deforestation (Glade, 2003; Pisano et al., 2017;
Reichenbach et al., 2014), informal housing (i.e. housing that does not con-
form with building regulations such as unregulated hill cutting or unman-
aged water drainage - Anderson et al., 2008; Diaz, 1992; Smyth and
Royle, 2000) and changing precipitation patterns (Haque et al., 2019;
Gariano et al., 2015). These environmental changes should therefore be in-
cluded in landslide predictions, especially in the Tropics where informal
urban population is rapidly expanding (Ozturk et al., 2022) and rainfall
events can be very intense (Seneviratne et al., 2012). However, current
methods to quantify landslide susceptibility (which identifies where
hillslopes are more prone to failure) are not adequate in fast changing envi-
ronments, as they fail to capture the dynamic effects of changing climate
and expanding urbanisation, and do not consider the potentially large un-
certainties in these landslide drivers, underlying slope or soil characteris-
tics. Amongst these methods, the most employed use statistical and
mechanistic slope stability models.

Statistical models are typically used to derive landslide susceptibility
maps at national and regional (>100km?) scales. These models employ
data available at these scales (such as Digital Elevation Models - DEM) to
derive their correlation with historical landslides: more failures are pre-
dicted to occur in locations similar to those where they happened before
(see Reichenbach et al., 2018 for a review on the topic). Unfortunately,
this approach is inapplicable in places where (1) landslide records are miss-
ing or unreliable (as in many landslide-prone tropical countries - Maes
etal., 2017), (2) urbanisation is growing fast, and thus landscape properties
are changing (UN, 2019); (3) decision makers want to consider environ-
mental conditions yet unseen, such as unprecedented extreme rainfall
events due to climate change.

Spatially distributed mechanistic slope stability models rely less on
landslides records because they parameterize causal relationships rather
than correlations in historical data. As a consequence, they can be used to
predict the effects of future, unseen environmental conditions. Nonetheless,
these models have mostly been applied in small areas (<5-20 km?), and al-
most always treating land cover and climate change separately (e.g., Van
Beek and Van Asch, 2004; Vanacker et al., 2003; Melchiorre and Frattini,
2012). Only recently, efforts have been made to fill this gap. For example,
Alvioli et al. (2018) explored the impact of a future climate scenario on
landslide occurrence over an area of 420 km? in Central Italy. In their anal-
ysis, all geotechnical and hydrological parameters were fixed at ‘worst case’
values to better detect the impact of climate change on landslide occur-
rence. Bernardie et al. (2020) and Hiirlimann et al. (2022) quantified the
changes in regional landslide susceptibility under both vegetation and cli-
mate change scenarios for the French (70 km?) and Spanish (326 km?) Cen-
tral Pyrenees respectively, while considering the uncertainty of some soil
parameters. Although these studies are interesting in the spatial extent
they have been able to tackle, they still only consider a limited number of
possible climate/land cover scenarios and uncertain input data (the varia-
tion of which could lead to significantly different slope stability results,
Melchiorre and Frattini, 2012) — probably due to the high computational
running time of these models. Furthermore, none of these studies included
the impacts of informal urban activities that are known to be detrimental
for slope susceptibility, such as slope cutting or leaking pipes
(e.g., Larsen, 2008; Anderson and Holcombe, 2013).

In this paper, we therefore suggest a new method that smartly uses a fast
hillslope-scale mechanistic model to generate regional susceptibility maps
under a wide range of climate change and - for the first time — informal

urban expansion scenarios. In a previous study (Bozzolan et al., 2020), we
have shown that the joint effect of different climate and localised urban
construction activities can lead to significantly different slope stability
responses. We did this by using a mechanistic model that can represent dy-
namic hydrological changes due to changes in climate (rainfall), vegetation
and localised urban construction activities. Furthermore, as the model is
fast to run, it could be applied within a Monte-Carlo (MC) simulation frame-
work to account for uncertainty in the rainfall and urban drivers as well as
in all hillslope properties and water table levels.

Here, we take that approach to the next level. Through Monte Carlo sim-
ulations, we generated a large library of synthetic hillslopes representative
of the study area (the Caribbean island of Saint Lucia) and we analysed
their stability under a wide range of different rainfall, vegetation and
urban conditions. Differently from Bozzolan et al. (2020), we sampled the
hillslope's geometric, geotechnical and soil properties to represent the var-
iability of slopes across a region (the island of Saint Lucia) instead of the un-
certainty about one specific location. By creating a sufficiently large
catalogue of model runs, we could then map back the landslide predictions
across that region, and so produce landslide susceptibility maps for many
different storm events and land cover scenarios. For this work, we first
tested the new method against observed landslides and we then created
new susceptibility maps under hypothetical land cover and climate change
scenarios. The research questions we aimed to answer are:

1) Which are the model's input factors that dominate the slope stability re-
sponse at regional scale, whose uncertainty most affect our landslide
susceptibility assessment?

2) How well can our landslide susceptibility map built under the scenario
of a known rainfall event represent the landslides observed after that
event?

3) How does current landslide susceptibility change under hypothetical
scenarios of unregulated housing, deforestation and climate? How
does the joint impact of these environmental drivers affect landslide sus-
ceptibility predictions?

The suggested approach is capable of dealing with non-stationary condi-
tions (as suggested by Gariano and Guzzetti, 2016; and van Westen et al.,
2006) and it can be updated as soon as new information (e.g. climate pro-
jections or urban plans) become available, just by selecting the most rele-
vant modelled scenario. This is not possible for other methods such as
statistically-based models, where the functional relationship between land-
scape attributes and past landslides might not hold under changed environ-
mental conditions and new output maps must be re-calculated when new
information becomes available (Reichenbach et al., 2018). Furthermore,
the results presented are unique as they include for the first time both infor-
mal housing and climate change in regional landslide susceptibility assess-
ments. We show that the comparison between scenarios allows the
quantification of the relative and joint impact of rainfall and urban drivers
on landslide predictions. Such quantitative information is often missing in
developing, data-scarce nations but is key for policy decision makers to
prioritise funding in urban planning and landslide mitigation actions (e.g.
reforestation vs urban regulation) as well as for increasing awareness on
the relative impact of different environmental changes.

