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Abstract: Increasing evidence indicates that the gut microbiome (GM) plays an important role in
dyslipidemia. To date, however, no in-depth characterization of the associations between GM with
lipoproteins distributions (LPD) among adult individuals with diverse BMI has been conducted.
To determine such associations, we studied blood-plasma LPD, fecal short-chain fatty acids (SCFA)
and GM of 262 Danes aged 19–89 years. Stratification of LPD segregated subjects into three clusters
displaying recommended levels of lipoproteins and explained by age and body-mass-index. Higher
levels of HDL2a and HDL2b were associated with a higher abundance of Ruminococcaceae and Chris-
tensenellaceae. Increasing levels of total cholesterol and LDL-1 and LDL-2 were positively associated
with Lachnospiraceae and Coriobacteriaceae, and negatively with Bacteroidaceae and Bifidobacteriaceae.
Metagenome-sequencing showed a higher abundance of biosynthesis of multiple B-vitamins and
SCFA metabolism genes among healthier LPD profiles. Metagenomic-assembled genomes (MAGs)
affiliated to Eggerthellaceae and Clostridiales were contributors of these genes and their relative abun-
dance correlated positively with larger HDL subfractions. The study demonstrates that differences
in composition and metabolic traits of the GM are associated with variations in LPD among the
recruited subjects. These findings provide evidence for GM considerations in future research aiming
to shed light on mechanisms of the GM–dyslipidemia axis.

Keywords: gut microbiota; SCFAs; lipoproteins distribution; HDL; 1H-NMR

1. Introduction

Cholesterol is essential for keeping cellular integrity and is an important precursor for
steroid hormones and bile acids [1]. However, alterations of the cholesterol metabolism and
consequent dyslipidemia have been associated with various diseases, including atheroscle-
rosis and cardiovascular diseases (CVD) [2], as well as breast cancer [3].

Recent advances in metabolomics research have allowed large-scale and high-throughput
profiling of lipoprotein distribution’s (LPD) in human blood plasma based upon their
composition and concentration [4–6]. It has been hypothesized that numerous medical
conditions such as glucose intolerance, type-2 diabetes, myocardial infarction, ischemic
stroke and intracerebral hemorrhage, might be associated with lower blood levels of larger
HDL particles (e.g., HDL2a and HDL2b) and a higher content of triglycerides within the
lipoprotein particles [7,8].
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During the last decade it has been shown that alterations in gut microbiome (GM)
composition contribute to the development and progression of several metabolic and
immunological complications [9]. Furthermore, a handful of recent studies on differ-
ent cohorts have also demonstrated that the changes in intestinal microbiota are highly
correlated to variations in levels of lipoproteins in blood [10–12], as well as to promote
atherosclerosis [13], and regulate cholesterol homeostasis [14], and partly mediated by bile
acid and short-chain fatty acids (SCFA) signaling [15].

The relationship between GM and LPD has only been scarcely investigated. Recently,
Vojinovic et al. [5] reported the association of up to 32 GM members with very-low-density
(VLDL) and high-density (HDL) subfractions. Positive correlations between a number
of Clostridiales members with large particle size subfractions of HDL were elucidated.
In other studies, focusing on total lipoproteins fractions, an increasing abundance of
GM members affiliated to the Erysipelotrichaceae and Lachnospiraceae families have been
linked to elevated levels of total cholesterol and low-density lipoproteins (LDL) [10–12].
Interestingly, common gut microbes like Lactobacillaceae members have been reported to
assimilate and lower cholesterol concentrations from growth media and incorporate it into
their cellular membrane [16], whereas butyrate-producing Roseburia intestinalis has been
found to increase fatty acid utilization and reduce atherosclerosis development in a murine
model [17].

Thus, with the aim of gaining a deeper understanding of the relationship between GM
and LPD in blood, we carried out a detailed compositional analysis of GM, its metabolic
functions, and studied its associations with blood lipoproteins quantified using a re-
cently developed method based on proton (1H) nuclear magnetic resonance (NMR) spec-
troscopy [6]. We determined covariations between larger HDL subclasses and lower total
cholesterol with a several Clostridiales (Ruminococcaceae and Lachnospiraceae) and Eggerthe-
lalles members, whose metabolic potential is linked to biosynthesis of cofactors essential for
carrying out lipid metabolism.

2. Materials and Methods
2.1. Study Participants

Two hundred and sixty-two men and women participants older than 20 years, who
had not received antibiotic treatment 3 months prior to the beginning of the study and
who had not received pre- or probiotics 1 month prior to the beginning of the study, were
included as part of the COUNTERSTRIKE (COUNTERacting Sarcopenia with proTeins
and exeRcise–Screening the CALM cohort for lIpoprotein biomarKErs) project (counter-
strike.ku.dk). The CALM (Counteracting Age-related Loss of Skeletal Muscle Mass–clinical
trials: NCT02115698) cohort provided sample-material at baseline from participants older
than 64 years (n = 62), while COUNTERSTRIKE recruited participants between 20 to
64 years (n = 200). Pregnant and lactating women, as well as participants previously suf-
fering from cardiovascular diseases (CVD), diabetes, or chronic gastrointestinal disorders,
were excluded from the study. Elevated plasma lipid levels or cholesterol-lowering drugs
was not an exclusion criteria (8 participants from the CALM cohort were under treatment
for high blood pressure using statins). All participants were recruited via press and online
announcements and gave written consent to participate in the study.

2.2. Lipoprotein Distribution Profiles

The human blood plasma lipoproteins were quantified using SigMa LP software [18].
The SigMa LP quantifies lipoproteins from blood plasma or serum using optimized partial
least squares (PLS) regression models developed for each lipoprotein variable using one-
dimensional (1D) 1H NMR spectra of blood plasma or serum and ultracentrifugation based
quantified lipoproteins as response variables as determined in Khakimov et al. [6].
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2.3. Short Chain Fatty Acids (SCFAs) Quantification

Targeted analysis and quantification of SCFA on fecal slurries were carried out as
recently described [19].

2.4. Samples Processing, Library Preparation and DNA Sequencing

Fecal samples were collected and kept at 4 ◦C for maximum 48 h after voidance and
stored at −60 ◦C until further use. Extraction of genomic DNA and library preparation
for high-throughput sequencing of the V3-region of the 16S rRNA gene was performed as
previously described [19]. Shotgun metagenome libraries for sequencing of genome DNA
were built using the Nextera XT DNA Library Preparation Kit (Cat. No. FC-131-1096) and
sequenced with Illumina HiSeq 4000 by NXT-DX.

