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Magdalena Sevilla-González1,2,3, Yun Ju Sung5,6, Yan V. Sun7,8, Alanna C. Morrison4,

Han Chen4,9,* and Alisa K. Manning1,2,3,*

1Department of Medicine, Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston,

MA 02114, USA, 2Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, 3Department of Medicine,

Harvard Medical School, Boston, MA 02115, USA, 4Human Genetics Center, Department of Epidemiology, Human Genetics and

Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,
5Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63130, USA, 6Division of Biostatistics,

Washington University School of Medicine, St. Louis, MO 63130, USA, 7Department of Epidemiology, Emory University Rollins School of

Public Health, Atlanta, GA 30322, USA, 8Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA

30322, USA and 9Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas

Health Science Center at Houston, Houston, TX 77030, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Alfonso Valencia

Received on June 12, 2020; revised on March 9, 2021; editorial decision on March 26, 2021

Abstract

Motivation: Gene–environment interaction (GEI) studies are a general framework that can be used to identify genet-
ic variants that modify the effects of environmental, physiological, lifestyle or treatment effects on complex traits.
Moreover, accounting for GEIs can enhance our understanding of the genetic architecture of complex diseases and
traits. However, commonly used statistical software programs for GEI studies are either not applicable to testing cer-
tain types of GEI hypotheses or have not been optimized for use in large samples.

Results: Here, we develop a new software program, GEM (Gene–Environment interaction analysis in Millions of
samples), which supports the inclusion of multiple GEI terms, adjustment for GEI covariates and robust inference,
while allowing multi-threading to reduce computation time. GEM can conduct GEI tests as well as joint tests of gen-
etic main and interaction effects for both continuous and binary phenotypes. Through simulations, we demonstrate
that GEM scales to millions of samples while addressing limitations of existing software programs. We additionally
conduct a gene-sex interaction analysis on waist-hip ratio in 352 768 unrelated individuals from the UK Biobank,
identifying 24 novel loci in the joint test that have not previously been reported in combined or sex-specific analyses.
Our results demonstrate that GEM can facilitate the next generation of large-scale GEI studies and help advance our
understanding of the genetic architecture of complex diseases and traits.

Availability and implementation: GEM is freely available as an open source project at https://github.com/large-
scale-gxe-methods/GEM.

Contact: akmanning@mgh.harvard.edu or han.chen.2@uth.tmc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have successfully led to
many discoveries that associate genetic alleles with complex human
diseases. However, many complex diseases are also influenced by

non-genetic risk factors, such as lifestyle habits (e.g. cigarette smok-
ing), environmental exposures (e.g. toxin), physiological effects (e.g.
obesity) or treatment interventions (e.g. daily aspirin therapy). Most
GWAS do not address the scientific question regarding how genetic
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effects on complex diseases may depend on these non-genetic fac-
tors. Gene–environment interaction (GEI) studies characterize the
interplay of genetic and non-genetic effects on complex diseases.
GEI models can further identify genetic variants with heterogeneous
effects in different age, sex/gender or race/ethnic groups, improving
our understanding of the genetic architecture of complex diseases
and traits in the context of non-genetic risk factors that contribute
to health disparities.

Genomic datasets with millions of study participants are now
being collected at an unprecedented scale: examples include the
All of Us Research Program (anticipated N � 1 000 000), the
U.K. Biobank (N � 500 000) and the Million Veteran Program
(MVP, N�1 000 000). While such big genomic data provide ex-
cellent opportunities for GEI studies, tools for GEI analyses have
remained static and have not adapted to the needs of modern epi-
demiological investigations. Several challenges to GEI studies
were articulated in a recent review (Gauderman et al., 2017),
including the lack of power in GEI tests and lack of tools for
large-scale, ‘omics-driven’ data. The emergence of exposure data
from the environmental ‘exposome’ (Rappaport, 2011; Wild,
2005), methylation studies, metabolomic profiling in blood and
other tissues and microbiome studies (collectively, ‘Omics expo-
sures’) offer another axis to explore the interplay between genetic
variants and complex diseases, especially in models that consider
interactions with multiple exposures (Kim et al., 2019).
Furthermore, GEI effects can be biased if epidemiological con-
founders of the interaction effects are not properly controlled
(Keller, 2014). The bias can be corrected, and in fact the relation-
ships between multiple factors can be characterized, by including
interaction terms for multiple exposures and covariates in the
model (Keller, 2014). Another issue with these various continu-
ous environmental and ‘Omics exposures’ is that model-based
GEI inference is invalid when linear-model assumptions are vio-
lated (when the exposure has a non-linear relationship with the
outcome and/or residual variance is not constant). Robust stand-
ard errors have been proposed as a remedy measure (Voorman
et al., 2011), but efficient analytical tools are still needed to scale
up robust inference procedures to large samples.

