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Abstract

Motivation: The activity of a transcription factor (TF) in a sample of cells is the extent to which it is exerting its regu-
latory potential. Many methods of inferring TF activity from gene expression data have been described, but due to
the lack of appropriate large-scale datasets, systematic and objective validation has not been possible until now.

Results: We systematically evaluate and optimize the approach to TF activity inference in which a gene expression
matrix is factored into a condition-independent matrix of control strengths and a condition-dependent matrix of TF
activity levels. We find that expression data in which the activities of individual TFs have been perturbed are both ne-
cessary and sufficient for obtaining good performance. To a considerable extent, control strengths inferred using ex-
pression data from one growth condition carry over to other conditions, so the control strength matrices derived
here can be used by others. Finally, we apply these methods to gain insight into the upstream factors that regulate
the activities of yeast TFs Gcr2, Gln3, Gcn4 and Msn2.

Availability and implementation: Evaluation code and data are available at https://doi.org/10.5281/zenodo.4050573.

Contact: brent@wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The activity level of a transcription factor (TF) in a given cell is the
extent to which it is exerting its regulatory potential on its target
genes. Cells process information, in part, by changing the activity
levels of TFs, thereby changing the transcription rates of their target
genes. Changes in TF activity can occur by several molecular mecha-
nisms, including transcriptional and post-transcriptional regulation
of the gene that encodes the TF, relocalization of the TF into or out
of the nucleus, covalent modification of the TF such as phosphoryl-
ation, and non-covalent binding of the TF by other proteins.
Because it has multiple molecular mechanisms, TF activity is diffi-
cult to measure directly. However, it may be possible to infer
changes in TF activity level from changes in the expression levels of
the TF’s target genes (Alvarez et al., 2016; Balwierz et al., 2014;
Barenco et al., 2006; Boorsma et al., 2008; Boulesteix and
Strimmer, 2005; Chen et al., 2013, 2017; Cheng et al., 2007; Cokus
et al., 2006; Fröhlich, 2015; Fu et al., 2011; Gao et al., 2004;
Garcia-Alonso et al., 2018; Gitter et al., 2013; Jiang et al., 2015;
Khanin et al., 2007; Li et al., 2014; Liao et al., 2003; Nachman
et al., 2004; Ocone and Sanguinetti, 2011; Sanguinetti et al., 2006;

Schacht et al., 2014; Shi et al., 2009; Tchourine et al., 2018; Yu and
Li, 2005; Zhu et al., 2013). If successful, this would provide insights
into which TFs are involved in the transcriptional response to a
given stimulus, such as a drug, extracellular signal or nutrient influx.
In principle, TF activity inference could also be used to predict the
transcriptomic effects of direct perturbations of TF activity levels,
such as deletion or over-expression of a TF-encoding gene. Finally,
inferred activity levels could be used to improve TF network map-
ping (Arrieta-Ortiz et al., 2015; Barenco et al., 2009; Bussemaker
et al., 2001, 2017; Cokus et al., 2006; Fu et al., 2011; Gao et al.,
2004; Gitter et al., 2013; Lam et al., 2016; Lee and Bussemaker,
2010; Nachman et al., 2004; Shi et al., 2009; Tchourine et al., 2018;
Wang et al., 2008; Yang et al., 2005; Yu and Li, 2005).

Most algorithms for inferring TF activity (TFA) from gene ex-
pression data fit the parameters of a mathematical model to the ex-
pression data (Balwierz et al., 2014; Barenco et al., 2009; Boulesteix
and Strimmer, 2005; Bussemaker et al., 2001; Chen et al., 2017;
Cokus et al., 2006; Fröhlich, 2015; Fu et al., 2011; Jiang et al.,
2015; Khanin et al., 2007; Li et al., 2014; Liao et al., 2003;
Nachman et al., 2004; Sanguinetti et al., 2006; Schacht et al., 2014;
Tchourine et al., 2018; Yu and Li, 2005). These models include
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parameters representing TFA levels, the values of which vary from
one biological sample to another. Some models also include parame-
ters that are constant across samples but vary as a function of the TF
and target gene. These parameters reflect factors such as the affinity
of the TF for sites in the promoter of each gene. In some approaches,
these parameters, called control strengths (CSs), are obtained direct-
ly from TF binding data (Cokus et al., 2006; Gao et al., 2004; Jiang
et al., 2015; Li et al., 2014) or by scanning models of TF binding
specificity across promoters (Balwierz et al., 2014; Bussemaker
et al., 2001; Conlon et al., 2003). In other approaches, they are
treated as unknowns and obtained by fitting the model to gene ex-
pression data (Boulesteix and Strimmer, 2005; Fu et al., 2011;
Khanin et al., 2007; Liao et al., 2003; Nachman et al., 2004;
Sanguinetti et al., 2006; Yu and Li, 2005). In this case, gene expres-
sion is typically modeled as depending linearly on the TFA levels
and on the CSs (Boulesteix and Strimmer, 2005; Fu et al., 2011;
Liao et al., 2003; Yu and Li, 2005), so the model as a whole is bilin-
ear. More highly parameterized, non-linear models that more closely
reflect the underlying biochemistry have also been tried when mod-
eling a small number of TFs (Khanin et al., 2007; Nachman et al.,
2004; Sanguinetti et al., 2006). Because it has relatively few parame-
ters and can be fit by a simple algorithm, we focus on the bilinear
framework.

To infer the activity of a set of TFs from the expression of their
target genes, an inference algorithm must know at least some of the
targets of each TF. We refer to this input as a TF network map
(Brent, 2016). TF network maps link each TF to the targets it has
the potential to regulate directly, given the right conditions. These
maps are qualitative, so they can be represented by binary adjacency
matrices. Fitting the bilinear model yields a control strength for each
edge of the input map. Multiplying these CSs by the TFA levels
inferred for a sample of cells yields a sample-specific network map
showing how strongly each TF is influencing the expression of each
of its targets in that sample. In previous work featuring inferred CS
values, qualitative network maps have mostly been constructed
from binding location data obtained by chromatin immunoprecipi-
tation (ChIP) (Arrieta-Ortiz et al., 2015; Boscolo et al., 2005;
Boulesteix and Strimmer, 2005; Chen et al., 2017; Liao et al., 2003;
Nachman et al., 2004; Ocone and Sanguinetti, 2011; Rogers et al.,
2007; Sanguinetti et al., 2006; Schacht et al., 2014; Shi et al., 2009;
Tchourine et al., 2018; Wang et al., 2008; Yang et al., 2005; Yu and
Li, 2005). Garcia-Alonso et al. reported that a manually curated net-
work map performed best for TFA inference in human (Garcia-
Alonso et al., 2019), but curated networks include very few TFs and
are not available for most organisms. Here, we analyze the effects
on TFA inference accuracy when networks of comparable size are
constructed from various high-throughput data sources.

