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Abstract

This thesis studies empirical Behavioural New Keynesian (NK) DSGE models that in-
corporate heterogeneous expectations and reinforcement learning (Brock and Hommes,
1997) to endogenise the distribution of agent types, with a specific focus on the use
of higher-order estimation methods to capture the highly non-linear features of the
learning mechanism. The thesis is composed of three chapters.

Chapter 1 investigates the properties of efficient local Gaussian-based filters for
Bayesian posterior inference on the parameters of non-linear DSGE models. A variety
of filters is assessed estimating artificial data generated from the simulation of the
fifth-order Taylor expansion of a Real Business Cycle (RBC) model: the second-order
Extended Kalman filter, a linear Kalman filter applied on the stochastic steady state
resulting from a higher-order approximation of the model, and sigma-point filters
- such as the Unscented Kalman filter and the Cubature Kalman filter. Results
show these filtering techniques represent a valid alternative to the particle filter for
problems requiring highly computational efforts.

Chapter 2 develops a Behavioural NK model enriched with portfolio adjustment
costs to study long-term asset purchases. Adjustment costs on the composition of the
households’ financial portfolio allow for bond-market segmentation by introducing a
wedge on the yields paid by bonds with different duration. Reinforcement learning
combined with bounded-rational agents introduces state-dependent asset-purchases
multipliers, by linking policy measures to the sentiment prevailing in the economy.
In this framework, policy experiments support the role of asset purchase programs as
counter-cyclical measures and emphasize the importance of Central Bank credibility
for monetary policy transmission.

Chapter 3 estimates a small Behavioural NK model with trend inflation. A formal
test for parameters identification shows that core reinforcement learning parameters
can only be jointly identified using higher-order approximations of the model while
expanding the information set with a measure of the share of agents adopting a
specific expectations mechanism. Thus, a proxy for the share of näive agents based
on the Survey of Consumer Expectations by the University of Michigan is exploited
for estimating the intensity of choice and the memory parameters with the Bayesian
non-linear filtering technique selected in Chapter 1 - the second-order Extended
Kalman filter. Model estimates outperform a rational expectation counterpart in
matching higher-order empirical moments.
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Abstract

Deze dissertatie bestudeert empirische Behavioural New Keynesian (BNK) DSGE-
modellen gebruikmakend van heterogene verwachtingen en versterkingsleren (Brock
en Hommes, 1997) om de verdeling van agententypen te endogeniseren, met de
nadruk op hogere-orde schattingsmethoden om de niet-lineaire kenmerken van het
leermechanisme vast te leggen.

Hoofdstuk 1 onderzoekt de eigenschappen van efficiënte lokale Gaussiaanse filters
voor Bayesiaanse posterieure inferentie van de parameters van niet-lineaire DSGE-
modellen. Een verscheidenheid aan filters wordt beoordeeld door het schatten van
kunstmatige gegevens: het tweede-orde extended Kalman filter, een lineaire Kalman
filter toegepast op de stochastische steady state die voortvloeit uit een hogere-orde
benadering van het model, en sigma-punt filters. De resultaten laten zien dat deze
filtertechnieken kunnen helpen bij empirische problemen die grote rekeninspanningen
vergen.

Hoofdstuk 2 ontwikkelt een BNK-model verrijkt met aanpassingskosten voor de
studie van lange-termijnaankopen van activa. Aanpassingskosten voor de samen-
stelling van de financiële portefeuille van de huishoudens maken segmentatie van
de obligatiemarkt mogelijk door een wig te introduceren tussen het rendement van
obligaties van verschillende duur en?. Versterkingsleren in combinatie met gebon-
den rationele agenten wordt gebruikt om toestandsafhankelijke multiplicatoren van
activa-aankopen te bestuderen, door beleidsmaatregelen te koppelen aan het endo-
gene economische sentiment.

Hoofdstuk 3 schat een klein BNK-model met trendmatige inflatie. Een formele
test voor de identificatie van de parameters toont aan dat de kernparameters van het
versterkingsleren alleen gezamenlijk kunnen worden geïdentificeerd met behulp van
hogere orde benaderingen van het model, terwijl de informatieverzameling wordt uit-
gebreid met een proxy voor het aandeel van agenttypes op basis van enquêtegegevens
van consumenten. Modelramingen op basis van niet-lineaire filtertechnieken presteren
beter dan een tegenhanger van de rationele verwachting bij het matchen van em-
pirische momenten van hogere orde.
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1

Introduction

Dynamic Stochastic General Equilibrium (DSGE) models reproduce dynamic op-
timal decision making of households, firms, and government, and represent a well
established laboratory for policy evaluation. Policy actions enter these models as
random shocks influencing the evolution of macroeconomic variables such as GDP,
consumption, and inflation over time. In this framework, the way agents form ex-
pectations is crucial to determine the magnitude and persistence of the transmission
of policy shocks to the economy. The majority of DSGE models assume agents be-
have under fully informed rational expectations (FIRE) hypothesis, i.e. agents know
the exact structure of the economy and are able to consider timely and complete
information when taking decisions.

This dissertation studies empirical Behavioural DSGE models which incorporate
heterogeneous expectations and reinforcement learning (Brock and Hommes, 1997)
to endogenise the distribution of agent types, with a specific focus on the use of
higher-order estimation methods to capture the highly non-linear features of the
learning mechanism. In these models, agents can gradually adjust the way they form
expectations on the basis of the past performance of a specific forecasting rule and a
random component. The possibility of switching across rules introduces highly non-
linear dynamics, which can only be fully captured with higher-order approximations
of the model.

Consequently, non-linear estimation methods become essential for estimating
model parameters. The choice of this expectation formation mechanism is moti-
vated by its ability to reproduce the higher-order moments observed in macroeco-
nomic time-series, while being consistent with empirical findings based on survey data
and laboratory experiments. Therefore, they can usefully complement FIRE DSGE
models in assessing newly designed policies and helping public bodies in taking more
aware decisions.

The thesis is composed of three chapters.
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The first chapter investigates the properties of local Gaussian-based filters for
Bayesian posterior inference on the parameters of non-linear DSGE models. These
filtering techniques are known to be more efficient than global filters, based on Se-
quential Monte Carlo simulations. Local-Gaussian filters represent an alternative to
estimate models incorporating heterogeneous expectations and reinforcement learn-
ing as these features lead to a quick increase of the state-space representation of the
model. A variety of local-Gaussian filters is assessed by estimating artificial data
generated from the simulation of the fifth-order Taylor expansion of a Real Business
Cycle (RBC) model: the second-order extended Kalman filter, a linear Kalman filter
applied on the stochastic steady-state resulting from a higher-order approximation
of the model, and sigma-point filters - such as the Unscented Kalman filter, the Cu-
bature Kalman filter and an application of the latter on a sparse grid of points (i.e.
Gaussian Particle filter). The accuracy and efficiency of these filters are compared
against a standard particle filter with resampling.

Results show local-Gaussian filters represent a relatively reliable alternative to
the particle filter when computational costs become excessive.

In an environment characterised by realistic non-linearities, accuracy was higher
for the examined local-Gaussian filters than for a particle filter.

With more extreme non-linearities, accuracy deteriorates for all filters, showing
the difficulty of these tools in dealing with highly volatile systems. Nonetheless, the
Cubature Kalman filter and the second-order Extended Kalman filter were, on aver-
age, as accurate as the particle filter while confirming their superior efficiency.
As a result, these filtering techniques are a useful device for estimating medium-scale
non-linear models and can be applied for an initial estimation of higher-order models
featuring heavily non-Gaussian latent variables before moving to more computation-
ally intensive methods.

In the following chapters, reinforcement learning is applied under different de-
grees of bounded rationality. In the second chapter, agents are assumed to be either
backward-looking or fundamentalists, whereas, in the third chapter, the latter are
substituted by fully rational agents. While fundamentalists know the fundamental
steady state of the model, but are not aware of the existence of other agent types
and do not consider the possibility of persistent shocks, fully rational agents know
the full system, but have to pay a persistent random cost to benefit of this knowl-
edge. This difference offers alternative analytical elements. Fundamentalists lead
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to a fully backward-looking system of equations which can be solved recursively as
deterministic models; thus it allows to consider the direct effects of a fully non-linear
reinforcement learning mechanism for model dynamics. By contrast, although re-
quiring an approximation of the non-linearities, the presence of fully rational agents
(i.e. forward-looking) introduces precautionary behaviour thereby easing compar-
isons against standard FIRE models.

The second chapter develops a New Keynesian model enriched with heteroge-
neous expectations, reinforcement learning and portfolio adjustment costs to study
long-term asset purchases. Adjustment costs on the composition of the households
financial portfolio allow for bond-market segmentation by introducing a wedge on
the yields paid by bonds with different duration. Thanks to this friction, the Cen-
tral Bank can influence consumption decisions by lowering long-term interest rates
through the purchase of long-term assets.

Reinforcement learning combined with bounded-rational agents are exploited to
introduce state-dependent asset-purchases multipliers. In such framework, the share
of agents adopting a specific forecasting rule dynamically determines the level of
economic confidence and trust in the Central Bank target in each period. Thus,
the transmission of standard and non-standard monetary policy shocks varies with
the economic sentiment prevailing in the economy. A Monte Carlo exercise shows
that this set-up can provide interesting insights on the robustness of long-term as-
set purchase programs. Even though the effects of asset purchases across different
simulations are on average similar to those from standard FIRE DSGE models, rein-
forcement learning highlights the importance of economic sentiment for the success of
a policy. In fact, the positive short-term pass-through of asset purchases is stronger
when confidence is either extremely high or extremely low. Considering the robust
empirical link between output gap and sentiment indicators, structurally reproduced
by the model, asset purchases are promoted as a valid counter-cyclical measure.
Moreover, the effectiveness of asset purchases is stronger with elevated Central Bank
credibility, thus providing a further layer of complexity to test these instruments.
Finally, the chapter sheds light on the adequate policy mix to reduce economic un-
certainty under reinforcement learning, emphasising the role of the Taylor principle
as a necessary condition for stability, and stresses the importance of output-gap
stabilization in reducing the frequency of high-volatility episodes.

The third chapter estimates a small Behavioural New Keynesian model with
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trend inflation characterised by reinforcement learning where agents can be either
backward-looking or fully rational. In particular, this estimation targets the core
parameters of the heuristic switching learning mechanism: the intensity of choice
parameter, ruling agents sensitivity to changes in relative utility linked to the per-
formance of forecast rules, the cost of being rational, describing the effort of gaining
deep and timely knowledge of model dynamics, and memory parameters, weighting
the importance of past forecast errors for the selection of a forecast rule. A for-
mal test for local identification of parameters in non-linear DSGE models confirms
that higher-order approximations are needed for identifying reinforcement learning
parameters, and that observing the share of agents adopting a specific forecasting
rule is useful for disentangling the value of the intensity of choice parameter. Thus,
the information set is augmented with a proxy for the share of näives based on the
qualitative questions on business activity from the “Survey of Consumer Expecta-
tions” held by the University of Michigan. Relying on results from Chapter 1, direct
inference based on the second-order Extended Kalman filter in a Bayesian frame-
work suggests higher values of the intensity of choice parameter relative to what
assumed in previous studies. Moreover, a validation exercise provide evidence that
the Behavioural NK model can outperform its fully rational counterpart in matching
empirical higher-order moments, even in the small departure analysed in this paper.



5

Chapter 1

Non-linear Estimation of DSGE
Models: Assessing Gaussian Filters

Abstract

This paper assesses the performance of novel methods for the estimation of non-
linear DSGE models. Given the well-known curse of dimensionality issue affecting
particle filters, alternative methods -more suitable for the estimation of medium-scale
DSGE models- are considered. For this purpose, a range of local-Gaussian filtering
techniques is compared to the particle filter in terms of accuracy and computational
efficiency. In particular, the paper evaluates the performance of sigma-point fil-
ters, as the Cubature Kalman filter (Arasaratnam and Haykin, 2009), the Unscented
Kalman filter (Julier and Uhlmann, 2004), the second-order extended Kalman filter
(Gustafsson and Hendeby, 2012) and risky linear approximations à la Meyer-Gohde
(2014b). Results from a Monte Carlo exercise based on artificial data suggest that
local-Gaussian filters represent a valid candidate to estimate medium-scale non-linear
DSGE models. All filters analysed showed to be a reasonable alternative to the par-
ticle filter in a context characterized by limited non-linearities. When dealing with
higher volatility, the second-order Extended Kalman filter and the Cubature Kalman
filter were as accurate as the particle filter while being evidently more efficient.

JEL Classification: [C11 E1]
Keywords: Nonlinear DSGE - Cubature Kalman Filter - Unscented Kalman filter -
Gaussian Filters - Extended Kalman Filter - Risky Linear Approximations - Particle
Filter
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1.1 Introduction

The last financial crisis proved that linear DSGE models were not well-equipped for
modelling the complexity of the economic environment. A linear framework, in fact,
could not include relevant non-linear modelling elements that would instead better
capture actual economic dynamics.

As a direct consequence, a new flourishing stream of non-linear DSGE models de-
veloped over the last decade. Non-linearities such as those generated by asymmetric
shocks, stochastic volatility and occasionally binding constraints have thus become
recurrent elements in the DSGE literature.

Standard applications of DSGE models rely on the linearisation of the model
around the non-stochastic steady state. This approach allows to efficiently solve
the model, to the detriment of relevant non-linear features. For instance, in a lin-
ear world, it is not possible to capture the role of uncertainty on agents’ behaviour
(Schmitt-Grohé and Uribe, 2004b). Moreover, some dynamics cannot be reproduced
in a linear framework, and -for example- it is not possible to model the evolution of
the proportion of rational agents in a Behavioural DSGE model with reinforcement
learning (Deák et al., 2017a). Some of the parameters characterising the reinforce-
ment learning mechanism à la Brock and Hommes (1997) are not identifiable with a
linear approximation of the model and the shares of agents become constant. Thereof,
the role of higher-order approximations gain relevance.

Unfortunately, the non-linear features bring about complex computational prob-
lems when estimating model parameters. First, finding solutions to models charac-
terised by significant non-linearities represents a cumbersome task. Secondly, when a
solution is obtained, it results in a non-linear state-space representation which cannot
efficiently be treated with traditional linear tools like the standard Kalman filter.

Although the application of higher-order perturbation methods allowed to solve
non-linear models relatively quickly (Schmitt-Grohé and Uribe, 2004b; Andreasen
et al., 2018), non-linear estimation of DSGE models is not yet regularly employed
for policy decision-making because standard techniques - such as particle filters
(Fernández-Villaverde and Rubio-Ramírez, 2005) or moment-based estimators
(Ruge-Murcia, 2012) - are instead not efficient enough. For the sake of computa-
tional efficiency, recent research has concentrated its attention on local-Gaussian
filters (Ivashchenko, 2014; Binning and Maih, 2015; Holden, 2017; Noh, 2019).
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Although these techniques rely on the strong assumption that latent states are
normally distributed, it was demonstrated that they can challenge particle filters in
terms of accuracy, while notably reducing computational efforts (Andreasen, 2013;
Kollmann, 2015, 2017; Noh, 2019).

This study contributes to the literature on estimation of non-linear DSGE models
by computationally evaluating the performance of a variety of local-Gaussian filters
measured in terms of efficiency and accuracy. The assessment results from an es-
timation exercise based on simulated data which were generated from a small Real
Business Cycle model.

Specifically, the paper will analyse the properties of two local-Gaussian sigma-
point filters - the Cubature Kalman filter (Arasaratnam and Haykin, 2009) and the
Unscented Kalman filter (Julier et al., 1995) - and will compare them with recently
developed alternatives, such as the second-order extended Kalman filter (Gustafsson
and Hendeby, 2012) and risky-linear approximations (Meyer-Gohde, 2014b). These
results will be evaluated against more global methods like the Gaussian Particle filter
(Kotecha and Djuric, 2003) - a semi-Global filter applying the Cubature Kalman filter
on a sparse matrix of nodes - and a standard particle filter with resampling (Andrieu
et al., 2001).

Three questions are asked: are local-Gaussian filters reliable? Which local-
Gaussian filter is the most efficient? Which filter provides the best estimates of
latent variables and parameters?

Following similar studies (Fernández-Villaverde and Rubio-Ramírez, 2005; Noh,
2019), this paper tries to provide an answer by means of two Monte Carlo exercises
estimating models parameters on artificial data simulated from a fifth-order approxi-
mation of the model. In the Benchmark exercise, data is generated by parametrizing
the model to reproduce realistic non-linearities whereas, in the second exercise, a
Risky parametrization was chosen to produce highly non-linear dynamics with the
purpose to evaluate the filters under different degrees of non-linearity.

The results of the exercise show that local-Gaussian filters, applied on a second-
order Taylor expansion of the model, represent a good alternative to the particle
filter in terms of accuracy.

Accuracy, measured in terms of Average Relative Parameters biases (ARB) eval-
uated at the posterior mode and Root Mean Squared Errors (RMSE) on filtered
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latent variables (non-observed states and exogenous shocks), was higher for local-
Gaussian filters than for a particle filter in an environment characterised by realistic
non-linearities.

Increasing model non-linearities, all filters become, on average, less accurate.
Nonetheless, the Cubature Kalman and the second-order Extended Kalman filter
were as accurate as the assessed particle filter.

In terms of efficiency, all local-Gaussian filters were more efficient than the particle
filter in spite of the limited number of particles used for this exercise thereby showing
their usefulness for applications considering medium-scale models.

The rest of the paper is organised as follows: Section 1.2 introduces the reader to
estimation methods for non-linear DSGE models and reviews some of the relevant
DSGE literature. Section 1.3 will shed light on methods to apply the Kalman filters
in a non-linear framework. Section 1.4 presents the features of the baseline model
and the solution method. Section 1.5 presents the metrics for evaluating accuracy
and efficiency and the results of the paper. Finally, 1.6 proposes some conclusions.

1.2 Estimation Methods

Estimating non-linear DSGE models generally relies on two approaches: direct in-
ference and the method of moments. Direct inference applies filtering techniques
to track the evolution of latent variables (i.e. shocks and non-observed endogenous
variables) and recover parameters by minimizing the loss function generated by the
model. The method of moments singles out the parameters minimizing the distance
between selected empirical moments and the respective ones associated to the model.

Filtering techniques have been extensively applied for the estimation of both lin-
ear and non-linear DSGE models (Smets and Wouters, 2007; Fernández-Villaverde
and Rubio-Ramírez, 2007). Given a set of observable variables, these methods al-
low to approximate the likelihood of latent states and, ultimately, apply Bayesian
inference to estimate model parameters.

In a linear context, DSGE models solutions can be represented by linear state-
space systems of equations with Gaussian random variables. As linear combinations
of Gaussian variables are generally still Gaussian, it is possible to use the Kalman
filter to recursively compute their sample likelihood. By contrast, higher-order ap-
proximations do not benefit of this property as Gaussian variables in a non-linear
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state-space representation originate non-Gaussian distributions. Therefore, it is no
longer possible to apply the standard Kalman filter to map the path of latent vari-
ables.

A solution to this problem is offered by global and local-Gaussian non-linear
filters. Global filters try to approximate the full sample likelihood using genetic
algorithms, as Sequential Monte Carlo (SMC) simulations. Local-Gaussian filters
assume that the predictive and filtering densities of the filter are Gaussian and uses
a non-linear approximation of the model to shape these density functions, which in
practical terms means tracking their mean and variance.

Global filters can deliver unbiased estimates of the sample likelihood and can
theoretically reproduce its complete structure.

Fernández-Villaverde and Rubio-Ramírez (2005) introduced the particle filter in
combination with the Metropolis-Hasting algorithm (PF-MH algorithm) to recover
the deep parameters of a non-linear DSGE model with Bayesian methods.

Since then, many variants of the Sequential Importance Sampling (SIS) algorithm
were deployed to increase the accuracy of estimates. The Sequential Importance
Sampling with Resampling (SISR) algorithm, embedding systematic resampling af-
ter every iteration of the SIS algorithm, was developed to overcome the issue that
most of the likelihood density was assigned to a single particle, also called particle
degeneracy issue. The Auxiliary Particle filter (Pitt and Shephard, 1999) was intro-
duced to improve efficiency and better deal with fat-tailed distributions by adding
a resampling step on past particles only when the predictive density is more infor-
mative about the value of observed states than the transition density. In a similar
vein, conditional particle filters, embedding a non-linear Kalman filter to compute
the predictive densities, were also applied on DSGE models (Amisano and Tristani,
2010; Murray et al., 2012). In order to better address problems with multi-modal
posteriors, Chopin et al. (2013) developed the SMC2 algorithm by introducing a
particle filter iteration in the correction and mutation steps of the SMC algorithm.
Iiboshi et al. (2020, 2022) recently applied it in a model with the zero-lower bound.

Herbst and Schorfheide (2019) developed a particle filter algorithm based on tem-
pering, that is sequentially adding data to the likelihood function in order to reduce
the number of evaluations. The algorithm is initialised with large measurement er-
rors to help the particle filter better explore the likelihood surface and iteratively
converge to a good tempering level in terms of efficiency and unbiasedness.
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Although these alternatives allowed to speed up the estimation process, the com-
putational burden is still too high. In fact, these algorithms are subject to a curse of
dimensionality problem: the number of iterations directly increases with the number
of states, particles and observations. Moreover, each endogenous variable needs to
be predicted and filtered using numerical integration for every particle, and eventu-
ally a resampling step is executed after these operations. As accuracy depends on
the number of particles, there exists an important trade-off between computational
tractability and the quality of estimates, especially with large models.

Local-Gaussian filters enable the application of linear filtering techniques to non-
linear models under the assumption of Gaussian prediction and filtering distribu-
tions. This reduces computational efforts and provide higher precision compared to
particle filters. In an exercise similar to this one, Noh (2019) showed that Gaussian-
mixture filters can outperform particle filters in estimating a Neo-Classical model
with stochastic volatility. Comparably, both a Kalman filter applied on a second-
order approximation based on pruning (Kollmann, 2015) and the Divided Difference
Kalman filter (Andreasen, 2013) could challenge a sequential Monte Carlo algorithm
based on 500’000 particles. I extend these findings to a wider set of local-Gaussian
filters trying to compare them on a common ground.

The engineering literature proposes a wide range of local-Gaussian filters differing
for the way of characterising the shape of the Gaussian distribution (i.e. approxi-
mating its mean and variance) assumed for the predictive and filtering densities of
latent variables.1

Standard local-Gaussian filters are usually grouped in Extended Kalman filters
and sigma-point filters. Extended Kalman filters approximate non-linearities with
Taylor Expansions and deliver closed form solutions for the moments of the Gaussian
distributions. Sigma-point filters select a set of nodes and deterministically propagate
them through the non-linear transition and measurement equations, thereby being
able to better track non-linearities when computing moments.

In this paper, the Cubature Kalman filter (Arasaratnam and Haykin, 2009) and
the Unscented Kalman filter (Julier and Uhlmann, 2004) were chosen to represent
sigma-point filters. The Cubature Kalman filter assumes the posterior distribution

1See Särkkä (2013) for a complete survey and technical explanation.
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of states to take a priori a Gaussian form, and applies non-product monomial cuba-
ture rules of integration to recover information on latent variables.2 The Unscented
Kalman filter (UKF) (Julier and Uhlmann, 2004) is conceptually similar to the Cu-
bature Kalman filter except for the different way of selecting nodes and of integrating
over states. Compared to the CKF, this filter allocates extra weight on nodes at the
center of the distribution leading to unstable estimates when distributions are ex-
tremely non-Gaussian. Nonetheless, the UKF can be parametrised to replicate the
weighting scheme of the CKF.

The interesting feature of this family of filtering techniques is the high accuracy
obtained with few nodes.3 The latter are compared to the second-order extended
Kalman filter developed by Gustafsson and Hendeby (2012), relying on a complete
second-order Taylor approximation of the state-space representation, which allows to
analytically extrapolate the mean and variances over time and compute the predictive
and filtering distributions with full precision up to the second order.4

Following Meyer-Gohde (2014b), we consider an application of risky linear ap-
proximations by applying the linear Kalman filter in a neighborhood of either the
stochastic steady state or the erogodic mean. Using Meyer-Gohde (2014b)’s algo-
rithm one can compute the solution of the third-order approximation of the model.
Then, the slope of the first-order Taylor expansion of the model in this fixed point
will contain information on the constant and time-varying effects of risk on agents’
behaviour (e.g. the precautionary motive). Therefore, one can assume latent vari-
ables to be normally distributed and apply the linear Kalman filter to efficiently
estimate model parameters.