Multiple existing software programs enable genome-wide GEI
testing (Aulchenko et al., 2010; Kutalik et al., 2011; Chang et al.,
2015; Lin et al., 2014; Bi et al., 2019; Bhattacharjee et al., 2012;
Gauderman et al., 2016). Many are not optimized for analysis in
hundreds of thousands or millions of individuals, with prohibitive
computational resource requirements and lacking multi-threading
capability to decrease runtimes. QUICKTEST, PLINK2, CGEN and
GxEScan each enable efficient analysis in large samples, but none
allow for robust inference and multiple interaction terms for both
continuous and binary outcomes. The authors of SPAGE recently
introduced a matrix projection algorithm for interaction testing, and
showed that this combined with a score test improved runtimes
compared to the standard Wald test, as is used in the named pro-
grams above (Bi et al., 2019). However, SPAGE currently analyzes
only binary traits, without robust standard errors or multi-threading
capabilities.

In an effort to enable biobank-scale analysis while supporting
optimal and flexible statistical inference, we have developed an
open-source software tool called GEM (Gene–Environment inter-
action analysis in Millions of samples). Our tool leverages a ma-
trix projection algorithm to conduct approximate inference while
accommodating important additional capabilities including ro-
bust standard errors and multiple GEI terms. The aims of this
paper are to introduce the GEM methodology, benchmark GEM
against existing software tools for GEI and demonstrate gains in
computational efficiency from both the GEM method and our
multi-threading software implementation, and finally demon-
strate the use of GEM in a biobank-scale, genome-wide inter-
action study of waist-hip ratio, an anthropometric trait with
known differences in genetic architecture between men and
women (Pulit et al., 2019).

2 Materials and methods

2.1 GEM model
Briefly, GEM considers a generalized linear model for unrelated

individuals:

g lið Þ ¼ X ibX þGibG þ CibC þ SibS;

where li ¼ EðYijX i;GiÞ is the conditional mean of the phenotype Yi

for individual i given covariates Xi (including an intercept for the
model) and the genotype Gi of a single genetic variant. We consider
two sets of gene–environment interaction terms: (i) c gene–environ-
ment interaction covariates Ci not tested in our genome-wide scan,
which are the product between Gi and a subset of Xi, and are im-
portant for adjusting for potential confounding effects (Keller,
2014); and (ii) q gene–environment interaction terms of interest Si,
which are the product of Gi and another subset of Xi. The link function
gð�Þ is a monotone function (usually the identity link function for
continuous phenotypes, and the logit link function for binary
phenotypes).

The GEM method is described in detail in Supplementary
Methods. Through projection of the gene–environment interaction
matrix onto the genetic matrix, the GEM method greatly reduces
repeated calculations in fitting these separate models (e.g. adjusting
for the same covariates repeatedly) and scales linearly with the sam-
ple size. Robust standard errors are optionally included in the calcu-
lation of standard errors for marginal genetic effects and GEI
effects. Asymptotic P-values are calculated for each variant using
adjusted score tests corresponding to the interaction effect (q degrees
of freedom) or joint genetic effects (qþ 1 degrees of freedom).

2.2 Computational approach
The GEM software tool implements the GEM model with addition-
al multi-threading via the Cþþ Boost library to parallelize our
genome-wide scan across variants when multiple computing cores
are available. Docker images and cloud-computing workflows writ-
ten in Workflow Description Language (WDL) are distributed on
github.com/large-scale-gxe-methods and the Dockstore platform
(O’Connor et al., 2017), providing GEM through a consistent inter-
face across a variety of computational environments.

2.3 Alternative models and methods
Existing software programs that implement GEI for unrelated sam-
ples and common genetic variants were compared to GEM to estab-
lish the statistical validity of our method and compare performance:
ProbABEL (Aulchenko et al., 2010), QUICKTEST (version 0.95)
(Kutalik et al., 2011), PLINK2 (version alpha 2.3) (Chang et al.,
2015), SUGEN (version 8.11) (Lin et al., 2014) and SPAGE (version
0.1.5) (Bi et al., 2019). A comparison of the methods and software
features available from these tools can be found in Table 1.