2.5. Analysis of Sequencing Data

The raw dataset containing pair-end amplicon reads was analyzed following recently
described procedures [19]. The metabolic potential of the amplicon sequencing dataset
was determined through PICRUSt [20], briefly, zero-radius operational taxonomical units
(zOTUs) abundances were first normalized by copy number and then KEGG orthologues
was obtained by predicted metagenome function.

For shotgun sequencing, the reads were trimmed from adaptors and barcodes and the
high-quality sequences (>99% quality score) using Trimmomatic v0.35 [21] with a minimum
size of 50nt were retained. Subsequently, sequences were dereplicated and check for the
presence of Phix179 using USEARCH v10 [22], as well as human and plant genomes associ-
ated DNA using Kraken2 [23]. High-quality reads were then subjected to within-sample
denovo assembly using Spades v3.13.1 [24], and the contigs with a minimum length of
2000 nt were retained. Within-sample binning was performed with metaWRAP [25] using
Metabat1 [26], Metabat2 [27] and MaxBin2 [28], and bin-refinement [29] was allowed to
a ≤10% contamination and ≥70% completeness. Average nucleotide identity (ANI) of
metagenome assembled genomes (MAGs), was calculated with fastANI [30] and distances
between MAGs were summarized with bactaxR [31]. To determined abundance across
samples, reads were mapped against MAGs with Subread aligner [32] and a contingency-
table of reads per Kbp of contig sequence per million reads sample (RPKM) was generated.
Taxonomic annotation of MAGs was determined as follows: ORF calling and gene pre-
dictions were performed with Prodigal [33], the predicted proteins were blasted (blastp)
against NCBI NR bacterial and archaeal protein database. Using Basic Sequence Taxonomy
Annotation tool (BASTA) [34], the Lowest Common Ancestor (LCA) for every MAG was
estimated based on percentage of hits of LCA of 60, minimum identity of 0.7, minimum
alignment of 0.7 and a minimum number of hits for LCA of 10.

To determine the metabolic potential of metagenomes, ORF calling and gene predic-
tions (similar as above) were performed on both, binned and unbinned contigs, and the
predicted proteins were subsequently clustered at 90% similarity using USEARCH v10. To
assign functions, protein sequences were blasted (90% id and 90% cover query) against the
integrated reference catalog of the human gut microbiome (IRCHGM) [35], while using
only target sequences containing KEGG ortholog entries. Similar to the above, to determine
abundance of protein-encoding genes across metagenomes, reads were mapped against
protein clusters (PC) with DIAMOND [36] and a contingency-table of reads mapped to PCs
was also generated. To avoid bias due to sequencing depth across protein-encoding genes,
samples were subsampled to 15,000,000 reads per sample.

2.6. Statistical Analysis

Stratification and clustering of LPD were carried out using Euclidean distances and
general agglomerative hierarchical clustering procedure based on “Ward2”, as implemented
in the gplots R-package [37]. For univariate data analyses, pairwise comparisons were
carried out with unpaired two-tailed Student’s t-test, Spearman’s rank coefficient was used
for determining correlations, and Chi-Square test for evaluating group distributions. For
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multivariate data analyses, the association of covariates (e.g., age, BMI, sex) with LPD
were assessed by redundancy analysis (RDA) (999 permutations), whereas the association
of LPD clusters with GM were analyzed by distance-based RDA (999 permutations) on
Canberra distances (implemented in the vegan R-package [38] ).

Feature selection for zOTUs was performed with Random Forest. Briefly, for a given
training set (training: 70%, test: 30%), the party R-package [39] was run for feature selection
using unbiased-trees (cforest_unbiased with 6说 000 trees and variable importance with
999 permutations) and subsequently the selected variables were used to predict (6000 trees
with 999 permutations) their corresponding test set using randomForest R-package [40]. All
statistical analyses were performed in R versions ≥3.6.0.

3. Results
3.1. Participants and Data Collection

Two hundred and sixty-two individuals (men:women 90:172) with ages between 20
and 85 years (Figure 1A) and BMI ranging between 19 and 37 kg/m2 (Figure 1B) were
included in this study. Subjects are representatives of community dwelling living in the
Danish Capital Region. In this study, we included 1H NMR spectroscopy based quantified
lipoproteins from human blood plasma [6], short-chain fatty acids profiling and GM
composition on fecal samples based on 16S rRNA-gene amplicon sequencing and shotgun
metagenome sequencing for a subset of samples (Figure 1C).

1 
 

 
  Figure 1. (A) Age and (B) body mass index (BMI) distribution of the study participants in COUN-

TERSTRIKE. (C) samples and datasets included and analyzed in this study.

3.2. LPD Profiles, Stratification, and Host Covariates

LPD profiles of the study subjects were predicted from 1H NMR measurements of
blood plasma. A total of 14 lipoproteins-subfractions, including apolipoprotein A (ApoA1)
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and apolipoprotein B (ApoB), together with cholesterol, triglycerides (TG), cholesterol ester
(CE), free cholesterol and phospholipids, were quantified in VLDL, IDL, HDL, LDL [6].
Linking host covariates and LPD profiles, redundancy analysis (RDA) of LPD profiles
showed a significant (p ≤ 0.01) effect of age, BMI and sex on LPD profiles (Figure 2B) with
a combined size effect of up to 24.6% (Figure 2B,C).

 

2 

 
  

Figure 2. (A) Profiles of main and sub-fractions of plasma lipoprotein distribution (LPD) determined
by 1H-NMR [6]. LPD are clustered using Euclidean distances and general agglomerative hierarchical
clustering procedure. Upper color bars represent within-/out- of the recommended levels of main
lipoprotein fractions suggested by the NIH [41] (total cholesterol < 200 mg/dL, LDL < 100 mg/dL,
HDL > 60 mg/dL, Triglycerides < 150 mg/dL). Lower color bars depict 3 clusters (C1A, C1B and
C2) of study participants given their LPD profile and the sex distribution of subjects. (B) Cumulative
effect size of non-redundant covariates of LPD determined by stepwise RDA analysis (right bars) as
compared to individual effect sizes assuming independence (left bars). (C) Fraction of LPD variation
explained with the stepwise approach. Distribution of (D) age and (E) body mass index (BMI)
between subjects belonging to C1A, C1B and C2. Stars show statistical level of significance (* p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001).
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Clustering of LPD profiles segregated study participants into three groups (Figure 2A,
Supplementary Figure S1). Cluster 1A and 1B were characterized by higher concentrations
of LDL sub-fractions and their constituents (particularly evident in subclasses 1 and 2).
Clusters 1A and 2, on the other hand, were characterized by lower concentrations of HDL
sub-fractions (associated with HDL2a and HDL2b), whereas higher concentrations of HDL-
3 particles in subjects of cluster 1A were observed (Supplementary Figure S1). Furthermore,
plasma concentrations of CE, phospholipids and CE were higher among cluster 1A and 1B.
When comparing the plasma fractions of the study participants to the recommendations
of cholesterol classes provided by the National Institute of Health (NIH) [41], for clusters
1A and 1B total cholesterol and LDL levels were above the recommendations, while for
clusters 1B and 2 the levels of HDL were below the recommended values. No differences
(Fisher-test, p = 0.9) in the distribution/frequency of participants (n = 8) treated with statins
across LPD clusters were observed.