Gaussian filters can notably reduce estimation time while guaranteeing acceptable
precision compared to particle filters with a limited number of particles. However,

2Holden (2017) extends this approach by matching third and fourth-order approximations.
Arasaratnam and Haykin (2009) propose a square-rooted version of the Cubature Kalman filter
to improve the numerical stability of the Kalman filter.

3Another sigma-point filter which was applied on DSGE models is the Central Difference Kalman
filter, assessed in Andreasen (2013) and in Noh (2019). Moreover, Binning and Maih (2015) presents
an application and assessment of these filters on Markov-switching DSGEs.

4A variant of the Extended Kalman filter is the Kalman-Q filter developed by Kollmann (2015)
to deal with explosiveness of higher-order DSGE approximations. The latter exploits pruned state
space representations efficiently solved with perturbation methods to compute the mean and covari-
ance matrices in closed-form. As for Extended Kalman filters, the KQF relies on the assumption of
Gaussian errors and it might lose accuracy when dealing with highly non-Gaussian distributions.
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each of these filtering techniques deals with non-linearities in a different way and an
evaluation exercise is needed to understand their strengths and weaknesses.5

Figure 1.1: Characteristics of local-Gaussian filters.

Since the seminal work of Kim (2002), the Simulated Method of Moments (SMM)
and the Generalised Method of Moments (GMM) were often applied for the esti-
mation of highly non-linear DSGE models. Relevant applications of the SMM are
Christiano et al. (2005), who introduced impulse responses matching in a linear en-
vironment, followed by recent applications in a non-linear context (see Ruge-Murcia
(2012); Mumtaz and Zanetti (2013); Castelnuovo and Pellegrino (2018)).

Born and Pfeifer (2014) introduced a two-step approach: first, they estimated
parameters of the shock-processes with sequential Monte Carlo methods, then, these
were imposed while estimating the deep parameters of the model with the method
of moments. Finally, Kim and Ruge-Murcia (2019) used the SMM for estimating
a model with non-Gaussian shocks to capture the effects of extreme events.6 As
this method requires simulating the model many times in order to find the set of
parameters minimising the distance between simulated and empirical moments, it
was recently replaced by GMM methods. In fact, thanks to the work on pruned state-
space systems presented in Andreasen et al. (2018), it is now possible to compute

5Deák et al. (2018) provides an illustration based on simulated data without running a complete
assessment exercise.

6See Scalone (2018) and Deák et al. (2018) for a recent survey.
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theoretical moments exploiting the solution of the model computed with perturbation
methods, thereby speeding up the estimation process.

The main advantage of the method of moments resides in the estimation of model
parameters without the need of recovering information on current state variables.
Additionally, GMMs seem to perform relatively well when models are strongly mis-
specified. However, this estimation method is subject to some implementational
problems. Specifically, one should try to match as many moments as possible to
guarantee the validity of estimates (Mumtaz and Zanetti, 2013). Unfortunately, this
is not a straightforward task. In fact, matching a moment of a specific order might
deteriorate the the ability of matching moments of different orders. Thus, the econo-
metrician needs to make an arbitrary choice on which moments should be assigned
with higher priority; furthermore, repeating the minimisation step for many different
moments is quite costly in computational terms. Finally, when the sample is short,
the actual distribution of moments might heavily differ from its asymptotic one.7

1.3 Likelihood Based Filtering

The set of first-order conditions describing agents’ optimal choices takes the form of
a system of non-linear stochastic equations:

Et [e (kt+1, kt, kt−1, θ, εt)] = 0 (1.1)

where the Et represents the expectation operator, e, defines a system of known non-
linear equations describing how the structural parameters of the model, θ, shape the
relationships between the endogenous variables, kt+1, kt, kt−1, in equilibrium. Finally,
εt are exogenous structural shocks.

In order to estimate deep parameters, the model is specified in state-space form
so to link equilibrium conditions to data. The system of equations (1.1) is rearranged

7Friedman and Woodford (2010) use the likelihood of moments to update the prior distribution in
a Bayesian estimation setting – Bayesian Limited information. This method allows to better exploit
information from data. However, it has the drawback not to perform well when the distribution of
moments presents irregularities and when the sample is short, because asymptotic properties are
not reliable with few observations. Creel and Kristensen (2011) solved this issue by approximating
moments density with kernel techniques. Such method has also the advantage of skipping the
minimisation step of the objective function in the GMM, thus speeding up the computation. Scalone
(2018) improved the small sample properties.
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to build the state transition function, f , describing the evolution of state variables,
st ∈ St := {s0, ..., sT}, over time:

st = f (st−1, εt; θ) (1.2)

where exogenous i.i.d. structural shocks, εt ∼ N (0,Ωε). Then, this system is aug-
mented with measurement equations defining the simultaneous relationships between
observable variables, zt ∈ Zt := {z0, ..., zT}, and states, st:

zt = g (st, vt; θ) (1.3)

where measurement errors are i.i.d. following vt ∼ N (0,Ωv). The state-space
representation of the model is composed by systems (1.2) and (1.3) which respectively
provide the “predictive" density and “filtering" distribution.8

Assuming the state-space model to be Markovian, it describes the joint density
of observations zt and latent states st conditional on the DSGE model parameters
θ:9

p(Z1:T , S1:T |θ) =
T∏
t=1

p(z1:t, s1:t|Z1:t−1, S1:t−1; θ)

=
T∏
t=1

p(zt|st; θ)p(st|st−1; θ)

(1.4)

where Z1:T = z1, ..., zT and S1:T = s1, ..., sT .
Bayesian inference aims at estimating the structural parameters of the model, θ,

by maximising the posterior density of states conditional to the observed data (i.e.
for a fixed sample) over the parameter space Θ.10

8The predictive density is also defined “transition density" whereas the “filtering density" from
the measurement equation is also referred to as “updating density".

9State variables are defined to be Markovian if the value of the states in t conditional to the
value in t-1 is independent from older lags of both states and measurements, p(st|S1:t−1, Z1:t−1; θ) =
p(st|S1:t−1; θ), and current value of measurements conditional to current value of states is condi-
tionally independent from from history, p(zt|S1:t, Z1:t−1; θ) = p(zt|S1:t; θ).

10This usually consists of computing an estimator - i.e. the mode or the mean - which maximises
the posterior distribution. This can be done in various ways. However, DSGE literature has been
mainly focusing on numerical integration techniques like Markov Chain Monte Carlo sampling,
sequential Monte Carlo sampling, importance sampling, etc.
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For this purpose, one needs to compute the marginal posterior density of the
model:

p(θ|Z1:T ) =
p(z1:T |θ)p(θ)

p(z1:T |Z1:T−1; θ)
∝

marginal
likelihood︷ ︸︸ ︷
p(z1:T |θ)

prior︷︸︸︷
p(θ) (1.5)

where p(θ) is the prior distribution - embodying a priori knowledge about the pa-
rameters.

The marginal likelihood p(z1:t|θ) is extrapolated from (1.4) by filtering out the
states, st, and results in:

p(Z1:T |θ) =
T∏
t=1

p(zt|Z1:t−1; θ) (1.6)

Filtering techniques are used to recursively calculate the marginal likelihood (or
the marginal posterior density in a Bayesian framework).

Starting from a known initial value for the state density conditional to the infor-
mation set, p(st−1|z1:t−1; θ), it is possible to use the transition density to predict the
density of latent states at time t given the information up to time t− 1:

p(st|Z1:t−1; θ) =

∫
p(st, st−1|Z1:t−1; θ) dst−1

=

∫
p(st|st−1, Z1:t−1; θ)p(st−1|Z1:t−1; θ) dst−1 (1.7)

and
p(zt|Z1:t−1; θ) =

∫
p(zt|st, Z1:t−1; θ)p(st|Z1:t−1; θ) dst (1.8)

The Bayes rule is then used to update the filtering distribution by extending the
information set, Z1:t, through the observation density as defined in the measurement
equation, p(zt|st; θ):

p(st|Z1:t; θ) = p(st|zt, Z1:t−1; θ) =
p(zt|st, Z1:t−1; θ)p(st|Z1:t−1; θ)

p(zt|Z1:t−1; θ)
(1.9)

At this point, the filtering density (1.9) is substituted to the initial value of the
conditional state density in the prediction density (1.7). Repeating these steps over
time, allows to recursively calculate the posterior distribution of states.
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The Bayesian filter provides a generalised framework to estimate latent states of
both linear and non-linear dynamic systems by recursively extrapolating information
from noisy observations given the states.

Unfortunately, applying the Bayesian filter is not always straightforward. Un-
der the specific assumptions of a linear system of equations with Gaussian shocks,
one can use the Kalman filter to recursively compute the mean and covariance of
the distribution and use them for recovering past states and the likelihood func-
tion. However, when one of the two conditions does not hold, the standard Kalman
filter cannot be used to recover the likelihood and non-linear methods relying on
approximations are needed.

The literature offers two approaches to approximate the likelihood function:
Global filters, aiming at fully reproducing the likelihood function by sequential Monte
Carlo sampling, or local-Gaussian filters, assuming latent variables to be normally
distributed to then extrapolate the first and second moment.

The idea underpinning local-Gaussian filters consists in a priori assuming that
the distribution of latent states is Gaussian at each point in time. Thanks to this
assumption, it is possible to approximate the filtering density in the updating step
- see equation (1.9) - by only predicting the mean and covariance matrix of the dis-
tribution. As the state transition density is non-linear, the integral in the prediction
step is not easy to be evaluated and some form of approximation is needed.

Depending on the approximation method employed in the prediction-step of equa-
tion (1.7), it is possible to distinguish among the various non-linear versions of the
Kalman filter. Some methods try to approximate the non-linear function, whereas
others try to directly recover the mean and the covariance of the distribution. For
instance, the Extended Kalman filter exploits Taylor approximations to handle non-
linearities, whereas the Unscented Kalman filter uses the unscented transform to
straightly provide estimates of the mean and covariance.

Among the filters directly gauging the first two moments of the distribution, an-
other distinction is made with respect to the approximation technique. In particular,
this varies on the basis of how the nodes (i.e. sigma-points) where the approximation
takes place are chosen and on the methodology used to compute the prediction step.
Concerning the choice of the nodes, this usually happens through deterministic rules
aiming at guaranteeing a high level of accuracy. For instance, the Central Difference
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Kalman filter selects the points with a Sterling interpolation method whereas the Cu-
bature Kalman filter chooses them through non-product monomials which provide
an exact accuracy for polynomials of a desired order.11

The rest of the section will present a selection of local-Gaussian filters, including
the Cubature Kalman filter (CKF), the Unscented Kalman filter (UKF), the Second-
order Extended Kalman filter (EKF) and a Kalman filter applied at the stochastic
steady-state (MG-S) or at the ergodic mean (MG-M) to capture higher-order effects
in a linear slope. The section concludes presenting a Global filter, a Particle Filter
(PF) with systematic resampling which will be used for benchmarking.

1.3.1 Cubature Kalman Filter

The Cubature Kalman filter (Arasaratnam and Haykin, 2009) assumes the filtering
distribution is Gaussian, p(st|z1:t) ≃ N (st|mt,Σt) to compute its mean and variance
with Gaussian moment matching∫

f(s)N(s|m,Σ)ds (1.10)

where the above integral is calculated by non-product monomial cubature rules to
compute the above expectations in an efficient way.

The key advantage of assuming Gaussian densities resides in the possibility
of riformulating (1.10) in terms of expectations over unit Gaussian distributions,∫
f(η(i))N(η(i)|0, I), evaluated in efficiently selected nodes. The latter are treated as

“local states" characterised by a Gaussian distribution. As a result, it is possible to
apply cubature rules for approximating the integral with weighted sums:12

∫
f(s)N(s|m,Σ)ds ≈ 1

2d

2d∑
i=1

f(m+
√
Ση(i)) (1.11)

where for each of the 2d evaluation points η(i) is determined by means of “non-product
monomial cubature rules”:13

11For further details on these methods, Särkkä (2013) provides a rich methodological explanation
and an extension to non-additive measurement errors and Ivashchenko (2014) provides a computa-
tional comparison against a particle filter.

12Cubature rules are quadrature rules in a multi-dimensional space.
13These techniques of integration are known as “non-product monomial cubature rules” and con-

sist in building weighted sums of functions in specific evaluation points. The main advantage of
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η(i) =

{ √
dji i = 1, ..., d

−
√
dji−d i = d+ 1, ..., 2d

(1.12)

with j being a unit vector in the direction of the unit axis i.14

The Cubature Kalman filter introduces the approximation of Gaussian moment
matching into the Bayesian filter algorithm to obtain efficient estimates of the mean
and covariance matrices of the filtering distribution and can be summarised by the
following steps.

The algorithm is initialised by choosing initial guesses for the mean, mt−1, and the
covariance matrix, Σt−1. The prediction step starts from the selection of evaluation
points, λ:

λ
(i)
t−1 = mt−1 +

√
Σt−1η

(i) i=1,....,2d (1.13)

where η(i)’s are determined as in (1.12).
Evaluation points are deterministically propagated ahead by means of the non-

linear transition equation of the model:

λ
(i)
t|1:t−1 = f(λ

(i)
t−1) i=1,....,2d (1.14)

the predicted mean and covariance of the model are approximated with cubature
rules

mt̄ =
1

2d

2d∑
i=1

λ
(i)
t|1:t−1 (1.15)

Σt̄ =
1

2d

2d∑
i=1

(
λ
(i)
t|1:t−1 −mt̄

)(
λ
(i)
t|1:t−1 −mt̄

)′

+Ωk−1 (1.16)

where t̄ = t|t− 1.

this technique is that approximations are exact for polynomials up to a given order while using
the minimum possible number of evaluation points. This is different from the unscented transform
which is exact only for polynomials up to order three.

14Unit vectors represents vectors with coordinates falling on the unit circle, thus, this specific
quadrature rule is called spherical.
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In the updating step of the Bayesian filter, new information enters into the fil-
tering density of the states. Similarly, in the Cubature Kalman filter, additional in-
formation from observables is used to update evaluation points. Substituting (1.15)
and (1.16) into (1.13), the selected points are

λ
(i)
t|1:t−1 = mt̄ +

√
Σt̄η

(i) i=1,....,2d (1.17)

which are propagated through the measurement equation:

Ẑ
(i)
t = g

(
λ
(i)
t|1:t−1

)
i=1,....,2d (1.18)

At this point, one can approximate the predicted mean m̂t and covariance Σ̂t of
the measurement, and the cross-covariance Ω̂t of the state and the measurement:

m̂t =
1

2d

2d∑
i=1

Ẑ
(i)
t (1.19)

Σ̂t =
1

2d

2d∑
i=1

(
Ẑ

(i)
t − m̂t

)(
Ẑ

(i)
t − m̂t

)′

+Qt (1.20)

Ω̂t =
1

2d

2d∑
i=1

(
Ẑ(i) −mt̄

)(
Ẑ

(i)
t − m̂t

)′

(1.21)

The Kalman gain Kt, the filtered state mean, mt, and the covariance, Σt, con-
ditional on the measurement, zt, can be derived :

Kt = Ω̂tΣ̂
−1
t (1.22)

mt = mt̄ +Kt [zt − m̂t] (1.23)

Σt = Σt̄ −KtΣ̂tK
′

t (1.24)

1.3.2 Unscented Kalman Filter

The Unscented Transform Kalman filter (UKF) (Julier et al., 1995; Julier and
Uhlmann, 2004) belongs to the family of sigma-point filters. As for the Cubature
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Kalman filter, aims at directly estimating the first two moments of the target
distribution by choosing deterministically some nodes and propagating them using
model non-linear approximations. Then, the mean and the covariance matrices are
computed from these nodes and plugged into a normal distribution.

As illustrated in Wan and van der Merwe (2001), the unscented transform is a
numerical method for approximating the joint distribution of random variables x1

and x2 defined as

x1 ∼ N (m,P) x2 = T(x1)

by applying the following algorithm:

1. Select a set of 2d+ 1 nodes with the below rule:

η
(0)
1 = m (1.25)

η
(i)
1 = m+ (d+ q)

1
2

[√
P
]
i

(1.26)

η
(i+d)
1 = m− (d+ q)

1
2

[√
P
]
i
i = 1, ..., d (1.27)

where
√
P
√
P

T
= P, [.]i denotes the i-th column of the matrix, and q is defined

by

q = α2 (d+ k)− d (1.28)

with α and k allowing for controlling the spread of the nodes.

2. Propagate the nodes using T (.)

η
(i)
2 = T(η

(i)
1 ) i = 0, ..., 2d (1.29)

3. Compute the mean and covariance of the transformed variable η1 from the
nodes η2:

E[T(ȷ
(i)
1 )] ≃ mU =

2d∑
i=0

W
(m)
i η

(i)
2 (1.30)
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Cov[T(ȷ
(i)
1 )] ≃ SU =

2d∑
i=0

W
(C)
i (η

(i)−mU

2 )(η
(i)−mU

2 )T (1.31)

with constant weights defined as:

W
(m)
0 = q

d+q
W

(m)
i = 1

2(d+q)
i = 1, ..., 2d

W
(c)
0 = q

d+q
+ (1− α2 + β) W

(c)
i = 1

2(d+q)
i = 1, ..., 2d

where β can be used to adjust the weight of the covariance matrix.

The UKF applies the unscented transform to estimate the mean and covariance
matrix the filtering distribution under the assumption of Gaussianity:

p(st|z1:t) ≃ N (st|mt,Σt)

where mt and Σt are computed at every measurement step t = 1, 2, ... with the
following algorithm:

1. Select initial nodes for the prediction step

λ
(0)
t−1 = mt−1 (1.32)

λ
(i)
t−1 = mt−1 + (d+ q)

1
2

[√
Σt−1

]
i

(1.33)

λ
(i+d)
t−1 = mt−1 − (d+ q)

1
2

[√
Σt−1

]
i
i = 1, ..., d (1.34)

Propagate the nodes using transition function

λ
(i)
t|1:t−1 = f(λ

(i)
t−1) i=1,....,2d (1.35)

and use them to compute the mean and covariance matrices

mt̄ =
2d∑
i=1

Wm
i λ

(i)
t|1:t−1 (1.36)

Σt̄ =
2d∑
i=1

W c
i

(
λ
(i)
t|1:t−1 −mt̄

)(
λ
(i)
t|1:t−1 −mt̄

)′

+Ωt−1 (1.37)



Chapter 1. Non-linear Estimation of DSGE Models: Assessing Gaussian Filters 22

2. Form the nodes for the updating step:

λ
(i)
t|1:t−1 = mt̄ (1.38)

λ
(i)
t|1:t−1 = mt̄ +

√
(d+ q)

[√
Σt̄

]
i

(1.39)

λ
(i+d)
t|1:t−1 = mt̄ −

√
(d+ q)

[√
Σt̄

]
i
i=1,....,2d (1.40)

which are propagated through the measurement equation:

Ẑ
(i)
t = g

(
λ
(i)
t|1:t−1

)
i=1,....,2d (1.41)

At this point, one can approximate the predicted mean m̂t, and covariance of
the measurement, Σ̂t, and the cross-covariance of the state and the measure-
ment, Ω̂t

m̂t =
2d∑
i=1

W
(m)
i Ẑ

(i)
t (1.42)

Σ̂t =
2d∑
i=1

W
(c)
i

(
Ẑ

(i)
t − m̂t

)(
Ẑ

(i)
t − m̂t

)′

+Qt (1.43)

Ω̂t =
2d∑
i=1

W
(c)
i

(
Ẑ(i) −mt̄

)(
Ẑ

(i)
t − m̂t

)′

(1.44)

The Kalman gain Kt, the filtered state mean, mt, and the covariance, Σt, conditional
on the measurement, zt, can then be derived as follows

Kt = Ω̂tΣ̂
−1
t (1.45)

mt = mt̄ +Kt [zt − m̂t] (1.46)

Σt = Σt̄ −KtΣ̂tK
′

t (1.47)
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1.3.3 Kalman Filter by means of Risky Linear Approxima-

tions

In a series of papers, Meyer-Gohde (2014a,b) designed an algorithm to efficiently eval-
uate the stochastic steady-state and build a linear approximation of the state-space
representation which is corrected for risk. Thanks to this risky linear approximation
and assuming latent variables to be normally distributed, it is possible to apply the
linear Kalman filter to estimate model parameters while taking into account for the
implication of agents’ precautionary behaviour for model dynamics. As this technique
does not rely on a non-linear filter per se but its ability to capture non-linearities is
the result of an extremely powerful solution method, the aim of this section intends to
provide an intuition of how the latter works. For a more comprehensive description of
the method and the derivation of the ergodic mean, Meyer-Gohde (2014a,b) present
the solution method, based on the representation developed in Lan and Meyer-Gohde
(2013b), its Dynare implementation and an estimation exercise on simulated data
whereas Kliem and Meyer-Gohde (2022) show an empirical application.

As a consequence of certainty equivalence, a linear approximation of agents’ be-
haviour in the deterministic steady state is neither influenced by current shocks
nor by expected future ones. By contrast, although current shocks are shut off in
the stochastic steady state, agents expect them to materialise in the future with
a given probability distribution and, therefore adjust their behaviour accordingly
(precautionary motive). Meyer-Gohde (2014b) presents an algorithm to evaluate the
stochastic steady state by exploiting the intrinsic structure of a higher-order policy
function computed with perturbation methods without the need of using non-linear
equilibrium conditions to recursively determine fixed points through fully non-linear
solution methods. In particular, this method allows to take into account for the
implications risk through the higher-order derivatives obtained at the deterministic
steady state to characterise a policy function which is linear in states but non-linear
in risk while avoiding heavy computational costs. Then, latent variables are assumed
to be normally distributed and a first-order Taylor expansion is computed to esti-
mate model parameters with the Kalman filter. As a result, the slope of the linear
approximation at the stochastic steady state will be influenced by the non-linear
effects of risk on model dynamics.



Chapter 1. Non-linear Estimation of DSGE Models: Assessing Gaussian Filters 24

The set of equilibrium conditions stated in equation (1.1) can be expressed in
function of the risk parameter σ,

Et [e (kt+1, kt, kt−1, θ, σεt)] = 0 (1.48)

Using this notation, models solutions can be represented as:

kt = f (kt−1(σϵt, σ), σϵt, σ) (1.49)

with a deterministic steady state defined as f
(
k̃(0, 0), 0, 0

)
and the stochastic steady

state as f
(
k̃(0, 1), 0, 1

)
.

The algorithm starts from the computation of a Taylor approximation of order C
at the deterministic steady state:

kt ≈
C∑

c=0

1

c!

[
C−c∑
d=0

fscσcσd

]
(st − s̄)⊗[c] (1.50)

where fscσc is the partial derivative of the system computed c times with respect
to the state vector st = [k

′
t−1 σϵt]

′ and d times with respect σ. As pointed out
in Meyer-Gohde (2014b), the term

∑C−c
d=0 fscσcσd in equation (1.50) shows that the

deterministic steady state and the stochastic steady state do not coincide even with
linear approximations. As agents take into account for the presence of future shocks
when choosing their optimal allocations in the stochastic steady state, one must
consider the expectation operator in (1.48) when computing this fixed point.

For this purpose, the recursive representation of the policy function developed in
Lan and Meyer-Gohde (2013b) is constructed by rearranging higher-order derivatives
obtained when solving for the deterministic steady state as:

kt ≈
C∑

c=0

1

c!

∞∑
d1=0

∞∑
d2=0

...
∞∑

dc=0

[
C−c∑
g=0

1

g!
kσg ,d1,d2,..dcσ

g

]
(ϵt−i1 ⊗ ϵt−i2 ⊗ ...⊗ ϵt−ic) (1.51)

with kσg ,d1,d2,..dcσ
g being the derivative with respect to the Kronecker products com-

puted c-times for the d exogenous shocks and g times with respect to σ.
This representation allows to express the stochastic steady state by shutting off

the the whole shock history while keeping σ = 1 to consider the effects of risk up to
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the C-th order:

k̃ (0, 1) ≈
C∑

g=0

1

g!
kσg (1.52)

Once the stochastic steady state is determined, it is possible to compute the
first-order derivatives with respect to states and shocks and use them to build a
risky linear approximation:

kt ≈ k̃(σϵt, σ) + k̃k(σϵt, σ)(kt−1 − k̃(σϵt, σ)) + k̃ϵ(σϵt, σ)ϵt (1.53)

where k̃k(σϵt, σ) and k̃ϵ(σϵt, σ) are first-order derivatives varying with the chosen
risky point.