2. The case study: Saint Lucia, Eastern Caribbean

Saint Lucia is an Eastern Caribbean island (617 km?) with a humid trop-
ical climate. The main landslide trigger is rainfall, and shallow rotational
landslides dominate on both steep and shallow slopes (Anderson and
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Holcombe, 2013; Migon, 2010). The geology is almost entirely comprised
of volcanic bedrock and deep volcanic deposits. Due to the climate, these
volcanic parent materials are subjected to deep weathering, which de-
creases their strength and increases landslide susceptibility. The strata of
a typical slope cross section comprise weathered residual soils and collu-
vium overlying decomposed rock and volcanic bedrock. These three types
of strata typically correspond, respectively, to the weathering grades V-
VI, II-1V, and I-1I of the Hong Kong Geotechnical Engineering Office
weathering grade classification (GEO, 1988). The textural composition
and geotechnical characteristics of the upper soil strata are highly variable,
but they can broadly be classified as fine-grained soils such as silty clays,
clayey silts, and sandy clays (DeGraff, 1985). The combination of tropical
climate, steep topography, and volcanic geology renders the region partic-
ularly susceptible to rainfall-triggered landslides. Furthermore, landslide
risk is increased by informal housing which occupies steep slopes and em-
ploys unregulated engineering practices (World Bank, 2012; p. 226-235).

3. Method

This section describes the method used to generate ensembles of suscep-
tibility maps of Saint Lucia under changing rainfall and/or urban expansion
scenarios. We first generated a library of synthetic 2D cross-sectional
hillslopes, whose properties are representative of the study area. Then, we
analysed their stability response with a hillslope-scale mechanistic model
(here the Combined Hydrology And Stability Model, CHASM) under differ-
ent land covers and rainfall conditions. Finally, we linked these 2D syn-
thetic hillslopes to 3D slope units — SUs (i.e. mapping units bounded by
drainage and divide lines - Carrara et al., 1991; Guzzetti et al., 1999;
Carrara et al., 1995), assigning to the SUs the stability response that
corresponded to the rainstorm and land cover scenarios of interest.

Specifically, the methodological workflow (Fig. 1) develops in the fol-
lowing steps:

1. We identified the main land covers from available maps and subdivided
the study area into SUs using a Digital Elevation Model (DEM). Each SU
was defined by summary measures describing the variability of its
height and slope gradient (e.g. the mean of the pixels' gradients). In
this analysis, four land covers were considered: forest, shrub, bare and
urban.

2. We defined the probability distributions of the input factors. In this con-
text, the input factors represent all the input data needed to define the
synthetic hillslopes within CHASM. This data includes the hillslope
cross-sectional geometry (extrapolated from the SUs properties defined
in the previous step) as well as the soil, urban and rainfall properties.
The probability distributions aim to represent both the variability and
the uncertainty of these properties across Saint Lucia and were defined
based on a combination of: information available in the literature, data
collected from the field in collaboration with local experts (critically in-
cluding previous studies within informal communities which provided
information on soil strata depths, cut slope angles, and other type of
urban construction practices), or to best represent our lack of knowledge
(e.g., using uniform distributions). Definitions of the probability distri-
butions and their parameters are given in Section 3.2 and supplementary
material.

3. We employed a statistical approach to randomly sample different values
of input factors from their probability distributions. This process gener-
ated thousands of combinations of input factors, each one defining a pos-
sible synthetic hillslope in Saint Lucia. The sampling was carried out for
the four main land cover types (bare, urban, forest, shrub) identified in
step 1, thus generating four libraries of synthetic hillslopes. The stability
of each hillslope was assessed with respect to a selected rainfall event
(such as Hurricane Tomas) with CHASM (able to represent dynamic
rainfall infiltration) and categorised according to the resulting minimum
factor of safety (FoS): stable if FoS = 1, unstable otherwise.

4. We applied Global Sensitivity Analysis (Saltelli et al., 2008) to the
dataset generated in step 3, in order to identify the input factors,
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including rainfall intensity and duration, that mostly control the
CHASM's slope stability response. We defined these factors as ‘domi-
nant’. Determining dominant factors is important to reduce the complex-
ity of the next step, where we will link the synthetic hillslopes in our
libraries to the Slope Units (SUs) in our study area.

5. Using various data sources (DEM, land cover maps, etc.), we assigned
the dominant factors (e.g. a slope angle value — step 5 in Fig. 1) to
each SU. We could then associate each SU with those CHASM's simula-
tions that have sufficiently ‘similar’ values of the dominant factors
(e.g. a slope angle *+5°). Note that multiple synthetic slopes are linked
to the same SU, as in building the libraries (step 3) we sampled the
input variability space very densely (for example in the Results pre-
sented later, we had about 6500 SUs and generated 30,000 synthetic
slopes for each land cover type). Once this linking was established, we
could retrieve those linked synthetic hillslopes forced by the rainfall
intensity-duration combination of interest (or sufficiently similar). We
then calculated the percentage of these slopes that were predicted to
fail: this value (failure rate, FR) will be displayed in the susceptibility
map as the measure of failure frequency of that SU under the chosen
rainstorm conditions (step 7-8 in Fig. 1). Similarly, we could generate
susceptibility maps for different land cover scenarios by choosing the
linked synthetic hillslopes from the library corresponding to the new
land cover (e.g. from forest to bare, if we want to assess the impact of de-
forestation), and updating the failure rate accordingly.

In the next sections, we describe each methodological step represented
in Fig. 1 more in detail.

3.1. Identify the main land cover and subdivide the study area into Slope Units

The main land covers in Saint Lucia were identified using a land cover
map from 2015. This map was prepared by the British Geological Survey
applying object-oriented image classification of satellite images (Jetten,
2016). From the original map, we merged the classes representing deep-
rooted vegetation (e.g., mixed and lowland forest) into a single ‘forest’
class, and all shallow-rooted (e.g., shrubland and herbaceous agriculture)
vegetation into a single ‘shrub’ class. The class ‘urban’ encompasses both
buildings and roads. Fig. 2A shows the resulting land cover map used for
this work, with the main three land cover classes considered: forest,
shrub, urban. We also considered the land cover bare (which is present
but not dominant) to allow comparison between the stability of non-
urbanised bare slopes and vegetated slopes.

To automatically delineate SUs, we employed the open source r.
slopeunits software (Alvioli et al., 2016) and the optimization strategy of
Alvioli et al. (2020, 2022). We used a 5 m resolution DEM obtained from
contour lines, derived from a national topographic map using photogram-
metric methods in 2009-2010 (before the hurricane Tomas). Due to tropi-
cal vegetation and cloud cover the number of photogrammetric points was
however often not sufficient to generate accurate contour lines in forested
and cloud covered areas. The resulting DEM thus does not accurately repre-
sent the terrain situation in many locations (as shown in Fig. 5-2 in van
Westen, 2016).

