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RESEARCH

Machine learning derivation of four 
computable 24-h pediatric sepsis phenotypes 
to facilitate enrollment in early personalized 
anti-inflammatory clinical trials
Yidi Qin1, Kate F. Kernan2, Zhenjiang Fan3, Hyun‑Jung Park1, Soyeon Kim4, Scott W. Canna4, John A. Kellum2, 
Robert A. Berg5, David Wessel6, Murray M. Pollack6, Kathleen Meert7,8, Mark Hall9, Christopher Newth10, 
John C. Lin11, Allan Doctor11, Tom Shanley13, Tim Cornell14, Rick E. Harrison12, Athena F. Zuppa4, Russell Banks13, 
Ron W. Reeder13, Richard Holubkov13, Daniel A. Notterman14,15, J. Michael Dean13 and Joseph A. Carcillo2* 

Abstract 

Background: Thrombotic microangiopathy‑induced thrombocytopenia-associated multiple organ failure and hyper‑
inflammatory macrophage activation syndrome are important causes of late pediatric sepsis mortality that are often 
missed or have delayed diagnosis. The National Institutes of General Medical Science sepsis research working group 
recommendations call for application of new research approaches in extant clinical data sets to improve efficiency of 
early trials of new sepsis therapies. Our objective is to apply machine learning approaches to derive computable 24‑h 
sepsis phenotypes to facilitate personalized enrollment in early anti‑inflammatory trials targeting these conditions.

Methods: We applied consensus, k‑means clustering analysis to our extant PHENOtyping sepsis‑induced Multiple 
organ failure Study (PHENOMS) dataset of 404 children. 24‑hour computable phenotypes are derived using 25 avail‑
able bedside variables including C‑reactive protein and ferritin.

Results: Four computable phenotypes (PedSep‑A, B, C, and D) are derived. Compared to all other phenotypes, Ped‑
Sep‑A patients (n = 135; 2% mortality) were younger and previously healthy, with the lowest C‑reactive protein and 
ferritin levels, the highest lymphocyte and platelet counts, highest heart rate, and lowest creatinine (p < 0.05); PedSep‑
B patients (n = 102; 12% mortality) were most likely to be intubated and had the lowest Glasgow Coma Scale Score 
(p < 0.05); PedSep‑C patients (n = 110; mortality 10%) had the highest temperature and Glasgow Coma Scale Score, 
least pulmonary failure, and lowest lymphocyte counts (p < 0.05); and PedSep‑D patients (n = 56, 34% mortality) had 
the highest creatinine and number of organ failures, including renal, hepatic, and hematologic organ failure, with the 
lowest platelet counts (p < 0.05). PedSep‑D had the highest likelihood of developing thrombocytopenia-associated 
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Introduction
Severe sepsis defined by infection and organ failure 
contributes to 1 of 5 deaths globally, with 3 million per 
year occurring in children [1]. While there is evidence 
that sepsis mortality increases if treatment is delayed [2, 
3], several studies in high-income countries where rapid 
access to intensive care support has been provided, have 
demonstrated patterns of mortality even in previously 
healthy children with timely treatment [4–6]. This 
indicates that dysregulated host immune activation could 
be targetable in the pediatric intensive care unit (PICU) 
[7–19]. Among such conditions are immune depression 
leading to immunoparalysis-associated MOF (IPMOF) 
[7, 8, 14, 15], thrombotic microangiopathy leading to 
thrombocytopenia-associated MOF (TAMOF) [9, 10, 
14, 15], and hyperinflammatory macrophage activation 
syndrome (MAS) driven either by uncontrolled 
lymphoproliferation manifest as sequential liver failure-
associated MOF (SMOF) [11, 14, 15] or by macrophage 
activation without lymphoproliferation manifest as 
combined hepatobiliary dysfunction and disseminated 
intravascular coagulation [12–15]. In the PHENOtyping 
pediatric sepsis-induced Multiple organ failure Study 
(PHENOMS) [15], we previously reported that these 
conditions developed at a median of day 3 to 7 of sepsis, 
with TAMOF and MAS demonstrating 46% mortality, 
and IPMOF 16% mortality [15]. Anti-inflammatory 
therapies used to reverse TAMOF and MAS include 
methylprednisolone, intravenous immunoglobulin 
(IVIG) and plasma exchange [9, 16–19]. Our clinical 
trials challenge is to identify these at-risk children for 
early enrollment when personalized therapies have their 
greatest likelihood to succeed.

The NIGMS (https:// loop. nigms. nih. gov/ 2019/ 05/ 
recom menda tions) sepsis research working group 
recommendations call for use of new clinical research 
approaches in extant clinical data sets to characterize 
septic patients and improve the efficiency of early trials 
of new sepsis treatments. In this manuscript, we test the 
hypothesis that machine learning methods previously 
used in adults [20] could be applied to available bedside 

clinical variables including C-reactive protein and ferritin 
in the extant PHENOMS dataset [15] to derive 24-h 
computable sepsis phenotypes [20–22] that identify 
children at risk for development of TAMOF and MAS 
for enrollment in early personalized anti-thrombotic and 
anti-inflammatory clinical trials.

Materials and methods overview
We analyzed blood samples and clinical data obtained 
from our previously published PHENOMS study [15]. 
Approval was obtained from The University of Utah 
Institutional Review Board, Central IRB # 70976. Written 
informed consent was obtained from one or more 
parents/guardians for each child. Assent was garnered 
when the child was able. Patients were enrolled from 
2015–2017. The CONSORT diagram (Additional file  1: 
Fig. S1) and details of the parent clinical study protocol 
have been previously published [15]. Three consented 
and enrolled children who were excluded from reporting 
in the parent study manuscript because there was a cap 
of 81 patients to maximize equalization in enrollment 
among the centers are additionally included in this 
machine learning manuscript. Children qualified for 
enrollment in PHENOMS if they (1) were between the 
ages of 44  weeks gestation to 18  years of age; (2) were 
suspected of having infection meeting two or more of 
four systemic inflammatory response criteria [23]; (3) had 
one or more organ failures [24]; and (4) had an indwelling 
arterial or central venous catheter [15]. Children were 
excluded from enrollment if there was not a commitment 
to aggressive PICU care. Clinical data and blood samples 
measuring C-reactive protein, Ferritin, sFASL, ADAMTS 
13 activity, and whole blood ex  vivo TNF response to 
endotoxin were obtained on day one and twice weekly 
until 28 days in the PICU in the parent study [15].