At this point, one can assume that the shocks are normally distributed with zero-
mean and known diagonal covariance matrix and use the Kalman filter for recovering
information on latent states.15

1.3.4 Extended Kalman Filter

The Extended Kalman filter is based on the approximation of the non-linear tran-
sition equation with a Taylor series expansion along under the assumption that the
filtering density is Gaussian - p(st|z1:t) ≃ N (st|mt,Qt).16

The version exposed here is based on the second-order extended Kalman filter
with additive errors in the measurement equation (Gustafsson and Hendeby, 2012;
Särkkä, 2013). The algorithm used for the evaluation exercise is based on the work
presented in Holden (2018) who implemented the second-order Extended Kalman
filter in Dynare.17

The main advantage of this approach is the possibility of computing an exact
closed form representation of mean and variance in a similar fashion to the linear
Kalman filter. This should help both in terms of accuracy and in terms of speed

15In the case of the ergodic mean, on average the linear transition equation will follow the ergodic
mean of the model.

16Alternatively, the non-linear dynamic can be approximated by means of statistical linearisation
(Stengel, 1994). This technique has the advantage of providing a more global approximation of the
distribution but it often encounters issues due to very complex expectations to be computed in the
prediction step of the filter (see Särkkä (2013) book for further details).

17Särkkä (2013) generalises this algorithm to the case of non-additive noise. Holden (2018) fine-
tuned the algorithm to handle with non-stationary shock processes.
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of the algorithm. Given the generalised non-linear state space representation with
additive noise,

st = f (st−1; θ) + εt εt ∼ N(0,Σε) (1.54)

zt = g (st; θ) + vt vt ∼ N(0,Σv) (1.55)

one can derive the moments characterising the prediction and updating steps.
The mean and the covariance matrix of the prediction step are:

mt̄ = f(mt−1) +
1

2

∑
i

eitr
(
F

(i)
SS(mt−1)Qt−1

)
(1.56)

Qt̄ = FS(mt−1)Qt−1F
T
S (mt−1) (1.57)

+
1

2

∑
i,i′

eie
T
i′ tr

(
F

(i)
SS(mt−1)Qt−1F

(i′)
SS (mt−1)Qt−1

)
+ Σϵ,t−1 (1.58)

These can be used to build all the elements needed to recover the filtering distri-
bution in the updating step:

ht = zt − g(mt̄)−
1

2

∑
i

eitr
(
G

(i)
SS(mt̄)Qt̄

)
(1.59)

Xt = GS(mt̄)Qt̄G
T
S (mt̄) (1.60)

+
1

2

∑
i,i′

eie
T
i′ tr

(
G

(i)
SS(mt̄)Qt̄G

(i′)
SS (mt̄)Qt̄

)
+ Σv,t (1.61)

Kt = Qt̄G
T
S (mt̄)X

−1
t (1.62)

mt = mt̄ +Ktht (1.63)
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Qt = Qt̄ −KtXtK
T
t (1.64)

with:

FS(m) =
∂fj(x, ε)

∂sj
[s=m,ε=0] (1.65)

GS(m) =
∂gj(s,v)

∂sj
[s=m,v=0] (1.66)

FSS(m) =
∂2fi(s)

∂sj∂sj′
[s=m] (1.67)

GSS(m) =
∂2gi(s)

∂sj∂sj′
[s=m] (1.68)

1.3.5 Sequential Importance Filtering with Resampling

Sequential Monte Carlo filtering relies on the concept of importance sampling to
approximate the posterior density, p (θ|Z1:T ), by sampling from an easy-to-handle
distribution, π (θ). In this framework, the algorithm assigns increasing weights to
the draws depending on how close they are to the actual posterior density.

Importance sampling builds on the theoretical approximation of the posterior
distribution with:18

Ep [Ω (θ)] =

∫ ∞

−∞
Ω (θ) p (θ|Z1:T ) dθ = H−1

∫
Θ

Ω (θ)W (θ) π (θ) dθ (1.69)

18Where H =
∫
Θ

q(θ)
π(θ)π (θ) dθ is a constant of proportionality normalising the expected value to

meet p (θ|Z1:T ) =
q(θ)

p(z1:T |Z1:T−1;θ)
∝ q(θ)

H .
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where the “population” importance weight W (θ) = q(θ)
π(θ)

are used to weigh the draws

from π(θ). In practical terms, one samples i.i.d. (θi)Ni=1 from π (θ) and construct the
“sample" importance weights w(θi) = q(θi)

π(θi)
. Finally, these can be used to approximate

Ep [Ω (θ)] with Ω̄N = 1
N

∑N
i=1w(θ

i)Ω(θi).
Given the generalised non-linear state space representation

st = f (st−1; θ) εt ∼ N(0,Σε) (1.70)

Zt = g (st; θ) vt ∼ N(0,Σv) (1.71)

where measurement errors vt enter the system additively, the particle filter algorithm
can be summarised by the following steps.

For each state variable, s, and exogenous shock, ε, define Ns particles {sit, wi
t}

with i ∈ {0, ..., Ns} and wi
t being the weight assigned to particle i at time t.19

1. At period t=0, draw Ns i.i.d. particles
{
si0|0, w

i
0

}Ns

i=1
using the prior distribu-

tion, p (s0; θ), and uniform weights, wi
0 = 1/Ns

2. In each period t ∈ {0, ..., T} repeat the following step for each particle i ∈
{0, ..., Ns}:

(a) Predict st. Draw state variables ŝ(i)t from the importance distribution,
π(ŝt|s(i)t−1), relying on information up to period t-1 and build the corre-

sponding weights w(i) =
p(ŝ

(i)
t |s(i)t−1)

π(ŝ
(i)
t |s(i)t−1)

.

Approximate E[h(st)|Z1:t−1; θ] by means of

ĥ
(i)
t,Ns

=
1

Ns

Ns∑
i=1

h
(
ŝ
(i)
t

)
w

(i)
t W

(i)
t−1 (1.72)

19This version of the algorithm by Andrieu et al. (2001) is the Sequential Importance Resam-
pling algorithm and it has the advantage of reducing the probability of the degeneracy problem of
particles.
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(b) Predict observable variables by approximating the predictive density with
importance sampling:

p̂
(
zt|Z(i)

t|t−1; θ
)
=

1

Ns

Ns∑
i=1

w
(i)
t (1.73)

(c) Update particle i with an additional information from the observables:

E[h(st)|Z1:t; θ] = ĥ
(i)
t,Ns

=
1

Ns

Ns∑
i=1

Ŵ
(i)
t h(ŝ

(i)
t ) (1.74)

where

Ŵ
(i)
t =

ŵ
(i)
t W

(i)
t−1

1
Ns

∑Ns

i=1 ŵ
(i)
t

W
(i)
t−1 (1.75)

(d) When some particles become too important compared to others, the al-
gorithm encounters a degeneracy problem which leads to accuracy losses.
For this reason a resampling step is introduced in the algorithm and ac-
tivated every time the number of propagated particles is smaller than
N̂s =

Ns

1
Ns

∑Ns
i=1

(
Ŵ

(i)
t

)2 . In this case, Ns states are systematically resampled

from s
(i)
t|t ∈

{
s
(1)
t|t−1, ..., s

(i)
t|t−1, ..., s

(Ns)
t|t−1

}
with probability proportional to

rescaled weights wi
t∑Ns

i=1

. Then, E[h(st)|Z1:t; θ], can be approximated with

ĥt,Ns =
1
Ns

∑Ns

i=1 Ŵ
(i)
t h(s

(i)
t )W

(i)
t

3. At time T, approximate the likelihood function as:

log (p̂ (Z1:T |θ)) ≃
T∑
t=1

log

(
1

Ns

Ns∑
t=1

ŵ
(i)
t W

(i)
t−1

)
(1.76)

The above algorithm highlights the sources of the curse of dimensionality prob-
lems affecting particle filters. Computationally speaking, integrals computed in step
(a) and (c) require Monte Carlo integration and solving the model needs to be solved
many times. Overall, computational time increases quite rapidly with the number of
iterations being Ns x Nobservables x (Nendogenous+Nexogenous). For instance, estimating
a small model with 10 variables, 100 observations and 40 000 particles would require
40 000 000 iterations thereby resulting in a quite heavy computational problem.
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1.3.6 Gaussian Particle Filter

This section introduces the Gaussian Particle filter developed by Kotecha and Djuric
(2003) and applied on DSGE models by Adjemian and Karame (2016). The idea
underlying this filter consists in approximating particles proposal distribution with
the Gaussian posterior obtained from one of the local-Gaussian filters presented
above. Then, the distribution of current states is approximated by Gaussian sparse
grids.

s̃
(i)
t ∼ N (st|s̄t|t, Pst|t) i = 1, .., N

with associated weights:

ŵ
(i)
t ∝ ŵ

(i)
t−1

p(yt|s̃(i)t )p(s̃
(i)
t |sit−1)

q(s̃
(i)
t |s(i)t−1, yt)

)

=
1

N

p(yt|s̃(i)t )N (s̃
(i)
t ; s̄t|t−1, Pst|t−1

)

N (s̃
(i)
t ; s̄t|t, Pst|t)

(1.77)

Crucially, the transition density of states is approximated by the Gaussian density
obtained by a local-Gaussian filter. On the one hand, this speeds up computations
because it is sufficient to track only the mean and variance of the distribution. On
the other one, by randomly drawing particles at each step it avoids issues related to
particle degeneracy and allow to avoid the resampling step. Problems might arise if
the posterior is particularly non-Gaussian. Then, normalised weights (i.e. weights
embedding current observed information through the conditional likelihood) makes
the filtering step more efficient:

st|t =
N∑
i=1

w̃
(i)
t s̃

(i)
t

Pst|t =
N∑
i=1

w̃
(i)
t (s̃

(i)
t − st|t)(s̃

(i)
t − st|t)

′ (1.78)



Chapter 1. Non-linear Estimation of DSGE Models: Assessing Gaussian Filters 31

1.4 The Model

For sake of comparability with previous studies, like Fernández-Villaverde and Rubio-
Ramírez (2005), Noh (2019) and Kollmann (2015), the above direct inference meth-
ods will be tested on a stochastic Neo-classical Growth model.

1.4.1 RBC Application

A Neo-classical Growth Model with High Non-linearity

The performance of non-linear estimation techniques will be assessed on a small Real
Business Cycle model designed by Brock and Mirman (1972). There are three main
reasons for the choice of this model. First, it embeds the main features of modern
DSGE models. Second, the nature of the Monte Carlo evaluation exercise requires
to somehow contain computational time. Therefore, one needs a model that can be
easily solved with higher-order perturbation methods and at the same time allowing
for repeated estimations in a reasonable time. Finally, it helps comparing results
from former studies using similar versions of the model as Fernández-Villaverde and
Rubio-Ramírez (2005) and Noh (2019).

The model relies on a representative agent who has to allocate resources between
consumption, Ct, and hours worked, Ht, subject to a resource constraint, (1.81).
Agents are characterised by a CRRA separable utility function where the relative
risk aversion parameter, σ, affects the Frisch elasticity of the labour supply and the
labour utility slope ψ is strictly positive.

Households produce a single good, Yt, by combining labour, Ht, and capital, Kt,
according to the production function (1.80) with α ∈ (0, 1). Capital follows the law
of motion (1.82) - where It are investments and δ is the depreciation rate of capital.
Finally, the technology shock, At, and the investment specific shocks, µt, evolve as
stationary AR(1) processes with Gaussian shocks ϵit ∼ N (mi, σ

2
i ) for i=A,µ.

Agents maximise expected utility by choosing Ct, Ht and Kt:

E0

∞∑
t=0

βt

{
log (Ct) + ψ

(1−Ht)
(1−σ) − 1

1− σ

}
(1.79)

subject to:
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Yt = AtK
1−α
t−1 H

α
t (1.80)

Yt + (1− δ)Kt−1 = Ct +Kt (1.81)

Kt = Kt−1(1− δ) + µtIt (1.82)

And the AR(1) processes for technology and investment specific shocks:

log(At) = ρAlog(At−1) + ϵAt (1.83)

log(µt) = ρµlog(µt−1) + ϵµt (1.84)

This maximisation problem leads to the following Lagrange equation:

L : E0

∞∑
t=0

βt{log (Ct) + ψ
(1−Ht)

(1−σ) − 1

1− σ
+

+ λt
(
AtK

1−α
t−1 H

α
t − Ct −Kt + (1− δ)Kt−1

)
}

and the related first-order conditions with respect to Ct, Ht and Kt:

Ct :
1

Ct

− λt = 0 (1.85)

Ht : ψ (1−Ht)
−σ +

1

Ct

αAt

(
Kt−1

Ht

)1−α

= 0 (1.86)

Kt : −
Et{Ct+1}
βCt

+ (1− α)At

(
Kt−1

Ht

)−α

+ (1− δ) = 0 (1.87)

λt : AtK
1−α
t−1 H

α
t − Ct −Kt + (1− δ)Kt−1 = 0 (1.88)

Agents’ optimal behaviour, described by first-order conditions from (1.85) to
(1.88), constitutes a system of non-linear difference equations which can be solved
around the non-stochastic steady state using perturbation methods - for a detailed
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derivation please see Section 1.4.2. The resulting solution is a policy function depend-
ing on a vector of control variables Zt = [Ct, Ht, It] given the set of predetermined
state variables St = [Kt, At, µt] and a set of exogenous shocks Vt = [ϵAt , ϵ

µ
t ].

Details on the zero-growth steady state and its recursive representation are pre-
sented in Appendix A.1.

1.4.2 Solution Methods and Likelihood Evaluation

This paper assesses methods to estimate non-linearities deriving from higher-order
approximations of models. All the filtering algorithms presented above require eval-
uating the likelihood function several times. In order to efficiently solve the model,
standard perturbation methods are applied around the non-stochastic steady state.
For this purpose, the second-order Taylor approximation of the model is computed
with the methods introduced in Schmitt-Grohé and Uribe (2004b) and higher-order
approximations by means of the techniques developed by Andreasen (2013). These
methods were also applied in similar studies as Noh (2019) and Fernández-Villaverde
and Rubio-Ramírez (2005; 2007). Moreover, these solution methods are nowadays
implemented in standard toolkits for estimating DSGE models with rational expec-
tations.

Once a second-order Taylor approximation of the model is computed, it is possible
to build its respective state-space representation as:

zt = Gθ
s (st) +

1

2
Gθ

ss (st ⊗ st) +
1

2
f θ
σσ + σΩ

1
2
v vt (1.89)

st+1 = F θ
s (st) +

1

2
F θ
ss (st ⊗ st) +

1

2
hθσσ + σΩ

1
2
ϵ ϵt+1 (1.90)

where exogenous shocks εt ∼ N (0, I2) i.i.d. with

Ω
1
2
ϵ =

 0 0

σA 0

0 σµ

 (1.91)
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and measurement errors on the three observable variables zt := {Ct, Ht, It} are vt ∼
N (0, I3) i.i.d. with covariance matrix

Ω
1
2
v =

σC 0 0

0 σH 0

0 0 σI

 (1.92)

Given the aim of this exercise is to provide results of general use, I follow the
literature on non-linear estimation by including as many measurement errors as ob-
servables. As shown in sections 2.2 and 2.3 of Fernández-Villaverde and Rubio-
Ramírez (2007), the latter choice reduces problems of stochastic singularity when
using particle filters, and it is de facto a necessary condition for generalising likeli-
hood computation to a wider range of particle filters and models. Acknowledging the
presence of measurement errors might represent an issue for macroeconomic mod-
ellers (i.e. as the econometrician relies on a different information set compared to
agents), the latter should be of relatively limited magnitude in order not to heavily
influence model dynamics.

1.5 Evaluating Filtering Techniques

Filters properties were evaluated through a Monte Carlo exercise. The RBC model
was used to generate 100 samples of data for 500 periods. The filtering techniques
presented in Section 1.3 were applied on each sample. Then, descriptive statistics
were calculated to assess “efficiency" and “accuracy" in terms of their ability to track
latent states and recover the value of parameters.

Observability is the ability of a filter to reproduce the dynamics of non-observed
state variables. This is evaluated through a root-mean-squared error (RMSE) com-
puted in the following way:20

RMSEf
j =

1

K

K∑
k=1

√√√√ 1

T

T∑
t=1

(skj,t − ŝkj,t|t)
2 f = F (1.93)

20Binning and Maih (2015) suggest a similar indicator to study filtering techniques on DSGE
models with Markov-Switching mechanisms.
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where sj,t is the true realised value of the j-th state variable at time t and ŝj,t|t is
the state variable not included in the information set as reproduced with estimated
parameters with filter f ∈ F : {CKF,UKF,MGM,MGS,GF, PF}. In the RBC
example presented in Section 1.2, these are S = {Kt, At, µt}. Finally, RMSEj are
expressed in terms of shares of the long-term average of each state variable:

RMSEf =
1

J

J∑
j=1

RMSEf
j

1
T

∑T
t=1(sj,t)

f = F (1.94)

To deal with noisy estimates, I report the average cross-sample RMSE and the
10th and 90th percentiles.

Accuracy is measured with an Average Relative Bias on estimated parameters
(ARB):

ARB =
1

K

K∑
k=1

1

I

I∑
i=1

(
θ̂ki − θi
θi

)2

(1.95)

where θi is the true value of the i-th parameter and θ̂ki is the sample-k estimate of the
i-th parameter. Furthermore, the Laplace approximation of the marginal posterior
density evaluated at the posterior mode is reported for each non-linear filter.21

Although this indicator represents only an approximation of the marginal density
(i.e. based on a Gaussian distribution fitted at the maximum a-posteriori estimate),
it was chosen because filters are assessed relying on the posterior mode computed
with an optimiser.22

This is mainly motivated by computational reasons. On the one hand, it is in
fact not possible to fine-tune the acceptance ratio rate for each sample estimate and
still provide a comparable indicator of computational efficiency across the different
samples and filters. On the other one, algorithms for setting the scale parameter at
a level ensuring a good acceptance ratio (i.e. about 0.33) are quite time consuming
and would make the evaluation exercise extremely long.23

21See Appendix A.2 for details on the Laplace approximation.
22Friedman and Woodford (2010) show that the Laplace approximation is a good proxy for the

posterior density obtained with the Metropolis-Hasting algorithm.
23This is important because this paper tests 7 filters on 100 different samples.
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In case of sampling from the posterior distribution, one might use the modified
harmonic mean estimator as a proxy for the marginal likelihood (Geweke, 1999).24

Efficiency is measured in terms of the time needed by an algorithm to find the
mode of the posterior distribution. For the reasons mentioned above, it was decided
not to use the effective computational time (i.e. the ratio between the time for
simulating the posterior with MC-MC and the multivariate effective sample size. The
effective computational time developed by Vats et al. (2019) is a measure resulting
from the ratio between the MC-MC computing time and the multivariate effective
sample size defined as N

(
Ωϵ

Λ

) 1
l , where N is the number of simulated samples, l is the

number of parameters, Ωϵ is the asymptotic covariance matrix based on independent
draws, and Λ is the asymptotic covariance-matrix of correlated samples.).

1.5.1 Estimation and Filters Assessment

The baseline model presented in equations (1.82)-(1.88) is characterised by 11 pa-
rameters, θ = {β, α, δ, σ, ρA, ρµ, σA, σµ, σC , σH , σI}. As in Ríos-Rull et al. (2012),
some of the parameters were chosen to match US long-term averages for macroe-
conomic variables not directly influencing the likelihood function. The value of β
implies an annualised net interest rate of 4%, α implies a labour share of 0.33 and δ
was set to 0.025 as in Fernández-Villaverde and Rubio-Ramírez (2005). ρz = 95 and
σz = 0.007 were calibrated to match the Solow residual of the US economy. As in
Noh (2019), measurement errors were set to 50% of the standard deviation of actual
data detrended with the hp-filter.

Following Fernández-Villaverde and Rubio-Ramírez (2005), data were simulated
with two different model parametrisations: a “benchmark" calibration -to reproduce
a realistic economic environment- and a “risky" calibration -to examine the perfor-
mance of filtering techniques in dealing with a highly non-linear world-.

As explained in Noh (2019), the risk parameter σ influences the volatility of
the system by controlling the Frisch labour supply elasticity - Ξ = 1−H̄

σH̄
. Therefore,

lowering the value of σ increases the volatility of hour worked, generating a non-linear
behaviour of the system.

24The latter is used in Noh (2019) after sampling only 55000 draws with the MC-MC algorithm.



Chapter 1. Non-linear Estimation of DSGE Models: Assessing Gaussian Filters 37

In the benchmark scenario, σ is set at 2.75 whereas this is reduced to 0.025 in
the risky scenario and complemented with a technological shock five times larger in
order to increase the volatility of the whole system.

Calibrations Priors
Parameter Domain Bench. Risky Flat Informative
β (0, ∞) 0.99 0.99 U[0.7,0.995] U[0.7,0.995]
α [0,1] 0.67 0.67 U[0.3,1] B [ 0.67,0.2]
δ (0, ∞) 0.025 0.025 U[0.01, 0.05] Γ−1 [0.025, 0.005]
σ (0, ∞) 2.75 0.05 U[0,100] Γ−1 [σ, 0.5]
ρA [0,1] 0.95 0.95 U[0, 1] B[0.5, 0.2]
ρµ [0,1] 0.72 0.72 U[0, 1] B[0.5, 0.2]
σA (0, ∞) 0.007 0.035 U[0,100] Γ−1 [σA, 0.02]
σµ (0, ∞) 0.06 0.06 U[0,100] Γ−1 [σµ, 0.02]
Measurement errors
σC [0, ∞) 0.004 0.004 U[0,100] Γ−1 [σC , 0.02]
σH [0, ∞) 0.019 0.019 U[0,100] Γ−1 [σH , 0.02]
σI [0, ∞) 0.009 0.009 U[0,100] Γ−1 [σI , 0.02]

Table 1.1: Priors summary

The joint prior distribution of the DSGE was designed to reflect economically
sensible requirements. I have tested filters with informative priors as in Ríos-Rull
et al. (2012) and with flat priors as in Fernández-Villaverde and Rubio-Ramírez
(2005) and Noh (2019). However, given the large sample-set, the likelihood and the
posterior tend to coincide and results are very similar. In this section, I discuss
results for the informative prior case. The prior for β is assumed to be flat and
ranging between 0.75 and 1. Shares and persistency parameters were assigned beta
distributions ranging between 0 and 1. Finally, capital depreciation and standard
deviations of shocks and measurement errors were assumed to be distributed as
inverse gamma.

1.5.2 Results

The data-set was generated by simulating a fifth-order Taylor approximation of the
model at the deterministic steady state to reproduce its non-linear features. Filters
performance is evaluated by estimating the RBC model on 100 different samples with
three variables - consumption, investment and labour - observed for 500 periods and
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parameters were initialised at their true values (i.e. the calibrated value used for
generating observable variables) to avoid algorithms converging to extreme results.

Following the literature on non-linear estimation, three measurement errors -
although small in magnitude- were included for the evaluation exercise. As the model
embeds two stochastic processes, the addition of one measurement error would be
sufficient to guarantee system invertibility and back-out shock processes under ra-
tional expectations.25 Nonetheless, Fernández-Villaverde and Rubio-Ramírez (2005)
show the inclusion of a measurement error for each observable variable facilitates a
more general application of particle filters. Moreover, this allows a better comparison
with other studies.

All estimates are computed in Matlab on a standard laptop endowed with an
Intel Core i9-9880H with CPU 2.3GHz and 32 GB memory. Following Kollmann
(2015), measurement errors generated from a normal distribution with mean zero
and standard deviation at the prior mode were added to the simulated observables.26

The posterior mode was computed by means of a stochastic global optimiser, the
CMA-ES (Covariance Matrix Adaptation Evolution Strategy) by Hansen and Kern
(2004) to allow for a better exploration of the posterior surface. In fact, the likelihood
function of non-linear DSGE models is non-smooth, especially when introducing re-
sampling. Consequently, the likelihood function is affected by discontinuities which
do not allow the application of gradient-based algorithms. Non-gradient based al-
gorithms, like symplex-algorithms or stochastic optimisers, help dealing with this
issue. Following Andreasen (2010), who suggests that the CMA-ES outperforms the
Simulated Annealing algorithm both in accuracy and speed, all results presented in
this section refer to value of parameters at the posterior mode obtained by means of
this algorithm.27

Unless explicitly stated, filters were applied on a second-order Taylor expansion
of the model computed with perturbation methods.