LPD profiles were also found to covariate with host attributes, cluster 2 subjects were
significantly younger than clusters 1A and 1B (Figure 2D), and cluster 1B showed the
lowest BMI (Figure 2E). These results were also consistent even after correcting for sex
effects, given that cluster 1B had a significantly higher proportion of women (Fisher test
p < 0.01, Figure 2A, Supplementary Figure S1).

3.3. LPD Clusters Are Linked with GM Profiles

The GM of study participants (n = 262) was profiled using high-throughput ampli-
con sequencing the V3-region of the 16S rRNA gene (11,544 zOTUs), as well as shotgun
metagenome sequencing of total genomic DNA for a subset of samples (n = 58). Gene
content and functionality (based on KEGG orthologues-KOs) were predicted based on
PICRUSt [20] (for 16S rRNA gene amplicons), as well as through ORF calling and gene
prediction of assembled contigs reconstructed from shotgun metagenome data. Valida-
tion of PICRUSt against metagenome KO yielded a high correlation coefficient (Pearson
r = 0.77, Figure 3A) between the gene richness of both datasets. Alpha diversity analyses
between LPD clusters revealed no significant (t-test p > 0.05) differences in phylotypes
richness (Figure 3B) or KOs richness (Figure 3C). A significant (Dip-test p < 0.001) bimodal
distribution of KO richness among the study participants was observed (Figure 3C), but a
higher-/lower- gene count was not associated to LPD clusters (Figure 3C) or BMI categories
(Figure 3D). Significant differences in composition (beta-diversity) between LPD clusters
were observed among phylotypes (Canberra distance, Adonis test p < 0.05, R2 = 0.62–1%).

3.4. LPD Clusters Correspond with GM and KOs Features

After feature selection based on random forest, LPD clusters were partially discrimi-
nated (Figure 4A) by 206 selected sequence variants (zOTUs) distributed to over 10 families
(Figure 4B). Among these, zOTUs affiliated to Ruminococcaceae (75) and Lachnospiraceae (58)
represented 64%, followed by Bacteroidaceae (8), Bifidobacteriaceae (7), Christensenellaceae (6),
Coriobacteriaceae (5) and four other sparse bacterial families (47). The cumulative abundance
(cumulative sum scaling, CSS) of those families showed differences between LPD clusters,
with cluster 1A being associated with a higher abundance of Lachnospiraceae and a lower
abundance of Christensenellaceae members, while cluster 1B was characterized by a larger
proportion of Ruminococcaceae phylotypes, and cluster 2 showed increased proportion of
Bifidobacteriaceae, Bacteroidaceae and reduced abundance of Coriobacteriaceae (Figure 4B,C).

KEGG orthologues predicted through PICRUSt demonstrated very weak discrimina-
tion power towards LPD clusters (Figure 4D, Supplementary Figure S2A shows detailed
3rd level KEGG functions), this included 54 KOs affiliated to >9 primary and secondary
metabolism processes, as well as signaling and cellular processes (Figure 4E). Despite its
documented limitations [42], PICRUSt was still able to reveal a decreasing abundance of
functional modules among subjects of cluster 1A and 2 as compared to those of cluster 1B
(Figure 4E,F). Analysis on aggregated functions per KOs (2nd level KEGG) showed that
cluster 1B was characterized by a higher abundance (t-test p < 0.05) of functions related
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to metabolism of amino acids (e.g., Phe, Tyr and Trp biosynthesis), carbohydrates (e.g.,
pyruvate, propanoate, and butanoate metabolism), lipids (glycerolipids and glycerophos-
pholipids metabolism) and genetic information processing (e.g., transcriptional factors)
(Figure 4F). 

3 

 

  Figure 3. (A) Spearman’s rank correlation between fecal microbial KEGG Orthologues (KOs) from
shotgun metagenome (SG) sequencing and KO predicted by PICRUSt. (B) Richness of microbial
phylotypes (zOTUs) richness and (C) KO predicted by PICRUSt among subjects catalogued as being
C1A, C1B and C2 based on their LPD. (D) KO counts (richness) among all subjects and those with
BMI ≤ 25 (normal) and BMI > 25 (overweighed); the observed bimodal distribution was statistically
significant by the dip-test. Stars show statistical level of significance (*** p ≤ 0.001).

Correlation analyses of selected zOTUs vs LPD profiles displayed several signifi-
cant (Spearman FDR p ≤ 0.05) associations (Figure 4G, Supplementary Figure S2B). Most
Ruminococcaceae (74/75 phylotypes, mostly unclassified), a division of Lachnospiraceae
(13/58 phylotypes, mostly unclassified), Bacteroidaceae (e.g., B. massiliensis, B. caccae), Chris-
tensenellaceae (unclassified genus) and Coriobacteriaceae (unclassified genus) showed positive
correlations with HDL subfractions and negative correlations with VLDL and LDL (e.g.,
LDL3, 4, 5, 6). Contrary to this, most Lachnospiraceae (45/58), Veillonellaceae (e.g., V. invisus)
and Bifidobacteriaceae (e.g., Bf. adolescentis, Bf. bifidum) phylotypes correlated negatively
with HDL subfractions, and positively with subfractions composed of IDL, LDL and VLDL.
For KOs vs LPD (Figure 4H, Supplementary Figure S2C), increasing abundance of func-
tions linked to glycerophospholipids metabolism and amino acids (His, Phe, Tyr and Trp)
biosynthesis correlated positively with HDL fractions and negatively with LDL and VLDL.
Furthermore, the production of glycosphingolipids, biotin (VitB7) and lipopolysaccharides
correlated negatively with small LDL subfractions (e.g., LDL3, 4, 5, 6).
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4 

 

  Figure 4. (A) Distance-based RDA (Canberra dissimilarity) displaying discrimination of LPD clusters
based on selected zOTUs (p = 0.001, explained variance = 3.8%) and (D) KOs-PICRUSt (p = 0.001,
explained variance = 2.7%) selected through Random Forests. (B) Overview of selected zOTUs
and (E) KOs-PICRUSt clustered using Canberra distances and general agglomerative hierarchical
clustering procedure based on ward2. (C) Distribution of zOTUs summarized to family level and
(F) KOs-PICRUSt summarized to 2nd level KEGG function across subjects belonging C1A, C1B
and C2 LPD groups. Heatmaps displaying significant (False Discovery Rate corrected, FDR ≤ 0.05)
Spearman’s rank correlations between (G) zOTUs and LPD sub-fractions, as well as (H) KOs-PICRUSt
and LPD sub-fractions. Stars show statistical level of significance (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).