The parent study was not designed with a plan for per-
forming post hoc machine learning analysis. To minimize 
inherent selection bias, we set the a priori elements and 
derived findings before performing the machine learn-
ing analysis. The a priori elements included all data avail-
able and previously published in the parent study [15], all 

multiple organ failure (Adj OR 47.51 95% CI [18.83–136.83], p < 0.0001) and macrophage activation syndrome (Adj OR 
38.63 95% CI [13.26–137.75], p < 0.0001).

Conclusions: Four computable phenotypes are derived, with PedSep‑D being optimal for enrollment in early per‑
sonalized anti‑inflammatory trials targeting thrombocytopenia‑associated multiple organ failure and macrophage 
activation syndrome in pediatric sepsis. A computer tool for identification of individual patient membership (www. 
pedse psis. pitt. edu) is provided. Reproducibility will be assessed at completion of two ongoing pediatric sepsis studies.

Keywords: Severe sepsis, Multiple organ failure, Immunoparalysis‑associated multiple organ failure, 
Thrombocytopenia‑associated multiple organ failure, Macrophage activation syndrome, Sequential multiple organ 
failure, Hyperferritinemic sepsis

https://loop.nigms.nih.gov/2019/05/recommendations
https://loop.nigms.nih.gov/2019/05/recommendations
http://www.pedsepsis.pitt.edu
http://www.pedsepsis.pitt.edu
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patients enrolled in the CONSORT diagram (Additional 
file  1: Fig. S1), and additional measurements of multi-
ple cytokines. The derived machine learning approach 
methods and findings are illustrated in Fig.  1 and were 

designed and set a priori to address the following recom-
mendations of DeMerle and colleagues [25].

DeMerle et  al. suggested that derived machine learn-
ing phenotypes need to be clinically relevant, biologically 

Fig. 1 Overview of machine learning, visualization, and statistical methods applied to the PHENOMS pediatric sepsis data set
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plausible, nonsynonymous, treatment responsive, and 
reproducible if they are to provide a ‘path forward’ in trial 
design [25]. Our statistical approach toward these goals 
is shown in Fig. 1. To derive nonsynonymous computable 
phenotypes, we applied unsupervised clustering methods 
[26] to a priori clinical and laboratory data available at the 
first 24 h of PICU stay with severe sepsis (Table 1, Fig. 2, 
Additional file  1: Tables S1–S4, Additional file  1: Figs. 
S2–S7). To understand biological plausibility and clinical 
relevance, we examined correlations between the derived 
computable phenotypes and the a priori diagnoses, infec-
tions, and inflammatory cytokine responses (Table  2, 
Fig.  3, Additional file  1: Tables S5–S8, Additional file  1: 
Figs. S8–S10), and a priori organ failure and mortality 
outcomes (Table 2, Figs. 4 and 5, Additional file 1: Tables 
S9–S11, Additional file  1: Figs. S11–S15). We further 
examined correlations between the derived computable 
phenotypes and the a priori elements immunoparalysis-
associated MOF (immune depression defined by ex vivo 
TNF response to endotoxin < 200  pg/ml beyond three 
days with two or more organ failures) [8, 15, 27], throm-
bocytopenia-associated MOF (thrombotic microangiop-
athy defined by ADAMTS13 activity < 57% of control with 
platelet count < 100,000/mm3 and acute kidney injury 
with oliguria and serum creatinine > 1 mg/dL) [9, 15, 27], 
sequential liver failure-associated MOF (lymphoprolif-
erative disease associated with liver failure defined by 
soluble FAS ligand > 200  pg/mL with PaO2/FiO2 < 300 
and mechanical ventilation followed seven days or later 
with serum ALT > 100 U/L and bilirubin > 1 mg/dL) [11, 
15, 27], and macrophage activation syndrome (hyperin-
flammation defined by ferritin > 500 ng/mL with platelet 
count < 100 K/mm3, INR > 1.5, ALT > 100 U/L and biliru-
bin > 1 mg/dL) (Table 2, Additional file 1: Table S9, Addi-
tional file 1: Fig. S14) [12, 13, 15, 27].

In exploratory preliminary analysis of a priori anti-
inflammatory treatments, we assessed interactions with 
one another among the derived phenotypes in patients 
who received any of these anti-inflammatory thera-
pies. We applied elastic net regression analysis to any a 
priori organ support and anti-inflammatory therapies 
used by bedside clinicians that were found in univari-
able analysis to be associated with survival in any of the 
derived computable phenotypes or in the population as 
a whole (p < 0.05) (Fig. 6, Additional file 1: Tables S12 and 
S13, Additional file 1: Fig. S15) [28]. Because elastic net 
regression analysis does not allow for calculation of 95% 
confidence intervals, we further applied logistic regres-
sion analysis to any anti-inflammatory therapy interac-
tions associated with mortality odds ratio < 0.1 in the 
elastic net regression model (Additional file  1: Tables 
S14–S17).

Candidate clinical variables for phenotyping
Of the 52 bedside variables collected a priori in the 
parent study, only 25 were available at 24  h with less 
than 20% missingness and less than 60% correlation 
with any other variable (Table 1, Additional file 1: Tables 
S1 and S2, Additional file  1: Fig. S2). These included 
demographic variables (age, gender, ethnicity, previous 
health status, post-op status), PRISM-related vital 
signs and laboratory values (systolic blood pressure, 
heart rate, Glasgow Coma Scale Score, hemoglobin, 
creatinine, platelet count, intubation status), markers 
of inflammation (temperature, number of SIRS criteria, 
lymphocyte count, C-reactive protein level, ferritin level), 
and organ failures (Central Nervous System = Glasgow 
Coma Scale < 12 not explained by use of sedation; 
Cardiovascular = Requirement for vasoactive agents 
for Systolic Blood Pressure < 5th percentile for age; 
Respiratory =  PaO2/FiO2 ratio < 300 requiring mechanical 
ventilation; Renal = oliguria and serum creatinine > 1 mg/
dL; Hepatic = ALT > 100 and Bilirubin > 1  mg / dL; 
Hematologic = Platelet Count < 100 K and INR > 1.5) [11, 
15, 27]. For each a priori PRISM variable we extracted 
the most abnormal value in the first 6 h. For each a priori 
inflammation and organ failure variable we extracted the 
most abnormal value within 24  h. Consensus k-means 
clustering models were used to derive 24-h computable 
phenotypes using these 25 variables because the method 
provides nonsynonymous agnostic clusters and has a 
1000 iterations step to assure internal consistency [20].