In the interest of computational time, evaluations for global filters and for the
Gaussian Particle filter rely on 500 particles. Although the number of particles is

25Measurement errors were chosen to be small in order to limit the divergence from the assumption
of perfect information.

26The latter avoid estimated standard deviations to touch the zero bound and thereby producing
biased estimates.

27For the sake of completeness, in Appendix A.6, I have tested the Symplex-Algorithm designed
by the Dynare Team, but its performance was worse than the CMA-ES one.
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moderate compared to empirical applications, normally using thousands of particles,
this choice helps comparing results with Noh (2019) and Binning and Maih (2015).
Moreover, Andreasen (2013) shows, in an estimation exercise based on 500 000 parti-
cles, that the number of particles to be used depends on the characteristics of models
and data, and, as such, it still represents a grey area to be investigated.

Benchmark Calibration

This section presents results related to the Benchmark case, aiming at understand-
ing the ability of local-Gaussian filters to deal with non-linearities similar to those
observed during the Great Moderation in the US.

Table 1.2 presents parameter estimates as evaluated at the pseudo-posterior
mode. Results show that local-Gaussian filters offer an higher average precision
than that of global filters.

Accuracy, as measured by the ARB, was quite similar across the various local-
Gaussian filters examined, with Risky Linear Approximations being marginally bet-
ter that the Cubature Kalman filter (CKF) and the second-order Extended Kalman
filter (EKF). Interestingly, these filters were able to almost exactly recover the mag-
nitude of the standard deviation of shocks and measurement errors.

Root-mean-squared-errors suggest that the CKF is on average better than other
filters in recovering latent variables. Nonetheless, the average performance of both
local-Gaussian filters and the particle filter do not differ concretely. RMSE ranges
show that the CKF consistently performed better than other local-Gaussian filters
since its average RMSE is below or close to the lower bounds recorded for alternative
filters. Surprisingly, the RMSEs observed for the SM-CKF (i.e. the Gaussian Particle
filter) suggest that applying the CKF on a sparse grid of selected nodes might lead
to biased estimates.

The above results illustrate the potential weaknesses of the PF and SM-CKF in
providing unbiased estimates when the number of nodes is particularly limited. One
can, in fact, notice that the range of RMSEs is particularly large for these filters.
With few particles, these algorithms might assign high probability mass to wrong
areas of the parameter space, thereby not being able to correctly identify parameters.
This might explain the evident difficulties of these two filters in estimating the correct
value of σ. Notwithstanding this, Kollmann (2015) and Andreasen (2013) provide
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evidence that local-Gaussian filters can outperform particle filters with 100 000 and
500 000 particle. Turning to the log-likelihood, EKF, RLM, RLF and the PF500
reached slightly higher density at the mode with respect to the CKF.28

Finally, RLM, RLS and the CKF require lower computational time compared to
the other Gaussian filters. Therefore, they might be more suitable for estimating
larger models.

These results are consistent with what found in Noh (2019) and Kollmann (2015)
who suggest that local-Gaussian filters perform better than the particle filter in
reproducing the dynamics of latent variables. Noh (2019) finds that the Central
Difference Kalman filter, a sigma-point filter, provides a relative good performance
on data simulated at the third-order under the benchmark calibration.29 Similarly,
Kollmann (2015) finds that the Kalman-Q filter, relying on a closed-form represen-
tation for the mean and variance of the predictive densities like the second-order
Extended Kalman filter (Gustafsson and Hendeby, 2012), outperforms the particle
filter in capturing trajectories of latent states when data is generated using a RBC
model with small shocks solved at the second-order.30

In the Benchmark environment, all local-Gaussian filters provide a good compro-
mise in terms of accuracy and efficiency.

28The log-likelihood obtained by the Gaussian Particle filter is biased by the peaks erroneously
around some nodes while building the distribution.

29Noh (2019) assesses the performance of a Binomial Gaussian Mixture filter, finding it provides
more accurate estimates than local-Gaussian filters. This family of filters relies on nodes to be
propagated under the assumption predictive and filtering densities being mixtures of normal dis-
tributions. However, their computational costs directly increase with the number of states to be
propagated, and it is more costly than the Gaussian filter (i.e. SM-CKF) analyzied in this paper.
I have tested the Gaussian-mixture filter implemented in Dynare and presented in Adjemian and
Karame (2016), using a mixture of five normal distributions and 100 nodes, but the long computa-
tional time did not allowed for a systematic exercise.

30Kollmann (2015) ’s model specification only differs from the one used in this paper because of
the investment shock is replaced with a preference shock.
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Parameter Actual CKF EKF RLM RLS SM-CKF PF
500 500

α 0.67 0.6694 0.668 0.6678 0.6676 0.691 0.6684
β 0.99 0.9898 0.9895 0.9895 0.9896 0.9948 0.9888
δ 0.025 0.0252 0.0255 0.0255 0.0255 0.0197 0.0262
σ 2.75 2.631 2.6044 2.5934 2.5925 13.3325 4.1497
ρz 0.95 0.9391 0.9384 0.9396 0.9397 0.5796 0.9145
ρM 0.72 0.7875 0.7192 0.7059 0.7059 0.7878 0.8262
σM 0.06 0.0482 0.0572 0.059 0.0588 0.0581 0.0506
σZ 0.007 0.0064 0.0067 0.0067 0.0067 0.0585 0.0085
σC 0.004 0.0041 0.004 0.0039 0.0039 0.0064 0.0039
σI 0.019 0.0076 0.0008 0.0021 0.0021 0.0108 0.0063
σH 0.009 0.0089 0.0089 0.0089 0.0089 0.0092 0.0089
ARB 13.25% 13.12% 12.44% 12.46% 173.53% 34.98%
RMSE 10% 8.7% 13.25% 14.18% 14.79% 26.74% 10.95%
RMSE 90% 20.96% 23.35% 25.62% 20.68% 76.32% 30.82%
RMSE 14.77% 18.25% 19.52% 17.22% 44.23% 20.56%
Time 00:02:05 00:03:10 00:01:36 00:01:37 00:04:20 00:18:53
Log-likelihood -6038 -6075 -6074 -6074 -11436 -6074

Table 1.2: Benchmark calibration at order 5 with informative priors.
CKF: Cubature Kalman Filter; EKF: Full Second-order Extended Kalman
Filter; RL-M: Approximation around the ergodic mean; RL-S: Approxima-
tion around the stochastic steady state; SM-CKF: Gaussian filter (Sparse-
matrix Cubature Kalman Filter); PF500: Particle filter with 500 particles
and systematic resampling. Observables: consumption, C, hours worked, H,
investment, I. The experiment was run on 100 samples of 500 observations
using CMAES algorithm to compute the mode. RMSE are normalised by
the sample average of state variables. [10%,90%] are RMSEs at the 10th and

90th percentiles.

Further robustness checks are presented in Appendices A.3 - A.6. Under flat
priors, all indicators deteriorate and often parameters touch the extremes of the prior
bound, showing the difficulty of identifying parameters in a non-linear environment.
Similarly, fixing some of the parameters difficult to identify, such as α, β and δ, seems
to create some computational difficulties. By contrast, reducing the sample size to
120 observations, a number comparable to the standard sample used for estimating
DSGE models with US data, does not concretely reduce accuracy using Bayesian
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techniques. Overall, filters performance resulted in a rank similar to what presented
in this section with sigma-point filters being slightly more reliable than others.

Table 1.3 presents an evaluation of sigma-point filters by comparing the CKF
to various set-ups of the Unscented Kalman filter (UKF). As explained in Section
1.3, the UKF allows to somehow steer the selection of nodes by means of parameter
α and k and to apply a correction of the weight assigned to each node through
parameter β. Beside the technique used for approximating polynomials, the main
difference with the CKF is the UKF generally assigns more weight to central nodes.
As Gaussian distributions are symmetric, adding extra weight to central nodes might
reduce its ability of approximating non-Gaussian processes. Therefore, one can use
the aforementioned parameters to add prior information. Nonetheless, by selecting
{α, k, β} = {1, 0, 0}, the UKF can reproduce the weighting scheme of the CKF.
Starting from this set-up, I have tested different weighting schemes. Parameter α
directly influences the position of nodes around the central one and reduces the weight
assigned to non-central weights. In this case, setting α to higher values compared
to the CKF filter generate a loss in accuracy. Parameter k has a symmetric impact
on both the position of nodes and weights without penalising the weight of non-
central nodes. Columns 4 to 6 show varying this parameter has a marginal impact
on the level of accuracy compared to column 1. Finally, parameter β does not affect
the position of nodes but increases the weight assigned to the non-central ones.
The combinations {α, β, k} = {1, 2, 0} and {α, β, k} = {1, 2,−1} allow to slightly
improve on CKF accuracy while reducing computational costs. The possibility of
fine-tuning these parameters might be useful to address specific known characteristics
of likelihood function. In this application, the UKF was also more efficient than
the CKF. In general applications, the non-product monomial rule underpinning the
CKF has the advantage of providing positive weights for polynomial up the fifth
order and this guarantees an exact approximation of the first and second moment
of the predictive and filtering densities. By contrast, the unscented transform might
produce negative weights while increasing the number of nodes. As a result estimates
might be unstable. Additionally, this technique guarantee an exact estimate of the
mean for polynomial up to the third-order and of the variance only for linear models.
Therefore, if some of the moments produced by the DSGE model contains higher
order polynomial the UKF might lose accuracy.

Binning and Maih (2015) does a similar exercise in a Markov-switching context
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comparing the behaviour of various sigma-point filters in recovering latent states
in a 1000 observations sample. They find the UKF outperforms the CKF and the
Divided Difference Kalman filter (DDF) when computing RMSEs on the whole sam-
ple. However, the latter behaved better when considering only the second half of
the sample. Hence, these authors conclude the DDF is slower in converging but can
ensure a somehow stronger accuracy. Anyhow, the different performances were not
concretely different and the CKF resulted less dependent on the sample.

Risky Calibration

In this section, the data generating process is characterised by an extreme calibra-
tion of parameters with the aim of testing non-linear filters in a highly non-linear
environment. This calibration is based on the same set of parameter values used in
the benchmark case, with the exception of a very low σ (0.025) and a five-time larger
standard deviation of the technological shock, σz - details in Table 1.1. This set-up
leads to an almost infinite Frisch labour-supply elasticity and results in a very high
volatility of hours worked. As mentioned in Noh (2019), this level of Frisch elasticity
combined with a large technological shock leadS to a highly non-linear behaviour of
the economy.

Accuracy decreased for all local-Gaussian filters compared to the Benchmark
calibration, recording both higher RMSEs and ARBs.

As expected, higher volatility makes it harder to recover the dynamics of latent
states. In a context characterised by higher non-linearities, the relative performance
of the PF improved with respect to the benchmark case.

In terms of precision in recovering parameters, the ARB shows the EKF domi-
nated other filters, followed by the PF. Similar to Noh (2019), the performance of
the simple sigma-point filter (i.e. the CKF in this study and the Central Difference
Kalman filter introduced by Andreasen (2013) in his case) deteriorated in this envi-
ronment. In particular, this filter experienced some difficulties in capturing the high
volatility characterising shock processes.

Average RMSEs indicates that the CKF and PF showed a similar ability in track-
ing latent variables in this environment. The the 10-th-percentile RMSE suggests
the PF might potentially be more accurate of the CKF. However, the CKF presents
a smaller 10-percent-interquantile range thereby providing a more robust stability of
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results. Although other local-Gaussian filters show a marginally worse performance,
the 10-th percentile RMSE of the EKF is comparable to that of the CKF.

Similarly, the studies of Noh (2019), Kollmann (2015) and Andreasen (2013)
were characterised by a general deterioration of filters performance when increasing
non-linearities. Using 500 particles on data generated with a third order approxi-
mation of the model, also Noh (2019) recorded a relative improvement of the PF
on local-Gaussian filters. By contrast, Kollmann (2015) still finds a better perfor-
mance of the Kalman-Q filter compared to a partcile filter with either 100 000 or
500 000 nodes. These results are also consistent with those of Andreasen (2013)
who suggests local-Gaussian filters can compete with a particle filter with 500 000
nodes when non-Gaussianity of latent states is generated by either extreme model
parametrisations or by introducing Laplace-distributed shocks, but not when dealing
with high fluctuations introduced by stochastic volatility (i.e. modelling the variance
of shock processes as an AR(1) process.

The slightly higher accuracy of the EKF in estimating parameters with respect
to sigma-point filters is in contrast with the results in Andreasen (2013). However,
this might be explained by the use of a second-order EKF which guarantees a more
accurate description of moments compared to the standard Extended Kalman filter
used in Andreasen’s paper. Moreover, Andreasen (2013) evaluate the performance of
local-Gaussian filters in extremely highly non-Gaussian conditions generated either
through Laplace-distributed shocks or stochastic volatility. Consequently, it might
also be that sigma-point Kalman filters are more accurate than EKFs under those
conditions.

Finally, among the best performing filters the EKF and the CKF guarantee sim-
ilar efficiency whereas the particle filter results about 5 times slower.

Overall, the EKF and the CKF still represent a relatively good compromise in a
highly non-linear environment.
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Parameter Actual CKF EKF MGM MGS SM-CKF PF
500 500

α 0.67 0.6664 0.6667 0.6712 0.663 0.6543 0.6664
β 0.99 0.9896 0.9896 0.99 0.9899 0.9924 0.9898
δ 0.025 0.0252 0.0252 0.0248 0.0251 0.0228 0.0254
σ 0.05 0.0239 0.03 0.1482 0.0457 37.9711 0.0598
ρz 0.95 0.9503 0.9492 0.9472 0.9497 0.5707 0.9478
ρM 0.72 0.796 0.7419 0.7445 0.7461 0.4839 0.8015
σM 0.06 0.0447 0.0567 0.0689 0.0643 0.0975 0.0526
σZ 0.035 0.0255 0.0344 0.0371 0.0346 0.2419 0.0383
σC 0.004 0.0062 0.0039 0.004 0.004 0.0173 0.0039
σI 0.017 0.0255 0.0019 0.0048 0.0047 0.05 0.0103
σH 0.009 0.0104 0.0091 0.0094 0.0094 0.0216 0.0091
ARB 20.89% 15.23% 43.7% 20.81% 12014.57% 19.66%
RMSE 10% 18.34% 18.27% 20.14% 21.08% 25.8% 16.66%
RMSE 90% 25.67% 30.62% 35.93% 31.64% 65.6% 26.38%
RMSE 21.57% 24.54% 27.18% 26.21% 49.45% 21.73%
Time 00:04:24 00:04:23 00:01:05 00:01:00 00:10:56 00:23:05
Log-Likelihood -4692 -5023 -4878 -4882 -6502 -5000

Table 1.4: Risky calibration at order 5 with informative priors.
LKF: Linear Kalman Filter with measurement errors; CKF: Cubature
Kalman Filter; EKF: Full Second-order Extended Kalman Filter; CKF:
Cubature Kalman Filter; EKF: Full Second-order Extended Kalman Fil-
ter; RL-M: Approximation around the ergodic mean; RL-S: Approximation
around the stochastic steady state; Gaussian Particle filter (Sparse-matrix
Cubature Kalman Filter); PF 300: Particle filter with 300 particles and
systematic resampling. Observables: consumption, C, hours worked, H, in-
vestment, I. The experiment was run on 100 samples of 500 observations
using CMAES algorithm to compute the mode. RMSE are normalised by
the sample average of state variables. [10%,90%] are RMSEs at the 10th and

90th percentiles.
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1.6 Conclusions

The new generation of Dynamic Stochastic General Equilibrium (DSGE) models
was enriched by many non-linear elements. Phenomena like the Global financial
crisis and the upsurge of extreme climatic events showed the need of modelling un-
certainty, risk, non-Gaussian shocks and bounded rationality. This encouraged the
development of methods for solving and estimating higher-order approximations of
DSGE models. This study focuses on direct inference methods, illustrating advan-
tages and drawbacks of “local-Gaussian" filters with respect to “global" filters and
try to shed light on the properties of these methods.

A Monte Carlo study showed that local-Gaussian filters represent a good alter-
native to standard global filters for applications characterised by high computational
costs.

In the Benchmark calibration, all local-Gaussian filters outperformed a Sequen-
tial Monte Carlo filter endowed with a limited number of particles. The accuracy was
quite similar among local-Gaussian filters, with the risky linear approximations pro-
viding slightly more accurate parameter estimates and the Cubature Kalman filter
being better in tracking the dynamics of latent variables.

Even though the performance of local-Gaussian filters deteriorated with respect to
that of particle filters when increasing non-linearity, the former still provide compara-
ble accuracy while guaranteeing concrete computational gains. Overall, the second-
order Extended Kalman filter and the Cubature Kalman filter exhibited the best
balance in terms of accuracy and efficiency. The second-order Extended Kalman fil-
ter was, on average, more accurate than the particle filter and the Cubature Kalman
filter could challenge it.

In conclusion, local-Gaussian filters can be useful for preliminary estimates before
moving to a more comprehensive estimation exercise, for instance using novel efficient
particle filters. Additionally, they might be used for dealing with large models when
data presents Gaussian features and non-linearities are not too accentuated. The next
step would be to assess these filters on models generating even higher volatility -as
in the case of Behavioural DSGE models with reinforcement learning- so to provide
further evidence on the reliability of these filtering techniques in dealing with highly
non-linear problems.
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Chapter 2

Asset Purchase Programs in bad and
good times

Abstract

This paper studies the effects of long-term asset purchases in a canonical Be-
havioural New-Keynesian model with portfolio adjustment costs, bounded rational
agents and reinforcement learning. The latter endogenously determines the senti-
ment characterizing the economy in a certain period and allows the study of the
uncertainty surrounding empirical results on the pass-through of long-term asset
purchases to business activity. In particular, short-run impulse responses to a cen-
tral bank balance-sheet shock are stronger in periods characterised by either extreme
pessimism or optimism.

Furthermore, in this framework policies are more effective when central bank
credibility, defined as the share of agents believing in the inflation target, is high.
Finally, it provides an assessment of the best policy mix and show, under reinforce-
ment learning, the central bank needs to stabilise both inflation and output gap to
reduce uncertainty.

JEL Classification: E32, E52, E62, E71, D83
Keywords: Long-term asset purchases, Quantitative Easing, Spending multiplier,
Policy state-dependent effects, Behavioural DSGE model, Heterogeneous Expecta-
tions
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2.1 Introduction

After the global financial crisis, the majority of Central Banks in developed economies
enriched their policy toolbox. Due to prolonged subdued macroeconomic develop-
ments, policy rates reached their effective lower bound obliging Central Banks to de-
sign alternative strategies to meet their price stability objectives. New instruments,
such as forward-guidance and various forms of quantitative easing measures, were
introduced. Thus, a wide bulk of empirical and theoretical literature on the effects
of quantitative easing on long-term interest rates and on the subsequent transmission
to the real economy were carried out.

However, uncertainty still surrounds empirical results on the actual effects of
quantitative easing. As a matter of fact, the effects of these measures differed in
terms of magnitude and persistence, depending on the region and the moment in
which they were implemented, thus suggesting that the pass-through of non-standard
monetary policy is state-dependent (Coeré, Benoit, 2018; Altavilla and Giannone,
2017; D’Amico and King, 2013).1

The DSGE literature on quantitative easing modeled long-term asset purchase
programs using a variety of alternative approaches, as frictions on access to credit
(Gertler and Karadi, 2011, 2013) or on changes in the composition of households’
assets portfolio (Chen et al., 2012; Harrison, 2012, 2017; Carlstrom et al., 2017; Sims
and Wu, 2020a,b), while assuming fully rational and fully informed representative
agents.2

1It seems that under bad economic conditions (e.g. usually coinciding with the first round of
long-term asset purchase programs when inflation is far from the target), agents believe this measure
will reduce long-term interest rates while short-term ones will remain unchanged. Consequently, the
term premium narrows down thus triggering a reallocation of resources. When economic conditions
improve (e.g. second round of asset purchases), new announcements do not seem to keep the term
premium close. Agents observe latest macroeconomic indicators and believe short-term interest
rates will rise again in the near future. Therefore, long-term rates do not decrease (or even increase)
in spite of new purchases of assets (Eser and Schwaab, 2016).

2Bond market segmentation was introduced either in TANK model in which one of the two
agents is not granted access to a certain segment of the market - see Chen et al. (2012) - or via
portfolio adjustment costs - Harrison (2017). The latter enters the model either via a financial
intermediary who can trade only some specific assets or, as a friction entering either households’
utility function or their budget constraint. In Harrison (2012) was shown these three ways lead to
the same results.

One can see portfolio adjustment costs as the loss in utility of moving away from the equilibrium
allocation - “preferred habitat theory". Alternatively, they can be interpreted as an extra loss in
households’ liquidity who decide to increase their savings to buffer the higher perceived risk on
long-term assets relative to short-term ones - Andrés et al. (2004).
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The assumption of fully informed rational agents underpins the bulk of theoreti-
cal literature on quantitative easing. The inability of standard rational expectations
models to capture salient facts observed in empirical data, especially in the after-
math of the global financial crisis, emphasises the need for alternative strategies for
modeling agents behaviour.3 Analyses of quantitative easing under bounded ratio-
nality and heterogeneous expectations is, de facto, still limited. This paper departs
from the mainstream literature by analyzing the effectiveness of quantitative easing
measures, modeled as long-term asset purchase programs, in a Behavioural New Key-
nesian model endowed with portfolio adjustment costs, heterogeneous expectations
and reinforcement learning à la Brock and Hommes (1997). Portfolio adjustment
costs endow the model with a market for long-term bonds and allow the Central
Bank to influence households’ behaviour by targeted purchases. The Central Bank
purchases long-term assets, whose price mechanically increases due to supply ab-
sorption. Consequently, households vary their portfolio mix in favor of bonds with
shorter maturity. Because of portfolio adjustment costs, short-term bonds are rela-
tively cheaper than long-term ones. As a result, this shift will provide extra resources
available for consumption.

It is assumed two types of agents populate the economy, Näives and Fundamental-
ists. The latter believe in the commitment of the Central Bank to meet the inflation
target in every period. The former expect output-gap and inflation to coincide with
their latest observation without considering eventual Central Bank interventions.4

Agents can adjust their forecasting strategy by adopting a better performing rule
based on an endogenous fitness measure. Additionally, agents are assumed to be-
have according to Euler equation learning, thus the two type of agents only form
expectations for next period as in Hommes et al. (2018), and De Grauwe and Ji
(2019)).

Moreover, the evolution of the share of agents using a given rule endogenously
determines the level of optimism characterizing the overall system in each period.
When the output-gap is above equilibrium, Näives believe this will happen again in

3Refer to (De Grauwe and Ji, 2020a; Jump and Levine, 2019; Busetti et al., 2017) for evidence
based on macroeconomic data, to Assenza et al. (2021) for laboratory experiments, and to Mankiw
et al. (2004); Branch (2004); Pfajfar and Santoro (2010) for survey data.

4Fundamentalists differ from fully rational agents as they do not know about the existence of
different agents types. Moreover, they cannot take into account for persistent shock processes. In
case inflation and output-gap follow a random walk, the Näive forecast rule would be the best.
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the next period. In this case, they are considered to be optimistic about the future. A
similar reinforcement mechanism makes them pessimistic when output-gap is below
its steady state. By contrast, Fundamentalists are pessimistic (optimistic) when
output-gap is above (below) equilibrium because they expect output-gap to shrink
(widen) in the next period.

In such framework, the same policy can produce different multipliers depending
on the sentiment prevailing in the economy. Therefore, it represents a flexible field
to evaluate whether cognitive limitations can provide a possible explanation for the
uncertainty surrounding empirical results.

On the basis of a Monte Carlo exercise, the baseline model supports evidence
on the expansionary effect of long-term asset purchase programs, and their more
pronounced pass-through to real variables compared to nominal ones. However,
departing from existing literature on quantitative easing, by allowing agents to learn,
the model also reveals how the magnitude and persistence of these policies are state-
dependent. In particular, both the portfolio channel, represented by the response
of long-term interest rates to asset purchases, and the feedback channel, capturing
changes in aggregate demand due to changes in interest rates, vary with the level of
optimism.

The positive short-run transmission of asset purchases to the economy is robust
across different scenarios. Anyhow, the strength and persistence of these measures are
more uncertain over longer horizons. In fact, the model shows asset purchases have a
stronger impact when either extreme pessimism or optimism features the state of the
economy. As the model also provides high correlation between economic sentiment
and output-gap dynamics, it promotes asset purchases as a valid counter-cyclical
measure. Additionally, similar to Hommes and Lustenhouwer (2019), this model
supports the importance of Central Bank’s credibility for the success of monetary
policies with changes in long-term interest rates affecting inflation more concretely
when a larger share of agents believes in the target of the Central Bank.