Fig. 2B shows the resulting SUs map. Details about execution of r.
slopeunits software in the study area are reported in the supplementary ma-
terial accompanying this paper, Section 1. The map contains 6496 Slope
Units. Each SU is a polygon with size and shape dictated by local drainage
setting, as captured from the DEM by the software r.slopeunits.

3.2. Definition of the variability range of input factors

The method involves the generation of synthetic hillslopes representa-
tive of Saint Lucia. The stability of these hillslopes was evaluated with
CHASM, a model that requires information on hillslope geometry (e.g.
slope angle, slope height and slope material strata), soil (geotechnical and
hydrological), rainfall (i.e. intensity and duration) and initial boundary
conditions (e.g. initial water depth) of 2D cross-sectional hillslopes. These
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Fig. 1. Flowchart of the proposed method.
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Fig. 2. (A) Land cover map where different land cover types have been grouped into 5 classes: forest, shrub, bare, urban and water bodies (original version: http://www.
charim.net/stlucia/maps). (B) Slope Units (SUs) across Saint Lucia. On the right-hand side, a zoom-in of the map, showing the SUs overlaying the terrain aspect (derived
from the DEM, available at http://www.charim-geonode.net/layers/geonode:dem).

Table 1
Varying input factors and their probability distributions.
Input factors Symbol/Unit Variability range
Slope geometric properties: Layer1 * Layer 2 * Layer 3 *
Slope angle 8 [degrees] U (5,70)
Slope height H [m] U (5, 100)
Thickness of layer H1 - H2 [m] U (1,6) U (1,6)
Soil properties:
Effective cohesion ? c [kPa] Ln (2.368, 0.569) Ln (3.4121, 0.577) 80
Effective friction angle b ¢ [degrees] Ln (3.293, 0.209) Ln (3.1559, 0.325) 60
Dry unit weight © yd [kN m ™3] U (16,18) U (18, 20) 23
Saturated moisture content ¢ VG 6sat [m® m ] N (0.413, 0.074) N (0.413, 0.074) N (0.413, 0.074)
Residual moisture content ¢ VG 6res [m® m 3] Ln (—1.974, 0.376) Ln (—1.974, 0.376) Ln (—1.974, 0.376)
VG alpha parameter d VGa[m™!] Ln (1.264, 1.076) Ln (1.264, 1.076) Ln (1.264, 1.076)
VG n parameters ¢ VGn Ln (0.364, 0.358) Ln (0.364, 0.358) Ln (0.364, 0.358)
Saturated Hydraulic Conductivity Ksat [ms '] Ln (—11.055, 0.37) Ln (—13.357, 0.37) 1xe-8
Initial hydrological condition:
Water table height © DWT [%] U (50,100)
Rainfall properties:
Rain intensity Imh™ 1] U (00.2)
Rain duration D [h] ud(@172)
Urban properties:
Cut slope angle B [degrees] N (65.2,12.6)
Roof gutters & - ud (01)
Septic tank and Pipe leak " Qt/p [m®s™1] ud(01)
Urban density U_d [%] Ud (0,100)
Vegetation on urban hillslopes ' - ud@©1)

There are 32 input factors, considering that soil properties are independently sampled for the three soil layers considered.

U = Uniform distribution; Ud = Discrete uniform; N = Normal distribution; Ln = Log-normal distribution.
VG: Van Genuchten parameters for defining suction moisture characteristics curve.
* Layer 1: Residual Soil, Weathering Grade V-VI; Layer2: Weathered material Grade III-IV; Layer3: bedrock Grade I-1I; Weathering grades defined according to GEO (1988).
@ Effective cohesion >0. Effective cohesion ¢ (layer 3) > ¢ (layer 2) > ¢ (layer 1).

Effective friction angle >0. Effective friction angle ¢ (layer 3) > ¢ (layer 2) > ¢ (layer 1). ¢ < 90°.
ys = yd +2, where vs is the saturated unit weight. yd (layer 3) > yd (layer 2) > yd (layer 1).
Values from Hodnett and Tomasella (2002) for Sandy Clay Loam material. We impose n > 1; 8sat > 6res; 6res >0.
Water table height is defined as a percentage of slope height measured to the toe of the slope.
Slope of the cut forced to be between 39 and 89° and it is always greater than natural slope angle.

8 Roof gutters on houses. Absent = 0; Present on all houses = 1. Roof type = double pitch (see Fig. 4).

h

The leak of the septic tank is equal to the leak of the pipe. Absent = 0; Leak from both pipe and tank present = 1 (see Fig. 4).

I Vegetation on urban hillslopes to quantify its benefit for landslide mitigation. Absent = 0; Present = 1 (on space left unbuilt — see Fig. 4).
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properties are described by 32 input factors, which were all varied accord-
ing to their probability distribution (Table 1). The vegetation properties
(defined in Table 2) were kept fixed (e.g., root depth always 1 m), whereas
urban properties were treated as random variables (bottom of Table 1) in
accordance with the analysis performed by Bozzolan et al. (2020). The
soil properties are described for the three soil layers considered: weathered
residual soils and colluvium overlying decomposed rock and volcanic bed-
rock (as typical in the study site, see section 2).

In the supplementary material section 2, we describe how we obtained
the parameters of the probability distributions. Here, we just delineate how
the range of variability of current and future rainfalls are treated, which can
be of interest for those analyses that include climate-related uncertainty.

Rainfall properties are specified in terms of rainfall intensity and dura-
tion. Their ranges of variability were based on intensity-duration-
frequency (IDF) relationships derived for the design of the Roseau Dam in
Saint Lucia (Klohn-Crippen, 1995). From these IDF curves (represented
by the blue lines in Fig. 3), we derived a minimum and maximum rainfall
intensity and duration (with maximum respectively 200 mmh ™! and 72
h). As suggested by Almeida et al., 2017, we sampled from these ranges in-
dependently and uniformly (no a priori knowledge). Under such an as-
sumption we generated a wide range of rainfall intensity-duration
combinations that should capture both rainstorms that might have been ob-
served in the past (light-grey area under the IDF curves in Fig. 3) and rain-
storms that might be observed in the future (dark-grey area above the IDF
curves in Fig. 3).

We could then pick from this wide range of rainfall drivers those rainfall
intensity-duration combinations of interest (which might correspond to
past events, design/planning requirements, or to different future climate
scenarios) and evaluate the corresponding landslide susceptibility.