Specific chronic illnesses and present illnesses were 
not included in the derived 25-element phenotype 
assessment model. Specific sites of infection (blood, lung, 
urine) and etiologies of infection (bacterial, fungal, viral, 
and culture negative) were not included in the derived 25 
element phenotype assessment model because they were 
not reliably available in the first 24 h.

Biological correlates and outcomes
We studied 33 a priori biomarkers including 31 cytokines 
and two functional assays concomitantly measured one 
day only, at day 1 of severe sepsis; whole blood ex  vivo 
TNF response to endotoxin as a marker of immune 
depression [7, 8, 15, 27], and ADAMTS 13 activity as a 
marker of microvascular thrombosis in the presence of 
thrombocytopenia [7, 15, 27]. Plasma for cytokine meas-
urement was divided into three assays. IL-18, IL-18BP, 
and CXCL9 were measured at 25-fold dilution [29]. 
IFN α, sCD163, and IL-22 were measured by Bioplex 
inflammatory flex-set assay per manufacturer’s instruc-
tions (Bio-Rad). The remainder were measured by Bio-
plex Group I/II flex-set assay (Bio-Rad). All cytokines 
were measured on a BioPlex 200 System (Bio-Rad). The 
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Table 1 Demographic and day 1 clinical characteristics of the four phenotypes

IQR interquartile range, SIRS systemic inflammatory response syndrome, OFI organ failure index, ALC absolute lymphocyte count, CNS central nervous system

SI conversion factors: to convert alanine transaminase and aspartate aminotransferase to μkat/L, multiply by 0.0167; bilirubin to μmol/L, multiply by 17.104; C-reactive 
protein to nmol/L, multiply by 9.524; creatinine to μmol/L, multiply by 88.4

*Comparisons across all 4 computable phenotypes were performed using the Kruskal–Wallis test, the χ2 test, or the Fisher’s exact test (Additional file 1: Table S3, 
p < 0.05 for all comparisons after adjustment)
1 The variables in this table were log transformed for modeling (Additional file 1: Table S3). Comparisons across all 4 phenotypes were performed using the Kruskal–
Wallis test, the χ2 test, or the Fisher’s exact test (Additional file 1: Table S3. p < 0.05 for all comparisons after adjustment)
2 Indicates SIRS criteria ranging from 0 to 4 including abnormal heart rate, respiratory rate, temperature, and white blood cell count
3 OFI is an integer score reflecting the number of organ failures. Scores are either 0 or 1 for cardiovascular, hepatic, hematologic, respiratory, neurological, 
and renal, and summed for total range of 0 to 6. Cardiovascular, need for cardiovascular agent infusion support; Pulmonary, need for mechanical ventilation 
support with the ratio of the arterial partial pressure of oxygen and the fraction of inspired oxygen  (PaO2/FiO2) < 300 without this support; Hepatic, total 
bilirubin > 1.0 mg/dL and alanine aminotransferase (ALT) > 100 units/L; Renal, serum creatinine > 1.0 mg/dL and oliguria (urine output < 0.5 mL/kg/h); Hematologic, 
thrombocytopenia < 100,000/mm3 and prothrombin time INR > 1.5 × normal; Central Nervous System, Glasgow Coma Scale (GCS) Score < 12 in the absence of 
sedatives
4 Corresponds to minimum or maximum value (as appropriate) within 6 h of hospital presentation
5 GCS ranges from 3 to 15

Characteristic1 Total PedSep-A PedSep-B PedSep-C PedSep-D

No. of patients, N (%) 404 (100) 136 (34) 102 (25) 110 (27) 56 (14)

Demographic

 Age years* mean (SD) 7 (6) 3 (4) 8 (6)a 10 (5)a,b 8 (6)a

 Male* N (%) 224 (55.4) 63 (46.3) 68 (66.7)a 59 (53.6) 34 (60.7)

 Female* N (%) 180 (44.6) 73 (53.7) 34 (33.3) 51 (46.4) 22 (39.3)

 Hispanic* N (%) 67 (16.6) 28 (20.6) 12 (11.8) 23 (20.9) 4 (7.1)

 Non‑Hispanic* N (%) 323 (80.0) 100 (73.5) 86 (84.3) 86 (78.2) 51 (91.1)

 Previous healthy* N (%) 180 (44.6) 96 (70.6)b,c,d 28 (27.5) 37 (33.6) 19 (33.9)

 Surgery* N (%) 49 (12.1) 6 (4.4) 19 (18.6)a 12 (10.9) 12 (21.4)a

Organ dysfunction

 SIRS criteria, mean (SD)2 2.9 (0.8) 2.9 (0.8) 3.0 (0.8) 2.8 (0.8) 3 (0.8)

 OFI* mean (SD)3 1.8 (0.9) 1.4 (0.5) 2.1 (0.6)a,c 1.4 (0.6) 3.1 (1.0)a,b,c

Inflammation

 CRP mg/dL* mean (SD) 11.7 (10.4) 7.3 (7.3) 13.2 (11.5)a 15.2 (10.4)a 13.1 (11.2)a

 Low temperature °C* mean 36.6 (1.2) 36.7 (0.9)b 36.0 (1.6) 37.1 (0.9)a,b,d 36.3 (1.0)

 High temperature °C* mean 37.8 (1.3) 37.8 (1.1) 37.4 (1.3) 38.3 (1.2)a,b,d 37.8 (1.4)