3.5. Metagenome Bins and Functions Associated with LPD Clusters

Fifty-eight samples randomly selected were subjected to shotgun metagenome se-
quencing (Figure 1C) generating on average 5.2 GB per sample. ORF calling on the entire
assembled dataset of generated ~1.4 million gene-clusters (90% similarity clusters, here
termed “genes”), with 84,560 core genes being present in at least 90% of the metagenome
sequenced samples. RDA analysis of the core-gene dataset showed significant (p = 0.001)
differences between LPD clusters and explaining up to 23.7% of the total variance in gene
composition (Figure 5A). Ranking of variables (i.e. top 150) within the 1st and 2nd canonical
components of the CAP analyses provided an overview of 35 “known” metabolic genes
(>90% identity match to the integrated non-redundant gene catalog with KEGG ortholog
entries [35], Figure 5B, Supplementary Figure S3A) linked to >10 2nd level KEGG functions,
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which resembled the large majority of those predicted by PICRUSt (see Figure 4E,F). A
higher abundance of these genes was observed among subjects grouped within Cluster 1B
relative to cluster 1A and Cluster 2. To determine the species associated with these genes,
gene-sequences were mapped back to 1419 metagenome-assembled genomes (MAGs)
(Figure 5C). Sixty MAGs affiliated to Lachnospiraceae, Clostridiales, Coriobacteriaceae and
unclassified Firmicutes clustered within 19 species and were found to contribute with 27 out
of the 35 genes that discriminated LPD clusters (Figure 5D, Supplementary Figure S3B).
Most Lachnospiraceae and Clostridiales MAGs (Figure 5D,F, Supplementary Figure S3B) con-
tributed with peptidoglycan and glycan biosynthesis, thiamine (VitB1) and pantothenate
(VitB5) metabolism, starch degradation and butyric acid metabolism (butanol dehydro-
genase that may lead to increased concentrations of 1-butanol at the expense of butyrate
production, Figure 5E). On the other hand, Eggerthellaceae MAGs were linked to biosyn-
thesis of glucosinates, metabolism of propionic acid, biosynthesis of fatty acids, VitB6
metabolism, as well as folate (VitB9) biosynthesis (Figure 5D,F, Supplementary Figure S3B).
Subjects belonging to LPD-cluster 1B had a significantly higher cumulative abundance of
these MAGs (Figure 5H,I) than those in LPD-clusters 1A and 2, whereas their cumulative
abundance had significant positive (Spearman p < 0.001) correlations with constituents
(e.g., Cholesteryl ester) of larger HDL sub-classes (HDL2a and HDL2b) (Figure 5I). 

5 

 

  Figure 5. (A) RDA displaying discrimination of LPD clusters based on selected KOs obtained from
shotgun metagenome and assembly (p = 0.001, explained variance = 23.7%). (B) Overview of most
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discriminatory (based on CAP1 and CAP2 within db-RDA) KOs with known metabolic functions
clustered using Canberra distances and general agglomerative hierarchical clustering procedure
based on ward2. (C) GC-content–Coverage plot of metagenome assembled genomes (MAGs) with
≤10% contamination and ≥70% completeness. MAGs are colored according to phylum-level taxo-
nomic affiliation and bubble size indicates their genome size in mega-bases (Mb). (D) Phylogeny of
MAGs containing KOs that discriminate LPD clusters (1A, 1B and 2), a cut-off of 95-ANI (species-
level) and 99-ANI (strain-level) are denoted. MAGs are colored at family level affiliations and their
KOs contribution at the 2nd level KEGG function pathways are provided. (E) Relative abundance of
protein-encoding genes associated with butanol dehydrogenase (K00100), and (F) protein-encoding
genes associated metabolism and biosynthesis of vitamin B1, B2, B5 and B9. (G,H) Cumulative
abundance (RPKM) of MAGs affiliated to Clostridiales (Clo), Eggerthellaceae (Egg), and Lachnospiraceae
(Lac) among LPD clusters. (I) Heatmaps displaying significant (False Discovery Rate corrected,
FDR ≤ 0.05) Spearman’s rank correlations between MAGs abundance and HDL subfractions. Stars
show statistical level of significance (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).

The concentrations of acetate and propionate in fecal samples had no differences between
LPD clusters. However, higher concentrations of butyrate, isobutyrate, 2-methylbutyrate,
valerate and isovalerate (ANOVA Tukey’s HSD p < 0.05) were observed in cluster 2
(Figure 6A–E). To determine whether microbial activity was linked to the production
of such branched-chain fatty-acids, we analyzed the abundance of isobutyrate kinase
(Supplementary Figure S4C) and 2-methylbutanoyl-CoA (Figure 6F) dehydrogenase in
the metagenomic samples (Figure 6F). For 2-methylbutanoyl-CoA dehydrogenase 86% of
the gene-variants were also mapped to those 60 MAGs displayed in Figure 5D (ANOVA
Tukey’s HSD p < 0.05 for cluster 2 LPD subjects), but none of these had significant matches to
isobutyrate kinase. Isobutyrate kinase was found in 86 MAGs (Supplementary Figure S4A)
belonging to Bacteroides, Ruminococcaceae, Alistipes, Desulfovibrionaceae and Lachnospiraceae,
and whose cumulative relative abundance varied (Supplementary Figure S4B) substantially
between LPD clusters. 

6 

 
Figure 6. Concentrations of fecal (A) butyrate, (B) 2-methylbutyrate, (C) isobutyrate, (D) isovaler-
ate, (E) valerate concentrations within the different LPD clusters. (F) Cumulative abundance 2-
methylbutanoyl-CoA genes screened on metagenomes within LPD clusters. Stars show statistical
level of significance (* p ≤ 0.05).
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4. Discussion

It is well established that certain LPD profiles are associated with elevated CVD risk,
but relatively little is known on the links between GM and LPD. Building on recently
published LPD profiles of 262 adult individuals [6] the present study investigates the
correlations between LPD-profiles and GM, and its genetic functional assignments.