In most previous studies, inferred TFA values were allowed to be
positive or negative and their absolute value was interpreted as the
magnitude of activity change relative to some reference sample.
Thus, a smaller absolute TFA did not indicate less activity, but ra-
ther less change relative to the reference. As a result, the TFA levels
did not distinguish between increasing and decreasing activity.
Furthermore, the signs of the CS values had no meaning. Here, we
propose, evaluate and optimize a version of the bilinear approach in
which TFA values are constrained to be non-negative, so that zero
represents no activity, equivalent to deletion of the gene encoding
the TF. We also include parameters representing the expression of
each gene when all its regulators have activity zero (baselines). The
combination of baseline expression levels with the non-negativity
constraint on TFA values differentiates our model from previously
proposed models. Together, they make the parameters interpretable.
Positive control strength indicates that the TF activates the target
and negative control strength indicates that it represses the target. If
a TF’s activity is larger in one sample than in another, then the TF is
more active in the former sample than in the latter. We make exten-
sive use of gene expression data after direct perturbations of TF
activities (Arrieta-Ortiz et al., 2015; Tchourine et al., 2018; Tran
et al., 2005), constraining each control strength parameter to be
positive (activating) or negative (repressing) based on the direction
in which the target gene’s mRNA level changes when the TF is

perturbed. If the gene encoding a TF is deleted in a sample, the TF’s
activity is fixed at zero; if it is overexpressed, the TF’s activity is con-
strained to be greater than its activity in unperturbed samples.

Evaluating the effects of various mathematical models, network
mapping procedures and perturbation-derived constraints, requires
accuracy metrics that are objective, quantitative and available for
large numbers of TFs. This poses a challenge because TFA cannot be
directly measured. As a result, most attempts to validate TFA infer-
ence algorithms have been small-scale and often qualitative, high-
lighting successes with just a few TFs. Some validation efforts have
been based on inferring significant differential activity in a handful
of samples subjected to stressors (Boorsma et al., 2008) or small
molecules known to affect a particular TF’s activity (Azofeifa et al.,
2018; Barenco et al., 2006; Ocone and Sanguinetti, 2011). Others
have been based on inferring activity patterns that appear to match
the periodicity of cell cycles (Liao et al., 2003; Nachman et al.,
2004; Sanguinetti et al., 2006) or using changes in the nuclear local-
ization of a GFP-tagged TF as a proxy for TFA (Boorsma et al.,
2008). Other evaluation efforts have been based on internal consist-
ency measures (Berchtold et al., 2016), TF activity perturbations
(Boorsma et al., 2008; Garcia-Alonso et al., 2019; Trescher and
Leser, 2019) or identification of TFs important for proliferation of
cancer cells (Alvarez et al., 2016; Azofeifa et al., 2018; Balwierz
et al., 2014; Barenco et al., 2006; Chen et al., 2013; Chen et al.,
2017; Cheng et al., 2007; Fröhlich, 2015; Garcia-Alonso et al.,
2018; Jiang et al., 2015; Li et al., 2014; Ocone and Sanguinetti,
2011; Trescher and Leser, 2019; Tripodi et al., 2018; Zhu et al.,
2013). In this work, we take advantage of two independent, high-
quality perturbation datasets in Saccharomyces cerevisiae to present
multiple quantitative, large-scale validation metrics. By using one
dataset for network construction and constraint generation, and the
other for validation, we reveal which high-throughput data types are
most valuable for TFA inference in the matrix factorization frame-
work, identify best practices for achieving high accuracy, and show
that given the right input data, TFA inference works reasonably well.

2 Results

2.1 Mathematical model of gene expression
We use a simple model in which the log expression level of a gene in
a given sample is determined by its baseline expression level, when
none of its regulators are active, plus the sum of the influences of all
the TFs that regulate it. The influence of each TF is a product of the
strength with which the TF regulates that gene (control strength)
and the TF’s activity in that sample:

expressioni; k ¼ baselinei þ
X

j2TFs
ðcontrolStrengthi; j � activityj; kÞ

where expressioni; k is the log expression level of gene i in sample k,
baselinei is the expression level of gene i absent any influence from
TFs, controlStrengthi; j is the condition-independent potential of TF
j to activate or repress gene i, and activityj; k is the activity level of
TF j in sample k. In matrix notation, E ¼ CS � TFA, where E is a
gene expression matrix (genes by samples), CS is a matrix of control
strengths (genes by TFs) augmented to incorporate baselines, TFA is
a matrix of TF activity levels (TFs by samples) and � indicates ma-
trix multiplication (Fig. 1). Fitting the CS and TFA matrices to ex-
pression data is equivalent to factoring the expression matrix, under
the constraints that CS signs are predetermined, TFA is non-negative
and the activities of perturbed TFs are constrained according to the
perturbation. The model is fit by minimizing the sum of squared
errors based on this equation. This can be done by alternating linear
regression (Li et al., 2014; Liao et al., 2003; Sanguinetti et al., 2006;
Tran et al., 2005; Yu and Li, 2005) or with a more general non-linear
optimization algorithm (Byrd et al., 2006). See Section 3 for details.

2.2 Core evaluation metrics
Our approach to TFA evaluation relies on two independent ex-
pression datasets in which the activity of each TF has been
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individually perturbed. The first dataset consists of expression
profiles of strains in which a single TF was deleted from the gen-
ome (TFKO data) (Kemmeren et al., 2014). The second consists
of expression profiles collected 15 min after overexpression of a
single TF was induced using the ZEV system (ZEV data) (Hackett
et al., 2020). These two datasets represent two very different
growth conditions: the TFKO data profiles cells growing on syn-
thetic complete medium in shake-flasks with no nutrient limita-
tion, while the ZEV data profiles cells growing on minimal
medium in phosphate-limited, continuous-flow chemostats. Two
of our core evaluation metrics focus on whether TFA inference
can determine which TF was perturbed in each sample and
whether it was knocked out or overexpressed. We refer to this in-
formation as the perturbation key. First, we use both the perturb-
ation key and the expression profiles from one dataset for
network construction, constraint generation and fitting (Fig. 1A,
top). Next, we hold the control strengths from the initial fit fixed
and refit the TFA and baseline parameters to the expression pro-
files in a second perturbation dataset (Fig. 1A, middle). Crucially,
the perturbation key for the second dataset is not used for either
fit, so it can be used as independent evaluation data (Fig. 1A,
bottom).