2.4 Simulated data for software benchmarking
For the purposes of comparing computational resource usage across
software tools, a series of simulated genotype datasets were created
with 100 000 variants and 6 different sample sizes: 10 000, 50 000,
100 000, 500 000, 1 million and 5 million. We simulated continuous
and binary traits: a continuous outcome and a binary outcome with
a case-control ratio of 1:3, one binary exposure and one binary
covariate and 29 continuous covariates. Workflows implementing
the GEI tests were run on the Analysis Commons hosted on the
DNAnexus platform using the single exposure and all combinations
of the following parameters: outcome type fbinary, continuousg,
number of non-exposure covariates f0, 3, 30g and sample size (as
above). Benchmarking runs all used a single thread for computation.
Runs that took longer than 7 days or used more than 100 GB of
memory were terminated and noted in the results and figures.

GEM results were compared to those of ProbABEL to assess
whether there were meaningful differences in their statistical output,
given that ProbABEL is a commonly used program that does not use
a matrix projection approach. Summary statistics were retrieved for
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a random subset of 5000 variants (corresponding to the 10 000-sam-
ple, robust, 3-covariate models) for both GEM and ProbABEL, and
both interaction test P-values and main and interaction joint test P-
values were compared.

2.5 UK Biobank Data for statistical simulations and real

data example
UK Biobank is a cohort study containing deep phenotyping and
genome-wide genetic data for approximately 500 000 participants
living in the UK (Bycroft et al., 2018). Imputed genotype data were
pre-processed as described previously (Bycroft et al., 2018) and
accessed under UK Biobank projects 27892 and 42646. For this ana-
lysis, imputed genotypes (version 3) were filtered for minor allele
frequency (MAF) > 0.005 and imputation INFO score > 0.5 based
on the available variant annotation files from UK Biobank. Samples
were filtered to include only those corresponding to unrelated indi-
viduals self-identifying as of white British ancestry who had not
revoked consent for analysis, did not display sex chromosome aneu-
ploidy, and had matching reported and genetically inferred sex.
These filters left 352 768 UK Biobank study participants in the final
dataset.

2.6 Power and type I error simulations
Phenotype simulations to evaluate power and type I error of the
GEM method were carried out using R version 3.6.0 (R Core Team,
2019). A series of simulated phenotypes were generated from a sub-
set of UK Biobank chromosome 21 and 22 imputed genotype dos-
ages (a subset with MAF > 0.005). For type I error evaluation, three
exposures were simulated (continuous, binary, log-normal), each
having 10% variance explained by a random 100 variants from
chromosome 21. Next, 185 continuous phenotypes were simulated
for each of these exposures (185 phenotypes � 11.2 million ¼ 2 bil-
lion P-values per exposure) to allow us to evaluate empirical type I
error rates at genome-wide significance. Each phenotype was simu-
lated to have 10% variance explained by the associated exposure
and 10% variance explained by a random 100 variants from
chromosome 22. In order to simulate exposure mis-specification, a
fourth set of phenotypes was generated with the same amount of
variance explained by a quadratic (rather than linear) effect of the
continuous exposure. Genome-wide scans on �11.2 million variants
for chromosomes 1–22 (MAF > 0.005) were run for each phenotype
(4 settings � 185 exposures ¼ 740 total runs) using both model-
based and robust standard errors. Type I error was then evaluated at
genome-wide significance for chromosomes 1–20 (for which no gen-
etic effect of any kind was present). In addition, potential inflation
was visualized via quantile-quantile plots for chromosome 21 (for
which a gene–environment correlation was present for a subset of
variants), and chromosome 22 (for which a genetic main effect was
present for a subset of variants).

For power evaluation, a series of traits were generated based on
a random set of 100 variants from chromosome 16. First, ten con-
tinuous exposures were simulated from a standard normal

distribution. Next, ten normally distributed phenotypes were gener-
ated based on these variants and exposures for each combination of
the following parameter values: R2

G; total f0,10%g, R2
E; total f10%g,

R2
G�E; total f0.1%, 0.25%, 0.5%, 0.75%, 1%, 1.25%, 1.5%,

1.75%, 2%g and the number of exposures with GEI effects (K) f1,
2, 5, 10g (see Supplementary Table S1). As K was varied, GEI effects
were distributed equally across the set of relevant exposures while
retaining the same overall variance explained by GEIs. Finally, for
each parameter combination, power was calculated as the propor-
tion of tests reaching genome-wide significance (a ¼ 5� 10�8)
across the ten phenotypes (1000 tests in total per combination).