Stratification of study participants based on their LPD profiles segregated three LPD
clusters (C1A, C1B and C2) that corresponded well with levels of total cholesterol, triglyc-
erides, LDL, HDL and VLDL as those recommended by the NIH [41]. Our study demon-
strates that lower levels of total HDL are associated with a decrease in the concentration of
large subfractions (e.g., HDL2a and HDL2b), while higher levels of total LDL correspond
with increased concentration of large LDL subfractions (e.g., LDL1). Furthermore, our
results and similar ones [5,10], confirm the association between LPD profiles and host
factors like age, sex and BMI [5,10], which altogether can explain up to 25% of the total
variance in LPD. Our findings agree with previous reports indicating an inverse association
between larger subfractions of HDL and the incidence of metabolic disorders and BMI [43].
As well the positive correlation between the largest HDL and LDL particles with total HDL
and LDL cholesterol [44], respectively. In the latter case, a higher concentration of large LDL
subfractions (e.g., LDL1) could directly increase the circulating plasma levels of ApoB [44],
which has been proposed as a much more sensitive CVD biomarker when compared to
LDL cholesterol, but with still major limitations associated to standard measuring [45].

Increasing evidence supports the role of GM to modulate lipids homeostasis and
development of dyslipidemia [17,46–48]. It has been previously described that dyslipidemia
and overweight phenotype may gather a low gut microbial gene-richness (gene diversity
and complexity), which displays a bimodal distribution likely related to a low bacterial
diversity [49,50]. In our study, despite the fact that such a bimodal distribution was indeed
reproduced, no significant differences in gene-frequencies between distinct LPD profiles
(e.g., clusters 1A, 1B and 2 clusters), or between lean and overweight participants were
observed. In turn, this indicated that the development of remarkably distinct LPD profiles
/phenotypes could be related to ecological/structural differences in GM.

GM compositional analysis (Beta diversity) showed significant differences that discrim-
inated LPD clusters/phenotypes (e.g., Figure 4A), and elucidated GM members capable
of synthetizing important metabolites (e.g., SCFA and B vitamins). Among those, Lach-
nospiraceae correlated positively with small LDL particles (e.g., LDL3, LDL4 and LDL5),
ILDL and VLDL, while Ruminococcaceae, a subgroup of Lachnospiraceae phylotypes and
other less abundant families showed positive correlations with large particles of HDL
(e.g., HDL2a and HDL2b). Our findings are in agreement with a recent large-scale study
published by Vojinovic et al. [5] who reported that Lachnospiraceae and Ruminococcaceae
members were related to the HDL/LDL ratios.

It is well-established that high HDL levels are associated with a lower risk of de-
veloping CVD and the metabolic syndrome [7,8], and mounting evidence support the
hypothesis that the heterogeneity of HDL display associations with the same metabolic
conditions [7,51,52] that are like mediated by GM. Indeed, recent findings have shown
that GM members induce expression of low-density lipoprotein receptors and ApoE in
the hepatocytes, facilitating the clearance of triglyceride-rich lipoprotein remnants, chy-
lomicron remnants, and intermediate-density lipoproteins, from circulation [46]. In line
with this, our results suggest a link between dyslipidemia and the metabolic potential
of MAGs for synthesizing important bioactive compounds such as vitamin B complex,
peptidoglycans, and SCFA metabolism. Pantothenate (VitB5), VitB6 and folate (VitB9) have
been inversely associated with low-grade inflammation [53] and mortality risk of CVD
in a mechanism that may involve regulation of blood homocysteine concentrations [54],
and one-carbon metabolism [55]. SCFA such as butyrate and valerate have been shown to
decrease total cholesterol and the expression of mRNA associated with fatty acid synthase
and sterol regulatory element binding protein 1c, to enhance mRNA expression of carnitine
palmitoyltransferase-1α (CPT-1α) in liver [56,57], as well as to ameliorate arteriosclerosis
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via ABCA1-mediates cholesterol efflux in macrophages [58]. Biosynthesis of peptidogly-
cans by some GM members has been associated with incidence of stenotic atherosclerotic
plaques and insulin resistance [59,60], but recent studies also indicate that these potent
signaling molecules play positive roles for enhancing systemic innate immunity [61] and
neurodevelopmental processes [62], relaying on a species-dependent fashion [63].

5. Conclusions

Collectively our study provides evidence that GM members (e.g., MAGs) and their
genes related to the biosynthesis of bioactive molecules needed to carry out lipid metabolism,
e.g., vitamin B complex and S/B-CFA, are more abundant among subjects with healthier
LPD profiles (e.g., higher HDL2a, HDL2b, and lower LDL). Furthermore, variations in LPD
subfractions correlate with differences in the GM composition, but these are not necessarily
associated to a higher or lower microbial diversity. Given the limitations of our cross-
sectional stud y to elucidate GM-LPDs dynamics, it is not possible to depict the mechanism
by which GM may influence variability in LPD subfractions. Future efforts to unravel
the processes of LPD particles assembly and their implications in CVD will require an
integrative and longitudinal approach of lifestyle factors (diet–type and quantity), physical
activity, host genetics/transcriptomics, deep LPDs profiling, and the GM considerations
herein provided.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms10112156/s1, Figure S1: Cholesterol sub-fractions
distribution and covariates adjusted by sex effect. Figure S2: zOTUs and KO functions at 3rd level
KEGG. Figure S3: KO functions (3rd level KEGG) linked to MAGs. Figure S4: Isobutyrate kinase
contributing MAGs.
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8. Wang, J.; Stančáková, A.; Soininen, P.; Kangas, A.J.; Paananen, J.; Kuusisto, J.; Ala-Korpela, M.; Laakso, M. Lipoprotein Subclass
Profiles in Individuals with Varying Degrees of Glucose Tolerance: A Population-Based Study of 9399 Finnish Men. J. Intern. Med.
2012, 272, 562–572. [CrossRef]

9. Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506.
[CrossRef]

10. Fu, J.; Bonder, M.J.; Cenit, M.C.; Tigchelaar, E.F.; Maatman, A.; Dekens, J.A.M.; Brandsma, E.; Marczynska, J.; Imhann, F.;
Weersma, R.K.; et al. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circ. Res.
2015, 117, 817–824. [CrossRef]