3.3. Generation of libraries of slope stability responses

We used a random uniform approach to randomly sample combinations
of input factors from their probability distributions (defined in Table 1).
Each combination defines a synthetic hillslope (Fig. 4 is an example for
the land cover urban). By repeating the sampling for each land cover, we

Table 2

Parameters defining the vegetation properties of trees (land cover: forest) and
shrub. Trees properties were used in both land cover ‘urban’ (as in Fig. 4) and land
cover ‘forest’. The values are taken from Holcombe et al., (2016) (online Supple-
ment, Table S5). Some modifications were made according to the literature.

Parameter Unit Value

Tree canopy parameters:

Max leaf storage mm 5

Wet canopy evaporation ms 'x1077 2
Leaf-drip rate % 0.8
Stem portion % 0.0012
Max trunk storage Mm 0

Atmospheric parameter:

Net radiation Wm 2 700
Average daily temperature Degrees 30
Average daily rel. humidity sm ™! 0.7
Canopy resistance sm~! 70
Soil aerodynamic resistance sm~! 50
Veg. aerodynamic resistance sm~! 40
Oxygen deficiency M -0.1
Pressure head sink terms Constant M —035
Constant M -5
Wilting point M —-14
Tree/grass parameters: Trees Shrub
Surcharge kNm~? 2 0.3
Leaf area index mm ™2 10 5.8
Canopy cover % 0.8 0.4
Rooting depth M 4 1
Max transpiration ms'x1077 2 1
Root tensile strength MPa 50 32
Root area ratio m’m ™2 0.002 0.002
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Fig. 3. Rainfall intensity—duration-frequency (IDF) curves for Saint Lucia developed
by Klohn-Crippen (1995) using Gumbel analysis of 40 years of daily rainfall data
from 15 rainfall gauges across Saint Lucia. Future climate change may increase
the frequency of storms and the position of these lines, but such change is still highly
uncertain. We thus generated synthetic rainstorm events with rainfall intensity-du-
ration values randomly sampled within the whole grey area, where the light grey
area includes rainfall events from observed data (below IDF curves) and the dark
grey area (above IDF curves) represents combinations of rainfall intensity-duration
not recorded before 1995 but have occurred in the recent past or might occur in the
future.

generated four libraries of synthetic hillslopes (forest, shrub, bare and
urban — 30,000 synthetic hillslopes per library with 120,000 synthetic
hillslopes in total — Step 2, Fig. 1). Due to the randomness of the sampling,
we explicitly checked that combinations of factors were realistic; if not,
they were discarded and replaced by another randomly generated, feasible
combination. The criteria for these ‘feasibility’ checks are reported in the
footnote of Table 1 (letters a—f).

The stability of each hillslope was assessed in CHASM (Combined Hy-
drology and Stability Model). CHASM is a 2-D mechanistic model which
analyses dynamic slope hydrology and its effect on slope stability over
time (Anderson, 1990; Anderson and Lloyd, 1991, Wilkinson et al.,
2002a, 2002b). The cross section of a slope is represented as a regular
mesh of cells (with 1 m resolution in this analysis, as in Fig. 4). Hydrological
and geotechnical parameters are specified per each cell, while the initial hy-
drological conditions define the depth of the water table (DWT) and the
matric suction of the top cell of each column.

The dynamic forcing is rainfall, specified in terms of intensity and dura-
tion. For each computational time step for the hydrology (here 60 s), a for-
ward explicit finite-difference method is used to solve the Richard's (1-D,
vertical flow) and Darcy's (2-D flow) equations, controlling the unsaturated
and saturated groundwater flow, respectively. At the end of each simula-
tion hour, the resulting soil pore water pressures (positive and negative)
are used as input for the slope stability analysis, which implements Bishop's
simplified circular limit equilibrium method (Bishop, 1955). Amongst all
possible slip surfaces (centred on a user-defined grid - Fig. 4), an automated
search algorithm identifies the one producing minimum FoS, which is given
as output.

CHASM can represent cut slopes, house loading, and vegetation. In
particular, vegetation is represented through rainfall interception,
evapotranspiration, root water uptake, vegetation surcharge, and in-
creased permeability and soil cohesion due to the root network (see
Wilkinson et al., 2002b). The new extended version CHASM +
(Bozzolan et al., 2020) also includes surface urban water management,
through the representation of roof gutters on houses, leaking superficial
pipes and buried septic tanks.
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Fig. 4. Example of an urbanised synthetic hillslope generated by randomly sampling from the probability distributions of the input factors specified in Table 1. The hillslope
shown in the figure is part of the library representative of the land cover ‘urban’. For this reason, not only the geometrical, soil initial boundary conditions and rainfall
properties were varied, but also the urban properties (reported at the bottom of Table 1 and represented in the box on the right-hand side of the figure) were considered
in the sampling. Under land covers ‘forest’ and ‘shrub’, synthetic hillslopes were conceived as fully covered by respectively deep- and shallow-rooted vegetation, while in
the ‘urban’ land cover, trees were inserted in between cuts as shows in the figure. All hillslopes of all landcovers were discretised using a cell size of 1 m x 1 m, and the
computational time step for the hydrology was 60 s. The position and size of the slip circle search grid was defined depending on the slope height (H) and length (L) as shown.

Given the large number of simulations, CHASM was run using high per-
formance computers at the University of Bristol — the BlueCrystal Phase 3
which contains 16 X 2.6 GHz Sandy Bridge cores; and Catalyst, an ARM
(Advanced RISC Machines) based system which contains 64 cores and
256 GBytes of RAM in each node and runs at 2.2 GHz. Once the simulations
were completed, we classified each synthetic hillslope as unstable and sta-
ble according to the minimum FoS (respectively below and above unity). If
the hillslope was predicted as unstable prior to the initiation of the rainfall
event (see the Supplementary material, section 2), then it was excluded in
the landslide susceptibility assessment because it would represent an un-
conditionally unstable hillslope (for example, a random combination of
steep slope angle with deep soil). However, we used these discarded simu-
lations to assess the maximum soil depths (and therefore soil weight) that
hillslopes with certain slope angles could bear before being predicted as un-
conditionally unstable. Specifically, we defined a ‘soil thickness-slope angle
threshold’ over which hillslopes cannot exist, at least according to CHASM.
This threshold was used to facilitate the mapping of the CHASM's slope sta-
bility predictions into SUs, as it will be shown in the results section.