 ALC/mm3* median (IQR) 1.2 (0.6–2.1) 1.9(1.3–3.2)b,c,d 1.1(0.6–1.9)c 0.6 (0.2–1.0) 1.1(0.6–2.1)c

 Ferritin ng/mL* median (IQR) 218 (98.0–625.3) 125(69.8–207.8) 223(116.5–544.2)a 405(176.2–1485.7)a,b 610 (221.1–2482.0)a,b

Pulmonary

 Pulmonary OFI* N (%) 270 (66.8) 108 (79.4)c 87 (85.3)c 37 (33.6) 38 (67.9)c

 Intubation* N (%) 211 (52.2) 72 (52.9)c 94 (92.2)a,c,d 15 (13.6) 30 (53.6)c

Cardiovascular or hemodynamic

 Heart rate bpm* mean (SD) 155.4 (31.3) 168.1 (30.8)b,c,d 146.5 (27.9) 150.4 (27.6) 150.6 (35.8)

 Systolic blood pressure*, mean (SD) mmHg 81.9 (19.3) 85.0 (15.7)b 74.8 (22.0) 86.3 (17.2)b 78.9 (21.9)

 Cardiovascular OFI* N (%) 284 (70.3) 63 (46.3) 92 (90.2)a 85 (77.3)a 44 (78.6)a

Renal

 Creatinine mg/dL* median (IQR) 0.5 (0.3–0.8) 0.3 (0.2–0.4) 0.6 (0.4–1.0)a 0.6 (0.4–0.7)a 1.4 (0.6–2.6)a,b,c

 Renal OFI* N (%) 30 (7.4) 0 (0.0) 0 (0.0) 0 (0.0) 30 (53.6)a,b,c

Hepatic

 Hepatic OFI* N (%) 40 (9.9) 3 (2.2) 9 (8.8) 11 (10.0)a 17 (30.4)a,b,c

Hematologic

 Hemoglobin g/dL* mean (SD) 9.8 (2.0) 10.1 (1.8)b,d 9.4 (2.1) 10.2 (2.1)b,d 9.1 (1.8)

 Platelets K/mm3* mean (SD) 171.1 (123.2) 260.1 (122.0)b,c,d 154.3 (95.1)c,d 118.8 (83.5)d 88.2 (108.0)

 Hematologic OFI* N (%) 39 (9.7) 0 (0.0) 0 (0.0) 8 (7.3)a,b 31 (85.7)a,b,c

Neurologic

 Glasgow Coma Scale Score* mean (SD)4,5 8.7 (5.3) 8.5 (5.2)b 4.7 (3.4) 13.2 (3.1)a,b,d 7.9 (5.5)b

 CNS OFI N (%) 54 (13.4) 12 (8.8) 24 (23.5)a,c 6 (5.5) 12 (21.4)c
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functional assays were measured as previously described 
[7–9, 15, 27].

The a priori primary outcome was hospital mortality. 
The a priori secondary outcomes included development 
of new or progressive MOF defined as development of 
new organ failure(s) after day one [2]; PICU free days 
at 30 days with 0 days given for death; length of stay in 
the PICU; development of immunoparalysis [8, 9, 15, 
27], thrombocytopenia-associated MOF [9, 15, 27], 
sequential liver failure-associated MOF [11, 15, 27], and 
macrophage activation syndrome [12, 13, 15, 27]; as well 
as use of mechanical ventilation, and extracorporeal 
therapies.

Derived elastic net regression results are presented 
as unadjusted odds ratios. All other derived odds ratio 
analyses and interactions are presented are adjusted 
controlling for age, sex, ethnicity, race, and total PRISM 
score. For summary analyses, the threshold for statistical 
significance was less than 0.05 for two-sided tests after 
adjustment for multiple testing. All analyses were 
performed with R version 3.6.2.

Results
Derivation of clinical sepsis phenotypes
The derived consensus k-means clustering models [20] 
found a 4-class model was the optimal fit, with pheno-
types we named PedSep-A, B, C and D (Additional file 1: 
Figs. S3 and S4). Consensus matrix plots and the relative 
change under cumulative distribution function curve 
implied little statistical gain by increasing to a 5 or 6 class 
model, with penalty of overfitting. The size and char-
acteristics of the 4-class model are given in Table 1 and 
Fig. 2. They ranged in size (from 14 to 34% of the cohort) 
and differed in clinical characteristics and organ dysfunc-
tion patterns (Table 1, Additional file 1: Table S3, Fig. 2, 
Additional file 1: Figs. S5 and S11). With the exception of 

the SIRS criteria number, all of the other 24 variables dif-
fered among the phenotypes. Compared to all other phe-
notypes, PedSep-A patients were younger and previously 
healthy, with the lowest CRP and ferritin levels, the high-
est lymphocyte and platelet counts, highest heart rate, 
and lowest creatinine; PedSep-B patients were most likely 
to be intubated and had the lowest Glasgow Coma Scale 
Score; PedSep-C patients had the highest temperature 
and Glasgow Coma Scale Score, least pulmonary failure, 
and lowest lymphocyte count; and PedSep-D patients 
had the highest creatinine and number of organ failures, 
including renal, hepatic, and hematologic organ failure, 
with the lowest platelet count. On average, PedSep-B and 
D patients had multiple organ failure, whereas PedSep-
A and C patients did not. Ferritin levels were highest in 
PedSep-C and PedSep-D distinguishing them from Ped-
Sep-A and B (Table 1, Additional file 1: Table S3, Fig. 2, 
Additional file 1: Figs. S5 and S11).