We use three core evaluation metrics for TFA accuracy. The
direction of perturbation metric is the fraction of samples in
which the direction of perturbation (deletion or overexpression) is
inferred correctly, given the identity of the perturbed TF. For the
second metric, all TFs in a perturbation sample are ranked,

starting from the one whose inferred activity increased most, rela-
tive to an unperturbed sample (for overexpression) or decreased
most (for deletion). We expect the perturbed TF to be highly
ranked. The median rank percentile, across all perturbation sam-
ples, is the median rank percentile metric. The positive correlation
metric is the fraction of TFs with positive correlations between
their activity levels and their mRNA levels. To ensure that TFA-
mRNA correlations were not driven by a few outliers, we con-
structed 1000 bootstrap samples of the gene expression profiles.
For each bootstrap sample, we calculated the correlation of each
TF’s inferred TFA and its measured expression level. We then cal-
culated the fraction of TFs with positive correlations in that boot-
strap sample. The median fraction of positive correlations, across
all bootstrap samples, is our third metric. (An analysis of correl-
ation significance based on a model rather than bootstrapping
yields the same conclusions; Supplementary Fig. S5.) We do not
expect accurate TFA values to yield 100% for this metric, since
post-transcriptional regulation is a key determinant of TFA levels,
but we do expect the fraction of positive correlations to be sub-
stantially greater than half.

The metrics reported below are averages after training on each
dataset, testing on the other and then switching the roles of the two
datasets. P-values from these two train-test directions are combined
by using Fisher’s combined probability test (Fisher, 1954). The first
fitting only used samples in which one of the network TFs was dir-
ectly perturbed, while the second fitting also used samples in which
other TFs were perturbed. For all analyses, we considered only the

Fig. 1. Evaluation framework and ChIP-based network construction. (A) Overview of three-stage model fitting and TFA evaluation procedure. Gene expression levels and the

perturbation key from dataset 1 are used only in the initial fitting. The CSs inferred in the initial fitting are fixed while the TFAs and baselines are refit to the target gene expres-

sion levels from dataset 2. The mRNA levels of the TFs and the perturbation key from dataset 2 are used only for evaluation. (B) Illustration of how edges were selected for the

ChIP-based network. All edges were ranked according to their -log P-value for the TF binding in the promoter of the target. Edges were selected in rank order until there was

at least one edge from 50 different TFs. Lower-ranked edges were then selected for those TFs until rank 1,250. After initial model construction, we removed any TFs with a sin-

gle target and any set of TFs with identical targets, along with those targets. We then returned to the list and iteratively added edges that had previously been passed over until

the network stabilized at 50 TFs. This yielded a network with 1,104 edges. (C) The number of targets for each of the 50 different TFs in the ChIP network
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179 TFs that were perturbed in both ZEV and TFKO datasets. For
median rank percentile, inferred activity levels for each TF were log-
transformed and then standardized across samples, converting them
to Z-scores. This makes the activity levels of different TFs
comparable.

2.3 Constructing a ChIP-based network
Suppose binding location data are available for many of the TFs in a
given organism, along with gene expression profiles from many sam-
ples. For now, assume that the expression dataset does not contain
direct TF perturbations or, if it does, that the perturbation key is not
used. To generate a network map as input for TFA inference, all
possible TF-target edges can be ranked according to the strength of
evidence that the TF binds in the promoter of the gene. We did this
for yeast, ranking edges according to their negative log P-value in a
comprehensive ChIP-chip dataset (Harbison et al., 2004). This pro-
duced a single, global ranking of all edges involving all TFs
(Fig. 1B). We then constructed a network map as described in
Figure 1B. All networks are described further in Supplementary
Methods and are provided as Supplementary Files.

2.4 Evaluating TFAs inferred from the ChIP network

with correlation-based constraints
First, we evaluated the ChIP network without any constraints on the
parameters (except non-negative TFA) and found that it did not per-
form better than chance on any metric (Supplementary Fig. S1).
Next, we tried adding constraints on the signs of the control strength
parameters, based on the intuition that a positive correlation be-
tween the mRNA levels of a TF and a target suggests activation
while a negative correlation suggests repression. We constrained
the sign of each control strength to match the sign of that correl-
ation (even if the correlation was not significant) using the dataset
reserved for the initial fitting, which improved performance. We
refer to the ChIP-based network with correlation-based constraints
as ChIP-CC (Supplementary Files S1–S4). Using ChIP-CC, the dir-
ection of activity change between a TF’s perturbation sample and
the unperturbed sample was predicted correctly for 66% of TFs
(P<0.01, binomial test; Fig. 2A, left), the median rank percentile
was 76.5% (P<0.0001, binomial test; Fig. 2A, middle) and 65%
of TFs’ activity levels were positively correlated with their mRNA
levels (Fig. 2A, right; P<0.01; see Materials and Methods for
details).

Fig. 2. Determinants of TFA inference accuracy. (A) Effects of network construction and constraint generation on TFA accuracy. Blue: ChIP network with correlation-based

constraints. Orange: ChIP network with perturbation-based constraints. Yellow: Differential expression network with perturbation-based constraints. Green: Binding-specifi-

city (PWM) network with perturbation-based constraints. Asterisks above the bars indicate magnitude of significance compared to a random model, with 1, 2 or 3 asterisks

representing P-value thresholds of 0.01, 0.001 or 0.0001. (B) Vertical axis: The activity of each TF in the sample in which it was perturbed minus its activity in the unperturbed

sample, oriented so that higher is better. TFs plotted below the horizontal axis have been inferred to change activity in the wrong direction. Horizontal axis: The fraction of

each TF’s targets for which the TFKO and ZEV datasets suggest conflicting CS signs. TFs with <50% conflict edges are almost all predicted in the correct direction, while

most TFs with >50% conflict edges are not. (C) Vertical axis: Rank percentile of the perturbed TF’s activity change in each perturbation sample (higher is better). Horizontal

axis: Same as (B). TFs with a higher percentage of conflict edges tend to be ranked lower. (D) Vertical axis: median fraction of bootstrap samples in which a TF’s mRNA level

and its inferred activity level are positively correlated (see main text). TFs with a higher percentage of conflicting edges tend to have low or negative correlation. (B–D) Results

from the 50-TF ChIP-PC and DE-PC networks, trained on each of the datasets and tested on the other, have been combined, but each individual set of 50 points showed simi-

lar, highly significant correlations
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2.5 Adding constraints obtained from TF perturbation

data
When expression data after direct TF perturbation are available, the
perturbation key can be used to constrain both the CS signs and the
activity of the TF perturbed in each sample, as described above. We
evaluated the effect of using the perturbation key from the first data-
set to constrain the control strengths and activity levels during the
first fit (Fig. 1A, top). The perturbation key for the second dataset is
only used for evaluation (Fig. 1A, bottom), not during the second fit
(Fig. 1A, middle). We call the ChIP network with perturbation-
constraints ChIP-PC (Supplementary Files S7–S10). Performance on
all three metrics increased, relative to using correlation-based con-
straints (Fig. 2A, blue and orange bars).