2.7 Application to waist–hip ratio in UK Biobank
To illustrate the performance of GEM for use in a biobank-scale,
genome-wide interaction study, we conducted a gene-by-
environment interaction study of the differences in waist-hip ratio
(WHR) between men and women in unrelated, British-ancestry UK
Biobank participants. We used sex (confirmed by genotype) as our
exposure of interest. WHR was inverse-normal transformed prior to
analysis. Additional covariates included age, age2, 10 genetic princi-
pal components (PC1-PC10), microarray used for genotyping
(array) and body mass index (BMI):

WHR � Gþ sexþ ageþ age2 þ BMI þ arrayþ PC1þ � � �
þ PC10þG � sexþG� BMI

The significance of the interaction effect was derived from the
G� sex term and joint tests were conducted with the G and G� sex
coefficient estimates. The G� BMI interaction covariate term con-
trolled for potential confounding by BMI in this model. An add-
itional analysis was performed in which age, coded as a binary
variable of less than or greater than 50 years old, was added as a
covariate and additional G� age interaction term. The resulting
interaction effects (G� sex and G� age) were tested jointly using
two degrees of freedom.

Results from the UK Biobank analysis were processed using the
FUMA web tool (Watanabe et al., 2017), which defines loci using
linkage disequilibrium (LD). Variants with P<5�10�8 were used
as index variants, and additional variants with P<0.05, within
250 kb of the index variant and having LD r2 > 0.2 with the index
variant were merged into a single locus. We used this LD-based pro-
cedure to obtain the list of significant loci from the G� sex inter-
action test statistics and the joint test statistics. These loci were then
compared to a recent genome-wide association study (GWAS) meta-
analysis for BMI-adjusted WHR that included UK Biobank as one
of the component datasets (Pulit et al., 2019). Summary statistics
from this analysis were retrieved (https://github.com/lindgrengroup/
fatdistnGWAS; accessed April 13, 2020) for genome-wide signifi-
cant marginal genetic effects in the entire sample, the female sample
and the male sample. A subset of these variants were noted as having
effect differences between males and females at a significance
threshold adjusting for the number of index variants tested for inter-
action (PGIANT; WHR; interaction < 3.3�10�5.) We re-derived these

Table 1. Comparison of methods and software features implemented in GEI software tools

Tool Version Algorithmic

approach

Multiple interactions Interaction

covariates

Robust SEs Multithreading

available

GEM 1.2 Matrix projection Yes Yes Yes Yes

ProbABEL 0.5.0 Classical linear/lo-

gistic model

No No Yes No

QUICKTEST 0.95 Classical linear

model

No No Yes No

PLINK2 Alpha 2.3 Classical linear/lo-

gistic model

Yes Yes No Yes

SUGEN 8.11 Classical linear/lo-

gistic model

Yes No Yes No

SPAGE 0.1.5 Matrix projection No No No No

3516 K.E.Westerman et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/20/3514/6284130 by W
ashington U

niversity in St. Louis user on 19 D
ecem

ber 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab223#supplementary-data
https://github.com/lindgrengroup/fatdistnGWAS
https://github.com/lindgrengroup/fatdistnGWAS


genome-wide tests for sex dimorphism using the EasyStrata R pack-
age (Winkler et al., 2015). We assessed the value of the interaction ap-
proach implemented in GEM by annotating our significant loci with
the presence or absence of the locus in the list of significant loci from
Pulit et al. (2019). We extended each locus identified in our clumping
procedure by 100 kb on each side and labeled each as novel if the re-
gion did not contain a variant with PGIANT; WHR; interaction less than
5�10�8 or 3.3�10�5 from the Pulit et al. (2019) meta-analysis at ei-
ther genome-wide or regional significance level, respectively. We simi-
larly assessed the value of the joint test by expanding our loci by
100 kb and labeling them as novel if they did not contain a significant
variant from the Pulit et al. (2019) summary statistics in either the en-
tire sample meta-analysis, the female sample meta-analysis or the
male sample meta-analysis.