Correlation of phenotypes with diagnoses
Differences were noted among the derived pheno-
types in diagnoses including leukemia (PedSep-D and 
C > PedSep-A and B; PedSep-B > PedSep-A), inflamma-
tory bowel disease (PedSep-D > PedSep-A and B), chro-
mosomal abnormality (PedSep-D > PedSep-C), metabolic 
disease (PedSep-B > PedSep-C and D), cardiovascular 
disease + postoperative status (PedSep-D > PedSep-C), 
short gut syndrome (PedSep-C > PedSep-A), and acute 
bronchiolitis (PedSep-A > PedSep-B and C) (Additional 
file 1: Tables S5 and S6, Additional file 1: Fig. S8). There 
were no differences noted among the derived phenotypes 
in the diagnoses of hemolytic anemia, rheumatic disease, 
renal disease, diabetes, cardiovascular disease, trauma, or 
liver disease.

a The outcome characteristic of this computable phenotype is significantly higher than PedSep-A (p value < 0.05)
b The outcome characteristic of this computable phenotype is significantly higher than PedSep-B (p value < 0.05)
c The outcome characteristic of this computable phenotype is significantly higher than PedSep-C (p value < 0.05)
d The outcome characteristic of this computable phenotype is significantly higher than PedSep-D (p value < 0.05)

Table 1 (continued)

Fig. 2 24‑hour phenotype distribution and chord plot. In panel A, visualization of phenotypes using t‑distributed stochastic neighbor embedding 
(t‑SNE) technique with phenotypes shown in color from the consensus k‑means clustering analysis visualizes distinction among four phenotypes. 
In panels B–E, each phenotype is highlighted separately and the ribbons connect to the different patterns of clinical variables and organ 
system dysfunctions on the top of the circle (inflammation = low temperature, high temperature, max CRP, max ferritin; organ failure = total OFI; 
pulmonary = pulmonary OFI, intubation; cardiovascular = high heart rate, low systolic blood pressure, cardiovascular OFI; renal = high creatinine, 
renal OFI; hepatic = hepatic OFI; hematologic = low hemoglobin, low platelets, hematologic OFI; neurologic = Low Glasgow Coma Score Scale, 
central nervous system OFI). The chords connect from an individual phenotype to a category if the group mean involvement of the variables differs 
from the overall mean for the entire cohort (see Table 1) specifically lower for low temperature, systolic blood pressure, hemoglobin, platelets, and 
Glasgow Coma Scale Score, but higher for all other variables

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Correlation of phenotypes with biomarker profiles
The inflammatory biomarker profiles differed across 
the four derived computable phenotypes. Inflamma-
tion evidenced by cytokine signature increased, and 
immune response (whole blood ex  vivo TNF response 
to endotoxin) and coagulation function (ADAMTS13 
activity) decreased going across PedSep-A, B, C, and D 

(Additional file  1: Tables S7 and S8, Fig.  3, Additional 
file 1: Fig. S10). PedSep-A showed the least inflamma-
tion with the lowest M-CSF, IL-8, IL-6, sCD163, MCP1/
CCL2, ferritin, C-reactive protein, IL-10, IL-22, IL-18, 
IL-18BP, and MIP 1α levels overall; lower CXCL9 
than PedSep-C and D; lower IL-17a than PedSep-
B and C; lower IP10/CXCL10 than PedSep-C; and 

Table 2 Subsequent outcome characteristics of the four phenotypes

SMOF sequential liver failure-associated multiple organ failure, TAMOF thrombocytopenia-associated multiple organ failure, IPMOF immunoparalysis-associated 
multiple organ failure, MAS Macrophage Activation Syndrome, NPMOF new or progressive multiple organ failure, IQR interquartile range, MechVent mechanical 
ventilation, ECMO extracorporeal membrane oxygenation, CRRT  continuous renal replacement therapies, IVIG intravenous gamma globulin
a The outcome characteristic of this computable phenotype is significantly higher than PedSep-A (p value < 0.05)
b The outcome characteristic of this computable phenotype is significantly higher than PedSep-B (p value < 0.05)
c The outcome characteristic of this computable phenotype is significantly higher than PedSep-C (p value < 0.05)
d The outcome characteristic of this computable phenotype is significantly higher than PedSep-D (p value < 0.05)
e Comparisons across all 4 computable phenotypes were performed using the Kruskal–Wallis test, the χ2 test, or the Fisher’s exact test (Additional file 1: Table S3, 
p < .05 for all comparisons after adjustment)
f Obtained at the first 3 days

Characteristice Total PedSep-A PedSep-B PedSep-C PedSep-D

No. of patients, N (%) 404 (100) 136 (34) 102 (25) 110 (27) 56 (14)

Development of subsequent MOF empirical phenotypes

 SMOF, N (%) 7 (1.7) 0 (0.0) 0 (0.0) 1 (0.9) 6 (10.7)a,b,c

 TAMOF, N (%) 37 (9.2) 0 (0.0) 6 (5.9)a 3 (2.7) 28 (50.0)a,b,c

 IPMOF, N (%) 85 (21.0) 12 (8.8) 29 (28.4)a 22 (20) 22 (39.3)a

 MAS, N (%) 24 (5.5) 0 (0.0) 3 (2.9) 2 (1.8) 19 (33.9)a,b,c

 NPMOF, N (%) 117 (29.0) 28 (20.6) 25 (24.5) 32 (29.1) 32 (57.1)a,b,c

Infections

 Bacterial infection, N (%) 141 (34.9) 43 (31.6) 33 (32.4) 45 (40.9) 20 (35.7)

 Viral infection, N (%) 114 (28.2) 60 (44.1)b,c,d 21 (20.6) 24 (21.8) 9 (16.1)

 Fungal infection, N (%) 4 (1.0) 0 (0.0) 1 (1.0) 0 (0.0) 3 (5.4)

 Culture negative, N (%) 177 (43.8) 47 (34.6) 52 (51.0) 50 (45.5) 28 (50.0)

Sites of  infectionsf

 Blood, N (%) 51 (12.6) 10 (7.4) 6 (5.9) 22 (20.0)a,b 13 (23.2)a,b

 Lung, N (%) 76 (18.8) 28 (20.6) 29 (28.4) a,c,d 12 (10.9) 7 (12.5)

 Urine, N (%) 16 (4.0) 4 (2.9) 5 (4.9) 6 (5.5) 1 (1.8)

Organ support

 MechVent, N (%) 366 (90.6) 134 (98.5)c 101 (99.0)c 79 (71.8) 52 (92.9)c

 ECMO, N (%) 30 (7.4) 5 (3.7) 9 (8.8) 6 (5.5) 10 (17.9)a

 CRRT, N (%) 52 (12.9) 1 (0.7) 7 (6.9) 7 (6.4) 37 (66.1)a,b,c

Anti‑inflammatory therapies of interest

 Decadron, N (%) 94 (23.3) 50 (36.8)c,d 22 (21.6) 14 (12.7) 8 (14.3)