Finally, the paper sheds some light on the best policy mix to reduce economic
uncertainty. In this model, quantitative easing can either help or substitute stan-
dard monetary policy in stabilizing the economy, thus advocating somehow the role
of this tool to exit the zero-lower bound. The Taylor principle still represents a nec-
essary condition for stability. Yet, this framework recommends addressing directly
output-gap to reduce economic uncertainty when agents form expectations using
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reinforcement learning.
The paper is structured as follows: Section 2.2 discusses the relevant literature,

Section 2.3 illustrates the details of the New Keynesian Behavioural model, Section
2.4 presents the results and the model dynamics. Section 2.5 concludes and outlines
possible ways forward.

2.2 Literature Review

This paper belongs to the growing strand of literature assessing the impact of mon-
etary policy under bounded rationality and, at the same time, to the theoretical lit-
erature on asset purchase programs in DSGE models. This section starts with some
empirical evidence on the state-dependency of the transmission of asset purchases,
then, it illustrates the main theoretical literature on quantitative easing in DSGE
models to conclude with the most related studies on Behavioural DSGE models.

2.2.1 Empirical Evidence

Several studies have tried to assess the effects of quantitative easing. Although they
do not always arrive to the same conclusions depending on the country or period of
reference, some common patterns seem to emerge: (a) there is convincing evidence in
favour of the decrease in interest rates of targeted assets; (b) the bulk of quantitative
easing effects on bond prices happen at the moment of the announcement whereas
those at the time of the actual implementation are likely to be minor; (c) financial
distress seems to amplify the effects of these measures; (d) even though it is hard
to identify the pass-through from financial to macroeconomic variables, on impact,
quantitative easing seems likely to have an expansionary effect.5

Most of the empirical evidence on the effects of QE is based on event studies
trying to gauge the short-term impact of this measure on financial variables.6

These studies mainly conclude that asset purchase programs managed to reduce
either the yields of targeted assets, (“narrow channel"), or both the latter and the
yield of similar assets, (“broad channel”). For US, D’Amico and King (2013) and

5Beck et al. (2019) also highlights a general improvement of financial conditions and the absence
of side effects so far.

6See Rogers et al. (2018) for an assessment of the relationship between monetary policy, foreign
exchange risk premia, and term premia in US.
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Gagnon et al. (2011a) estimate a fall in interest rates on government bonds in re-
sponse to the federal Reserve QE1 program. In particular, D’Amico and King (2013)
highlight the importance of local supply effects, according to which the most pro-
nounced yields reduction concerns the bonds targeted by the purchase program and
their closest substitutes in terms of maturity.7 More recently, Altavilla and Gian-
none (2017) show that FOMC announcements compressed expected bond yields of
US Professional Forecasters and that these lower expected yields were expected to
last for one year or longer. Similar results emerged for the UK - see Joyce et al.
(2011) - and the Euro area - see Falagiarda and Reitz (2015).

Yet, Krishnamurthy and Vissing-Jorgensen (2011) found no significant impact
of the second-round of purchases on asset prices except for a reduction in yields on
mortgage-backed securities probably due to a signal effect for a low policy rate for
an extended period of time.8

Former surveys on the effects of unconventional monetary policies in different
regions, suggest quantitative easing can generate positive real effects which are qual-
itatively similar to those of conventional monetary policy and more limited ones on
nominal variables - see Kuttner (2018) for USA and Dell’Ariccia et al. (2018) for Euro
area, UK and Japan. However, the majority of these studies are either focusing on
short-term effects as natural experiments or are subject to identification issues as
long-term asset purchases were often accompanied by other measures.

Hesse et al. (2018) provide evidence in favour of positive significant effects of the
first-round of asset purchase programs on macroeconomic variables both in US and
England. Yet, later rounds do not seem to lead to the same results.

Similarly, analysing inflation-linked swap rates and TIPS, Krishnamurthy and
Vissing-Jorgensen (2011) disentangled an increase in expected inflation thanks to
both QE1 and QE2 which implied larger reductions in real than nominal rates.

7Similar results raised after the Security Market Program run by the ECB (Eser and Schwaab,
2016).

8Motto et al. (2015) find the measures of quantitative easing implemented by the ECB in 2015
have triggered a general fall in asset yields even though it happened in a moment of low financial
distress. In fact, although the local supply channel weakens with the easing of financial conditions,
they suggest this result could be motivated by spill-overs toward non-targeted assets. Altavilla and
Giannone (2017) find this effect to influence both Treasury securities and corporate bonds with
different credit ratings thereby providing some evidence in favour of an easing of long-term funding.
Altavilla et al. (2016) convey outright monetary transactions (OMT) announced by the European
Central Bank have reduced 2-year government bond yields in stressed countries - as Italy and Spain
- while leaving unchanged those in France and Germany.
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Using a wide range of VAR models, Kapetanios et al. (2012) estimate a raise of both
inflation and GDP following the asset-purchase program run by Bank of England
between 2009 and 2010. Although, these dynamics are qualitative similar, their
magnitude varies depending on the econometric approach, and are thus subject to
uncertainty.

Concerning longer-term effects, Beck et al. (2019) apply a narrative approach to
identify the effects of APPs on a 41-country macro-panel in which short-term rates
are at the ZLB.9

Interestingly, they find positive significant and protracted effects of quantitative
easing announcements on both actual and expected inflation. However, the main
driver for this result seems to reside in exchange rate depreciation rather than in
stronger internal demand. Additionally, they suggest asset purchase programs affect
the Central Bank balance-sheet and both short- and long-term asset prices on the
medium run.

2.2.2 Theories on the Transmission of Quantitative Easing

Theoretical literature on asset-purchase programs highlighted the presence of sev-
eral different channels through which these measures propagate to the real economy.
Recent surveys emphasise the role of the signalling channel, unveiling Central Bank
intentions about the path of the policy rate, a reanchoring channel, stating quantita-
tive easing may help stabilizing inflation expectations at the ZLB, and the portfolio
rebalancing channel, promoting a change in private sector bond mix from long-term
assets to less risky short-term ones. In turn, the latter implies that asset purchases,
by targeting long-term bonds can promote a capital relief channel because the value
of these assets in banks’ balance-sheet will increase thereby easing potential capi-
tal constraints. At the same time, the rebalancing mechanism toward short-term
assets might cause further flattening of the yield-curve thanks to the reduction in
private sector exposure to the risk of future changes in interest rates - duration risk
channel.10

Last but not least, an improvement in banks’ capitalisation along with a gener-
alised lower level of interest rates will favour credit conditions - credit channel.

9In this way, they can isolate the marginal impact of quantitative easing while abstracting from
the effects of forward-guidance announcements about low-for-long policy rates.

10See Breckenfelder et al. (2016) for further details.



Chapter 2. Asset Purchase Programs in bad and good times 55

DSGE literature has tried to account for all these features. However, there is not
yet a comprehensive model able to capture all these channels at the same time.

The majority of research focused its attention on the credit channel by modelling
financial intermediaries and banking frictions to describe the role of unconventional
monetary policies in facilitating lending. Influential examples within this strand of
literature are Gertler and Karadi (2011, 2013) and Chen et al. (2012). The for-
mer designed a TANK model with financial frictions in the loan-deposit relationship
between banks and households. The latter, building on the seminal paper of An-
drés et al. (2004), introduces portfolio adjustment frictions to embed bond-market
segmentation in a TANK model. In this framework, quantitative easing can affect
asset prices and returns by changing the relative supplies of different assets. Imper-
fect asset substitutability has been included in several alternative ways. For instance,
Harrison (2012) models a financial intermediator who pays transaction costs on more
illiquid assets. Similarly, Carlstrom et al. (2017) and Sims and Wu (2020a) devel-
oped TANK models with constrained and unconstrained households where only the
latter have access to the short-term bond market while being subject to portfolio
adjustment costs. Yet, Harrison (2017) and Falagiarda (2013) embody imperfect
substitutability across bonds within the budget constraint in the form of adjustment
costs on households’ bond-mix.11

However, all the above mentioned methods lead to very similar results in terms
of impulse responses amplitude and propagation to the economy.

I will adopt the strategy of modelling imperfect substitutability via portfolio
adjustment costs in the budget constraint - as in Harrison (2017). This choice is
motivated by the microfundation of aggregate expectations relying on Euler learning
which requires agents to have the same consumption equation. Consequently, a
TANK approach would not be suitable as it would lead to different agents’ behaviour
even under rational expectations.

11A conceptually similar approach consists in introducing adjustment costs in the utility function.
However, Harrison (2012) shows that this method leads to the same first order conditions as those
from a budget constraint approach.

Adjusment costs in the budget constraint have been extensively embodied into small-open econ-
omy NK models - Kabaca et al. (2020) and Cova and Ferrero (2015).
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2.2.3 Behavioural DSGE Macroeconomic Models

In a NK model with heterogeneous expectations and reinforcement learning, Hommes
and Lustenhouwer (2019) endogenise the credibility of Central Bank’s target and
assess the conditions for the occurrence of liquidity traps at the ZLB. Credibility
evolves over time along with the share of forward-looking agents whose future ex-
pectations on inflation and output gap coincide with the Central Bank target for
these variables. In particular, trust in the Central Bank grows when forecasts by
fundamentalist agents outperform those by näive (backward-looking) ones. Within
this setting, they find that instability of the fundamental steady state can be caused
by excessive - positive or negative - responses of the policy rate to output gap expec-
tations. When the ZLB is touched, the possibility to leave a liquidity trap strongly
depends on how low the levels of the output gap and inflation are and on how strong
Central Bank credibility is. Finally, this framework is able to generate deflationary
spirals also with small shocks if the credibility of the Central Bank is low - namely,
backward-looking agents systematically forecast better than fundamentalist ones,
thus, leading to waves of pessimism.

Goy et al. (2020) study forward guidance in a NK model with endogenous credi-
bility and bounded rational agents - forming expectations over a finite N-step-ahead
horizon. Agents can switch from being backward- to forward-looking according to an
heuristic rule à la Brock-Hommes (1997) based on forecasting performance with the
former building their expectations up through an adaptive rule whereas the latter
ones (“credibility believers") trusting the communication of the Central Bank. The
Central Bank publishes its forecasts - based on a VAR not accounting for the pos-
sibility that agents switch from one type to another - about future inflation, output
and interest rates - Delphic forward-guidance. Additionally, it can proclaim its com-
mitment to keep interest rates low even if forecasts on inflation are slightly above
target - Odyssean guidance. This set-up suggests forward-guidance increases the like-
lihood of exiting from a liquidity trap. Although the only use of Odyssean guidance
seems to be more effective, it is likely to generate a raise in ex post macroeconomic
volatility and thereby would reduce welfare.

De Grauwe and Ji (2020a, 2019) assess the role of waves of optimism in a Be-
havioural NK model accounting for the ZLB. When comparing their NK model
against a rational expectation one, they find that the effects of the ZLB are more
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evident in presence of reinforcement learning with the policy rate remaining around
zero for longer time. Moreover, they conclude that raising the inflation target to 3
or 4 percent might avoid the economy being stuck in recession. This is because a
higher inflation target helps raising inflation expectations and, thus, breaking the
reinforcing mechanism between pessimism and output-gap.12

Hommes et al. (2018) study fiscal consolidations in a Behavioural NK model with
reinforcement learning and short-sighted agents. In contrast with RE models, their
model reproduces the anticipation effects of an upcoming fiscal policy. Furthermore,
they show how heterogeneous expectations can alter the economic dynamics gener-
ated by fiscal consolidations taking into account for waves of optimism and pessimism
- as in De Grauwe (2011).

2.3 The Model

This section illustrates the main features of a New Keynesian model designed to study
long-term asset purchase programs (APPs). In a nutshell, the model is equipped with
short- and long-term bonds priced by means of geometrically decaying coupons, and
it allows for bond-market segmentation through portfolio adjustment costs in the
resource constraint of households - as in Harrison (2017).13

Thanks to this friction, the Central Bank can influence the real economy by in-
teracting with the relative supply of long-term bonds. Compared to standard mod-
els, this paper introduces heterogeneous expectations and the reinforcement learning
mechanism à la Brock-Hommes to capture the interaction between quantitative eas-
ing and expectations dynamics.

Section 2.3.1 presents the micro-foundation of the model with a particular focus
on the formation of aggregate expectations. Readers who are interested in the policy

12In an open-economy setting, animal spirits have been used to model cross-country growth syn-
chronisation in a regime with limited integration of trade (De Grauwe and Ji, 2017) In this setting,
waves of optimism (or pessimism) stimulate production in the neighbouring country. Additionally,
these effects are amplified within a monetary union. De Grauwe and Macchiarelli (2015) have also
employed animal spirits in a DSGE model with housing markets and financial frictions.

13The microfundation of the rational model mainly differs from Harrison (2017) for the absence
of flow adjustment costs and the preference shock on labour which was replaced by a mark-up shock
and for the introduction of a quantitative easing Taylor rule similar to what used in Sims et al.
(2020).
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focus of the paper can directly move to sections from 2.3.2 to 2.3.4 presenting the log-
linear version of the model which will be used for simulations, agents’ expectations
and learning mechanisms and a sentiment indicator, respectively. Finally, Section
2.3.5 describes the solution. The full derivation of the non-linear model under rational
expectations and its detailed linearisation are presented in appendix B.4.

2.3.1 Microfoundation of the Behavioural Model

Household Problem

The model is characterised by a representative agent choosing consumption, C(i)
t ,

labour, L(i)
t , short- and long-term bonds to maximise discounted utility over an

infinite horizon. Concerning bonds notation, BS(i)
t are short-term bonds and, BLT

t =

BLH
t + BLCB

t is the total value of long-term bonds in real terms at time t, which is
equal to the sum of long-term bonds held by households, BLH

t , and by the Central
Bank, BLCB

t .
The utility function is separable in consumption, C(i)

t , and labour, L(i)
t :

max
C

(i)
t ,L

(i)
t ,B

S(i)
t ,B

LH(i)
t

Ẽ
(i)
t

∞∑
t=0

βt{log
(
C

(i)
t

)
− 1(

1 + 1
φ

)L(i)
t

(1+ 1
φ)} (2.1)

where Ẽ(i)
t (.) is a generalised expectations operator for individual (i). The peculiarity

of the household problem resides in the budget constraint which was enriched with
quadratic adjustment costs on the composition of households’ financial portfolios as
in Harrison (2017):

AC
L(i)
t =

ϕLH

2

(
kLH

B
S(i)
t

B
LH(i)
t

− 1

)2

(2.2)

where kLH = BLH

BS is a constant depending on ratio between long- and short-term
bonds in steady state.

These adjustment costs are key to model bond-market segmentation as they gen-
erate a wedge between short- and long-term interest rates and allow for the trans-
mission of long-term APPs to the real economy.
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Most of the literature on long-term asset purchases introduced bond-market seg-
mentation, either through TANK models or through portfolio adjustment costs, ob-
taining qualitatively similar results.

TANK models usually assume a portion of agents can trade both short- and long-
term bonds whereas remaining agents are subject to transaction costs when trading
the latter - see Andrés et al. (2004); Chen et al. (2012); Carlstrom et al. (2017); Sims
and Wu (2020b). This friction breaks perfect substitutability across assets, with
restricted households not allowed to completely counterbalance eventual changes in
the risk-adjusted expected returns of a bond by adjusting the composition of their
financial portfolio.

Portfolio adjustment costs introduce bond-market segmentation in representative-
agents models by means of frictions on the departure from the favorite bond alloca-
tion (preferred habitat theory). Alternatively, they are interpreted as a tool to buffer
for eventual consumption losses caused by price fluctuations in riskier assets: as long-
term bonds are perceived to be illiquid assets compared to short-term bonds, agents
decide to save some extra resources when investing on them as a form of insurance
against higher risk. The literature explored various solutions to include portfolio ad-
justment costs in DSGE models, for instance, by introducing a financial intermediary
who can trade only bonds with selected maturities or, by frictions affecting either
households’ utility function or their budget constraint - see Harrison (2012). As
these methods lead to similar model dynamics, this paper follows recent literature
by embedding adjustment costs directly in the budget constraint (Harrison, 2017;
Alpanda and Kabaca, 2020; Kabaca et al., 2020).

Through APPs the Central Bank can reduce the relative supply of long-term
bonds available to households. Hence, the price of long-term bonds increases and
mechanically their return decreases thereby pushing households to adjust their fi-
nancial portfolio in favour of short-term bonds. Portfolio adjustment costs break the
otherwise one-to-one relationship between bonds with different maturities. For every
long-term bond sold, households get in return a short-term bond and some extra
resources which can be allocated to expand consumption.

Long-term bonds are modelled as perpetuities (consol) paying geometrically de-
caying coupons à la Woodford (2001) with cash flows equal to a share, 0 ≤ χ ≤ 1, of
the market price of new issues of long-term bonds, QL

t . Given the structure of these
cash flows, selling a bond issued in period t pays a nominal coupon worth a share χj
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of current market price in t+j where j > 0. Therefore, it is possible to express the
price of bonds with different residual maturities in terms of current market price.
Denoting the real value (i.e. the number) of new perpetuities issued at time t as
CFt, the real value of the stock of bonds from past issues can be defined as

BLT
t−1 = QL

t B̄
LT
t−1 = CFt−1 + χCFt−2 + χ2CFt−3 + ... =

∞∑
j=1

χj−1CFt−j (2.3)

where B̄LT
t ≡ BLT

t

QL
t

is the total volume (i.e. the number) of long-term bonds issued.
The latter can be used to express the new issue of bonds as:14

CFt = QL
t

(
B̄LT

t − χB̄LT
t−1

)
(2.4)

This allows to elicit the real budget constraint of agent i in terms of a unique price
for long-term bonds, QL

t , by scaling current market price for bonds issued in t− j by
χj:

WtL
(i)
t +

RS
t−1

πt
B

S(i)
t−1 + B̄

LH(i)
t−1 +GT

(i)
t + Γ

(i)
t − C

(i)
t =

= B
S(i)
t +QL

t

(
B̄

LH(i)
t − χB̄

LH(i)
t−1

)
+
ϕLH

2

(
kLH

B
S(i)
t

QL
t B̄

LH(i)
t

− 1

)2 (2.5)

where GTt are lump-sum government transfers and Ωt are dividends from interme-
diate sector firms.

Equation 2.3.1 can be rearranged as
14Leading forward by one period equation 2.3, BLT

t = CFt + χCFt−1 +
χ2CFt−2 + ... =

∑∞
j=1 χ

j−1CFt−j+1, which can be rearranged as CFt = BLT
t −

χ
(
CFt−1 + χCFt−2 + χ2CFt−3 + ...

)
= BLT

t − χBLT
t−1 = QL

t

(
B̄LT

t − χB̄LT
t−1

)
.
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WtL
(i)
t +

RS
t−1

πt
B

S(i)
t−1 +

(
1 + χQL

t

)
B̄

LH(i)
t−1 +GT

(i)
t + Γ

(i)
t − C

(i)
t =

= B
S(i)
t +QL

t B̄
LH(i)
t +

ϕLH

2

(
kLH

B
S(i)
t

QL
t B̄

LH(i)
t

− 1

)2 (2.6)

or, collecting bond prices,

WtL
(i)
t +

RS
t−1

πt
B

S(i)
t−1 +

RL
t

πt
B

LH(i)
t−1 +GT

(i)
t + Ω

(i)
t − C

(i)
t =

= B
S(i)
t +B

LH(i)
t +

ϕLH

2

(
kLH

B
S(i)
t

B
LH(i)
t

− 1

)2 (2.7)

where the yield to maturity RL
t =

1+χQL
t

QL
t−1

- see Chen et al. (2012) and Carlstrom
et al. (2017) for further discussions.

The constraint problem of the representative household i can be solved by means
of a Lagrangian auxiliary function:

L (i) : Ẽ
(i)
0

∞∑
t=0

βt{log
(
C

(i)
t

)
− zut(

1 + 1
φ

)L(i)
t

(1+ 1
φ)+

+ λ
(i)
t (WtL

(i)
t +

RS
t−1

πt
B

S(i)
t−1 +

RL
t

πt
B

LH(i)
t−1 +GT

(i)
t + Ω

(i)
t +

− C
(i)
t −B

S(i)
t −B

LH(i)
t − ϕLH

2

(
kLH(i) B

S(i)
t

B
LH(i)
t

− 1

)2

)}

where λt is the Lagrangian multiplier and single period marginal utilities are:

U
C(i)
t = C

(i)
t

−1
(2.8)

U
L(i)
t = −L(i)

t

( 1
φ
)

(2.9)

The respective first order conditions are:15

15Notice that adjustment costs are null in steady state because kLH = BLH

BS - which is the
steady-state ratio of long-term bonds over short-term ones. Furthermore, kLH in equations (2.12)
and (2.13) shows that when the steady state quantity of short-term bonds increases, the effects
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C(i):

(2.10)λ
(i)
t = U

C(i)
t

L(i):

(2.11)
−UL(i)

t

λ
(i)
t

= Wt

BS(i):

1 + ϕLH kLH(i)

B
LH(i)
t

(
kLH(i) B

S(i)
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B
LH(i)
t

− 1

)
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Ẽ

(i)
t {λ(i)t+1}β
λ
(i)
t

(
RS

t

Ẽ
(i)
t {πt+1}

)
(2.12)

BLH(i):

1− ϕLH k
LH(i)B

S(i)
t

(B
LH(i)
t )2

(
kLH(i) B

S(i)
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B
LH(i)
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Ẽ
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Ẽ
(i)
t {πt+1}

)
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λt:

WtL
(i)
t +

RS
t−1

πt
B

S(i)
t−1 +

RL
t

πt
B

LH(i)
t−1 +GT

(i)
t + Ω

(i)
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C
(i)
t +B

S(i)
t +B

LH(i)
t +

ϕLH

2

(
kLH(i) B

S(i)
t

B
LH(i)
t

− 1

)2 (2.14)

The Supply Sector

This model embeds a standard supply-side consisting of a retail sector and an
intermediate-goods sector with Calvo price setting Yun (1996). As in Calvo-Yun
New Keynesian model, persistence is generated by the presence of a lottery out
of which only a certain portion of firms can adjust their prices in each point
in time. Intermediate producers choose input quantities to maximise profits in
a monopolistically competitive environment where all firms face identical pro-
duction functions. When a firm is allowed to adjust prices, these are chosen by
minimizing production costs while satisfying aggregate demand from the retail sector.

of adjustment costs are reduced. When ϕLH and ϕF are zero, the FOC for BS collapses to the
standard first order condition for ST bonds: λt = βλt+1

RS
t

πt+1
. Finally, χ < 1.
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Retail sector
The retail sector is derived following standard steps as it is not affected by expec-

tation formation processes. Retail goods result from the aggregation of a continuum
of intermediate inputs by means of the aggregation technology formulated in Dixit
and Stiglitz (1977):

Yt =

(∫ 1

0

Y
(j)
t

ε−1
ε dj

) ε
ε−1

(2.15)

where ϵ > 1 is the parameter determining the elasticity of substitution across different
inputs. Retailers aim at maximizing their profits by combining different quantities
of intermediate goods for a given market price while being subject to the aggregation
technology (2.15):

max
Y

(j)
t

= Pt

(∫ 1

0

Y
(j)
t

ε−1
ε dj

) ε
ε−1

−
∫ 1

0

P
(j)
t Y

(j)
t dj (2.16)

which results in the following first order condition for firm j:

Pt
ϵ

ϵ− 1

(∫ 1

0

Y
(j)
t

ε−1
ε dj

)( ε
ε−1

−1)
ϵ− 1

ϵ
Y

(j)
t

ε−1
ε

−1
= P

(j)
t (2.17)

out of which one can derive the relative price of the intermediate good j as:(
P

(j)
t

Pt

)−ε

=

(∫ 1

0

Y
(j)
t

ε−1
ε dj

) −ε
ε−1

Y
(j)
t (2.18)

and, the relative demand for intermediate good j:

Y
(j)
t =

(
P

(j)
t

Pt

)−ε

Yt (2.19)

Finally, one can obtain a price index by substituting (2.18) into (2.19) and reorga-
nizing the equations:

Pt =

[∫ 1

0

P
(j)
t

1−ϵ
dj

]1/(1−ϵ)