To better understand the influence of including the G� BMI
interaction covariate, we assessed which loci were significant
(P<5�10�8) in either the Pulit et al. (2019) meta-analysis or our
analysis, but not both. For these variants, a second analysis was run
with GEM without the G� BMI interaction covariate term and P-
values at index variants for each of these loci were compared to
those from the primary analysis.

To address concerns about genomic inflation, and considering
prior conclusions that GEI analyses require approximately four
times the sample size for equivalent power to a marginal genetic
analysis of equal magnitude (Smith and Day, 1984; Thomas, 2010),
the UK Biobank analysis was repeated three times after a random
down-sampling to 87 695 individuals (24.859%, calculated as the
product of the proportions of males and females in the dataset).
Genomic inflation lambda values for the marginal genetic effects
were calculated from GEM test statistics and compared to the pri-
mary (full-sample) GEM test statistics.

3 Results

3.1 Type 1 error and power of GEM
A series of genome-wide interaction scans were performed to assess
type I error rates of the GEM algorithm. Using robust standard
errors, no inflation of test statistics was observed (at significance
level a ¼ 5�10�8) for genetic variants on chromosomes 1-20 for
which no genetic effects were simulated (Table 2). An inflated type I
error rate was observed for both interaction and joint tests in the
presence of a mis-specified (quadratic) environmental effect when
robust standard errors were not used, in agreement with a known re-
sult (Voorman et al., 2011). Supplementary Figures S1–S3 display
quantile-quantile plots for these variants, as well as those for var-
iants correlated with the exposure and with the phenotype. No un-
expected inflation of P-values was observed for tests using robust
standard errors other than in the context of both gene–environment
correlation and a mis-specified exposure effect, as expected based
on previous results (Zhang et al., 2020).

A power analysis was undertaken using a subset of independent
variants from UKB chromosome 16. Using a subset of 100 variants
and up to 10 random, continuous environmental factors, pheno-
types were simulated to contain pre-specified signals reflecting

genetic main effects, environmental main effects and GEI effects (see
Methods; Supplementary Table S1). Statistical power from the simu-
lations is shown in Figure 1. Power to detect single-exposure inter-
action effects was just over 70% for an overall R2

G�E; total of 1%
(corresponding to a per-variant R2

G�E of 0.01%), consistent with ex-
pectation based on theoretical power calculations. Power was
reduced somewhat when the interaction test degrees of freedom
increased, by either spreading the interaction effect across multiple
exposures (Fig. 1a) or conducting multi-exposure interaction tests
with only one true active environment (Fig. 1b). We note that these
two simulations result in the same total variance explained by inter-
action effects from the generative models, with the same number of
degrees of freedom in the tests, and thus have highly similar results.
Power was decreased in the setting where true interaction signal was
spread over 10 exposures but only a subset of these were included in
multi-exposure interaction tests (Fig. 1c). A minor reduction in
power was observed when variants contained a main-effect signal
(per-variant R2

G of 0.1%; Fig. 1d).

3.2 Benchmarking for resource usage
We compared run times and memory usage of the GEM software
tool in comparison to the other software programs when adjusting
for 3 covariates and using model-based (non-robust) standard errors
(Fig. 2). We also show the results of equivalent runs in terms of run

Table 2. Type I error rates of GEM at a ¼ 5� 10�8

Simulated exposure

distribution

Interaction test Joint test

Type I error (model-based SEs) Type I error (robust SEs) Type I error (model-based SEs) Type I error (robust SEs)

Binary exposure 3.14� 10-8 3.04� 10-8 3.93� 10-8 3.93� 10-8

Continuous exposure 3.58� 10-8 3.53� 10-8 4.38� 10-8 4:28�10-8

Log-normal exposure 4.98� 10-8 3:33�10-8 2:24�10-8 2.64� 10-8

Continuous exposure with

quadratic effect

3.29� 10-6 3.43� 10-8 1:57�10-6 2:44�10-8

Fig. 1. Power of the interaction test from the GEM method. Statistical power is

shown on the y-axis reflecting the fraction of interaction tests with P<5� 10�8

(calculated based on 1000 tests). (a) Total interaction effect (x-axis), in terms of

phenotypic variance explained, is partitioned equally among K exposures (K¼ 1, 2,