2.6 Generating network and constraints from TF

perturbation data, without binding data
If expression data from direct TF perturbations is available, it is pos-
sible to build a network from the perturbation data rather than
ChIP data. The same network building procedure is used, but in-
stead of TF-target interactions being ranked by the strength of ChIP
evidence, they are ranked by the absolute value of the log fold
change of the target when the TF is perturbed (DE-PC,
Supplementary Files S13–S16). The performance of this network
with perturbation-based constraints was similar to that of ChIP-PC,
with the biggest change being an increase in median rank percentile
from 92% to 96% (Fig. 2A, orange and yellow bars). We conclude
that differential expression data from direct TF perturbations are ne-
cessary and sufficient for accurate TFA inference performance—
binding location data are not necessary.

2.7 Using binding specificity models in network

generation
A popular source of data for building gene regulatory networks is
models of TF binding specificity, typically represented as position
weight matrices (PWMs) (Boorsma et al., 2008; Boscolo et al.,
2005; Bussemaker et al., 2001; Cheng et al., 2007; Garcia-Alonso
et al., 2018; Lee and Bussemaker, 2010). To test this approach,
we ranked all possible TF-target interactions by the maximum,
across all positions in the target gene’s promoter, of the negative log
P-value for presence of the TF’s motif, as defined in the ScerTF data-
base (Spivak and Stormo, 2012) and scored by FIMO (Grant et al.,
2011) (see Supplementary Material). We then built a network from
this ranking just as we did with the ChIP-chip data and the differen-
tial expression data (Fig. 1B). Using this network, we optimized
with perturbation-based constraints (PWM-PC, Supplementary Files
S19–S22). This network performed significantly worse than both
ChIP-PC and DE-PC networks (Fig. 2A, green bars).

2.8 Increasing the number of TFs
To infer activity for more than 50 TFs, the input network maps can
be extended by considering more than just the 1,250 top ranked
edges. To quantify the loss in performance from using lower
ranked edges, we used blocks of 2,000 edges of decreasing rank to
make independent networks of 50 TFs (Supplementary Methods).
Both ChIP-PC and DE-PC lost accuracy steadily as lower ranked
edges were used. DE-PC lost accuracy more slowly in the first two
metrics (Fig. 3A and B) while both networks lost ground at the
same rate for TFA-mRNA correlation (Fig. 3C). Thus, DE-PC
appears to be the better choice for building larger networks with
more TFs.

Fig. 3. Effects of increasing the number of network TFs on accuracy. (A–C) Accuracy metrics for networks constructed from the ChIP or DE edge lists by taking successively

lower ranked edges. Edges were divided into blocks of 2,000 and blocks are plotted in an exponential series. For example, Block 1 is edges ranked 1–2,000 and Block 4 is edges

ranked 6,001–8,000. Points are plotted for results that are significantly better than random (P<0.001). (A) Percent of TFs whose direction of perturbation is predicted correct-

ly. (B) Median rank percentile of the perturbed TF. (C) Percent of TFs with a positive TF-mRNA correlation. In A and B, the ChIP-PC performance starts out similar to DE-

PC, but it drops faster, to no better than random in any measure by Block 4. (D) Comparison of two ways of increasing the number of TFs in the network—going further

down the list of ChIP edges or using 50-TF ChIP and DE networks and averaging standardized TFAs of TFs that are in both networks. Consistent with A–C, performance

degrades when lower ranked edges are included in the ChIP network. Inferring TFAs separately and averaging them, by contrast, yields performance on a larger network that

is as good as performance on the smaller, 50-TF networks. (E) Same as D, but blue and orange bars are for DE networks
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If both ChIP and TF perturbation data are available, another op-
tion is to infer activities separately for 50-TF ChIP-PC and DE-PC
networks and combine the results, averaging the standardized activ-
ities for TFs that are in both networks. This provides activities for a
larger number of TFs with accuracy that is better than including
lower-ranked edges from a single data source (Fig. 3D and E, orange
versus green bars).

2.9 Effect of optimizing control strengths on TFA

accuracy
To determine how much optimizing control strengths contributes to
the accuracy of inferred TFAs, we compared TFAs obtained by opti-
mization of both TFA and CS matrices to TFAs obtained by using
fixed control strengths of þ1 for activation or -1 for repression
(signed binary CSs). Signed binary CSs were also used in (Arrieta-
Ortiz et al., 2015; Chen et al., 2017; Gitter et al., 2013; Tchourine
et al., 2018). The optimized CSs performed slightly better on some
metrics and some networks, but there was little difference overall
(Fig. 4A and B). To investigate the potential value of CS optimiza-
tion further, we considered two additional metrics.

Known regulators of TF activity The TFKO dataset contains
1,484 samples from strains in which a gene was deleted, including
many known regulators of TF activity. Our next evaluation task
was to determine the target TFs in samples where a known regulator

of TF activity is perturbed. To evaluate performance on this task,
we compiled a map of known TF activity regulators and their targets
(Supplementary File S31). For each TF, an activity regulator was
assigned to it if there was published literature that proposed a direct
interaction that affects TF activity by a specific mechanism, such as
phosphorylation, nuclear localization or complex formation.
Network maps, constraints and initial fitting used the ZEV dataset.
The resulting CS matrix was then used to fit TFAs and baselines to
the 194 TFKO samples in which a known TFA regulator was per-
turbed. In each perturbation sample, all TFs were ranked by the ab-
solute difference between their standardized log activities in the
perturbed and unperturbed samples. The absolute value was used
because the literature is not always clear on the direction of regula-
tion. We then plotted the fraction of literature-supported targets
that were ranked above a given percentile in the sample in which
their TFA regulator was perturbed (Fig. 4C). The optimized CS
matrices (solid lines) identify more known TFA regulators than the
signed binary matrices (dashed lines), especially at rank percentiles
above 85%. The ChIP-PC network (blue) also outperforms the DE-
PC (orange) by this metric.