 Methylprednisolone, N (%) 117 (29.0) 54 (39.7)b 23 (22.5) 24 (21.8) 16 (28.6)

 IVIG, N (%) 51 (12.6) 6 (4.4) 10 (9.8) 19 (17.3)a 16 (28.6)a

 IVIG + Methylprednisolone 23 (5.7) 3 (2.2) 4 (3.9) 9 (8.2)a 7 (12.5)a

 Plasma exchange, N (%) 25 (6.2) 5 (3.7) 4 (3.9) 4 (3.6) 12 (21.4)a,b,c

 Plasma exchange + ECMO 6 (1.5) 1 (0.7) 1 (1.0) 1 (0.9) 3 (5.4)

Outcome

 Length of stay, median (IQR), d 9.0 (5.0–17.) 9.0 (5.8–15)c 10.5 (5.3–17)c 6 (2.3–15) 12.5 (7–26.5)c

 Mortality, N (%) 45 (11.1) 3 (2.2) 12 (11.7)a 11 (10.0)a 19 (33.9)a,b,c

 PICU free days, median (IQR), d 20.0 (8.0–25.0) 21.0 (14.8–24.0)d 19.0 (9.8–24.0)d 24.0 (13.3–27)a,b,d 4.5 (0.0–21.0)
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lower IL2Ra than PedSep-D. PedSep-A had the best 
immune and coagulation function with normal whole 
blood ex  vivo TNF response to endotoxin (> 200  pg/
mL) and ADAMTS 13 activity. In contrast, PedSep-D 
had the most profound inflammatory response with 
highest M-CSF, IL-8, SCF, sCD163, IL-16, IL-10, TNF, 
and MIP1α levels, and thrombotic microangiopathic 
response with lowest ADAMTS13 activity decreased 
to < 57% of control with thrombocytopenia. Consist-
ent with this increased inflammation response, the 
macrophage inhibitor TRAIL was reduced in PedSep-
D compared to PedSep-C. PedSep-D also had higher 
CXCL9 then PedSep-B but not PedSep-C.

Relationship with infection, organ support needs, 
and hospital mortality
PedSep-A had more viral infections, PedSep-B had 
more pneumonia, and PedSep-C and D had more 
blood infections (Table  2, Additional file  1: Table  S9, 
Additional file 1: Fig. S9). Patients in PedSep-C had the 
least mechanical ventilation and the shortest length of 
stay. Patients in PedSep-D required more extracorporeal 
membrane oxygenation than in PedSep-A, and the most 
continuous renal replacement therapy (CRRT) overall. 
PedSep-A patients required the least CRRT. PICU free 
days were highest in PedSep-C and lowest in PedSep-D 
(Table 2, Additional file 1: Table S9).

Fig. 3 Ratio of inflammatory biomarkers according to 24‑h phenotypes. The cytokine heatmap shows the log ratio of the median biomarker 
values for various markers of the host response and their hierarchical cluster relationships. Red represents a greater median biomarker value for that 
phenotype compared with the median for the entire study cohort, whereas blue represents a lower median biomarker value compared with the 
median for the entire study cohort. For example, M‑CSF is lower in PedSep‑A than the entire study cohort and is higher in PedSep‑D than the entire 
study cohort
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Hospital mortality was 2% in PedSep-A, 12% in 
PedSep-B, 10% in PedSep-C, and 34% in PedSep-D 
(PedSep-B vs. A Adj OR 4.11 95% CI [1.11–19.96] 
p = 0.048; PedSep-C vs. A Adj OR 4.35 95% CI [1.23–
20.43] p = 0.034; PedSep-D vs. A Adj OR 17.25 95% 
CI [4.93–92.06] p = 4.42E−05; PedSep-D vs B Adj OR 
4.20 95% CI [1.84–9.97] p = 0.0008; and PedSep-D vs. 

C Adj OR 3.97 95% CI 1.62–10.14] p = 0.003) (Table  2, 
Additional file 1: Table S9).

The derived mortality curves show all deaths in 
PedSep-A occurred before seven days, whereas 
deaths in PedSep-B, C, and D continued to accrue 
after seven days (Fig.  5, Additional file  1: Fig.  S13). 
Mortality was associated with Glasgow Coma Scale 

Fig. 4 Comparison of relationships of 25 variables to mortality in PedSep‑A, B, C, and D. In all panels, the variables are standardized such that all 
means are scaled to 0 and SDs to 1. A value of 1 for the standardized variable value (x‑axis) signifies that the mean value for the phenotype was 1 
SD higher, or lower for − 1, than the mean value for the phenotypes shown in the graph as a whole. CNS central nervous system, CRPH C‑reactive 
protein, GCS Glasgow Coma Scale, Hemat hematologic, Intubate intubation with endotracheal tube, OFI organ failure index, Post-Op post‑surgery, 
Pulm pulmonary, Temp temperature, SBP systolic blood pressure, Chronic illness those who are not recorded as previous healthy, Ethnicity value is 
higher with more non‑Hispanics in group, Sex value is higher with more males in group
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Score < 12, decreased TNF and IL-2Ra levels, and 
increased MCP3 levels in PedSep-A; increased IL-6, 
IL-8, and MCP1/CCL2 levels in PedSep-B; high fer-
ritin, lymphopenia, lower temperature, higher blood 
pressure, and increased IL-8 levels in PedSep-C; and 

hyperferritinemia, chronic illness, increased MIP-1α, 
IL-8, and IL-10 levels, and decreased IL-18 and sFASL 
levels in PedSep-D (Fig. 4, Additional file 1: Tables S9–
S11, Additional file 1: Fig. S12).