(2.20)
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Intermediate goods producers
Producers of intermediate good (j) share the same firm-level production function:

Y
W (j)
t = AtL

(j)
t = F (A,L(j)) (2.21)

As they are subject to Calvo pricing they maximise profits by minimizing their costs:

Y
W (j)
t = min

L
(j)
t

WtL
(j)
t (2.22)

subject to the demand for intermediate good j:

AtL
(j)
t ≥

(
P

(j)
t

Pt

)−ε

C
(j)
t (2.23)

resulting in the following Lagrangian and first order condition:

L :MC
(j)
t

(
AtL

(j)
t −

(
P

(j)
t

Pt

)−ε

C
(j)
t

)
−WtL

(j)
t (2.24)

∂L

∂L
(j)
t

:
Wt

At

=MC
(j)
t ⇒ Wt

FL
t

=MCt (2.25)

where MC
(j)
t =MCt are real marginal costs of production which are common across

intermediate firms and At follows an AR(1) process:

(2.26)logAt = ρA logAt−1 + ϵAt

where technology shock is i.i.d. ϵAt ∼ N (0, σA) As a result, the real flow of profits
for intermediate firm j:

Ω
(j)
t =

P
(j)
t

Pt

Y
(j)
t −WtL

(j)
t = Y

(j)
t

(
P

(j)
t

Pt

−MCt

)
(2.27)

Intermediate goods, Y (j)
t , are traded in a monopolistic environment characterised by

sticky-prices introduced through a Calvo lottery in discrete time. This mechanism
implies that a proportion, ξ, of firms cannot adjust its nominal price to the optimal
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price determined by current aggregate demand.16 At time t, reoptimizing firms
choose a price, P ∗(j)

t , to maximise present expected discounted profits:

max
P

(j)
t

Ẽ
(j)
t {

∞∑
i=0

(ξβ)i
(
Ct+i

Ct

)−1(
Pt

Pt+i

[
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(j)
t Y

(j)
t+i − TCt+i

(
Y

(j)
t+i

)])
} (2.28)

subject to (2.23):

Ẽ
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t+i} = Ẽ
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(j)
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)−ε

C
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where Ẽ(j)
t {Λt,t+i} = βi Ẽ

(j)
t {λt+i}

λt
= βi

(
Ẽ

(j)
t {Ct+i}

Ct

)−1
Pt

Pt+i
is the stochastic discount

factor, Ẽ(j)
t {Y (j)

t+i} is the output of firms allowed to adjust prices at time t and
TCt+i(Ẽ

(j)
t {Y (j)

t+i}) is the total cost function of firm j evaluated at time t+i.
The resulting first order condition for the profit maximisation problem can be

solved for the optimal reset price:

P ∗
t
(j) =

ε

ε− 1

Ẽ
(j)
t {
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i=0 (ξ)
i Λt,t+i

Pt+i
MCt+iz

u
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t {
∑∞

i=0 (ξ)
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= P ∗
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where zut is a mark-up shock evolving as log(zut ) = ρzulog
(
zut−1

)
+ ϵz

u

t with ϵz
u

t ∼
N (0, σu). Defining inflation between t − i and t as πt = πt−1,t or πt+1 = πt,t+1, the
average price index of the economy,

P 1−ε
t = ξP 1−ε

t−1 + (1− ξ)P ∗1−ε
t (2.31)

one can divide both sides of (2.31) by P 1−ε
t and expressed it inflation terms:

1 = ξπε−1
t + (1− ξ)

(
P ∗
t

Pt

)1−ε

(2.32)

where:
16For this exercise, non-reoptimizing firms keep their price equal to t-1 prices. Normally, models

include some form of indexation to previous period market price or to the long-term average of
market prices.
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by firms symmetry. Finally, (2.31) and (2.33) can be written in recursive form as:

P ∗
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(2.34)
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MCt =
Wt

FL
t

(2.38)

PW
t

Pt

=MCt (2.39)

An important feature introduced by sticky prices à la Calvo is price dispersion. As
only a share 0 < ξ < 1 of firms can adjust prices in every period, ξ firms will apply
the optimal price, P ∗

t , whereas 1 − ξ firms will continue applying the price applied
in t-1, Pt−1.

Starting from the relative demand for intermediate good j, (2.19), and substitut-
ing the production function for each intermediate firm and integrating over j:

∫ 1

0

AtN
(j)
t dj = Yt

∫ 1

0

(
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(j)
t

Pt

)−ε

dj (2.40)

Then, one can define price dispersion as:

∆P
t =

∫ 1

0

(
P

(j)
t

Pt

)−ε

dj (2.41)

Price dispersion negatively affects resource allocation because all firms can adjust
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their production to meet demand but only a share ξ can also reset prices. Conse-
quently, the higher is price stickiness and the lower is substitutability across inter-
mediate products, the less output is produced with a given amount of labour.
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)−ε
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AtLt

∆P
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(2.42)

by the law of large numbers and knowing that
∫ 1

j=0
Lt, dj.

The law of motion for average price dispersion can be computed as:
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(2.43)

This model will be linearised in a point characterised by zero inflation in steady
state, so trend inflation will not affect the dynamics of the system. However, price
dispersion as first-order effects when considering a positive inflation rate in steady
state - see Ascari and Ropele (2009) for a complete derivation and (Ascari et al.,
2011) for an application to the case of price adjustments à la Rotemberg.

Summing over varieties, the household budget constraint can be written as:
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Pt

)−ε
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(j)
t

(
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Consolidated Government-Central Bank:

The model presents a stylised public sector consisting of a consolidated Government-
Central Bank faces a budget constraint:17

BS
t + B̄LT

t QL
t = RS

t−1B
S
t−1 +

(
1 + χQL

t

)
B̄LT

t−1 +GTt (2.45)

17This is in line with Harrison (2017) and Falagiarda (2013).
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or

BS
t +BLT

t = RS
t−1B

S
t−1 +RL

t B
LT
t−1 +GTt (2.46)

where, GTt are taxes/government transfers to households and short-term bond-
supply is constant for simplicity,

BS
t = BS > 0 (2.47)

and, long-term bond supply

BLT
t = BLT = BLH

t +BLCB
t = BLH

t +WB
t B

LT
t > 0 (2.48)

where WB
t ≡ B̄LCB

t

B̄LT
t

is the share of total long-term bonds held by the Central Bank
and BS and BLT are steady-state values for short- and long-term bonds, respectively.
Then, quantitative easing enters the model in the form of long-term APPs through
the following QE Taylor Rule, as in Sims et al. (2020):

logWB
t = −

(
θπ log Ẽt{πt+1} + θX

(
log Ẽt{Yt+1} − log Ẽt{Y F

t+1}
))

+log zBt (2.49)

where the minus sign implies that the Central Bank increases long-term asset pur-
chases when it expects lower inflation and output-gap. The latter is defined as the
percentage difference of output, Yt, from the level of output under flexible prices,
Y F
t . As shocks to the Central Bank balance-sheet are usually persistent, these are

modelled as an AR(1) process log zBt = ρB log zBt−1 + ϵBt with ϵBt ∼ N (0, σB).
Moreover, the Central Bank can conduct a standard monetary policy according

to a Taylor rule targeting inflation and output while smoothing for the policy rate:

logRS
t = απ log Ẽ{πt+1}+ αX

(
log Ẽt{Yt+1} − log Ẽt{Y F

t+1}
)
+ ϵRt (2.50)

where the monetary policy shock is a white-noise is i.i.d. ϵRt ∼ N (0, σR).
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Finally, the standard resource constraint of the economy is augmented with port-
folio adjustment costs:

Yt = Ct +GTt +
ϕLH

2

(
kLH

BS
t

BLH
t

− 1

)2

(2.51)

Following Falagiarda (2013), it is assumed the government adjusts transfers in rela-
tion to the real value of long-term liabilities:

GTt = GT + τB
(
BLT

t −BLT
)
= GT (2.52)

The full list of equations composing the rational expectations model is summarised
in Appendix B.1 and the detailed log-linearisation is presented in Appendix B.4.

Aggregate Demand under Euler Learning

Substituting equation (2.10) into (2.11) and log-linearizing results in the labour sup-
ply equation:

Ŵ = Ĉ
(i)
t +

1

φ
L̂
(i)
t (2.53)

where .̂ variables are log-deviations from the steady state.
Similarly, by combining 2.10, 2.12 and 2.13 and log-linearizing, it is possible to

obtain the consumption equation for individual (i):

Ĉ
(i)
t = Ẽ

(i)
t {Ĉ(i)

t+1} − w1

(
R̂S

t − Ẽ
(i)
t {π̂t+1}

)
− w2

(
Ẽ

(i)
t {R̂L

t+1} − Ẽ
(i)
t {π̂t+1}

)
(2.54)

where, w1 = 1

1+BLH

BS

and w2 =
BLH

BS

1+BLH

BS

are the weights of short-term and long-term

interest rates in the aggregate demand equation, respectively. Notice that when
w2 = 0 equation (2.54) becomes the standard consumption equation.

The aggregate demand equation is obtained by Euler Equation Learning as in
Hommes and Lustenhouwer (2019).18

18Massaro (2013) extends this approach to the case of infinite horizons.
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I acknowledge the latter is based on strong assumptions on agents cognitive abil-
ities as they can realise to be the representative agent. Nonetheless, this small
departure from rational expectations allows to study model behaviour when agents
simply form one-step ahead expectations thus providing new insights compared to
the case of infinite-horizons planner.

Under Euler learning, it is assumed all agents share the same probability of
adopting a certain forecasting rule at time t and the probability of choosing that rule
is independent from their past choices. These assumptions are justified by the fact
that agents are not intrinsically different and every single one has the same options
in terms of forecasting rules. It is also assumed all agents are aware other agents face
the same probability of choosing a certain heuristic and that consumption decisions
only differs because of the way they form expectations. This implies expectations on
their own individual consumption coincide with their own expectations on aggregate
consumption:

Ẽ
(i)
t {Ĉ(i)

t+1} = Ẽ
(i)
t {Ĉt+1} (2.55)

Thus, the individual demand equation can be expressed as a function of individual
expectations on aggregate expected consumption:

Ĉ
(i)
t = Ẽ

(i)
t {Ĉt+1} − w1

(
R̂S

t − Ẽ
(i)
t {π̂t+1}

)
− w2

(
Ẽ

(i)
t {R̂L

t+1} − Ẽ
(i)
t {π̂t+1}

)
(2.56)

Assuming agents understand market clearing conditions, as aggregate demand and
aggregate supply of output are equal in equilibrium, agents’ forecasts for these vari-
ables will coincide:

Ẽ
(i)
t {Ĉt+1} = Ẽ

(i)
t {Ŷt+1} (2.57)

Plugging the latter into equation 2.56 and aggregating across all agents allows to
express aggregate demand:
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Ŷt = Ẽt{Ŷt+1} − w1

(
R̂S

t − Ẽt{π̂t+1}
)
− w2

(
Ẽt{R̂L

t+1} − Ẽt{π̂t+1}
)

(2.58)

Phillips Curve Derivation under Euler Learning

For the derivation of the Phillips curve under Euler learning, this paper follows
Hommes and Lustenhouwer (2019) by starting from log-linearised version of (2.33):

p̂
∗(j)
t + P̂t = (1− βξ)

(
M̂Ct + ẑut + P̂t

)
+ βξ (1− βξ)

∞∑
i=0

(βξ)iẼ
(j)
t {M̂C

(j)

t+i+1 + zut+i+1P̂
(j)
t+i+1}

(2.59)

where p∗(j)t =
P ∗
t

Pt
is the relative price of optimizing firms.

Rewriting (2.59) in recursive form:

p̂
∗(j)
t + P̂t = (1− βξ)

(
M̂Ct + ẑut + P̂t

)
+ βξẼ

(j)
t {p̂∗(j)t+1 + P̂t+1} (2.60)

or, in inflation terms, πt,

p̂
∗(j)
t = (1− βξ)

(
M̂Ct + ẑut

)
+ βξẼ

(j)
t {p̂∗(j)t+1 + πt+1} (2.61)

Under the same set of assumptions employed for aggregate demand, agents take
pricing decisions based on their expectations on aggregate variables, Ẽ(j)

t {p̂∗(j)t+i } =

Ẽ
(j)
t {P̂t+i}:

p̂
∗(j)
t = (1− βξ)

(
M̂Ct + ẑut

)
+ βξẼ

(j)
t {p̂∗t+1 + πt+1} (2.62)

The price index is the average between the price set by firms who could maximise
profits in period t and the average price set in period t-1:

P 1−ε
t = ξP 1−ε

t−1 + (1− ξ)
(
p
∗(j)
t

) 1
1−ε (2.63)

which can be log-linearised:

P̂t = ξP̂t−1 + (1− ξ) p̂
∗(j)
t (2.64)
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and, reorganised as:

p̂
∗(j)
t =

ξ

1− ξ
πt (2.65)

Plugging (2.65) into (2.62), one obtains

p̂
∗(j)
t = (1− βξ)

(
M̂Ct + ẑut

)
+

βξ

1− ξ
Ẽ

(j)
t {πt+1} (2.66)

Then, one can aggregate (2.66) expectations across firms and use again (2.65) to
derive the aggregate supply equation:

π̂t = k̄
(
M̂Ct + ẑut

)
+ βẼt{π̂t+1} (2.67)

where k̄ = (1−βξ)(1−ξ)
ξ

.
By combining, the log-linearised definition of marginal costs, (2.25), the produc-

tion function, (2.21), real wages from the household problem, (2.53), and market
clearing conditions:

M̂Ct = Ŵt − Ât = Ŷt +
1

φ
L̂t − Ât (2.68)

equation (2.67) can be expressed in terms of output:

π̂t = k̄

((
1 +

1

φ

)
Ŷt −

(
1 +

1

φ

)
Ât

)
+ βẼt{π̂t+1}+ ẑπt (2.69)

where ẑπt = k̄ẑut

In order to derive the Phillips curve in output-gap form, one has to introduce the
case of fully flexible prices. When ξ = 0, all firms can adjust prices and there is no
price dispersion. Then, real marginal costs from equation (2.33) are constant and
equal to the inverse of the price mark-up, MCF

t = ε−1
ε

, and W F
t = ε−1

ε
At. Through

the household labour supply equation, it is possible to extrapolate labour in flexible

prices, LF
t =

(
ε−1
ε

)( 1

1+ 1
φ

)
, and using the production function the respective output

level, Y F
t =

(
ε−1
ε

)( 1

1+ 1
φ

)
At, and its log-linear representation Ŷ F

t = Ât. Finally,
plugging the output-gap definition X̂t = Ŷt − Ŷ F

t in (2.69):

π̂t = k̄

(
1

φ
+ 1

)
X̂t + βẼt{π̂t+1}+ ẑπt (2.70)
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The same relationships can be used in the aggregate demand, (2.58), equation to
obtain:

X̂t = Ẽt{X̂t+1} − w1

(
R̂S

t − Ẽt{π̂t+1}
)
− w2

(
Ẽt{R̂L

t+1} − Ẽt{π̂t+1}
)
+ ẑXt (2.71)

where ẑXt = Ât+1 − Ât

2.3.2 A small-NK Model with Asset Purchases

The framework used for policy analyses in later sections is a canonical three-equation
New Keynesian model extended with equations to for long-term interest rates, het-
erogeneous expectations and reinforcement learning.

The main building blocks of the model are the term structure (2.72), the Quanti-
tative Easing Taylor Rule (2.76), the aggregate demand equation (2.73), the Phillips
curve (2.74) and the Taylor Rule (2.75).19

The term-structure equation determines the level of long-term interest rates as a
combination of current short-term interest rates and the portfolio mix

R̂L
t+1 = R̂S

t − V LH
(
B̂S

t − B̂LH
t

)
(2.72)

Parameter V LH = ϕLH (BS+BLH)
BSBLH is a composite parameter depending on the size

of the overall bond-market, on the households’ preferred mix of long- and short-term
bonds in equilibrium and the portfolio-adjustment costs parameter. The aggregate
demand equation describe the relationship of output-gap with expectations on next
period output gap and a weighted impact of short and long-term rates:

X̂t = Ẽ
(
X̂t+1

)
− w1

(
R̂S

t − Ẽt (π̂t+1)
)
− w2

(
R̂L

t+1 − Ẽt (π̂t+1)
)
+ ẑXt (2.73)

where w1 ≡ 1
1+kLH and w2 ≡ kLH

1+kLH with kLH = BLH

BS being the ratio of long-term to
short-term bonds in steady state.

The Phillips Curve (2.74) and the Taylor Rule (2.75) are standard:
19Details on the derivation of equations (2.73) and (2.72) are exposed in appendix (B.5).
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π̂t = βẼt (π̂t+1) + b2X̂t + zπt (2.74)

where b2 = (1−ξ)(1−ξβ)
ξ

.

R̂S
t = απẼ (π̂t+1) + αXẼ

(
X̂t+1

)
+ ẑRt (2.75)

The Central Bank follows a forward-looking Taylor rule for purchasing long-term
bonds:

ŴB
t = −θπẼ{π̂t+1} − θXẼ{X̂t+1}+ ẑBt (2.76)

B̂LCB
t = ŴB

t (2.77)

where ẑXt , ẑπt , ϵ̂Rt , ẑBt represent shock processes for demand, supply, monetary policy
and QE, respectively.

Long-term bonds in the household portfolio are determined as a residual:20

B̂LH
t = B̂LT

t − B̂LCB
t (2.78)

Equations from (2.79) to (2.88) presented in Section 2.3.3 complete the model by
defining the way agents form expectations.

2.3.3 Heuristics

Compared to rational expectations models where agents know the full structure of
the world including the number of agents populating the economy and shocks, this
paper studies a form of bounded rationality in which agents cannot observe these
features when forming expectations. However, agents are still able to correct their
forecasting behaviour by evaluating the performance of different forecasting rules
through reinforcement learning à la Brock-Hommes.21

20As the total supply of bonds is assumed to be constant, B̂s
t = 0, B̂LT

t = 0, ĜT t = 0 and
B̂LH

t = −B̂LCB
t

21In behavioural macroeconomics literature, reinforcement learning is also known as heuristic-
switching or trial-and-error.
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Following the literature on reinforcement learning, the economy is populated by
agents forming expectations on macroeconomic variables by selecting a forecast rule
depending on its recent performance.22

Agents are assumed to be either “fundamentalist" or “extrapolative". The former
group knows the fundamental steady state of the system and believes output-gap
and inflation will converge to that value in the next period.23

Formally, this is represented by the following equations:

EF
t

(
X̂t+1

)
= X̄ (2.79)

EF
t (π̂t+1) = π̄ (2.80)

where π̄ is the inflation target stated by the Central Bank and X̄ is the steady-state
output-gap.24

Extrapolators (also known as chartists) are backward-looking agents who assume
next period output-gap and inflation rate to be coincident to the last observation
plus an error correction term. In general, their behaviour can be described with an
adaptive expectation rule:

EE
t

(
X̂t+1

)
= X̂t−1 + ρE

(
X̂t − X̂t−1

)
(2.81)

EE
t (π̂t+1) = π̂t−1 + ρE (π̂t − π̂t−1) (2.82)

In the benchmark case, the paper focuses on näive agents - e.g. ρE = 0 - so, the
expectation operator is defined as EN .

22For Behavioural NK models see De Grauwe (2011), De Grauwe and Ji (2020a), Hommes and
Lustenhouwer (2019). For applications in behavioural finance refer to Brock and Hommes (1997).

23Fundamentalists differ from fully rational agents because they do not take into account for the
existence of the second type of agent and are not able to consider the impact of future shocks on
macro-variables. However, fundamentalists’ forecasts coincide with those of rational agents when
shocks are white-noise as a shock in output-gap will be absorbed in next period bringing back the
variable to the steady state.

24Applications of behavioural finance have experimented alternative definitions of fundamentalists
for which the deviation from the steady state is persistent and the model gradually reverts to its
steady state at a constant rate- see (Boswijk et al., 2007) and (Hommes and in ’t Veld, 2017).
However, I stick to the macroeconomic literature as “fundamentalists" allows to better describe
credibility in the Central Bank target.
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Then, aggregate expectations result from a weighted average of forecasts from
the different agents:

Ēt

(
X̂t+1

)
= wx,F

t EF
t

(
X̂t+1

)
+
(
1− wx,F

t

)
EN

t

(
X̂t+1

)
(2.83)

Ēt (π̂t+1) = wπ,FEF
t (π̂t+1) +

(
1− wπ,F

)
EN

t (π̂t+1) (2.84)

where the weights are given by the share of agents of each type with wF representing
the share of fundamentalists and, wN = 1− wF , the share of näives.

Agents evaluate their forecast performances in each point in time:

FZ,F
t = −

∞∑
j=0

ρfitj

(
Zt−j−1 − EF

t−j−2 (Zt−j−1)
)2

= ρfitFZ,F
t−1 +

(
1− ρfit

) (
Zt−1 − EF

t−2Zt−1

)2 (2.85)

FZ,N
t = −

∞∑
j=0

ρfitj

(
Zt−j−1 − EN

t−j−2 (Zt−j−1)
)2

= ρfitFZ,N
t−1 +

(
1− ρfit

) (
Zt−1 − EN

t−2Zt−1

)2 (2.86)

where Z = x, π and ρfitj = (1− ρfit)
(
ρfit
)j is geometrically decaying in j.25

This “error forgetting factor" represents the weight given to past errors; when it
is close to zero older errors have similar weight to recent ones whereas when it is
close to one, recent errors receive most of the weight.

Then, the share of agents adopting a specific rule varies over time with the per-
formance of the forecasting rule itself:

wZ,F
t =

(
exp γicFZ,F

t

)
(
exp γicFZ,F

t + exp γicFZ,N
t

) (2.87)

25De Grauwe and Ji (2020a) shows the derivation of the recursive form representation to compute
infinite summation on a computer.
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wZ,N
t =

exp γicFZ,N
t(

exp γicFZ,F
t + exp γicFZ,N

t

) (2.88)

where γic is the intensity of choice representing how sensitive an agent is to the
fitness measure. When this is zero, agents do not pay attention to their forecasting
performance and randomly choose the rule to be followed next period. In this case,
the probability of choosing a specific rule is W = 1/nrules = 0.5. The higher γic the
wider the share of agents switching toward the best performing rule.

2.3.4 Sentiment Indicator and Central Bank Credibility

At this stage, it is convenient to define some indicators which will be employed in
later policy analyses to interpret the importance of state-dependency.

The possibility of tracking the share of agents adopting a specific rule over time
offers the opportunity to gain extra insights on the model behaviour. In fact, the
share of agents can be used to define a sentiment indicator and the level of Central
Bank credibility.

The sentiment indicator allows to track the share of optimistic agents over time
through the share of agents adopting a specific forecasting rule for output gap. Com-
bining equations 2.87 and 2.88, it is defined as:26

Ot ≡

{
wx,F

t if xt−1 < 0

wx,N
t = 1− wx,F

t if xt−1 > 0
(2.89)

This indicator helps understanding how expectations can generate waves of opti-
mism or pessimism and thereby endogenously generating business cycle fluctuations.
Recalling that fundamentalists believe output gap always reverts to equilibrium in
the next period, one can consider this rule to be optimistic when the output gap is
negative. In fact, in the latter case fundamentalist agents expect a higher output gap
in the next period. By contrast, when the output gap is negative the näive rule would
result as being pessimistic because when näive agents observe a negative output gap,
they expect it to be negative also in the next period. As a result, their believes have
a detrimental effect on economic activity as negative output gap expectations reduce

26In the literature, this is also known as “animal spirits" or “optimism" indicator - see De Grauwe
and Ji (2020a).
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aggregate demand through equation (2.73). Following the same logic under positive
output-gap realisations, fundamentalists become pessimistic while näives would be
optimistic.

Following Hommes and Lustenhouwer (2019), the level of Central Bank credibility
is measured through the share of fundamentalists agents in inflation:

wπ̂,F
t =

(
exp γicF π̂,F

t

)
(
exp γicF π̂,F

t + exp γicF π̂,N
t

) (2.90)

This indicator is endogenously determined by the evolution of the system and
will be used to assess whether trust in the Central Bank ability to meet the target
matters for the pass-through of long-term asset purchases to the economy.