3.4. Identification of dominant input factors

In this step we quantified the relative impact of hillslopes, urban and
rainfall properties on the slope stability response and identified those that
‘dominate’ the landslide prediction (Step 4, Fig. 1). We performed this
step with a methodology called Global Sensitivity Analysis (Saltelli et al.,
2008) that quantifies how the variations in a model's outputs can be attrib-
uted to the variations in input factors. Since in our case the model
output was binary, as simulated slopes were categorised as unstable (if
FoS < 1) or stable (FoS = 1), we used the regional sensitivity analysis
(RSA) approach (Hornberger and Spear, 1981), which is particularly suit-
able when dealing with categorical outputs (but other GSA methods could
be used in different applications — for a review see Iooss and Lemaitre,
2015). In the RSA approach, the cumulative marginal distribution of each
input factor is computed for each output category, i.e., the stable slopes
and the unstable ones. If the distributions significantly separate out, we

infer that the model output (slope stability) is significantly affected by var-
iations in the considered input factor. The level of separation between the
cumulative distributions can be formally measured with the Kolmogorov—
Smirnov (KS) statistic and used as a sensitivity index (Pianosi et al.,
2016). The confidence intervals of the sensitivity indices can be estimated
via a bootstrap technique (Efron and Tibshirani, 1994). The bootstrap ran-
domly draws Z samples (with replacement) from the available data to com-
pute Z KS statistics for each input factor. The magnitude of fluctuations in
the KS statistic from one sample to another represents the level of confi-
dence in the estimation of the sensitivity indices. For this application, we
used the SAFE (Sensitivity Analysis For Everybody) toolbox (Pianosi
et al., 2015) to perform RSA and to calculate the sensitivity indices and
their confidence intervals by the bootstrap technique.

3.5. Assign dominant input factors to Slope Units and calculate their Failure
Rates under changing rainfall and land cover conditions

The RSA identified the dominant input factors, i.e. those input factors
that contribute the most to determine whether a slope was predicted as sta-
ble (FoS = 1) or unstable (FoS < 1). In the next step, we assign each SU with
a single value of these dominant factors in order to be able to link each SU
with its most similar 2D cross-sectional hillslopes simulated by CHASM. In
general, the way to carry out this step depends on the input factors that are
found to be dominant and the available data to determine the value of those
factors for each SU.

Usually, dominant factors corresponding to geometrical properties can
be inferred from a DEM, which are globally available (even if at different
resolutions across the globe). In this analysis for example, slope angle was
identified as a dominant input factor, so we assigned each SU with a
slope angle value equal to the 90th percentile of all the slope angles extrap-
olated from the DEM for that SU. We then used these slope angles to derive
the corresponding soil thickness for each SU. We did this by using a
mechanistic-based ‘slope angle-soil thickness’ relationship derived with
our simulation results (as we will explain in the results section and
supplementary material).
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Soil properties are the most difficult to determine because their estima-
tion is inheritably uncertain over large areas. If available, field and lab data
supported by regional geological map and topographical information (e.g.
Salciarini et al., 2006) could be used to assign each SU with soil properties
estimates. Here, we did not follow this approach as the soil maps for Saint
Lucia, in common with most soil maps, do not contain sufficient geotechni-
cal information for stability analysis. Given the lack of reliable information
about spatial patterns of the required soil properties, we simply assigned all
SUs with the median of the soil properties across the entire island.

Once each SU is defined by its dominant soil and geometrical factors, we
can choose a combination of rainstorm and land cover conditions, and look
for all the synthetic hillslopes in the simulation library that represent that
SU. First, based on the chosen land cover, the library of synthetic hillslopes
associated with that particular land cover are retrieved. Then, a search is
conducted within that library for the hillslopes with the most similar geo-
metrical, soil and climate properties. Fig. 5 shows how this search is per-
formed. A SU that is, for example, defined by three dominant input
factors (X, Y, and Z in the figure) identifies a point (blue dot) in the 3D var-
iability space of the simulated slope stability responses (grey and black dots
represent the predicted stable and unstable synthetic simulations respec-
tively). A cubic window centred in that point (red cube in Fig. 5) contains
N simulations with hillslopes properties and drivers similar to that SU. If
N is equal or greater than a fixed quantity (here, N = 30), the FR of the
SU is calculated as the ratio between the hillslopes predicted as unstable
M over N (unstable and stable), otherwise the size of the window is in-
creased until N is reached. By repeating this process for all SUs, we obtained
a susceptibility map conditioned by the rainstorm and land cover scenario
considered. If we then, for example, wanted to increase the rainstorm inten-
sity, we moved the window in Fig. 5 up along the Z axis and a new FR was
re-assessed for all SUs without the need to re-run the model. The same con-
cept applies if a new soil dataset becomes available. In this case, the search
would change according to the updated SU properties, making this method-
ology highly adaptable to changes of the input conditions.
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wellas the centre of
the moving window
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Fig. 5. Representation of the window (red cube) used to calculate the failure rate of
the SUs by retrieving the most similar synthetic hillslopes across the variability
space. The variables varying along the axis (X, Y, Z) represent the dominant input
factors found in the GSA (might be more or less than three). The points represent
the stable and unstable simulated synthetic hillslopes. The labels (a), (r),
(s) represent the ranges of the input factors whose intersection define such
window. The initial width and rate of increase of these ranges are chosen
heuristically according to the input factor. When the window includes a number
of simulations less than N, the rate of increase is used to iteratively widen the
ranges (a), (), and (s) in the direction of the black arrows until N simulations are
included in the cube. For example, if we are interested in calculating the failure
rate of a slope with angle 30°, the initial window is centred in 30° with an initial
width of 2°, thus including simulated slopes with angles between 29° and 31°. If
such initial window does not contain N simulations, the range is increased with a
rate of 0.5° in each side (e.g., in the first iteration the range will contain angles be-
tween 28.5° and 31.5°).
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3.6. Evaluation of the quality of landslide susceptibility maps

In order to evaluate our methodology, we generated a landslide
susceptibility map under current land cover (Fig. 2A) for a rainfall
event with the characteristics of 2010 Hurricane Tomas, and compared it
to the inventory of landslides observed after that event (available at
http://www.charim-geonode.net/layers/geonode:landslides_2010_2014).
The quality of the map will be high if the areas flagged by the model with
high Failure rates are the same areas where landslides were observed
after the Hurricane. To evaluate the quality of the map, we used two differ-
ent techniques: the success rate curve and the Receiver Operating Charac-
teristic (ROC) curve (for discussion about these and other techniques, the
reader is referred to Frattini et al., 2010). In the success rate curves, the cu-
mulative percentage of the area of the SUs containing observed landslides is
plotted against the cumulative percentage of the area of SUs associated with
different FR values (from high to low FR). In the ROC curves, the True
Positive rate is plotted against the False Positive Rate, where True and
False positive rate are defined as in Fig. 6. In both approaches we therefore
obtain a curve similar to those reported in Fig. 6. Steep curves are
associated with accurate maps, i.e., maps where the SUs predicted with
the highest FR also host the majority of the observed landslides. A
quantitative measure of the map's performance can then be obtained by
calculating the area under both curves: the larger the area the better the
map (Hanley and McNeil, 1982).