5 and 10), and an interaction test for q exposures jointly, the exact set of K expo-

sures, is performed (q¼K). (b) One exposure is responsible for the full interaction

effect (K¼ 1), and q is varied (q¼1, 2, 5 and 10). (c) Total interaction effect is parti-

tioned equally among 10 exposures (K¼ 10), and q is varied within subsets of these

10 exposures (q¼1, 2, 5 and 10). (d) As in (a), with a single exposure simulated and

tested, but varying the strength of the genetic main effect. GEI, gene–environment

interaction; % V.E., percent variance explained
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time (Supplementary Fig. S4) and memory (Supplementary Fig. S5)
using different numbers of covariates and robust standard errors.
GEM run times were substantially faster than those of
QUICKTEST, ProbABEL, SUGEN and SPAGE. GEM runtimes
were similar to those of PLINK2 for continuous outcomes and
somewhat faster for binary outcomes, and this advantage increased
with the number of covariates (Supplementary Fig. S4). Though
GEM and SPAGE both implement a matrix projection algorithm,
GEM may be substantially faster due to its native implementation in
Cþþ. The low runtimes for PLINK2, despite implementing the clas-
sical model, are likely also due to a highly efficient Cþþ implemen-
tation rather than differences in the mathematical model. This
interpretation is supported by the increasing advantage of both
GEM and SPAGE compared to PLINK2 when many covariates are
used (Supplementary Fig. S4). Memory usage was modest for all
programs other than ProbABEL, whose memory requirements we
found to be >100 GB for sample sizes greater than 100 000 in this
analysis setup. Use of robust standard errors (where possible) did
not change resource usages considerably other than for
QUICKTEST, where run times approximately doubled
(Supplementary Fig. S4). We further used a subset of this bench-
marking dataset to compare P-values calculated using GEM versus
ProbABEL, finding very high concordance for a random subset of
5000 variants (Supplementary Fig. S6).

3.3 Application to the GEI study for sex dimorphic

genetic effects of WHR in UK Biobank
A genome-wide scan was then performed to test G� sex interac-
tions influencing WHR in the UKB (Fig. 3, QQ plots in
Supplementary Fig. S7). At a genome-wide significance threshold of
5�10�8, 257 independent loci were significant using the joint test
(Supplementary Table S1; Supplementary Fig. S8). Of these, 29 did
not have significant effects in the marginal test and 24 were not pre-
viously reported in the recently published BMI-adjusted WHR
GWAS from the GIANT Consortium (Pulit et al., 2019). This
included loci at which neither the interaction effect test nor the mar-
ginal test were significant, such as that on chromosome 4 with the
index variant rs10025536 (joint test P¼2.4�10�9), in an intron of

PDE5A. When applying a more stringent multiple-testing threshold
as in the meta-analysis (P<5�10�9), 11 of these novel signals
remained. Many variants showed a much lower association P-value
from the joint test compared to that from the marginal test of genet-
ic effect (Fig. 3b), though for 63% of the variants, the P-value for
marginal association was lower than that for the joint test, as
expected under the null hypothesis of no interaction.

In addition, 54 independent loci were uncovered using the G�
sex interaction effect test (Supplementary Table S2). Of these, 9
were not detected with the marginal test (marginal P-values ranged
from 2.7�10�4 to 0.25), and 6 were not previously reported as sex
dimorphic in Pulit et al. (2019). Sensitivity analysis at these loci
demonstrated excellent concordance with alternative software pro-
grams (Supplementary Fig. S9). The lowest interaction P-value was
found on chromosome 2 at rs13389219 (P¼2.6�10�71), near the
SLC38A11 gene. As shown in Supplementary Figure S10 and
Supplementary Table S4, the effect of this variant is more pro-
nounced in females than males.

We also evaluated the impact of the interaction covariate
(G� BMI term) on the genetic architecture of the G� sex inter-
action effect. We present a comparison between the P-values of the
G� sex interaction test with and without the covariate in
Supplementary Figure S11. Interaction covariate adjustment did not
notably affect interaction strengths for these variants, though it did

Fig. 2. Benchmarking of GEM and other tools for GEI. Runtime (a, b) and max-

imum memory footprint (c, d) are shown as a function of sample size (N) and inter-

action testing program, using 100 000 simulated variants with the number of

covariates held constant at three. The single exposure and outcome for each run

were randomly simulated, with the outcome being either continuous (a, c) or binary

with a case-control ratio of 1:3 (b, d). Circles and triangles correspond to programs

compiled without or with Intel MKL, respectively. ‘GEM-opt’ refers to GEM runs

using optimal parameters for speed, including compilation with MKL and pgen file

inputs. All programs were run using a single thread and without robust standard

errors. Results for ProbABEL at N>100k were excluded because memory usage

exceeded 100 GB

Fig. 3. Results from genome-wide interaction analysis of WHR in the UK Biobank.