2.3.5 Model Solution

As in De Grauwe and Ji (2020a), the model is solved in each point in time by matrix
inversion. In order to solve the model, it is convenient to rearrange the aggregate
demand equation as function of X̂t, X̂t+1, π̂t, π̂t+1 and R̂S

t . Substituting, the long-
term interest rate equation, (2.72), and all bond supply equations, from (2.76) to
(2.78), into the aggregate demand equation, (2.73), one obtains:

X̂t =
(
1− w2V

LHθX
)
X̂t+1 +

(
1− w2V

LHθπ
)
π̂t+1 − R̂S

t + w2V
LH ẑBt + ẑXt (2.91)

Then, equation (2.91) and the Phillips curve can be used to characterise the
following system of equations in structural form:

[
1 −k̄
0 1

][
π̂t

X̂t

]′
=

[
β 0

1− V LHw2θ
π 1− V LHw2θ

X

][
E∗

t π̂t+1

E∗
t X̂t+1

]′
+

+

[
0

−1

]
R̂S

t +

[
ẑπt

ẑXt + V LHw2ẑ
B
t

] (2.92)

In matrix notation, system (2.92) becomes
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AZ′
t = BE∗

tZ
′
t+1 +CRS

t + vt (2.93)

which has a solution only if A is invertible. Considering the forecasting rules de-
scribed in Section 2.3.3, the system (2.93) is completely backward-looking and its
solution coincides with the reduced form of the model:

Z′
t = A−1

(
BE∗

tZ
′
t+1 +CRS

t + vt

)
(2.94)

The main advantage of this approach is the possibility to fully track the highly
non-linear dynamics originated by reinforcement learning mechanisms which would
need to be approximated in a stochastic environment with rational expectations.

2.4 Simulations

This section of the paper analyses the dynamics of the model using numerical meth-
ods. After presenting parameters calibration, it assesses model behaviour in the
short- and long-run.

2.4.1 Calibration

The model was calibrated to match quarterly frequency data for US. Parameters
for the utility function are based on Galì (2008); both the labour supply and the
intertemporal-substitution in consumption elasticities are set to one. The latter is
in line with papers considering a binding ELB - see Harrison (2017) and Goy et al.
(2020). Following results found in Slobodyan and Wouters (2012), the calibration of
the discount factor guarantees an annualised short-term interest rate of 1.2 percent in
equilibrium - namely, β = 0.997. The Calvo parameter is consistent with a somewhat
low frequency of price adjustment being set to, 0.847, a value similar to estimates
presented in Smets and Wouters (2005) - so to obtain a Phillips Curve slope of 0.0561
as in Galì (2008). The inverse elasticity of substitution across products was set at 6;
equivalent to a mark-up of about 20 percent in steady state. Finally, the parameters
of the Taylor rule are taken fromSmets and Wouters (2007).

Relevant parameters for quantitative easing follow Harrison (2017) and Falagia-
rda (2013). The size of the asset purchase program is equal to one. This value is
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consistent with the magnitude of long-term asset purchases run by the FED during
the QE2 program which was characterised by a 100 percent increase of the long-term
assets in the FED portfolio. Finally, the persistence of asset purchases was fine-tuned
to replicate a LTAP lasting for 6 years in the overall.27

The parameter determining the decaying speed of coupons, χ, matches the av-
erage duration of US 10-year zero coupon bonds in December 2008 - when the first
long-term asset purchase program was launched in US (D’Amico and King, 2013).
Portfolio adjustment-costs come from Harrison (2017) who run a sensitivity analysis
test over a grid of plausible parameters in order to obtain moments in line with what
estimated by D’Amico and King (2013).28

27Usually, the monetary authority announces the starting date of the program, its duration and
the amount of bonds purchased in each tranche. A nuisance of simulating asset purchases by means
of an AR(1) shock is that the Central Bank starts reducing the purchased amount of bonds after
one period. However, this calibration allows to reproduce different reasonable exit strategies for
the Central Bank. To formally study the impact of more structured announcements one can use
the perfect foresight solver of Dynare at the cost of loosing the effects related to the precautionary
motive of agents.

28Appendix B.6 shows the generalised impulse responses generated with this model and the TANK
model developed in Sims et al. (2020) are qualitatively very similar.
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Parameter Name Value Source
σ Intertemporal elasticity of substitution 1 Harrison (2017)
φ Labour utility 1 Galì (2008)
ζ Elasticity of substitution across products 6 Galì (2008)
ξ Calvo parameter 0.847 Galì (2008)
β Discount factor 0.997 Slobodyan and Wouters (2012)
ϕA Persistence of the technology shock 0.9 Galì (2008)
ϕU Persistence of the mark-up shock 0.7
αΠ Taylor rule - inflation 1.5 Galì (2008)
αY Taylor rule - output 0.125 Galì (2008)
τB Fiscal rule - LT bond 0.3 Falagiarda (2013)
Asset Purchase Programmes
ϕB Persistence of the balance-sheet shock 0.83 Falagiarda (2013)
χ Bond long - slope of coupons 0.95 Harrison (2017)
ϕL Portfolio adjustment cost - stock 0.35 Harrison (2017)
Reinforcement Learning Parameters
γic Intensity of choice 2 De Grauwe and Ji (2020a)
ρfit Weight on the latest forecast error 0.5 De Grauwe and Ji (2020a)
ρE reinforcement expectations parameter 0 De Grauwe and Ji (2020a)
ωx,F
0 , ωπ,F

0 Fundamentalists - Share in t=0 0.5 De Grauwe and Ji (2020a)
X̄ Fundamentalists - Output gap forecast 0 De Grauwe and Ji (2020a)
π̄ Fundamentalists - Inflation forecast 0 De Grauwe and Ji (2020a)

Table 2.1: Parameters summary

2.4.2 Policy Analysis

This section shows the main policy implications of introducing heterogeneous expec-
tations and bounded rational agents behaving as reinforcement learners.

Role of Heterogenous Expectations

Figure 2.1a shows the relationship between the sentiment indicator, defined in Section
2.3.4, and output-gap is quite strong - the contemporaneous correlation is around 70
percent.29

29This is just to show the model can replicate standard results shown in De Grauwe (2012a) and
De Grauwe et al. (2020)
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This feature of the model is generated endogenously by agents switching across
different forecasting rules while learning from their forecast errors. Periods char-
acterised by high optimism - corresponding to a sentiment indicator above 50%
- originate a reinforcement mechanism which materialises in even higher positive
output-gaps. When the extrapolative forecast rule performs better than the funda-
mentalist one and output-gap is above steady state, a wave optimism will pervade
the economy.

On the one hand, extrapolators expect output-gap to remain positive in next
period thereby pushing aggregate demand up. On the other hand, more fundamen-
talists will become extrapolators and this will result in higher positive output-gaps.
However, it might happen that after some periods the forecasting performance of
fundamentalists will outperform that of extrapolators as a result of stochastic shocks
hitting the economy. Consequently, a wave of pessimism would gradually take over
thereby inducing a slowdown in business activity. This occurs because fundamen-
talists expect output-gap to revert to its steady state. The opposite would happen
when the output-gap is below the steady state, as fundamentalists would be optimists
and extrapolators pessimists. Figure 2.1b highlights the model is producing periods
of extreme optimism and pessimism - as the distribution of the sentiment indicator
is somehow skewed and presents fat tails. This is reflected in the distribution of
output-gap which is, in turn, non-normal and characterised by a slightly excessive
skew and kurtosis (see Figure 2.1c).

De Grauwe (2011) and more recently Jump and Levine (2019) provide empirical
evidence in favour of non-normal distribution of the output-gap in industrialised
countries; they find the output-gap is highly correlated with empirical measures
of sentiment while being characterised by fat tails and excess kurtosis. The non-
linearities introduced by reinforcement learning seem likely to help reproducing these
features of empirical data.
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(a) Output gap and share of optimistics

(b) Optimistics distribution (c) Output gap distribution.

Figure 2.1: Relationship between output gap and optimism

Asset Purchase Programs

This section investigates the pass-through of long-term asset purchases to the econ-
omy. For this purpose, 500 scenarios only differing for the realisations of the four
shock-processes were simulated. These simulations fully consider non-linearities re-
siding in the learning process. As forward-looking agents are fundamentalists, the
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model was solved recursively by simple matrix inversion - see Section 2.3.5.30

Then, generalised impulse responses were computed to analyse the state-
dependency of multipliers. As the model was simulated non-linearly, impulse
responses were not generated at the deterministic steady state but at the equilib-
rium of the system after a burn-in of 350 periods.31

All graphs exhibit the average generalised impulse response across all the 500
scenarios - solid blue line - and a range represented by either adding or subtracting
the standard deviation of generalised impulse responses across the different scenarios
- dashed red line. As we will see, the latter will play an important role in interpret-
ing results when heterogeneous expectations and learning are incorporated in the
simulations.

First, let start by analyzing the dynamics of the model with bond-market seg-
mentation when fundamentalists are the only agents populating the economy. Figure
2.2, shows the effects of a one-standard-deviation shock to the balance-sheet of the
Central Bank. This simulation considers the standard scenario in which the shock is
supposed to completely fade away after 6 years.

When the Central Bank starts purchasing long-term assets, the long-term interest
rate decreases. Agents react by adjusting the mix of different bonds held in portfolio
but because these are not perfect substitutes among each others, agents can expand
consumption thanks to the extra resources received from the sale of long-term bonds
- portfolio channel. The effect of higher long-term interest rates is transferred via
the aggregate demand equation to the real economy (feedback channel), and mate-
rialises in an increase of output and inflation. The central-bank balance-sheet shock
generates macroeconomic dynamics similar to those of a standard monetary policy
shock. However, while output and inflation respond similarly to a monetary policy
shock, the effects of a balance-sheet shock are more pronounced on output-gap than
on inflation.32

30Simulations are similar to what obtained with a fully non-linear simulation under perfect-
foresight but with the presence of noise.

31To build each generalised impulse response, the model was simulated twice using the same shock
vectors: first, with a shock in period 351, then, without it. Finally, generalised impulse responses
were computed as the difference between the two simulations and normalised by dividing for the
magnitude of the shock.

32This is consistent with models presented in Sims and Wu (2020a,b) and Sims et al. (2020) and
in line with empirical results showing a limited impact of QE policies on inflation.
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Figure 2.2: Balance-sheet shock - persistence, only fundamentalists.
Generalised impulse responses to a one-standard-deviation balance-sheet
shock. The shock is simulated after a burn-in of 350 periods on 500 dif-
ferent realisations of the shock processes. The blue line is the average GIRF
across all scenarions. Red-dashed lines show the blue line +/- 1-standard-

deviation across scenarios.

Figure 2.3 presents generalised impulse responses to the same shock as above on
an economy with heterogeneous expectations and reinforcement learning. In this
case, the model considers the simultaneous presence of fundamentalists and näives
while allowing them to rely on reinforcement learning to form expectations. On im-
pact, the reaction of long-term interest rates is the same as in Figure 2.2. However,
the effects of the shock decay faster over the short-run - e.g. the first 4 quarters
after the shock - compared to the case in which only fundamentalists populate the
economy. Nonetheless, they are somewhat more persistent over the long-run. This
phenomenon is reflected in the shape of the generalised impulse responses for macroe-
conomic variables. After the initial shock, output continues slowly growing for three
periods to, then, slowly revert to equilibrium after more than 20 periods. Also the
propagation of the balance-sheet shock to inflation is more evident and extended over
time. After the initial impact of the shock, the magnitude of the response keeps on
growing for six quarters up to three times its initial value, then, it remains somehow
stable for four quarters before starting to slowly decrease. These effects vanish after
about forty periods. Looking at the definition of the Phillips curve in equation (2.74),
inflation behaviour is the result of two elements. On the one hand, as in standard
fully rational models, the higher response and the longer persistence of output to
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the balance-sheet shock is transferred to inflation. On the other one, by means of
reinforcement learning, the behavioural model is able to capture the signalling effect
of quantitative easing.

The red-dashed lines can be interpreted as the uncertainty around each gener-
alised impulse response. Impulse responses vary, on average, across different realisa-
tions of the shock processes suggesting the effect of unconventional monetary policies
might be different depending on the state of the economy. The framework suggests
the sign of impulse responses to be robust across simulations in the short-run. How-
ever, uncertainty about the magnitude of the effects mounts over time indicating the
effects of quantitative easing might be negative in the long-run. Focusing on uncer-
tainty on the size of the impulse response of output-gap, it seems somehow constant
over time and the likelihood of observing negative effects becomes more concrete
after fifteen quarters. By contrast, variability of inflation impulse responses sharply
increases after four periods, reaching its maximum between around period 15 and 20
to then steadily decrease. As a result of this wide standard deviation across simula-
tions the likelihood of observing negative impulse responses raises already after ten
periods.

Figure 2.4 shows the effects of APPs are likely to be overall positive for both
output-gap and inflation. Histograms 2.4a and 2.4b present some insights on the
short-run impact of APP shocks on output-gap and inflation in the short-run - e.g.
captured by the distribution across the different scenarios of the cumulated impact
of the APP shock over the first four quarters. In fact, the distribution leans clearly
on positive values and it is skewed to the upside. The situation is less evident
over longer horizons - e.g. from the fifth quarter to the fortieth. For output-gap, the
distribution is more dispersed. Most of the weight is on low bins and about 8 percent
of realisations is in negative territory. Nonetheless, the bulk of the distribution of
cumulated GIRFs for inflation is still positive and skewed to the right even though
all values are close to the zero-line.

Uncertainty around the size of generalised impulse responses resides in the learn-
ing mechanism which leads agents’ expectations to endogenously generate waves of
pessimism and optimism. The way the system evolves during the burn-in period de-
pends on how agents learn from past forecast errors in a stochastic environment. As
GIRFs are state-dependent, the moment in which the CB launches long-term asset
purchases matters. Indeed, with heterogeneous agents and reinforcement learning
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Figure 2.3: Balance-sheet shock - persistent shock and reinforcement learn-
ing.

Generalised impulse responses to a one-standard-deviation balance-sheet
shock. The shock is simulated after a burn-in of 350 periods on 500 dif-
ferent realisations of the shock processes. The blue line is the average GIRF
across all scenarions. Red-dashed lines show the blue line +/- 1-standard-

deviation across scenarios.

the same balance-sheet shock might generate different dynamics depending on the
level of optimism in the economy at the moment it happens.

To provide some evidence on this, Figure 2.5 shows the relationship between the
average level of optimism, defined in (2.89), during the first four quarters after the
shock and the cumulated generalised impulse responses over the same time span for
both output-gap and inflation. APPs are more effective when optimism is either
extremely high or extremely low. In light of the high correlation between optimism
and output-gap found in Section 2.4.2, this framework seems to promote APPs as a
useful counter-cyclical tool, thus, suggesting it can be used to smooth the business
cycle either at its peaks or troughs.
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(a) Short-term output-gap (b) Short-term inflation

(c) Long-term output-gap (d) Long-term inflation

Figure 2.4: Distribution of cumulated GIRF across different scenarios.
Short-term consists of the sum of GIRFs over the first 4 quarters after the

shock. Long-term starts from the 5-th quarter to 40 quarters ahead.

(a) Short-term output-gap (b) Short-term inflation

Figure 2.5: Relationship between optimism and short-term impact of a
persistent balance-sheet shock. The x-axis shows the mean share of opti-
mistic agents over the short-term for each simulated scenario. The y-axis
shows the sum of GIRFs over the first four quarters after the shock for each

simulated scenario.
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The model also introduces interactions between Central Bank credibility and
the effectiveness of long-term asset purchases which can be used to assess state-
dependency of inflation impulse responses. As fundamentalist agents expect inflation
to be on target next period, their share can be considered as an endogenous measure
to track CB’s credibility over time, and can provide some useful insights to interpret
the effectiveness of policy tools.33

Figure 2.6 shows a strong linear relationship between the average share of fun-
damentalists during the first four quarters after a CB balance-sheet shock and the
respective cumulated inflation GIRFs. Therefore, the model implies strong CB cred-
ibility can amplify the APPs effectiveness.

Figure 2.6: Relationship between central credibility and short-term impact
of a persistent balance-sheet shock on inflation. The x-axis shows the mean
share of inflation targeters over the short-term for each simulated scenario.
The y-axis shows the sum of inflation GIRFs over the first four quarters after
the shock for each simulated scenario. Each scenario is simulated over 10000

periods.

33Fundamentalists are also referred as “credibility-believers" or “inflation-targeters" in behavioural
macroeconomics literature - see Hommes and Lustenhouwer (2019) and Goy et al. (2020).
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Analysis of the Parameter Space and Optimal Policy

Following De Grauwe and Ji (2020a, 2021), model behaviour for different combina-
tions of conventional and unconventional monetary policies was analysed through a
Monte Carlo exercise. Specifically, repeated simulations for different parametrisa-
tions of the standard Taylor rule (2.75) and QE rule (2.76) were employed to assess
the sensitivity of model stability, in terms of convergence and volatility, to different
CB reaction functions.

Figure 2.7 presents stability regions for different configurations of the Taylor
Rule while keeping QE Taylor Rule parameters fixed. In this graphical representa-
tion, model is considered to be unstable (U) when at least one endogenous variable is
explosive, stable (S) when variables fluctuate around their steady states and highly
volatile (HV) when the system is still stable but stochastic processes cause endoge-
nous variables to widely oscillate around their steady states.34

Panel 2.7a illustrates the case in which the Central Bank uses only standard
monetary policy to steer the economy. Results are similar to those of De Grauwe
and Ji (2020a): the inflation parameter seems driving the stability of the stochastic
system. However, reinforcement learning seems to oblige the CB to react at least
softly to output-gap developments to avoid episodes of high volatility. On the con-
trary, intervening only on output-gap is not sufficient to stabilise the system and this
measure would need to be accompanied by some inflation containment. Panels 2.7b
to 2.7d present combinations of standard monetary policy with inflation QE rules. In
this framework, QE can help standard monetary policy in stabilizing the economy.
Furthermore, a heavy QE reaction to inflation can stabilise the system also when
monetary policy does not react to inflation (απ = 0), as for instance while at the
ZLB.35

Yet, some interventions on the output-gap are needed to avoid high volatility
episodes. Similarly, Figure 2.8 confirms output-gap stabilisation is not sufficient to
stabilise the system although it is critical to avoid high-uncertainty periods.

34These cases are characterised by a variance at least 5 times larger than the variance of stochastic
processes.

35To interpret sensitivity of stability areas to the magnitude one has to keep in mind the specifi-
cation of the Euler Equation in which the weight of long-term interest rates directly depends on the
size of the overall financial sector and on the relative exposure of households to long-term bonds.
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This is in line with De Grauwe and Ji (2020a), showing that episodes of high
volatility in behavioural models are mainly due to the sentiment indicator reaching
extreme values because of agents tangibly reacting to output-gap variations.

(a) θπ = 0, θX = 0 (b) θπ = 1.5, θX = 0

(c) θπ = 5, θX = 0 (d) θπ = 15, θX = 0

Figure 2.7: Stability areas with mixed policies: varying QE reaction to
inflation, θπ.

The matrix is based on a sensitivity analysis of system stability for different
configurations of the Taylor rule parameters (απ in columns and αX in rows).
Each panel shows stability properties for a different value of θπ while keeping

θX = 0. Each scenario is simulated over 10000 periods.
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(a) θπ = 0, θX = 1.5 (b) θπ = 0, θX = 5

(c) θπ = 0, θX = 15

Figure 2.8: Stability areas with mixed policies: varying QE reaction to
output-gap, θX .

The matrix is based on a sensitivity analysis of system stability to different
configurations of the Taylor rule parameters (απ in columns and αX in rows).
Each panel shows stability properties for a different value of θX while keeping

θπ = 0. Each scenario is simulated over 10000 periods.

Figure 2.9 provides further details on how conventional monetary policy can sta-
bilise the long-term volatility of the system. Building on results shown in pane 2.7a
in which QE does not react to economic developments (θX = θπ = 0), the top pane
shows the CB can absorb most of output-gap volatility through a soft intervention on
this variable; values of αX around 0.1 allow to exit a high-volatility environment and
this is more evident when CB’s react one by one to inflation movements. However,
it seems the CB needs to react more than proportionally to inflation movements to
curtail inflation variance - see the middle panel. Finally, the bottom panel suggests
policymakers face a trade-off when minimizing these two variables.

To shed some light on the best policy mix, I follow De Grauwe (2011) assuming the
CB optimises welfare by minimizing the overall volatility of the economic system.
In practice, the CB chooses αX and απ to minimise a loss function depending on
output-gap and inflation volatility:

L = std(π̂)P + std(x̂)(1− P ) (2.95)
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Figure 2.9: Taylor Rule parameters and volatility of endogenous variables
for different values of θπ. Simulated one scenario for 10000 periods while

keeping θX = 0.

where 0 < P < 1 represents CB’s preference for inflation stabilisation. When the
CB minimises only one of the two standard deviations, the policy problem would
lead to results shown the top-two panels of Figure 2.9. However, overall volatility
reaches lower levels when the CB tries to stabilise both variables. The top panel of
Figure 2.10 exhibits the case in which the CB has not a clear preference between
output and inflation, and suggest that the minimum volatility is reached when the
CB reacts heavily to both to output-gap (αX = 1.2) and inflation (αΠ = 2.5). This
result is qualitatively similar to what shown in the bottom panel where the CB prefers
minimizing inflation volatility (P = 0.75) although in this case overall volatility is
about 10% lower.
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Figure 2.10: Taylor Rule parameters and loss function of endogenous vari-
ables for different values of απ and αX . In the top panel P=0.5 and in the
bottom one P=0.75. Simulated one scenario for 10000 periods while keeping
θπ = θX = 0. Stability areas with mixed policies: varying QE reaction to

inflation.
The matrix presents a grid search for different values of the standard Taylor
rule (απ in columns and αX in rows) while keeping fixed values of the QE

Taylor rule. Each scenario is simulated over 10000 periods.

2.5 Conclusions

This paper develops a Behavioural DSGE model to analyse quantitative easing under
bounded rationality. Quantitative easing, in the form of long-term asset-purchases,
was embedded through portfolio adjustment costs across bonds with different matu-
rities modelled as perpetuities with geometrically decaying coupons à la Woodford
(2001). By adjusting the quantity of long-term bonds in its balance-sheet, the Cen-
tral Bank can reduce long-term interest rates and thereby influencing households’
consumption decisions. The novelty of the paper is the study of long-term asset-
purchase programs in a framework characterised by heterogeneous expectations and
Euler learning. This implies agents’ behaviour can differ depending on the rule
adopted for forming expectations which is chosen on the basis of its past predic-
tive performance as in canonical models with reinforcement learning à la Brock and
Hommes (1997).
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Thanks to these features, the model is equipped to simulate state-dependent im-
pulse responses, and possibly offer an explanation to the variety of empirical results
on the effects of quantitative easing. In this framework, the pass-through of quan-
titative easing to the economy varies with economic sentiment and Central Bank
credibility. The model generates waves of optimism and pessimism affecting the
transmission of long-term interest rates changes to macroeconomic variables - feed-
back channel. The model suggests the short-run effects of asset purchases are expan-
sionary and robust to different sentiment levels. However, their size and persistence
vary with the state of the economy - as the variance across different scenarios is wide.
The latter provide an interpretation for the different findings proposed by empirical
literature suggesting the passthrough of long-term asset purchases depends on the
state of the economy.

Furthermore, a Monte Carlo exercise suggests long-term asset purchases are likely
to be a valid counter-cyclical measure. On average, the positive response of macroe-
conomic variables to policy actions is stronger either when extreme pessimism or
optimism feature the state of the economy. As the output-gap and the sentiment
indicator are highly correlated, one can infer this policy measures are suitable to
stabilise the business cycle when it is far from its steady state in absolute value.

Moreover, the effectiveness of asset-purchase programs depends on central-bank
credibility. The latter is endogenously generated by the model depending on how
close inflation was to target over the recent past. In turn, this would result, on
average, in higher impulse responses of inflation to a balance-sheet shock.

As in De Grauwe and Ji (2021), the model supports the relevance of a dual-
mandate addressing directly both inflation and output-gap fluctuations to avoid eco-
nomic uncertainty when agents form expectations using reinforcement learning. Al-
though stabilizing inflation is crucial to avoid the system to become explosive, even a
moderate intervention the output-gap is important to reduce the probability of high
volatility episodes. By reacting to output-gap developments, the Central Bank can
somehow curtail episodes of extreme optimism or pessimism and thereby reduce the
risk of expectation-driven self-reinforcing mechanisms destabilizing the economy.