Fig. 5 Organ failure and mortality curves over 28 days among 24‑h phenotypes. Number of organ failures and mortality according to PedSep‑A, 
B, C, and D phenotype over 28 days. Both short‑term mortality (panel A) and organ failure (panel B) show significant differences by phenotype 
(p < 0.001). The mean numbers of organ failures and 95% confidence intervals (CI) are calculated each day by non‑nested observation, where we 
do not carry forward the OFI at the time the patient leaves the PICU alive or dead. As a reference for patients at risk for Panel B, Panel C shows the 
number of children remaining in the PCU at day 0, 7, 14, 21, and 28
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Relationship with development of immunoparalysis, 
TAMOF, SMOF, and MAS
On average, children in PedSep-A and PedSep-C 
developed less than two organ failures; children in 
PedSep-B developed more than two organ failures; 
and children in PedSep-D developed more than three 

organ failures over 28 days (Fig. 5, Additional file 1: Fig. 
S13). Children in PedSep-D had the highest proclivity 
to develop immunoparalysis (Adj OR 2.40 95% CI 
[1.25–4.53; p = 7.20E-03), new and progressive organ 
failure (Adj OR 4.03 95% CI [2.19–7.55]; p = 9.48E-06), 
thrombocytopenia-associated MOF (Adj OR 47.51 95% 

Fig. 6 Heterogeneous treatment interactions and mortality risks among the phenotypes. Heatmap of Elastic Net Regression analysis shows the 
association between 14 individual therapies (diagonal values) and their 91 combination interactions (total cells = 105) with mortality in PedSep‑B, 
C, and D among children who received anti‑inflammatory therapies. The PedSep‑A phenotype is not presented due to limited number of deaths. 
Blank cells have no patients. Values in each cell represent odds ratios of mortality, where 1 represents no association with mortality. Color in each 
cell represents direction of effect, where red represents mortality direction, green represents survival direction. Cells located at the diagonal are 
odds ratio of association from the 14 individual therapies. The other cells represent the mortality odds ratio of combinations of these therapies 
compared to all other combinations. For example, survivors in PedSep‑D phenotype are less likely to be treated with IVIG than non‑survivors (red), 
whereas survivors in PedSep‑D are more likely to be treated with combined IVIG + methylprednisolone (green). This machine analysis method does 
not allow calculation of confidence intervals



Page 13 of 16Qin et al. Critical Care          (2022) 26:128  

CI [18.83–136.83]; p = 1.25E-14), sequential liver failure-
associated MOF (Adj OR 61.56 95% CI [8.93–1,282.58]; 
p = 3.80E-04), and macrophage activation syndrome 
(Adj OR 38.63 95% CI [13.26–137.75]; p = 4.61E-10). 
Immunoparalysis- and thrombocytopenia-associated 
MOF also occurred more commonly in children in 
PedSep-B and D compared to those in PedSep-A 
(Table 2, Additional file 1: Fig. S14).

Heterogeneous treatment interactions with therapies
All 3 organ support therapies and 11 of 41 anti-
inflammatory therapies were associated with outcome 
in univariable analysis (Additional file 1: Tables S12 and 
S13, Additional file 1: Fig. S15) among the children who 
received anti-inflammatory therapies and were included 
in the derived exploratory elastic net regression analysis 
(Fig.  6, Additional file  1: Fig. S15) [28]. This was not 
performed in PedSep-A because mortality was very low 
at 2%. The constructed elastic net regression heatmaps 
visualize heterogeneous mortality association patterns 
across PedSep-B, C, and D (Fig. 6). Unadjusted mortality 
odds ratios < 0.1 with use of anti-inflammatory agents 
were not observed with any single therapy; however, 
unadjusted interactions < 0.1 were observed with use 
of methylprednisolone and IVIG together, and in 
extracorporeal membrane oxygenator patients receiving 
plasma exchange, in PedSep-D (Fig. 6).

Combined use of methylprednisolone plus IVIG 
was more common in PedSep-C and D than in A and 
B (Table  2). Methylprednisolone was administered on 
median day 1 (25th–75th % tile days 1–3) for a median 
duration of 5  days (25th–75th % tile 2–7  days). IVIG 
was administered on median day 2 (25th–75th% tile 
day 1–7) for a median duration of 1  day (25th-75th % 
tile 1–3  days) (Additional file  1: Table  S13). Neither 
methylprednisolone nor IVIG treatment alone, 
nor the combination, was associated with reduced 
odds of mortality in adjusted logistic regression 
modeling (Additional file  1: Table  S14, S15, and S16). 
The interaction term < 0.1 identified in elastic net 
regression analysis between methylprednisolone 
and IVIG therapies in PedSep-D patients remained 
statistically significant in logistic regression analysis 
(Methylprednisolone * IVIG interaction = 0.03; 95% CI 
[0.00058–0.66] p = 0.04) interpreted as meaning that 
the association of IVIG with mortality was modified 
by exposure to methylprednisolone in PedSep-D 
patients (Additional file  1: Tables S14 and S15). There 
was also a significant interaction between PedSep-D 
membership and use of combined methylprednisolone 
plus IVIG therapy in logistic regression analysis 
(PedSep-D * Methylprednisolone + IVIG combination 
interaction = 0.04 95% CI [0.001–0.56] p = 0.026) 

interpreted as meaning that the mortality association 
with exposure to combined methylprednisolone 
plus IVIG use is modified by PedSep-D membership 
(Additional file 1: Tables S16 and S17). Plasma exchange 
was most commonly used in PedSep-D (Table  2). The 
interaction term < 0.1 identified in elastic net regression 
modeling between ECMO and plasma exchange use was 
not statistically significant in logistic regression modeling 
(ECMO * plasma exchange interaction = 0.02 95% CI 
[0.000165–0.97] p = 0.06) (Additional file 1: Table S15).