11. Falony, G.; Joossens, M.; Vieira-Silva, S.; Wang, J.; Darzi, Y.; Faust, K.; Kurilshikov, A.; Bonder, M.J.; Valles-Colomer, M.;
Vandeputte, D.; et al. Population-Level Analysis of Gut Microbiome Variation. Science 2016, 352, 560–564. [CrossRef] [PubMed]

12. Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al.
Environment Dominates over Host Genetics in Shaping Human Gut Microbiota. Nature 2018, 555, 210–215. [CrossRef] [PubMed]

13. Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal Microbiota
Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nat. Med. 2013, 19, 576–585. [CrossRef] [PubMed]

14. Le Roy, T.; Lécuyer, E.; Chassaing, B.; Rhimi, M.; Lhomme, M.; Boudebbouze, S.; Ichou, F.; Haro Barceló, J.; Huby, T.; Guerin, M.;
et al. The Intestinal Microbiota Regulates Host Cholesterol Homeostasis. BMC Biol. 2019, 17, 94. [CrossRef]

15. Yu, Y.; Raka, F.; Adeli, K. The Role of the Gut Microbiota in Lipid and Lipoprotein Metabolism. J. Clin. Med. 2019, 8, 2227.
[CrossRef]

16. Liong, M.T.; Shah, N.P. Acid and Bile Tolerance and Cholesterol Removal Ability of Lactobacilli Strains. J. Dairy Sci. 2005, 88,
55–66. [CrossRef]

17. Kasahara, K.; Krautkramer, K.A.; Org, E.; Romano, K.A.; Kerby, R.L.; Vivas, E.I.; Mehrabian, M.; Denu, J.M.; Bäckhed, F.;
Lusis, A.J.; et al. Interactions between Roseburia Intestinalis and Diet Modulate Atherogenesis in a Murine Model. Nat. Microbiol.
2018, 3, 1461–1471. [CrossRef]

18. Khakimov, B.; Mobaraki, N.; Trimigno, A.; Aru, V.; Balling, S. Analytica Chimica Acta Signature Mapping (SigMa): An Efficient
Approach for Processing Complex Human Urine 1 H NMR Metabolomics Data. Anal. Chim. Acta 2020, 1108, 142–151. [CrossRef]

19. Castro-Mejía, J.L.; Khakimov, B.; Krych, Ł.; Bülow, J.; Bechshøft, R.L.; Højfeldt, G.; Mertz, K.H.; Garne, E.S.; Schacht, S.R.;
Ahmad, H.F.; et al. Physical Fitness in Community-dwelling Older Adults Is Linked to Dietary Intake, Gut Microbiota, and
Metabolomic Signatures. Aging Cell 2020, 19, e13105. [CrossRef]

20. Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.;
Vega Thurber, R.L.; Knight, R.; et al. Predictive Functional Profiling of Microbial Communities Using 16S RRNA Marker Gene
Sequences. Nat. Biotechnol. 2013, 31, 814–821. [CrossRef]

21. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30,
2114–2120. [CrossRef] [PubMed]

22. Edgar, R. UNOISE2: Improved Error-Correction for Illumina 16S and ITS Amplicon Sequencing. bioRxiv 2016, 081257. [CrossRef]
23. Wood, D.E.; Lu, J.; Langmead, B. Improved Metagenomic Analysis with Kraken2. Genome Biol. 2019, 20, 257. [CrossRef] [PubMed]
24. Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.;

Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput.
Biol. 2012, 19, 455–477. [CrossRef]

25. Uritskiy, G.V.; Diruggiero, J.; Taylor, J. MetaWRAP-A Flexible Pipeline for Genome-Resolved Metagenomic Data Analysis 08
Information and Computing Sciences 0803 Computer Software 08 Information and Computing Sciences 0806 Information Systems.
Microbiome 2018, 6, 158. [CrossRef]

26. Kang, D.D.; Froula, J.; Egan, R.; Wang, Z. MetaBAT, an Efficient Tool for Accurately Reconstructing Single Genomes from Complex
Microbial Communities. PeerJ 2015, 3, e1165. [CrossRef]

27. Kang, D.D.; Li, F.; Kirton, E.; Thomas, A.; Egan, R.; An, H.; Wang, Z. MetaBAT2: An Adaptive Binning Algorithm for Robust and
Efficient Genome Reconstruction from Metagenome Assemblies. PeerJ 2019, 27, e7359. [CrossRef]

28. Wu, Y.-W.; Tang, Y.-H.; Tringe, S.G.; Simmons, B.A.; Singer, S.W. MaxBin: An Automated Binning Method to Recover Individual
Genomes from Metagenomes Using. Microbiome 2014, 2, 26. [CrossRef]

http://doi.org/10.1016/j.trac.2017.07.009
http://doi.org/10.1038/s41467-019-13721-1
http://doi.org/10.1021/acs.analchem.1c01654
http://doi.org/10.1016/j.jacc.2017.12.006
http://doi.org/10.1111/j.1365-2796.2012.02562.x
http://doi.org/10.1038/s41422-020-0332-7
http://doi.org/10.1161/CIRCRESAHA.115.306807
http://doi.org/10.1126/science.aad3503
http://www.ncbi.nlm.nih.gov/pubmed/27126039
http://doi.org/10.1038/nature25973
http://www.ncbi.nlm.nih.gov/pubmed/29489753
http://doi.org/10.1038/nm.3145
http://www.ncbi.nlm.nih.gov/pubmed/23563705
http://doi.org/10.1186/s12915-019-0715-8
http://doi.org/10.3390/jcm8122227
http://doi.org/10.3168/jds.S0022-0302(05)72662-X
http://doi.org/10.1038/s41564-018-0272-x
http://doi.org/10.1016/j.aca.2020.02.025
http://doi.org/10.1111/acel.13105
http://doi.org/10.1038/nbt.2676
http://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
http://doi.org/10.1101/081257
http://doi.org/10.1186/s13059-019-1891-0
http://www.ncbi.nlm.nih.gov/pubmed/31779668
http://doi.org/10.1089/cmb.2012.0021
http://doi.org/10.1186/s40168-018-0541-1
http://doi.org/10.7717/peerj.1165
http://doi.org/10.7717/peerj.7359
http://doi.org/10.1186/2049-2618-2-26


Microorganisms 2022, 10, 2156 14 of 15

29. Song, W.Z.; Thomas, T. Binning-Refiner: Improving Genome Bins through the Combination of Different Binning Programs.
Bioinformatics 2017, 33, 1873–1875. [CrossRef]

30. Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic
Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [CrossRef]

31. Carroll, L.M.; Wiedmann, M.; Kovac, J. Proposal of a Taxonomic Nomenclature for the Bacillus Cereus Group Which Reconciles
Genomic Definitions of Bacterial Species with Clinical and Industrial Phenotypes. MBio 2020, 11, e00034-20. [CrossRef] [PubMed]

32. Liao, Y.; Smyth, G.K.; Shi, W. The Subread Aligner: Fast, Accurate and Scalable Read Mapping by Seed-and-Vote. Nucleic Acids
Res. 2013, 41, e108. [CrossRef] [PubMed]

33. Hyatt, D.; Chen, G.L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic Gene Recognition and
Translation Initiation Site Identification. BMC Bioinform. 2010, 11, 119. [CrossRef]

34. Kahlke, T.; Ralph, P.J. BASTA–Taxonomic Classification of Sequences and Sequence Bins Using Last Common Ancestor Estima-
tions. Methods Ecol. Evol. 2019, 10, 100–103. [CrossRef]

35. Li, J.; Wang, J.; Jia, H.; Cai, X.; Zhong, H.; Feng, Q.; Sunagawa, S.; Arumugam, M.; Kultima, J.R.; Prifti, E.; et al. An Integrated
Catalog of Reference Genes in the Human Gut Microbiome. Nat. Biotechnol. 2014, 32, 834–841. [CrossRef]

36. Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2014, 12, 59–60.
[CrossRef]

37. Warnes, G.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.;
et al. Gplots. R Package Version 3.1.1. 2020. Available online: https://CRAN.R-project.org/package=gplots (accessed on
25 September 2022).

38. Oksanen, A.J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; Hara, R.B.O.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.;
Wagner, H. Vegan: Community Ecology Package. R package Version 2.5-7. 2020. Available online: https://CRAN.R-project.org/
package=vegan (accessed on 25 September 2022).

39. Hothorn, T.; Buehmann, P.; Dudoit, S.; Molinaro, A.; Van der Laan, M. Survival Ensembles. Biostatistics 2006, 7, 355–373. [CrossRef]
40. Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22.
41. Anderson, N.B. National Cholesterol Education Program (Ncep). Encycl. Health Behav. 2004, 1, 530–533. [CrossRef]
42. Sun, S.; Jones, R.B.; Fodor, A.A. Inference-Based Accuracy of Metagenome Prediction Tools Varies across Sample Types and

Functional Categories. Microbiome 2020, 8, 46. [CrossRef] [PubMed]
43. Sokooti, S.; Flores-Guerrero, J.L.; Kieneker, L.M.; Heerspink, H.J.L.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. HDL Particle

Subspecies and Their Association with Incident Type 2 Diabetes: The PREVEND Study. J. Clin. Endocrinol. Metab. 2021, 106,
1761–1772. [CrossRef]

44. Ala-Korpela, M.; Zhao, S.; Järvelin, M.R.; Mäkinen, V.P.; Ohukainen, P. Apt Interpretation of Comprehensive Lipoprotein Data
in Large-Scale Epidemiology: Disclosure of Fundamental Structural and Metabolic Relationships. Int. J. Epidemiol. 2022, 51,
996–1011. [CrossRef] [PubMed]

45. Behbodikhah, J.; Ahmed, S.; Elyasi, A.; Kasselman, L.J.; De Leon, J.; Glass, A.D.; Reiss, A.B. Apolipoprotein b and Cardiovascular
Disease: Biomarker and Potential Therapeutic Target. Metabolites 2021, 11, 690. [CrossRef]

46. Shen, J.; Tong, X.; Sud, N.; Khound, R.; Song, Y.; Maldonado-Gomez, M.X.; Walter, J.; Su, Q. Low-Density Lipoprotein Receptor
Signaling Mediates the Triglyceride-Lowering Action of Akkermansia muciniphila in Genetic-Induced Hyperlipidemia. Arterioscler.
Thromb. Vasc. Biol. 2016, 36, 1448–1456. [CrossRef]

47. Kiouptsi, K.; Jäckel, S.; Pontarollo, G.; Grill, A.; Kuijpers, M.J.E.; Wilms, E.; Weber, C.; Sommer, F.; Nagy, M.; Neideck, C.; et al.
The Microbiota Promotes Arterial Thrombosis in Low-Density Lipoprotein Receptor-Deficient Mice. MBio 2019, 10, e02298-19.
[CrossRef]

48. Rune, I.; Rolin, B.; Larsen, C.; Nielsen, D.S.; Kanter, J.E.; Bornfeldt, K.E.; Lykkesfeldt, J.; Buschard, K.; Kirk, R.K.; Christoffersen, B.;
et al. Modulating the Gut Microbiota Improves Glucose Tolerance, Lipoprotein Profile and Atherosclerotic Plaque Development
in ApoE-Deficient Mice. PLoS ONE 2016, 11, e0146439. [CrossRef]

49. Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.;
et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature 2013, 500, 541–546. [CrossRef]

50. Cotillard, A.; Kennedy, S.P.; Kong, L.C.; Prifti, E.; Pons, N.; Le Chatelier, E.; Almeida, M.; Quinquis, B.; Levenez, F.; Galleron, N.;
et al. Dietary Intervention Impact on Gut Microbial Gene Richness. Nature 2013, 500, 585–588. [CrossRef]

51. Kontush, A. HDL Particle Number and Size as Predictors of Cardiovascular Disease. Front. Pharmacol. 2015, 6, 218. [CrossRef]
[PubMed]

52. Camont, L.; Chapman, M.J.; Kontush, A. Biological Activities of HDL Subpopulations and Their Relevance to Cardiovascular
Disease. Trends Mol. Med. 2011, 17, 594–603. [CrossRef] [PubMed]

53. Jung, S.; Kim, M.K.; Choi, B.Y. The Long-Term Relationship between Dietary Pantothenic Acid (Vitamin B5) Intake and C-Reactive
Protein Concentration in Adults Aged 40 Years and Older. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 806–816. [CrossRef] [PubMed]

54. Cui, R.; Iso, H.; Date, C.; Kikuchi, S.; Tamakoshi, A. Dietary Folate and Vitamin B6 and B12 Intake in Relation to Mortality from
Cardiovascular Diseases: Japan Collaborative Cohort Study. Stroke 2010, 41, 1285–1289. [CrossRef] [PubMed]