4. Analysis and results

4.1. Identify the input factors dominating slope stability in Saint Lucia and assign
these factors to Slope Units

In this section we analyse the 120,000 outputs generated by CHASM for
the four land covers considered: forest, shrub, bare and urban (30,000 sim-
ulations each). We performed RSA to identify the input factors dominating
slope stability. Specifically, we computed the sensitivity index of each input
factor: a high value of the sensitivity index suggests that the variation of
that input factor significantly influences the slope stability response
(i.e., the predicted FoS) whereas a value close to zero means that factor
has negligible influence. Fig. 7 shows that slope stability is insensitive to
many input factors and highly sensitive to five, namely slope angle, effec-
tive cohesion, thickness of the layer 1 (residual soil), rain duration and
rain intensity.

There is no significant difference in sensitivity between land covers, ex-
cept for the urban case (darkest bars in Fig. 7) where the sensitivity of cohe-
sion of layer 1 (fifth input from the left) increases while the sensitivity of
soil thickness of layer 1 (third input) and of rainfall duration decreases.
This is consistent with previous findings, where the change in sensitivity
was explained by the fact that when hillslopes are urbanised they are
more prone to failure even on less susceptible soils and under less severe
rainfall (Bozzolan et al., 2020). The stability of urbanised slopes is also sig-
nificantly influenced by variations of house density. More considerations
on this input factor are reported in the supplementary material, section 3.

In the next step, we assigned the five dominant input factors found with
the RSA to the SUs in Saint Lucia. We did this based on the information
available, as described in Section 3.5:

« Slope angle: we assigned to each SU the 90th percentile of all slope angles
extrapolated from the DEM pixels within that SU.

« Soil thickness of layer 1: we did not have data for this property, but empir-
ical evidence suggests the existence of a threshold that limits the maxi-
mum soil thickness able to be maintained for a given slope angle
(Patton et al., 2018; Catani et al., 2010). We therefore decided to associ-
ate each SU with such ‘maximum thickness’, calculated as a function of
the SU slope angle. We used the library of simulated hillslopes to infer
this ‘slope angle-soil thickness’ relationship. Specifically, we identified
the synthetic hillslopes predicted to fail before the beginning of the rain-
fall events (i.e., hillslopes that are inherently unstable) and derived from
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Fig. 6. Accuracy statistics for the calculation of the ROC curve. The FR of each SU is compared to different FR thresholds (e.g., calculate how many SUs are predicted with FR
>0.7, 0.6, etc.). We would expect that SUs with predicted FR above high FR thresholds also contain observed landslides (True Positive) and that SUs with predicted FR below
low FR thresholds do not contain observed landslides (True Negative) for the Hurricane Tomas event.

these the maximum thickness sustained at each slope angle value. This
method is fully described in the supplementary material, section 4.

Soil cohesion of layer 1: each SU was assigned with a constant value of 8
kPa, which represents the mode of the probability distribution employed
in the stochastic sampling for layer 1 (see Table 1). This is the best avail-
able estimate, given the lack of soil cohesion data (inherent at regional
scale).

Once each SU was defined with these three input factors, we chose the
rainfall conditions of interest (defined by rainfall intensity and duration,
which are also two dominant input factors — Fig. 7) and calculated the
SUs' FR according to the SUs' land cover (assigned from current land
cover maps of Fig. 2A or hypothetical) using a moving window as the one
described in the methodology Section 3.5 (see also the supplementary ma-
terial, section 5).

In the next sections, we report the results of two applications. The first
represents the susceptibility assessment under rainfall conditions similar
to Hurricane Tomas and current land cover (Fig. 2A). In the second applica-
tion, we generated the susceptibility maps corresponding to hypothetical
land covers (expanding deforestation and informal housing) and rainstorm
intensities greater than Hurricane Tomas.

4.2. Regional landslide susceptibility for a known rainfall-triggering event

We started by evaluating the landslide susceptibility map corresponding
to Hurricane Tomas, which in October 2010 caused severe damage due to

flood and landslides throughout Saint Lucia (Van Westen, 2016). The
total rainfall was estimated to be 660 mm in some locations, over about a
24 h period, corresponding to a return period between 180 and 200 years
depending on the source (van Westen, 2016; Mott MacDonald, 2013). To
build the corresponding landslide susceptibility map, we retrieved per
each SU the ensemble of (about 30) simulations that have similar slope
angle, soil thickness, soil cohesion to that SU and similar rainfall intensity
and duration to the Hurricane (as described in Section 3.5). Specifically,
we considered a cube (see Fig. 5) with precipitation intensity centred on
28 mmh ™! (i.e. 660 mm over 24 h) and duration on 24 h (the range of var-
iation is defined in the supplementary information, section 5). Results are
shown in Fig. 8A, together with the locations of 714 real landslides re-
corded after the hurricane (we considered only the landslides fully
contained within the SUs). The quality of the map is evaluated by calculat-
ing the area under the curve (AUC) of success rate (Fig. 8B) and under the
ROC curve (Fig. 8C) (see Section 3.6). These areas are AUCsg = 0.66 and
AUCRroc = 0.69 respectively. Both values indicate an acceptable perfor-
mance as they fall between 0.5 (the area of a ‘random’ model that would
randomly assign high and low FR values to the SUs containing landslide ob-
servations) and 1 (the area of an ‘exact’ model that would identify high FRs
only in those SUs containing landslide observations).

4.3. Regional landslide susceptibility under hypothetical climate and land cover
change

We then explored the effects of land cover and climate change on land-
slide susceptibility by considering five hypothetical scenarios. Scenarios
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Fig. 7. Sensitivity index of each input factor in the four land cover scenarios. The bars correspond to the mean value of sensitivity for each input factor calculated with
bootstrapping, while the black vertical lines at the top of the bars represent the confidence interval (Number of bootstrap resampling Z = 100; significance level for the

confidence intervals 0.05).
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Fig. 8. (A) Landslide susceptibility map associated with a rainstorm event similar to Hurricane Tomas in 2010. The black polygons represent the landslides recorded after the
event. The quality of the map is quantified with (B) the success rate curve and (C) the ROC curve.