ZEV time course data Although we have focused on the ZEV
data from 15 min after TF induction, they are part of time courses
with samples taken 2.5, 5, 10, 15, 20, 30, 45, 60 and 90 min after in-
duction (some timepoints are not available for some TFs). The ex-
pression data show that each TF is rapidly induced to a very high

Fig. 4. Impact of using a CS matrix optimized on a different dataset versus using a signed binary CS matrix. (A) ChIP-PC network. (B) DE-PC network. (C) Percent of litera-

ture-supported edges between TFA regulators and TFs identified, as a function of minimum rank percentile for identification. Solid lines: CS matrix optimized on the ZEV

dataset and used to infer TFAs in the samples in which a TF regulator was deleted. Dashed lines: Signed binary CS matrix. For TFs whose change in standardized log activity

from WT ranks above 85th percentile, more literature supported edges are identified by using optimized CS matrices than by using signed binary matrices. (D) Sigmoidal fits to

log2 fold change of TFAs inferred for the ZEV time course data, using the DE-PC network and a CS matrix optimized on the TFKO dataset, relative to the 0 min timepoint.

Only fits with variance explained above 85% are shown. In all but one of the 35 fits, TF activity is correctly inferred to be increasing (97%). Only Vhr1 activity is inferred to

change in the wrong direction, probably because 9 of its 11 targets have sign conflict (80%, see Fig. 2B–D). (E) After fitting sigmoidal curves as in D and imposing various

thresholds on the variance explained by the fit, the percentage of fits that correctly show increasing activity. The DE-PC network (orange lines) performs better than the ChIP-

PC network (blue lines). For each network, using a CS matrix optimized on the TFKO data (solid lines) generally shows better performance than using a signed binary CS ma-

trix (dashed lines), and this effect increases as the variance explained by the sigmoidal fits increases
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level and remains highly expressed throughout the 90 min.
Therefore, we decided to infer TFAs for the entire time course, using
a CS matrix derived from the TFKO data. For each time point, we
computed a log fold change of the induced TF’s inferred activity,
relative to its activity at time 0. We then fit a 4-parameter, sigmoid-
al, saturating curve to the time series (Section 3; Fig. 4D). To elimin-
ate curves that fit poorly, we tried several different thresholds on the
variance explained by the sigmoidal fit. For each threshold, we cal-
culated the fraction of fits that showed increasing activity through-
out the time series (expected behavior) rather than decreasing
activity. Overall, the TFAs with optimized CS matrices (solid lines)
performed better than those with signed binary CS matrices (dashed
lines) and this effect got stronger for curves with better fits (Fig. 4E).
Furthermore, the DE-PC network (orange lines) performed substan-
tially better than the ChIP-PC network (blue lines).

2.10 Condition-independence of control strengths
Control strengths are intended to be condition-independent, quanti-
tative measures of each TF’s potential to regulate each target gene.
We have seen that good performance on TFA inference tasks can be
obtained by using control strengths optimized on a different dataset
(Figs 1A, 2A, 3 and 4). Another indication that inferred CSs are
transferable between datasets is that using the CS values inferred
from one dataset for TFA inference in a second dataset increases the
variance explained by 5%, relative to using the signed binary CSs
(Supplementary Fig. S2).

Another way to test the condition-independence of control
strengths is to calculate the correlation between CSs inferred from
two datasets collected in different growth conditions. To maximize
the number of TFs and their target genes we could use, we first cre-
ated a large network from the union of edges from ChIP-PC and the
two DE-PC networks, one derived from the TFKO data and the
other from the ZEV data. After filtering out edges with conflicting
sign constraints (see Section 3) and dropping two TFs that were left
with only a single target, this new network (Union-PC,
Supplementary File S25) contains 94 TFs, 1,416 target genes and
2,731 edges. We optimized both TFA and CS matrices using both
the TFKO and the ZEV datasets together (see Section 3). As an ini-
tial validation of the resulting CS matrix, we used it to infer TFAs in
a new dataset consisting of 69 double-deletion strains (Sameith
et al., 2015) (See Supplementary Material). The results for predict-
ing the direction of perturbation (86.4% correct) and identifying the
perturbed TF (rank percentile 95.7%) were even better than the
results for smaller networks (compare to Fig. 2A). The percentage of
TFs that showed positive correlation between their mRNA levels
and their inferred TFAs, 66%, is slightly below the results for the
smaller networks, but still much better than chance. Readers can use
the optimized CS matrix (Supplementary File S26) for TFA inference
in other datasets.

To calculate the correlation of CS values inferred in two growth
conditions, we re-optimized Union-PC using only the TFKO data
(synthetic complete medium with 2% glucose and no nutrient limi-
tation) and then only the ZEV data (minimal medium with 2% glu-
cose in phosphate-limited chemostats). Focusing on the 76 TFs with
at least 5 targets, we constructed 1000 bootstrap samples of target
genes for each TF and for each sample, calculated the correlation be-
tween target genes’ CS inferred from one dataset and their CS
inferred from the other dataset. We then scored each TF by its me-
dian correlation across bootstrap samples. The median score (across
TFs) was þ0.32 and 61 of 76 TFs had positive scores (80%).
(Supplementary Fig. S6 shows these correlations and their signifi-
cance thresholds calculated with a traditional model-based ap-
proach.) This shows that, while there may be some over-fitting of
CSs to a particular growth condition, there is also a substantial
amount of condition independence.

2.11 Evaluating control strengths directly
As another evaluation, we asked whether the control strengths
inferred for the targets of a TF would correspond in any way to the
strength with which the TF binds to the promoters of those targets

in genome-wide binding location data. To do this, we turned to
binding data obtained by the transposon calling cards method
(Mayhew and Mitra, 2016; Wang et al., 2011). In this method, a TF
is linked to a transposase, which deposits a transposon in the gen-
ome near where the TF is bound. The number of transposons in a
gene’s promoter is an approximate measure of the amount of time
the TF spends bound to that promoter. We predicted that promoter
occupancy would be positively correlated with the inferred control
strength, in most cases. Importantly, we considered only the genes
that were targets of a TF in the input network and therefore had
inferred control strengths. The input network itself does not contain
quantitative binding strength information. We optimized both TFA
and CS using the Union-PC network and both the TFKO and ZEV
data together. Using 1,000 bootstrap samplings of target genes for
inferring TFAs, the median correlation between inferred CS and
measured transposons was calculated for each TF. Of the 11 TFs
with calling cards data and at least 5 target genes, 9 (82%) have
positive median correlation between measured binding events and
inferred CS values, with a median correlation of 0.31. A histogram
of correlations and their model-based P-values are shown in
Supplementary Figure S7.