Discussion
Machine learning analysis of a priori elements from the 
extant PHENOMS study derived four computable  24-h 
phenotypes meeting three of five ‘path forward’ criteria 
[25] providing impetus for their further evaluation in 
new pediatric sepsis studies. The derived computable 
phenotypes demonstrated clinical relevance with 
differences in types of presenting diagnoses, infections, 
organ failures, need for organ support therapies, 
outcomes, and proclivity to development of TAMOF 
and MAS. Derived consensus k-means clustering and 
t-SNE analyses demonstrated that the computable 
phenotypes are nonsynonymous. The differences in 
cytokine profiles provide biological plausibility for 
these derived computable phenotypes having different 
inflammation responses, highlighted in PedSep-D by 
decreased ADAMTS13 with TAMOF and increased 
MIP 1α with MAS. Exploratory modeling of interactions 
between therapies among patients receiving anti-
inflammatory treatments, derived computable 
phenotypes, and mortality demonstrated no reduction 
in mortality odds with methylprednisolone, IVIG or 
the combination; however, it identified a signal for 
methylprednisolone affecting the relationship of IVIG 
therapy to outcome in PedSep-D patients. We speculate 
that this interaction is reminiscent of the report that 
addition of methylprednisolone to IVIG improves 
cardiac function in children with COVID19-related 
multisystem inflammatory syndrome (MIS-C) compared 
to IVIG alone [30]. The very wide confidence intervals 
provide impetus to further evaluate this interaction 
signal in larger sample sizes using new study cohorts. 
We are presently assessing treatment responsiveness 
and reproducibility of the four derived phenotypes 
in our NICHD network’s 1000 patient Personalized 
Immunomodulation in Pediatric Sepsis and Multiple 
Organ Dysfunction trial testing interleukin 1 antagonist 
protein for hyper-inflammatory sepsis; and, also in the 
observational 500 patient Second Argentinian Pediatric 
Sepsis Epidemiology Study (PI Roberto Jabornisky).

PedSep-A is characterized by younger previously 
healthy children with respiratory failure and the least 
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increased inflammation. This resembles the adult α 
phenotype in the SENECA trial [20], and also the MARS 
3 and sepsis response signature 2 endotypes, which found 
predominant expression of adaptive immune and B-cell 
developmental pathways [31–33]. Mortality in PedSep-A 
was low at 2% and did not increase after 7 days, making 
anti-inflammatory clinical trials directed to survival less 
feasible.

PedSep-B is characterized by multiple organ failure 
requiring intubation for more severe respiratory failure, 
shock, and central nervous system dysfunction with 
increased C-reactive protein levels and 12% mortality. 
This is reminiscent of children reported in the Life After 
Pediatric Sepsis Evaluation study [34]; the shock with 
hypoxia phenotype in adult sepsis-induced MOF [35]; 
and the severe hypoxia, altered mental status, and shock 
phenotype in pediatric MOF [36].

PedSep-C is distinguished by cardiovascular failure 
and relative absence of need for intubation (14%) 
with the least pulmonary failure (34%) and need for 
mechanical ventilation (71%), in the presence of elevated 
C-reactive protein, high ferritin, and lymphopenia, with 
10% mortality. This is reminiscent of the Toxic Shock 
(TSS)—Kawasaki syndrome phenotype currently being 
considered as PMIS/MIS-C syndrome [30, 37–40]. 
Similar to TSS and Kawasaki’s, our PedSep-C patients 
showed elevated IL-17a and IP10/CXCL10 levels [41, 42].

PedSep-D patients had cardiovascular, respiratory, 
liver, renal, hematologic, and neurologic dysfunction 
with 34% mortality; clinical features shared by the adult 
δ phenotype characterized in the SENECA study using 
electronic health record criteria for Sepsis-3 [20]; the 
shock with thrombocytopenia pediatric MOF phenotype 
[36]; and previously reported subclasses including the 
hyperinflammatory sub-phenotype reported in acute 
respiratory distress syndrome, a condition commonly 
related to sepsis [43–45]. It also resembles sepsis 
endotypes derived using transcriptomic analyses of 
circulating immune cells, specifically the inflammopathic 
cluster known as sepsis signature 1, or the Molecular 
Diagnosis and Risk Stratification of Sepsis [MARS] 2 
cluster [31–33].

PedSep-D is specifically characterized by 
hyperferritinemic (ferritin > 500  ng/mL), 
thrombocytopenic (platelet count < 100  K) multiple 
organ failure with the highest likelihood of new or 
progressive multiple organ failure accruing mortality 
after 7  days and the lowest number of PICU free days. 
PedSep-D membership identifies children with the 
highest proclivity for decreased ADAMTS 13 activity 
with thrombocytopenia-associated MOF, and increased 
MIP 1α with macrophage activation syndrome.

There are limitations to consider in this post hoc 
machine learning analysis of the parent PHENOMS 
study and its inherent selection bias risks. Although the 
PHENOMS study represents the largest longitudinal 
multiple center pediatric sepsis-induced MOF cohort 
with concomitant CRP and ferritin levels available [15], 
it is small compared to adult standards because sepsis 
occurs 15 times more commonly in adults than in 
children. Definitions of pediatric sepsis and organ failures 
are also evolving and behind the changes in adult sepsis. 
Definitions of sepsis and organ failure were necessarily 
limited to those used in the extant study. Only 25 out 
of 52 available clinical and laboratory variables available 
in this parent study had < 20% missingness without 
covariance and were included in the machine learning 
derivation. Only 33 additional biomarkers [8, 9, 11, 27, 45] 
were performed to assess biological plausibility for the 
computable phenotypes having different inflammatory 
responses. Lactate was not recorded and may be an 
important missing variable [46]. Interactions could 
only be assessed for those therapies given by bedside 
clinicians in a ‘natural experiment’ setting. Our models 
did not capture all confounders, comorbidities, therapies 
used, reasons for therapies, or site differences in clinical 
practice. Furthermore, combined methylprednisolone 
plus IVIG and ECMO plus plasma exchange therapies 
were rarely administered. Reproducibility of the derived 
computable phenotypes cannot be assessed in a single 
extant multiple center resource rich study. We are 
presently assessing reproducibility in two ongoing 
independent cohort studies.

Conclusions
Machine learning analysis in the PHENOMS study 
derived four novel computable  24-h pediatric sepsis 
phenotypes providing a computer tool (www. pedse 
psis. pitt. edu) that enables clinical researchers to 
perform bedside identification of an individual 
patient’s computable phenotype membership. If proven 
reproducible, then PedSep-D membership appears most 
optimal for identifying children for early enrollment 
in personalized anti-inflammatory trials targeting 
thrombocytopenia-associated MOF and macrophage 
activation syndrome.
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