(A) and (B) are associated to a rainstorm event comparable to Hurricane
Tomas but with expanding informal urbanisation (A) and deforestation
(B) in all the SUs with angles <50° (i.e. SUs that might be hypothetically
urbanised in the future). Scenario (C) uses current land cover conditions
but forced by a rainstorm event 10 % more severe than Hurricane Tomas
(i.e., a potential future climate scenario — Knutson et al., 2015). Finally, sce-
narios (A + C) and (B + C) use a combination of the previous land cover
and climate change. Fig. 9 shows the resulting susceptibility maps. The ar-
rows report the increase in the number of SUs associated with a FR >0.5
(defined as ‘hazardous’ SUs). In general, the number of hazardous SUs in-
creases in all scenarios. However, the greatest increase occurs when both
climate and land cover change are included (about +30 % and + 40 %),
with a disproportionate increase in the number of hazardous SUs compared
to the scenarios where these two environmental changes are considered in-
dependently. For example, the scenarios with only deforestation (B) and
only climate change (C) lead respectively to a + 6.4 % and + 5.6 % in-
crease in hazardous SUs, while their combined effect (B + C) lead to an in-
crease of + 39 %, which is 4 times the sum of its parts.

5. Discussion

Our Global Sensitivity Analysis (Fig. 7) shows that for all the land covers
considered, there are five dominant landslide drivers: slope angle, thickness
and cohesion of material layer 1 (i.e., the top strata comprising colluvial
and residual soil) and rainfall intensity and duration. The fact that a single
model output (the Factor of Safety in our case) is largely controlled by a rel-
atively small number of input factors is not surprising as this almost always
is the case when applying GSA to earth system models (Wagener and
Pianosi, 2019). The fact that these five factors in particular are dominant
is also reasonable, as in general, the steeper the hillslope, and the heavier
and weaker the material it's made from, the more unstable it will be;
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more rainfall penetrating the soil instead decreases soil strength and thus
its stability. The relevance of these factors for slope stability is in fact widely
recognised (e.g., Guzzetti et al., 2006; Melchiorre and Frattini, 2012;
Salciarini et al., 2006; van Westen et al., 2006), but the GSA we performed
helpfully quantifies their relative influence on slope stability. In particular,
Fig. 7 shows that variations of the geometrical and soil properties influence
slope stability more than variations of the rainfall properties in Saint Lucia,
regardless of the land cover considered. These results are confirmed also by
other studies (Almeida et al., 2017; Folberth et al., 2016; Parker et al., 2016;
Samia et al., 2017) and suggest that climate change might have a smaller
influence on landslide rates than the intrinsic hillslope properties and
their evolution, such as slope topography, lithology, or soil mantle forma-
tion and modification due to previous failures. The fact that soil properties
have the highest sensitivity indices also suggest that improving the quality
of soil databases and better predict soil thickness and soil cohesion across
landscapes (Catani et al., 2010; Patton et al., 2018; Dietrich et al., 1995)
should be prioritised to improve the accuracy of landslide susceptibility
maps (Medina et al., 2021).

Fig. 8 shows that the landslide susceptibility map generated with rain-
storm conditions similar to the Hurricane Tomas (Fig. 8) via a comparison
to the landslides recorded after that event, gave satisfactory results, with an
area under the ROC curve comparable to other similar slope stability ana-
lyse that use mechanistic models (Raia et al., 2014; Frattini et al., 2010). Re-
sults could be further improved by using a more accurate representation of
the precipitation hyetograph (here uniform across the 24 h) (Arnone et al.,
2016) or by new datasets, as soon as they become available. For example, if
fieldwork in a certain location provides more accurate information about
local soil properties, the FR of the SUs representing that location could be
changed by simply searching for those simulations associated with the up-
dated soil information (without re-running the slope stability model). Given
that the initial water table is stochastically varied, the impact of antecedent
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Fig. 9. Ensemble of landslide susceptibility maps forced by different urban and climate scenarios. The framed map is the same reported in Fig. 8 while the other maps
represent the susceptibility under the hypothetical scenarios described in Section 4.3. In all maps, each SU has the same slope angle, soil depth and soil cohesion whereas
the rainfall intensity and duration and/or the land cover change from one map to the other. These changes define different ensemble of simulations and therefore
different FRs. Note that our analysis did not account for planning restrictions such as those preventing deforestation and development in National Forest Reserves.

rainfall on stability could also be analysed by retrieving those simulations
with higher (or lower) initial water tables. Additionally, if a given rainfall
duration/intensity is associated with a known return period we could asso-
ciate the same return period to the corresponding susceptibility map, as a
function of the remaining input factors.

Fig. 9 shows a quantitative comparison between the landslide suscepti-
bility maps under hypothetical scenarios of expanding informal urbanisa-
tion/deforestation (which is plausible as a consequence of the growing
urban population in the island — UN-Habitat, 2022), increasing rainstorm
severity (potentially representing future climate change) and a scenario
where these changes are combined. Three main conclusions can be
drawn. First, FR generally increases when SUs pass from vegetated to
bare or urbanised land cover, which is compatible with previous empirical
and statistical analyses (Reichenbach et al., 2014; Vanacker et al., 2003;
Pisano et al., 2017; Persichillo et al., 2018). Plants can increase stability
by intercepting rainfall (so by decreasing the pore water pressure within
hillslopes) and by strengthening the soil with their root network; unregu-
lated housing can instead make a hillslope more likely to fail by steepening
its angles via hill cutting, and by increasing the water infiltrating the soil via
poorly managed urban water systems. A second conclusion is that
expanding informal housing significantly increases landslide susceptibility
under current rainfall conditions (scenario A in Fig. 9) and such an increase
is greater than the one obtained when only more severe (yet unobserved)
rainfall intensities are considered (scenario C in Fig. 9). That informal ur-
banisation can enhance landslide activity is empirically well documented
(Anderson et al., 2008; Smyth and Royle, 2000; Diaz, 1992) but few studies
quantify its influence on slope susceptibility (Holcombe et al., 2016;
Bozzolan et al., 2020). In this analysis, we showed how the impact of
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potential future urbanisation can be compared to the impact of potential cli-
mate change. More of these comparisons should be performed to better sup-
port targeted landslide mitigation decisions. Finally, Fig. 9 shows that when
we combine land cover and climate change scenarios (A + Cand B + C),
landslide susceptibility disproportionally increases (i.e. “the whole is
greater than the sum of its parts”), highlighting the importance of consider-
ing both these environmental changes in landslide predictions. A compari-
son of our results with previous findings is difficult, since only very few
investigations have included both vegetation and climate change in land-
slide susceptibility assessments, while none included informal housing.
Hiirlimann et al. (2022), for example, found that the stabilising influence
of a hypothetical increase in forested area was considerably larger than
the destabilising effects related to rainfall changes — assuming that the ben-
eficial effect of root reinforcement on stability dominates over the increase
in pore water pressure due to the larger precipitation. In this analysis, we
demonstrate that (the lack of) vegetation can have different impacts on sta-
bility depending on the rainfall scenario considered (scenario B vs scenario
B + C) and that such an impact is not linear with the increase of precipita-
tion severity (scenario B + C).