(a) Two-sided Manhattan plot displays association strengths for the interaction test

(here, G� sex interaction; top) and the marginal genetic effect test (from a model

with no interaction; bottom). x-axis represents genomic position and y-axis repre-

sents the negative logarithm of the P-value for association at that locus. (b)

Comparison of marginal and joint association strengths. The x-axis and y-axis show

the negative logarithm of the association P-value using the marginal test (with no

interaction) and the joint test, respectively. Dotted line corresponds to y¼ x. For

both panels, dashed lines denote genome-wide significance thresholds

(P< 5�10�8). Variants shown in orange passed a genome-wide significance thresh-

old for both interaction and marginal effects. Variants shown in purple passed a

genome-wide significance threshold for interaction effect, but not the marginal ef-

fect. Variants shown in green passed a genome-wide significance threshold using the

joint test, but not for interaction nor marginal effects. For visualization purposes,

variants with P<1�10�100 were excluded from the Manhattan plot (from a single

locus on chromosome 6 only), and variants with P< 1�10�50 were excluded from

the joint plot
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modestly strengthen the significance for interactions that were
uniquely discovered in this analysis. To explore the impact of sample
size on the genomic inflation observed here and assess polygenicity
of interaction effects, the WHR analysis was re-run on three random
down-sampled UK Biobank datasets (approximately 25% the size of
the full sample; see Methods). Genomic inflation lambda values for
marginal genetic effects in these down-sampled datasets were ap-
proximately equal to that of the GEI effects in the full sample
(Supplementary Fig. S12).

Motivated by the investigation conducted by Winkler et al.
(2018), which analyzed WHR interactions with both sex and age in
stratified approach, we conducted an additional genome-wide scan
to jointly test genetic interactions with sex and age (dichotomized as
greater or less than 50 years old). We did not identify any additional
loci using this approach, finding 41 significant loci after pruning (a
strict subset of the 54 that were identified when using sex alone as
an interaction). This observation illustrates the impact of using add-
itional degrees of freedom in multiple-exposure interaction testing in
the absence of substantial expected interaction effects. Thus, while
the importance of simultaneous multi-exposure testing in some set-
tings has been described previously (Kim et al., 2019), users should
take this statistical power cost into consideration when designing
interaction analyses.

4 Discussion

GEI testing is becoming increasingly important for improving bio-
logical understanding and enabling precision medicine, but current
tools do not typically enable an optimal set of statistical methods
while retaining scalability to millions of samples. To approach this
problem, we have introduced GEM, a software program intended
for large-scale, genome-wide GEI analysis using a single variant test-
ing approach. We showed that GEM maintains reasonable power
and type I error under a variety of simulation settings, and that
GEM performs well compared to existing programs for GEI studies
in terms of both runtime and memory usage while including import-
ant statistical capabilities. We further used GEM to conduct a
genome-wide analysis of G� sex interaction influencing WHR in
the UK Biobank, and found that the inclusion of explicit interactions
in the statistical model enhanced discovery in comparison to a strati-
fied approach.

One major advantage of GEM is its ability to incorporate mul-
tiple interaction terms. This enables proper control for genotype-
covariate effects (Keller, 2014) as well as multi-exposure interaction
tests. These are conducted as q-degrees of freedom Chi-square tests,
where q is the number of environmental exposures whose inter-
action terms are to be included. Interaction analysis incorporating
contributions from multiple exposures has been described previous-
ly, using both fixed effects (‘omnibus’ test) (Kim et al., 2019) and
random effects (flexibly summarizing the contributions of multiple
environments as a similarity matrix) (Moore et al., 2019)
approaches. Each of these approaches show an increase in statistical
power when the underlying model indeed included multiple active
environments, an observation which was replicated in the current
study with the multi-exposure test implemented in GEM. We further
demonstrated that power loss was modest when performing multi-
exposure tests with only one true active environment interaction
(Fig. 1b). This suggests that the inclusion of multiple exposures in
interaction studies with very large sample sizes may be a promising
approach to discover additional loci and expand the genetic archi-
tecture of complex diseases.