2.12 Analyzing time courses after glucose influx
Next, we used the CS matrix for Union-PC (Supplementary File
S26) to infer baselines and TFAs for three expression time courses
after yeast cells were provided with glucose. In the first dataset,
yeast cells growing in galactose-limited chemostats were provided
glucose to a final concentration of 0.02% (w/v) or 0.2% (Ronen and
Botstein, 2006). In the second, batch cultures depleted glucose over
a 24 h growth period before being transferred to fresh media with
2% glucose (Apweiler et al., 2012). We plotted the inferred activity
of each TF as a function of time, fit both a 4-parameter sigmoid
curve (as in Fig. 4) and a 6-parameter impulse curve (Chechik and
Koller, 2009), chose one of the two by the Bayes Information
Criterion (Schwarz, 1978) and filtered out poor fits (R2<80%) (see
Supplementary Material). For four well-studied TFs, Gcr2, Gln3,
Gcn4 and Msn2, the inferred TFA levels and fits for all three time
courses are shown as points and lines inside turquoise circles in
Figure 5. The shapes of the activity curves in response to glucose
made sense: Gcr2, an activator of glycolytic genes, increased in ac-
tivity upon glucose addition; Gln3, Gcn4 and Msn2, activators of
genes needed during nutrient deprivation, generally decreased activ-
ity upon glucose addition (Gln3 showed a very small increase in one
time course). Gcr2 activity also makes sense in terms of the glucose
concentrations added, returning to baseline quickly at the lowest
concentration, more slowly at the intermediate concentration (note
the last gold data point, which is not reflected in the fitted curve),
and not at all at the highest concentration.

To gain a deeper understanding of the network structure, the
control strengths, and how they led to the TFA patterns shown in
Figure 5, we carried out enrichment analysis on the network targets
of the four TFs using Gene Ontology biological process annotations
and Kyoto Encyclopedia of Genes and Genomes metabolic pathway
annotations (Liao et al., 2019). We first discarded targets that, after
optimization, had absolute CS�10�4, then analyzed the remaining
activated and repressed targets of each TF separately, and removed
redundant terms (Bodenhofer et al., 2011). All significantly enriched
annotations that apply to four or more target genes are listed above
the black squares in Figure 5. Each TF is connected to a target
square by an arrow if the corresponding annotation was enriched
among its activated targets and a T-head if the annotation was
enriched among its repressed targets. Gcn4 and Msn2 had no
repressed targets and the few repressed targets of Gcr2 had no
enriched annotations that applied to four or more targets. The anno-
tations and directions of regulation of target sets made sense in
terms of the known function of each TF (Broach, 2012; Conrad
et al., 2014; De Virgilio, 2012; Ljungdahl and Daignan-Fornier,
2012; Rodkaer and Faergeman, 2014).

For each gene set in Figure 5, we calculated the median log fold
change in each time course (not shown) and fit sigmoidal or impulse
curves to them (shown in black boxes). In general, the shapes of the
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Fig. 5. Gcr2, Gln3, Gcn4 and Msn2, their activity regulators, activity changes in response to different glucose concentrations, target gene sets and target set expression patterns.

(A) Turquoise circles: Changes in inferred TF activity after addition of 2% glucose to post-diauxic-shift shake-flasks with synthetic complete medium (green) or addition of

0.2% (gold) or 0.02% (blue) glucose to cultures grown in galactose-limited chemostats with minimal medium. Points are log2 of inferred activity level and lines are impulse or

sigmoidal fits to the points, chosen by the Bayes Information Criterion. Black boxes: Sets of target genes that are regulated in the same direction and are annotated to a Gene

Ontology or KEGG term enriched among targets of the TF that regulates them. Arrowheads indicate activation and T-heads repression. Colored lines are impulse or sigmoidal

fits to the median log2 fold-change of the annotated genes at each time point, relative to time 0. Hexagons: TF activity regulators inferred from analysis of two datasets as

described in the text. Solid maroon lines indicate clear literature support while dashed blue lines indicate hypothesized novel edges. (B) Change in activity of TFs in response to

deletion of GRR1, BCY1 (inhibitory subunit of PKA), SNF1 or SNF4 (activating subunit of Snf1 complex). (C) Gcr2 activity after addition of 2% glucose to cells growing on

3% glycerol. In wild-type cells, glucose initially reduces Gcr2 activity (green, orange). (This response is different from Gcr2’s response to glucose under the conditions of

Fig. 5A.) Addition of the Tpk1-3 inhibitor with glucose to analog-sensitive cells (blue) eliminates that response, suggesting that PKA represses Gcr2 activity. This is consistent

with the observation that deletion of BCY1 reduces Gcr2 activity in 2% glucose (B). (D) Gln3 activity is slightly elevated when inhibitor is added to cells growing in 3% gly-

cerol and expressing an analog-sensitive Snf1 (blue), relative to WT cells (orange), suggesting that the Snf1,4 complex represses Gln3 activity. This is consistent with the obser-

vation that deletion of either Snf1 or Snf4 increases Gln3 activity in 2% glucose (B)
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inferred activity curves for each TF made sense in light of the expres-
sion patterns of their target groups. For example, the inferred activ-
ity patterns of Gcr2 mirror those of the glycolysis genes it activates.
Note that curves are expected to be inverted for repressed targets
and that some of the lines occlude others at early time points, hiding
early dips. Although the mRNA levels of target genes show a clear
relationship to inferred activity levels, they do not always mirror
each other perfectly. For example, the amino acid synthesis genes
spike upward after addition of 0.2% glucose, whereas the inferred
activity of Gcn4 dips and returns, presumably responding to influen-
tial target genes whose individual expression levels do not follow the
pattern of the median levels shown.