The susceptibility maps presented in this paper are only examples of
how the synthetic library of slope stability responses could be used. Risk re-
duction consultants, city planners, engineers and those involved in commu-
nity development could for example explore the catalogue of simulations
results to test the effectiveness of landslide mitigation measures by compar-
ing those simulations with or without the intervention (for example, in-
creasing vegetation in hotspot areas for landslide susceptibility) in order
to quantify the corresponding decrease in landslide failure rates (as sug-
gested in Ozturk et al., 2022). Another application could include the
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construction of rainfall thresholds for triggering landslides for different
hillslopes angles (e.g. a threshold for the steepest and shallowest part of a
catchment) or different land covers (as natural vs urban in Bozzolan
et al., 2020). By adapting the input parameters and forcing scenarios, the
suggested methodological approach enables the type of analysis advocated
by Galasso et al. (2021) “in which different development scenarios and detailed
urban design and policy options can be considered, evaluated, modified and rated
by a range of stakeholders”. Importantly, the modelling includes the uncer-
tainty of both urban and rainfall drivers as well as of the hydrological and
geotechnical properties of the hillslopes: if the assessed range of slopes/sce-
narios is found to be stable over and above these uncertainties, the confi-
dence in the model's predictions increases. This type of quantitative
information is particularly relevant in the Tropics, where urban growth
and rainfall-triggered landslides have the potential to significantly increase
in the future (Tabari, 2020; UN, 2019; Ozturk et al., 2022), but where the
data scarcity and limited economic capacity is tackling landslide risk aware-
ness and mitigation. Similar applications might become useful mainly for
small islands like the Caribbean, where it is often difficult to obtain land
cover change information or future rainfall projections due to the limited
data sources (Seneviratne et al., 2012).

Given that the generated synthetic library of slope stability responses may
be relevant for all other type of analyses suggested above as well as for other
locations with similar natural, climate and urban characteristics, we rendered
it available for download at the University of Bristol data repository https://
doi.org/10.5523/bris.2fy915xd3f112sf9e6nt8cv8n (Bozzolan et al., 2022).

5.1. Limitations

All of the results presented here are subject to the limitation of the input
data and the assumptions made in this study. However, utilisation of Global
Sensitivity Analysis as part of our modelling strategy enables us to test the
influence of assumptions and choices on the input factors (such as soil
and rainfall parameters) even in the context of climate change impact stud-
ies where we cannot rely on a comparison with observations of the impact
we analyse (Wagener et al., 2022). Using different probability distributions
for the stochastic sampling of CHASM input factors might lead to iden-
tifying different influential factors through global sensitivity analysis
(Paleari and Confalonieri, 2016). The computation time and the level
of skills required to run stochastically mechanistic-based models
might represent a limitation. However, cloud computing gets around
the first problem, whereas shared datasets of simulations results (such
as the one we provide) widens the access to these type of analyses also
to less expert users (Ozturk et al., 2022). Vegetation is represented in
a simplistic way (although the physical representation of vegetation in
CHASM is relatively sophisticated) as only two types (forest and
shrub) are simulated and the effect of variations of their physical fea-
tures on slope stability is not analysed. Vegetation properties might
change with climate (Dixon and Brook, 2007; Collison et al., 2000),
but in this analysis they are considered independent. We assigned the
same cohesion value to all the SUs (specifically, we used the mode of
the distribution of values obtained from measurements in different loca-
tions of the region) in the absence of further data to enable allocation of
different values to different SUs. However, soil composition and
strength vary from one location to another, even within homogeneous
layers (Burton et al., 1998). The large uncertainty associated with the
spatial distribution of soil cohesion and soil thickness is common for
this type of analyses (Salciarini et al., 2006; Melchiorre and Frattini,
2012). Yet, the impact of this uncertainty may be reduced in this analy-
sis, given that we use our methodology not to predict in absolute values
landslide probability but to gain insights on the relative change of land-
slide occurrence between different scenarios — a piece of information
that is often sufficient to inform environmental planning (Van Beek
and Van Asch, 2004). Furthermore, as previously noted, our approach
allows for individual SUs to be re-assessed as new data is obtained, or
if hillslope-specific assessment is required for determining site-specific
stability behaviours and mitigation measures.

12

Science of the Total Environment 858 (2023) 159412

6. Conclusions

In this paper we propose a new methodology to generate national-scale
landslide susceptibility maps under a wide range of combinations of current
or hypothetical urban expansion scenarios and climate change drivers. We
test our approach for the island of Saint Lucia, which is representative of
data scarce and landslide-prone regions in the humid tropics. These results
are unique as, for the first time, they include informal urbanisation and cli-
mate change in a regional (in our case 617 km?) susceptibility assessment,
while also considering the influence of the model parameters uncertainty.

For the case study of Saint Lucia, we can summarise our main findings
as follows:

1) Geometrical (slope angle and the thickness of the first layer of residual
soil) and soil properties are the predisposing factors that most dominate
the slope stability response — their influence is greater than rainfall, at
least at this island-wide scale.

2) The susceptibility map generated under rainfall conditions similar to
Hurricane Tomas identifies the location of the landslides triggered by
that rainstorm event with reasonable accuracy.

3) Expanding informal housing increases landslide susceptibility more
than hypothetical climate change scenarios. Furthermore, the joint ef-
fect of land cover and climate change increases landslide susceptibility
disproportionally, i.e. more than the sum of the two scenarios consid-
ered independently.

Our method offers two main advantages compared to other methods cur-
rently in use. First, it detects the dominant slope stability drivers and quan-
tifies their relative importance. Such information can help stakeholders to
assess where investments should be prioritised to attempt to reduce uncer-
tainty in slope stability predictions. Second, it is capable of dealing with
non-stationary conditions and so it can be updated as frequently as required,
just by picking the most relevant modelled scenarios. Such flexibility also al-
lows the quantification of the relative and joint impact of a wide range of hy-
pothetical scenarios on regional landslide predictions. This information could
better support national climate adaptation planning and landslide risk reduc-
tion investments in data-scarce developing countries.
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