In benchmarking tests using simulated data, GEM demonstrated
the feasibility of genome-wide GEI scans in large-scale cohorts of up
to millions of samples. For example, it took less than one hour to
conduct a robust analysis of a continuous phenotype for 100 000
variants in 1 million samples using a single thread, while requiring
approximately 1 GB of memory. Based on the benchmarking results
and current program specifications (Table 1), we found that GEM is
the only option that permits efficient GEI analyses in millions of
samples while allowing for robust standard errors and the inclusion
of multiple interaction terms. We also note that the run times of

GEM and PLINK2 can be improved considerably through the use of
multithreading when multiple computing cores are available.

We used anthropometric traits from the UK Biobank to conduct
a genome-wide interaction analysis with GEM and evaluated G�
sex interactions influencing WHR. We report 54 independent loci
supporting interactions with sex, with the strongest near the
SLC38A11 gene which has been previously linked to impedance-
based body fat distribution in the UK Biobank (Rask-Andersen
et al., 2019). Interaction analyses have been performed in the UK
Biobank for anthropometric traits (primarily BMI), but have gener-
ally used polygenic marginal-effect scores as the genetic effect, pos-
sibly due to the computational limitations described here (Rask-
Andersen et al., 2017; Calvin et al., 2019; Tyrrell et al., 2017). This
polygenic score-based approach may improve power when marginal
and interaction effects are correlated, but otherwise may impair dis-
covery (Kim et al., 2019). The largest GWAS meta-analysis of BMI-
adjusted WHR to date includes the UK Biobank to reach a total
sample size of 694 649 and reports many genetic effect differences
between males and females using a stratified approach (Pulit et al.,
2019). While sex-dimorphism of genetic effects has been reported
for many traits, such as type 2 diabetes (Morris et al., 2012) and lon-
gevity (Zeng et al., 2018), such effects are stronger and more numer-
ous for WHR.

We demonstrate the value of the GEM method by detecting 6
additional loci with the interaction test among 352 768 participants
from the UK Biobank study and detecting an additional 24 loci with
the joint test that did not pass the genome-wide significance thresh-
old in either the combined or stratified main-effect analyses from
Pulit et al. (2019). This increased discovery could be due to the fact
that the joint approach implemented in GEM is equivalent to testing
the hypothesis: bmale ¼ bfemale ¼ 0, which is more powerful in the
presence of G� sex interaction than tests of the of the combined
(bcombined ¼ 0Þ or stratified (bmale ¼ 0 and bfemale ¼ 0 separately)
effects. This added value is particularly notable, given that the pre-
sent analysis was conducted in a subset of individuals (UKB) contri-
buting only approximately half of the total meta-analysis sample
size. While adjustment for interaction covariates (such as the G�
BMI term included here) may theoretically enhance discovery by
reducing residual noise or reduce false positive findings due to con-
founding, we did not observe a major influence of this adjustment in
our analysis. In addition, our analysis of genomic inflation in down-
sampled UK Biobank subsets provides preliminary empirical evi-
dence that the genetic architecture of marginal and GEI effects is
similar, while confirming prior findings that approximately four
times the sample size may be required to detect GEI effects with the
same power as an equivalent marginal analysis.

In its current form, GEM does not account for relatedness, so it
may produce biased estimates unless the population is filtered for
unrelated individuals. Another limitation is the known invalidity of
asymptotic tests from logistic models for binary traits in the presence
of substantial case-control imbalance. The authors of SPAGE found
that for common variants, type I error rates under the same basic
matrix projection model deteriorate with case-control ratios less
than roughly 1:9 (Bi et al., 2019). For more extreme case-control im-
balance, we suggest the use of SPAGE, which uses a saddlepoint ap-
proximation to calibrate score test statistics.

In summary, we have described a new software program, GEM,
for conducting genome-wide GEI testing in datasets of up to millions
of individuals, while allowing for multiple exposures and robust
standard errors. We have made the software (https://github.com/
large-scale-gxe-methods/GEM) and workflows (https://github.com/
large-scale-gxe-methods/gem-workflow) available in publicly avail-
able repositories. GEM facilitates the next generation of large-scale
and consortium-based GEI studies and thus enables important dis-
coveries for genomic understanding and personalized medicine.
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