Finally, we attempted to identify key regulators driving the TFA
patterns observed in Figure 5, by inferring TFAs from two more
datasets, using the same CS matrix. The first consists of expression
profiles of strains deleted for 567 different regulatory factors,
including many known TF activity regulators (Kemmeren et al.,
2014). The second includes time courses after addition of rapamycin
(an inhibitor of TORC1) or inhibitors of Snf1, Tpk1-3 or Sch9
(Zaman et al., 2009). The inferred TFAs for these datasets are pro-
vided as Supplementary Files S29 and S30. By examining the effects
of these perturbations on the inferred activities of Gcr2, Gln3, Gcn4
and Msn2 and comparing them to published literature, we were able
to confirm many previously described regulatory interactions
(Fig. 5A, solid maroon lines) and to identify a few potentially new
ones (Fig. 5A, dashed blue lines). The TF regulatory edges in
Figure 5A were derived by manual curation of the changes in
inferred TF activity when TF activity regulators are perturbed in
these datasets. The evidence supporting most of the hypothesized
novel TF regulatory interactions is shown in Figure 5B and C, but
space limitations precluded showing the evidence for the SWI/SNF
or Ure2 activating Gcr2. A description of the TFA regulatory inter-
actions shown in Figure 5 and of the literature supporting those that
were previously known can be found in the online Supplementary
Material. To summarize key highlights, we have identified several
likely regulators of Gcr2 activity, about which little was previously
known, and discovered that Grr1, previously known for its role in
glucose repression, is probably a positive regulator of glycolysis (via
Gcr2) and a negative regulator of stress-induced TFs. These novel
observations, which were mined from gene expression data via TF
activity inference, constitute a rich trove of hypotheses for future ex-
perimental investigation. The repression of Gcn4 and Msn2 activity
by Grr1 is lent plausibility by the fact that the mRNA levels of
GCN4 and MSN2 increase significantly when Grr1 is deleted (the
GCR2 mRNA level does not change). One possible mechanism for
regulation of Gcn4, Gcr2 and Msn2 by Grr1, a change in the nuclear
concentration of the TF, could be tested by perturbing Grr1 in
strains in which one of these TFs is linked to a fluorescent protein
and comparing images of the perturbed and unperturbed samples. A
complementary approach would be to carry out calling cards experi-
ments on each TF in unperturbed cells and in cells in which Grr1
has been perturbed. This could detect changes in promoter occu-
pancy by the putatively regulated TFs.

3 Materials and methods

Model fitting In initial fits (Fig. 1A, top), models are fit to gene ex-
pression data by least-squares linear regression, alternating between
TFA and CS matrices (which include baselines), starting from 20
random initializations of the CS matrix. If a TF does not regulate a
gene in the TF network map, the corresponding CS is held at zero;
otherwise, it is constrained to be either positive (activating) or nega-
tive (repressing). If a TF is deleted in a sample, its activity is held at
zero; if it is overexpressed, its activity is constrained to be greater
than its activity in unperturbed samples. Except for deletion sam-
ples, all activities are constrained to be �0.0001. When learning a
CS matrix, the mean activity of each TF, across all samples, is con-
strained to be one, since scaling a TF’s activities and control
strengths by inverse factors does not affect the predictions. After
each iteration, the non-baseline control strengths are held constant
while the TFAs and baselines are fit to the second dataset by

alternating linear regression without constraining the mean activity
of a TF (Fig. 1A, middle). Optimization against the first dataset is
halted when R2 in the second dataset peaks or after 100 iterations,
whichever comes first. This halting criterion does not use the per-
turbation key of the second dataset, which determines the gold
standard for evaluation. It does not use the expression levels of the
TFs, either, as they are removed from the input expression profiles.
Supplementary Figures S3 and S4 replicate the results of Figure 2A
without using the expression profiles from the second dataset to de-
termine the stopping criteria. Comparable results were obtained by
using Knitro (Byrd et al., 2006), a general non-linear solver, to opti-
mize all parameters at once. Code for model fitting is available at
https://doi.org/10.5281/zenodo.4050573.

Ranking TFs To calculate the rank percentile of a perturbed TF,
the log2 of the activity values for each TF are standardized across all
samples. In TF knockout samples, the standardized log2 activity val-
ues of each TF are sorted from lowest (most negative) to highest
(most positive); in TF overexpression samples, they are sorted from
highest to lowest. The rank percentile is 100 - (rank - 1) / numTFs.
The same procedure is used for identifying targets of TFA regulators
(Fig. 4C), except that the sorted values are absolute difference of
standardized log2 activity of each TF in each perturbed sample from
the non-perturbed sample. Code for this evaluation is available at
https://doi.org/10.5281/zenodo.4050573.

Correlation between TFA and TF-mRNA For each dataset, the
second fittings (Fig. 1A, middle) included an unperturbed sample
and 179 samples in which a TF was perturbed. For 1000 bootstraps
of the 180 samples, the fraction of TFs whose mRNA and TFA val-
ues were positively correlated was calculated, and the median frac-
tion across bootstrap samples was reported. TFA values were not
logged or standardized before calculating correlation. Code for this
evaluation is available at https://doi.org/10.5281/zenodo.4050573.

Union-PC Combined, the ChIP-PC networks with sign con-
straints from either TFKO or ZEV and the DE-PC networks with
edges and sign constraints from either TFKO or ZEV contain 3,133
unique edges between 96 TFs and 1,592 target genes. Edges with
conflicting sign constraints from different networks were dropped
and TFs with only one target gene were removed, along with their
target gene, leaving 2,731 edges between 94 TFs and 1,416 target
genes. When optimizing this network on both datasets together, the
perturbation samples for each network TF in each dataset were
included, along with an unperturbed sample. CS parameters were
shared, but different baseline values were used for each dataset to
compensate for potential constant shifts in gene expression
measurements.

4 Discussion

The ability to accurately infer changes in TF activity from changes
in gene expression profiles provides a vital tool in the systems-
biology toolbox. It enables us to look inside the cell, seeing not only
the output of the circuits that control gene expression, but also their
internal state. Observing the internal states of regulatory circuits is
the key to understanding how these circuits control the cell’s tran-
scriptional program in response to internal and external signals. We
demonstrated how this tool can be used to gain new insights into the
regulation of TF activity, such as the probable activation of Gcr2
and repression of Gcn4, Gln3 and Msn2 by the Grr1 ubiquitin ligase
in the presence of glucose (Fig. 5). In future work, we hope to auto-
mate this process of identifying TFA regulators and develop
genome-scale benchmarks with which to evaluate it.

Previous studies introduced various versions of the matrix factor-
ization approach (Boulesteix and Strimmer, 2005; Liao et al., 2003;
Sanguinetti et al., 2006; Yu and Li, 2005). Here, we presented an
objective, genome-scale evaluation of this approach, using multiple
measures of accuracy and multiple independent datasets. We found
that, when inferring TFA and CS matrices, it is essential to have
data in which TFs are directly perturbed and constraints derived
from such data. We also showed that a CS matrix derived from the
TFKO and ZEV data can be used to successfully analyze other ex-
pression datasets that do not contain direct perturbations of TF
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activity. In two of our core metrics, matrix factorization with con-
straints yielded TFA values that cover more than half the distance
from random (50%) to ceiling (100%; Fig. 2A). However, this prob-
ably underestimates the true accuracy of the method, since even per-
fect TFA inference would not necessarily yield 100% on these
metrics. For example, perturbation of a TF’s activity could lead to
an equal or bigger change in the activity of a downstream TF, push-
ing the true rank percentile of the perturbed TF below 100%.
Similarly, the true percentage of TFs whose activity is positively cor-
related with their mRNA level is almost certainly less than 100%,
due to post-transcriptional regulation.