55. Walker, A.K.; Jacobs, L.; Watts, J.L.; Rottiers, V.; Jiang, K.; Finnegan, D.M.; Shioda, T.; Hansen, M.; Yang, F.; Niebergall, L.J.;
et al. A Conserved SREBP-1/Phosphatidylcholine Feedback Circuit Regulates Lipogenesis in Metazoans. Cell 2011, 147, 840–850.
[CrossRef] [PubMed]

http://doi.org/10.1093/bioinformatics/btx086
http://doi.org/10.1038/s41467-018-07641-9
http://doi.org/10.1128/mBio.00034-20
http://www.ncbi.nlm.nih.gov/pubmed/32098810
http://doi.org/10.1093/nar/gkt214
http://www.ncbi.nlm.nih.gov/pubmed/23558742
http://doi.org/10.1186/1471-2105-11-119
http://doi.org/10.1111/2041-210X.13095
http://doi.org/10.1038/nbt.2942
http://doi.org/10.1038/nmeth.3176
https://CRAN.R-project.org/package=gplots
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
http://doi.org/10.1093/biostatistics/kxj011
http://doi.org/10.4135/9781412952576.n154
http://doi.org/10.1186/s40168-020-00815-y
http://www.ncbi.nlm.nih.gov/pubmed/32241293
http://doi.org/10.1210/clinem/dgab075
http://doi.org/10.1093/ije/dyab156
http://www.ncbi.nlm.nih.gov/pubmed/34405869
http://doi.org/10.3390/metabo11100690
http://doi.org/10.1161/ATVBAHA.116.307597
http://doi.org/10.1128/mBio.02298-19
http://doi.org/10.1371/journal.pone.0146439
http://doi.org/10.1038/nature12506
http://doi.org/10.1038/nature12480
http://doi.org/10.3389/fphar.2015.00218
http://www.ncbi.nlm.nih.gov/pubmed/26500551
http://doi.org/10.1016/j.molmed.2011.05.013
http://www.ncbi.nlm.nih.gov/pubmed/21839683
http://doi.org/10.1016/j.numecd.2017.05.008
http://www.ncbi.nlm.nih.gov/pubmed/28739188
http://doi.org/10.1161/STROKEAHA.110.578906
http://www.ncbi.nlm.nih.gov/pubmed/20395608
http://doi.org/10.1016/j.cell.2011.09.045
http://www.ncbi.nlm.nih.gov/pubmed/22035958


Microorganisms 2022, 10, 2156 15 of 15

56. Nguyen, T.D.; Prykhodko, O.; Fåk Hållenius, F.; Nyman, M. Monovalerin and Trivalerin Increase Brain Acetic Acid, Decrease
Liver Succinic Acid, and Alter Gut Microbiota in Rats Fed High-Fat Diets. Eur. J. Nutr. 2019, 58, 1545–1560. [CrossRef]

57. Jiao, A.R.; Diao, H.; Yu, B.; He, J.; Yu, J.; Zheng, P.; Huang, Z.Q.; Luo, Y.H.; Luo, J.Q.; Mao, X.B.; et al. Oral Administration of Short
Chain Fatty Acids Could Attenuate Fat Deposition of Pigs. PLoS ONE 2018, 13, e0196867. [CrossRef]

58. Du, Y.; Li, X.; Su, C.; Xi, M.; Zhang, X.; Jiang, Z.; Wang, L.; Hong, B. Butyrate Protects against High-Fat Diet-Induced Atherosclero-
sis via up-Regulating ABCA1 Expression in Apolipoprotein E-Deficiency Mice. Br. J. Pharmacol. 2020, 177, 1754–1772. [CrossRef]

59. Karlsson, F.H.; Fåk, F.; Nookaew, I.; Tremaroli, V.; Fagerberg, B.; Petranovic, D.; Bäckhed, F.; Nielsen, J. Symptomatic Atherosclero-
sis Is Associated with an Altered Gut Metagenome. Nat. Commun. 2012, 3, 1245. [CrossRef]

60. Denou, E.; Lolmède, K.; Garidou, L.; Pomie, C.; Chabo, C.; Lau, T.C.; Fullerton, M.D.; Nigro, G.; Zakaroff-Girard, A.; Luche, E.;
et al. Defective NOD2 Peptidoglycan Sensing Promotes Diet-induced Inflammation, Dysbiosis, and Insulin Resistance. EMBO
Mol. Med. 2015, 7, 259–274. [CrossRef]

61. Clarke, T.B.; Davis, K.M.; Lysenko, E.S.; Zhou, A.Y.; Yu, Y.; Weiser, J.N. Recognition of Peptidoglycan from the Microbiota by
NOD1 Enhances Systemic Innate Immunity. Nat. Med. 2010, 16, 228–231. [CrossRef] [PubMed]

62. Tosoni, G.; Conti, M.; Diaz Heijtz, R. Bacterial Peptidoglycans as Novel Signaling Molecules from Microbiota to Brain. Curr. Opin.
Pharmacol. 2019, 48, 107–113. [CrossRef] [PubMed]

63. Baik, J.E.; Jang, Y.O.; Kang, S.S.; Cho, K.; Yun, C.H.; Han, S.H. Differential Profiles of Gastrointestinal Proteins Interacting with
Peptidoglycans from Lactobacillus plantarum and Staphylococcus aureus. Mol. Immunol. 2015, 65, 77–85. [CrossRef] [PubMed]

http://doi.org/10.1007/s00394-018-1688-z
http://doi.org/10.1371/journal.pone.0196867
http://doi.org/10.1111/bph.14933
http://doi.org/10.1038/ncomms2266
http://doi.org/10.15252/emmm.201404169
http://doi.org/10.1038/nm.2087
http://www.ncbi.nlm.nih.gov/pubmed/20081863
http://doi.org/10.1016/j.coph.2019.08.003
http://www.ncbi.nlm.nih.gov/pubmed/31557694
http://doi.org/10.1016/j.molimm.2015.01.007
http://www.ncbi.nlm.nih.gov/pubmed/25647716

	Introduction 
	Materials and Methods 
	Study Participants 
	Lipoprotein Distribution Profiles 
	Short Chain Fatty Acids (SCFAs) Quantification 
	Samples Processing, Library Preparation and DNA Sequencing 
	Analysis of Sequencing Data 
	Statistical Analysis 

	Results 
	Participants and Data Collection 
	LPD Profiles, Stratification, and Host Covariates 
	LPD Clusters Are Linked with GM Profiles 
	LPD Clusters Correspond with GM and KOs Features 
	Metagenome Bins and Functions Associated with LPD Clusters 

	Discussion 
	Conclusions 
	References