Building the input network from binding specificity models
(e.g. PWMs) is a popular approach that is condition-independent
in principle, but it did not do well in our evaluation (Fig. 2A).
Network structures derived from either perturbation-response data
(DE) or currently available binding location data (ChIP) perform
about equally when using the highest-scoring edges, but as more
edges are added, the DE network is more robust (Fig. 3). For the
ChIP-PC network, we observed the best performance when using
only the top 1,250 edges, even though the recommended P-value
threshold of 0.001 includes at least three times more. Using edges
ranked 2,001 through 3,250 (Fig. 3A–C, Block 2) resulted in
decreased performance on all metrics. The extended ChIP-PC net-
works of 77–80 TFs, which considered the top 2,000 edges rather
than the top 1,250, also resulted in decreased performance on all
the metrics (Fig. 3D). Since perturbation-response data are needed
for sign constraints in any case, generating binding location data in
addition may not be worth the effort and expense required. In
other words, perturbation-response data is both necessary and suf-
ficient for good performance.

Another recent paper (Trescher and Leser, 2019) evaluated TFA
inference algorithms by using expression data after TF knockdowns
in human cell lines and E. coli, similar to our second metric. It
reported that the perturbed TF was rarely among those with the
greatest inferred activity changes and that there was very little agree-
ment among the algorithms tested. One factor that likely contributes
to the difference in findings is that the algorithms they tested did not
use sign constraints on control strengths and could not distinguish
between increasing and decreasing activity. In the absence of sign
constraints, we also saw poor performance. Another difference is
that the input networks they used were largely based on manual cur-
ation rather than automated processing of high-throughput data, so
they lacked confidence scores, making it impossible to select only
the most confident edges. We saw performance degrade when less
confident edges were included in the network. Finally, their evalu-
ation was carried out using perturbations of only a handful of TFs
for evaluation, making the findings vulnerable to sampling error.

We were surprised to find that, by our three basic metrics, opti-
mizing control strengths is not necessary for achieving good per-
formance—signed binary control strengths, taken directly from the
input network and sign constraints, do almost as well (Fig. 4A and
B). Optimized CS matrices result in somewhat better performance
on two other metrics—detecting literature-supported TFA regula-
tors (Fig. 4C) and detecting the trend in TF activity from a time
course (Fig. 4D and E). Furthermore, we found evidence that the
optimized control strengths correlated positively with those learned
by optimizing on data from different growth conditions. They also
correlated positively with the strength of binding to target pro-
moters in independent binding data. Nonetheless, these correlations
were far from perfect, so the limited impact of optimizing CS matri-
ces on TFA accuracy may reflect the fact that the control strengths
in our testing framework are optimized on one dataset while TFAs
are optimized and evaluated on another (Fig. 1). In many real appli-
cations, control strengths and activities would be optimized on the
same dataset. Improvements to the mathematical model could also
increase the importance of CS optimization (see below). For now,
however, using signed binary control strengths may be a reasonable
choice for some organisms, especially when a limited amount of
gene expression data is available. When control strengths are not
optimized, the overall optimization changes from non-linear to lin-
ear, making it much faster and simpler.

Any approach to TFA inference relies on having a reasonably large
and accurate set of targets for each TF. This can be challenging for TFs
that are not very active in any of the conditions in which the data used
to build the network were obtained. For example, Gal4 had only three
targets in the Union-PC network. One of those, GAL10, is an estab-
lished target with a known role in galactose metabolism, but CS opti-
mization reduces the link between Gal4 and GAL10, emphasizing
instead the link between Gal4 and dubious ORF YDR544C. This may
be due to the fact that none of the samples to which we fit the activity
levels were grown with galactose, so the expression of GAL10 does not
vary much. As a result, there is little need to explain GAL10 expression
as resulting from changes in Gal4 activity. A possible approach to this
problem would be to discard inferences about TFs that have two or
fewer significant targets after CS optimization.

Analysis of the error patterns on our three core benchmarks
showed that poor performance was highly correlated with the frac-
tion of a TF’s targets that exhibited opposite signs in the TFKO and
ZEV datasets (Fig. 2B–D). Apparent sign conflict can occur when
the true sign of regulation is consistent, but the effect of the perturb-
ation on the target gene is so weak that random measurement noise
leads to a sign error. This can be remedied by using multiple per-
turbation datasets to determine sign and discarding edges with sign
conflicts, as we did when constructing the Union-PC network.
However, conflicts can also occur because some TFs are repressors
in some conditions and activators in others. For example, Rgt1
represses HXT1 in low glucose but activates it in high glucose
(Polish et al., 2005). This points to a limitation of any model that
constrains TFAs to be non-negative and CSs to be one sign or the
other. A possible solution would be to release the non-negativity
constraint on TFAs when there is sufficient evidence of a true sign
change that applies to most of its targets.

The matrix factorization approach has several limitations. First,
predicted gene expression does not saturate as TF activity gets large,
whereas in reality each gene has maximum and minimum expression
levels and the binding sites for each TF eventually become fully occu-
pied. Second, the model assumes that each TF-target relationship is
either activating or repressing in all conditions. Third, TF-TF interac-
tions, such as competitive or cooperative binding, are not accounted
for. Fourth, this approach does not model condition-dependent epi-
genetic effects on the susceptibility of each gene to regulation, for ex-
ample by making the promoter more or less accessible to TFs. Fifth,
as parameters are optimized during the fitting process, the variance
explained is not a good predictor of a model’s value for accurate TFA
inference. Finally, when control strengths learned on one dataset are
used to model a different dataset, the variance explained in the second
dataset is much lower than in the first. This suggests a degree of over
fitting that might be remedied by parameter shrinkage. However,
improving the variance explained in cross-validation is not guaran-
teed to improve the accuracy of the TFA parameters learned.

We found that TFA inference in yeast works reasonably well
when best practices are followed, but there is still room for improve-
ment. We anticipate improvements coming from better network
maps. One likely source of better maps is new, more accurate meth-
ods for measuring TF binding locations (Bergenholm et al., 2018;
Holland et al., 2019; Kang et al., 2020; Mayhew and Mitra, 2016;
Shively et al., 2019). The input network could also be improved by
obtaining TF perturbation data from cells grown in new conditions.
More improvement in TFA inference could come with better sign
constraints and the possibility of allowing negative TF activity when
the data strongly justify it. Mathematical models that more closely
reflect the underlying biochemistry could also lead to better results,
although such models come with new challenges. As new
approaches are tried, the benchmarks presented here can be used to
determine whether they robustly improve the accuracy of TFA infer-
ence, across multiple datasets and network maps.
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