This model can be extended in several directions. These include the incorporation
of forward-guidance as in Goy et al. (2020) to study how the latter can influence the
term structure, uncertainty on the length of long-term asset purchase programs as
in Hommes et al. (2018) to study the signalling effect of quantitative easing and in
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an open-economy environment as in De Grauwe and Ji (2020a) to analyse how the
synchronisation of the sentiment indicator can influence the compression of the term
structure. Finally, steady-states stability and system behaviour might be formalised
as in Hommes and Lustenhouwer (2019). This is left for future research.
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Chapter 3

Non-Linear Behavioural New
Keynesian Models: Identification and
Estimation

Abstract

This paper designs and estimates a non-linear New Keynesian (NK) Behavioural
model with trend inflation, heterogeneous expectations and bounded rational agents
forming expectations on the basis of reinforcement learning (Brock and Hommes,
1997). Novel identification tests for non-linear DSGE models show that the core
parameters of the learning mechanism (i.e. the intensity of choice and the memory
parameters) can only be identified with higher-order approximations while observing
the proportion of agents adopting a specific forecasting rule. Thus, the model is
estimated with Bayesian techniques by means of a second-order Extended Kalman
filter (Gustafsson and Hendeby, 2012) -relying on results from Chapter 1 - while
expanding the information set with data from the Survey of Consumers Expectations
from the University of Michigan to proxy the share of näive agents populating the
economy. Given the combination of fully rational and bounded-rational agents, the
intensity of choice parameter was estimated to be higher than usually assumed.

JEL Classification: C11, C18, C32, E32, E47, E52, E62, E70, O44
Keywords: DSGE modelling, rationality, endogenous growth, systems estimation,
heterogeneity, unemployment, banking sector
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3.1 Introduction

The assumption of fully informed rational expectations (FIRE) underpins the large
majority of modern macroeconomic models. In standard linear dynamic stochastic
general equilibrium (DSGE) models, the FIRE hypothesis implies agents to be taking
decisions consistently with the actual structure of the model, while having timely
access to the complete information set.

This modelling approach was recently subject to critics. On the one hand, the
Great Financial Crisis showed that linear DSGE models are somewhat limited in
reproducing the atypical patterns characterising macroeconomic data in turmoil pe-
riods (De Grauwe, 2012a; Ascari et al., 2015; Jump and Levine, 2019). On the other
hand, a growing strand of literature relying on survey data (Branch, 2004; Pfajfar
and Santoro, 2010; Coibion and Gorodnichenko, 2015) and on laboratory experiments
(Assenza et al., 2021) somehow challenged the FIRE hypothesis at micro level.

With the aim of filling the gap between theory and empirical evidence, there was
a proliferation of DSGE models endowed with various forms of bounded rationality.
The issue is that the departure from rationality opens an infinite number of modelling
options, making economists subject to the “wilderness" described in Sims (1980).

Among others, influential applications introduced adaptive learning (Evans and
Honkapohja, 2001; Milani, 2007), internal rationality (Adam and Marcet, 2011; Deák
et al., 2017b), rational sunspot equilibria (Jess and A., 1994; Ascari et al., 2019;
Bianchi and Nicolò, 2021) and cognitive discounting (Gabaix, 2020).

The introduction of reinforcement learning à la Brock and Hommes (1997) rep-
resents an important response to the wilderness concern. This expectational mecha-
nism in fact restricts the departure from rationality and excludes illogical behaviour
by penalising poorly performing forecasting rules, while allowing for a random com-
ponent of choice and a gradual adaptation of agents’ behaviour.

This paper contributes to this strand of literature, pioneered by the work of
Branch and McGough (2009) and De Grauwe (2012a), by bringing this family of
Behavioural DSGE models to the data.1 The reinforcement learning mechanism is

1This terminology is mainly due to De Grauwe’s books (De Grauwe, 2012b; De Grauwe and Ji,
2020a) providing an extended treatment of the subject. However, the same term is also associated
to recent DSGE models with cognitive discounting and representative agents illustrated in Gabaix
(2020).
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here characterised by three core parameters: memory parameters, ruling the im-
portance of past forecast errors, the intensity of choice, indicating the sensitivity to
changes in utility determined by the performance of the chosen forecast rule, and
the cost of being rational. Two main challenges arise from such model: first, due to
the deep interaction among the aforementioned parameters, their joint estimation is
subject to serious identification issues; secondly, these parameters heavily affect the
volatility of the system, thereby increasing the difficulty of tracking the dynamics
of latent variables with direct inference. Therefore, estimating Behavioural DSGE
models represents a quite challenging exercise from an econometric perspective, and
the literature on this topic is still limited (see Liu and Minford (2014); Grazzini et al.
(2017); Kukacka and Sacht (2021)).

The novelties of the paper are twofold. First, formal identification tests are
applied on both a linear and a non-linear approximation of the Behavioural DSGE
model with the aim of outlining the structural requirements for the estimation of
the reinforcement learning parameters. For this exercise, a New Keynesian model
with Calvo price-setting and trend inflation, similar to what illustrated in Ascari and
Sbordone (2014), is extended to embed heterogeneous expectations and the heuristic
switching mechanism as in canonical Behavioural DSGE models. In this framework,
bounded rational agents cohabit with fully rational ones and are left free to correct
their forecasting strategy depending on payoffs from past decisions.

Then, the methodology presented in Mutschler (2015, 2018) is applied to evalu-
ate the rank criteria for the local identification of parameters in a non-linear DSGE
model, given higher-order approximations and pruning (Schmitt-Grohé and Uribe,
2004b; Andreasen et al., 2018). Thus, the joint identification of the parameters de-
scribing the learning block of the model is tested under different hypotheses on the
structure of the model and the observation set. The tests conclude that the learning
rate of adaptive agents (i.e. the speed of learning under adaptive expectations), the
intensity of choice and the memory parameters are jointly identifiable only in a non-
linear framework while observing the share of agents adopting each forecasting rule.
These results confirm the intuition suggested in Deák et al. (2017b) that reinforce-
ment learning can influence agents’ behaviour only in a higher-order approximation
of the model. Moreover, this sheds light on the findings of Grazzini et al. (2017)
and Kukacka and Sacht (2021), who could not jointly identify reinforcement learning
parameters without observing the share of agents.



Chapter 3. Non-Linear Behavioural New Keynesian Models: Identification and
Estimation

100

The second novelty of the paper is the use of survey-based measures to approx-
imate the share of agents adopting a specific forecast rule to form expectations.
Shares are approximated with the distribution of consumers’ replies to the quali-
tative question on business activity from the “Survey of Consumer Expectations"
held by the University of Michigan. In particular, respondents expecting unchanged
business conditions are assumed to follow a näive or backward-looking rule and the
information set is extended with survey data to estimate the Behavioural DSGE
model, using Bayesian non-linear filtering techniques.2 Finally, the ability of the
Behavioural DSGE model in reproducing empirical moments is compared to that of
a FIRE counterpart.

The paper is structured as follows. Section 3.2 reviews empirical research on
DSGE models with heterogeneous expectations. Section 3.3 outlines the New Key-
nesian model with non-zero steady-state inflation under rational expectations, and
then embeds the Brock-Hommes composite model with rational and bounded ratio-
nal expectations. Section 3.4 shows the results of the identification tests, explains
how observed time-series are mapped to model variables, presents parameters esti-
mates based on local-Gaussian filtering techniques applied on a second-order Taylor
approximation of the model and conclude with a validation exercise. Section 3.5
concludes and propose a road-map for future research.

3.2 Literature Review

There is a flourishing empirical literature on Bounded Rational DSGE models, cover-
ing several different learning mechanisms either with homogeneous or heterogeneous
expectations. Comprehensive surveys on models with homogeneous expectations are
provided in Hommes et al. (2019), mainly reviewing applications on statistical learn-
ing, and in Bianchi and Nicolò (2021), covering rational sunspots. This review will
focus instead on models considering heterogeneous expectations, with particular at-
tention devoted to empirical literature on reinforcement learning.

Empirical research on DSGE models with heterogeneous expectations mainly ad-
dressed the ability of alternative degrees of bounded rationality to outperform rational

2Even though expecting unchanged business conditions can be a fully rational choice, what
matters for the model dynamics is that agents’ expectations are in line with recent observations.
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expectations models in fitting data in models characterised by fixed proportions of
agents adopting specific expectations mechanisms (i.e. hybrid expectations).

Jang and Sacht (2016) estimate a work-horse NK model with heterogeneous expec-
tations and exogenous (i.e. constant) shares of agents using the Simulated Method of
Moments (SMM). The paper shows that the model specification with heterogeneous
agents can reproduce second-order moments better than its FIRE analogue. Levine
and Yang (2015) obtain similar results using direct inference by means of Bayesian
estimation methods.

Deák et al. (2017b) extend this research framework to compare combinations of
rational agents and agents with anticipated utility either with perfect or imperfect
information (i.e. not observing shock processes). The paper finds the information set
to be fundamental for selecting the form of bounded rationality with the highest fit.
Surprisingly, a rational expectation model with imperfect information can reproduce
sample moments similar to those of a model with heterogeneous expectations combin-
ing anticipated utility and rational expectations under perfect information. However,
when imperfect information is introduced, the latter can fit the data slightly better
than the original representative agent model with rational expectations.

Beqiraj et al. (2018) test the fit of a NK model with exogenous proportions of
rational agents being either short-term (i.e. naïve agents) or long-term forecasters
(i.e. anticipated utility). They conclude that a combination of rational and naïve
agents improves the fit of the model, and estimate the share of rational agents in the
best performing specification to be about 65%.

Similarly, Gelain et al. (2019) estimate a Smets-Wouters model with a mix of
rational and bounded rational agents (i.e. adaptive expectations). In line with Deák
et al. (2017b), the heterogeneous expectations model outperforms the fully rational
one in a likelihood race while guaranteeing a similar matching of empirical moments
in a validation exercise. However, the hybrid model is clearly superior to the fully ra-
tional one when it comes to out-of-sample exercises as it provides expectations which
are closer to those of the Survey of Professional forecasters. Standard deviations of
shocks and their persistence parameters narrow down in the hybrid specification,
highlighting the ability of bounded rationality to intrinsically capture time-series
persistence.

Finally, Jang and Sacht (2020) estimate a fully non-linear three-equation NK
model with reinforcement learning à la Brock-Hommes using the simulated method
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of moments. However, the intensity of choice, the memory parameter and the cost for
becoming “more rational” were calibrated.3 Their results show that an economy pop-
ulated by emotional forecasters, who predict future developments with a positive or
negative average trend corrected by the volatility of consumption, delivers a slightly
better match with US data than a RE model with habits and inflation indexation.
On the contrary, a purely technical forecasting rule (e.g. a mix of fundamentalists
and näives) better match Euro area data.

Although still limited, the literature on the estimation of models with endogenous
shares of agents has recently been growing.

Grazzini et al. (2017) make the first attempt of estimating a fully non-linear
Behavioural DSGE model using direct inference. They apply Bayesian estimation
methods to estimate the parameters of the model developed in De Grauwe (2012a),
where the fully non-linear reinforcement learning mechanism is embedded in a lin-
ear three-equations New Keynesian model. In this framework, agents can be either
näives or fundamentalists, thereby generating a fully backward-looking system to be
solved recursively. They fix the Taylor parameters and estimate 9 out of the 12 model
parameters using two observables for the US economy: GDP deflator and output-
gap. The prior of the intensity of choice parameter is a B(2, 2) and it is initialised
at 5. The paper shows that the intensity of choice and the memory parameters are
quite difficult to identify, with the former delivering a posterior mode not signifi-
cantly different from that of the prior distribution and the latter being characterised
by a flat posterior density. Interestingly, all the shocks standard deviations are esti-
mated to be a lot smaller than under rational expectations. This is consistent with
the intrinsic ability of heuristic switching models to endogenously generate business
cycles through waves of optimism and pessimism.

Kukacka and Sacht (2021) obtain significant estimates of the intensity of choice
parameter for both the US and the Euro area by applying novel simulated maximum
likelihood methods on the De Grauwe (2012a) model with three different kinds of
backward-looking forecasting rules: adaptive expectations, trend following, and a
LAA (Learning Anchoring and Adjusting) heuristics. They obtain a low but signifi-
cant value of the intensity of choice parameter, estimated to be slightly above 1 for
the Euro area and between 0 and 1 for the US. In the main exercise, the memory

3The intensity of choice was set to be one and the memory parameters to be zero somehow in
agreement with what suggested in Kukacka and Sacht (2021) - see below.
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parameter is fixed to be zero. Nonetheless, Kukacka and Sacht (2021) find in a ro-
bustness exercise that a non-zero memory parameter deteriorate all estimates of the
parameters underpinning the forecasting rules. This might be due to the similar role
played by the parameters of the forecasting rules and of the memory parameters in
capturing time-series auto-correlation.4

By contrast, Liu and Minford (2014) estimate the behavioural model by means of
indirect inference on US data, and conclude that a simple three-equation model with
reinforcement learning is worse than its fully rational counterpart.5 Their method-
ology consist in estimating a VAR(1) model on actual data and on several different
artificial data-sets generated by randomly varying parameters, either in a fully ra-
tional model or in a behavioural one. Estimated parameters coincide with those
minimising the distance between the VAR coefficients estimated on actual data and
those obtained from the artificial sample. The nice feature of this approach is the
possibility to choose both the best parameters within a model specification, and the
best model specification, which -in this case- only varies in the way expectations are
modelled.

The results of these exercises have the limit of focusing on very simple models with
three equations and only considering backward-looking agents. However, standard
FIRE DSGE literature provides much more evolved models.

In this paper, I design a model embedding some of common features characterizing
standard DSGE models, such as trend inflation and I allow for the presence of forward
looking agents in order to evaluate the smallest possible deviation from the FIRE
assumption. Moreover, the micro-foundation of the model distinguishes between
households’ and firms’ expectations, thereby providing a flexible field to test an
additional layer of heterogeneity.

4In a non-linear VAR framework, Cornea-Madeira et al. (2019) provide additional evidence that
the switching mechanism is a valuable tool to assess whether the Phillips-curve is backward or
forward-looking: the fit of their estimates improves when allowing agents to change towards the
best performing rule. This study finds that the intensity of choice parameter is in line with theory
by being positive and strongly significant. The estimates of the intensity of choice parameter
is 5.040 when using actual macro-data for US and 1.995 when using US Survey of Professional
Forecasters data. Interestingly, the share of naïve agents is dominating over the whole time span
being roughly around 35 percent on average. Results are quite robust with an R2 above the 80
percent and coefficients significant at the 1 percent level.

5Like Grazzini et al. (2017), they also estimate a simple backward-looking model with näives or
fundamentalists agents, but they use real GDP, inflation and interest rates to disentangle parameters
as in Kukacka and Sacht (2021).
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Behavioural model estimates are validated against a non-linear FIRE NK model.
Other studies compare the Behavioural DSGE model against a linear FIRE model
thereby not allowing to distinguish between the effects purely related to the presence
non-linearities from those generated by bounded rationality. By contrast, using a
non-linear FIRE DSGE as a benchmark allows to better understand the role of the
expectations-formation mechanism for eventual improvements in matching empirical
moments.

Given the difficulties in jointly identifying the core reinforcement learning pa-
rameters, I apply formal identification tests for non-linear DSGE models as recently
designed by Mutschler (2015, 2018). This helped understanding the potential for
exploiting information from survey-based measures. Consequently, survey data on
consumers’ expectations is introduced to bridge the gap with the empirical literature
and provide some evidence on their importance for matching empirical data.

3.3 The Full Non-linear Model

This section presents the New Keynesian DSGE model under full information and ra-
tional expectations (FIRE) to then introduce heterogenous expectations and bounded
rationality in the form of reinforcement learning à la Brock-Hommes (1997). Under
the FIRE hypothesis, agents can form model consistent expectations as they are as-
sumed to know the structure of the model, including the value of parameters, and
know the distribution of future shocks when forming expectations. Similar to Mas-
saro (2013), heterogeneous expectations and the learning mechanism were embedded
in accordance with euler learning assumptions (Evans and Honkapohja, 2001): (i)
agents are aware of being identical and (ii) are able to observe the shock vector.
Therefore, agents’ behaviour varies only as result of the way of forming expecta-
tions.6

6Deák et al. (2017b) relax these assumptions to embed internal rationality (Adam and Marcet,
2011) and anticipated utility (Eusepi and Preston, 2011). This implies agents are fully rational
with respect to their internal decisions, but do not have a model for predicting macroeconomic
variables. They sharply distinguish between aggregate and internal quantities so that identical
agents are not aware of this equilibrium property and they can maximise their utility over an
infinite horizon without realising to be the representative agent. Finally, Jump and Levine (2019)
define the analytical equilibrium conditions.
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3.3.1 The Rational Expectation Model

The backbone of the model estimated in this paper is a small New Keynesian model
with trend inflation, similar to the one developed in Ascari and Sbordone (2014),
and extended with a fiscal policy shock.

The micro foundation foresees the three standard blocks of a representative agents
model: households, firms and public sector. Households choose the optimal amounts
of consumption, labour supply and financial assets to maximise their utility function
over time. The production sector is composed by wholesale intermediate sector and
retail sector, where firms in the retail sector are subject to Calvo pricing frictions
when maximizing their profits.

Households

Household j chooses between consumption, C(j)
t , and hours worked, H(j)

t . The single-
period utility U (j)

t of household j at time t is given by

U
(j)
t = U(C

(j)
t , H

(j)
t ) = log(C

(j)
t )− κ

H
(j)
t

1+ϕ

1 + ϕ
(3.1)

where k is a parameter scaling the disutility from supplying an additional unit of
labour. In a stochastic environment, the value function of the representative house-
hold at time t is given by

V
(j)
t = Et

[
∞∑
s=0

βsU
(j)
t+s

]
(3.2)

with β being a discount factor. The household’s problem at time t is to choose paths
for consumption {C(j)

t }, labour supply {H(j)
t } and holdings of financial assets {B(j)

t }
to maximise the value function, V (j)

t , described in equation (3.2) given its budget
constraint

B
(j)
t = RtB

(j)
t−1 +WtH

(j)
t + Γt − C

(j)
t − Tt (3.3)

where B(j)
t is holdings of financial assets, Rt is the interest rate paid on assets held

at the beginning of period t, Wt is the real wage rate, Γt are profits from wholesale
and retail firms owned by households and Tt denotes taxes. Wt, Rt, Γt and Tt are all
exogenous to household j.
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The household’s problem is solved by means of a Lagrangian auxiliary function:

L = Et

[
∞∑
s=0

βs

{
U

(j)
t+s

+ λ
(j)
t+s

[
Rt+sB

(j)
t+s−1 +Wt+sH

(j)
t+s + Γt+s − C

(j)
t+s − Tt+s −B

(j)
t+s

]}]
(3.4)

The first-order conditions with respect to {Ct+s(j)}, {B(j)
t+s} and {H(j)

t+s} are

{C(j)
t+s} : Etβ

sUC,t+s(j) + βsλ
(j)
t+s = 0

{B(j)
t+s} : Et

[
βs+1λ

(j)
t+s+1Rt+s+1

]
− βsλ

(j)
t+s = 0

{H(j)
t+s} : Et

[
βsU

(j)
H,t+s + βsλ

(j)
t+sWt+s

]
= 0

Rearranging the first-order conditions we obtain:

1 = Et

[
Λ

(j)
t,t+1Rt+1

]
(3.5)

Wt = −
U

(j)
H,t

U
(j)
C,t

(3.6)

with

Λ
(j)
t,t+1 = β

U
(j)
C,t+1

U
(j)
C,t

(3.7)

UC,t =
1

Ct

(3.8)

UH,t = −κHϕ
t (3.9)

where Λ
(j)
t,t+1 is the real stochastic discount factor for household j over the interval

[t, t+ 1].

Firms in the Wholesale Sector

Wholesale firms employ a Cobb-Douglas production function to produce a homoge-
neous output

Y W
t = F (At, Ht) = AtH

α
t (3.10)
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where At is total factor productivity. Profit-maximising demand for labour results
in the first order condition

Wt =
PW
t

Pt

FH,t = α
PW
t

Pt

Y W
t

Ht

(3.11)

Firms in the Retail Sector

The retail sector uses a homogeneous wholesale good to produce a basket of differ-
entiated goods m for aggregate consumption

Ct =

(∫ 1

0

Ct(m)(ζ−1)/ζdm

)ζ/(ζ−1)

(3.12)

where ζ is the elasticity of substitution. Each retail firm produces only one good, and
for each good m, the consumer chooses Ct(m) at a price Pt(m) to maximise (3.12)
given total expenditure

∫ 1

0
Pt(m)Ct(m)dm. This results in a set of consumption

demand equations for each differentiated good m with price Pt(m) of the form

Ct(m) =

(
Pt(m)

Pt

)−ζ

Ct ⇒ Yt(m) =

(
Pt(m)

Pt

)−ζ

Yt (3.13)

where Pt =
[∫ 1

0
Pt(m)1−ζdm

] 1
1−ζ . Pt is the aggregate price index. Ct and Pt are

Dixit-Stigliz aggregates (see Dixit and Stiglitz (1977)).
Each variety of retail good m is produced with wholesale production according

to an iceberg technology
Yt(m) = Y W

t = AtHt(m)α (3.14)

Following Calvo (1983), we assume that -in every period- there is a probability of
1−ξ that the price of each retail good m is set optimally to P 0

t (m). If the price is not
re-optimised, it is held fixed. Thus we can interpret 1

1−ξ
as the average duration for

which prices are left unchanged. For each retail producer m, given its real marginal
cost MCt, the objective is to choose {P 0

t (m)} to maximise discounted profits

Et

∞∑
k=0

ξk
Λt,t+k

Pt+k

Yt+k(m)
[
P 0
t (m)− Pt+kMCt+k

]
(3.15)
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subject to (3.13). The solution being

Et

∞∑
k=0

ξk
Λt,t+k

Pt+k

Yt+k(m)

[
P 0
t (m)− 1

(1− 1/ζ)
Pt+kMCt+k

]
= 0 (3.16)

which leads to

P 0
t (m)

Pt

=
1

1− 1/ζ

Et

∑∞
k=0 ξ

kΛt,t+k(Πt,t+k)
ζYt+kMCt+k

Et

∑∞
k=0 ξ

kΛt,t+k(Πt,t+k)ζ−1Yt+k

(3.17)

where k periods ahead inflation is defined by

Πt,t+k ≡
Pt+k

Pt

=
Pt+1

Pt

Pt+2

Pt+1

· · Pt+k

Pt+k−1

= Πt+1Πt+2 · ·Πt+k

Note that Πt,t+1 = Πt+1 and Πt,t = 1.
If we rewrite both numerator and denimonator of 3.17 in a recursive form as

follows

Jt =
1

1− 1
ζ

Et

∞∑
k=0

ξkΛt,t+kΠ
ζ
t,t+kYt+kMCt+k

=
1

1− 1
ζ

YtMCt + ξEtΛt,t+1Π
ζ
t,t+1Jt+1 (3.18)

JJt = Et

∞∑
k=0

ξkΛt,t+kΠ
ζ−1
t,t+kYt+k

= Yt + ξEtΛt,t+1Π
ζ−1
t,t+1JJt+1 (3.19)

then it can be expressed as
P 0
t (m)

Pt

=
Jt
JJt

(3.20)

By the law of large numbers the evolution of the price index is given by

P 1−ζ
t+1 = ξP 1−ζ

t + (1− ξ)(P 0
t+1)

1−ζ (3.21)



Chapter 3. Non-Linear Behavioural New Keynesian Models: Identification and
Estimation

109

which can be written as

1 = ξΠζ−1
t + (1− ξ)

(
Jt
JJt

)1−ζ

(3.22)

Price dispersion is defined as ∆p
t =

∫
(Pt(m)/Pt)

−ζ . Assuming that the number of
firms is large, we obtain the following dynamic relationship:

∆p
t = ξ

∫
not optimise

(
P 0
t−1(m)

Pt−1

Pt−1

Pt

)−ζ

+ (1− ξ)

∫
optimise

(
P 0
t (m)

Pt

)−ζp

= ξΠζ
t∆

p
t−1 + (1− ξ)

(
P 0
t (m)

Pt

)−ζ

= ξΠζ
t∆

p
t−1 + (1− ξ)

(
Jt
JJt

)−ζ

(3.23)

Profits

Total profits from retail and wholesale firms, Γt, are remitted to households. This is
given in real terms by

Γt = Yt −
PW
t

Pt

Y W
t︸ ︷︷ ︸

retail

+
PW
t

Pt

Y W
t −WtHt︸ ︷︷ ︸

Wholesale

= Yt − α
PW
t

Pt

Y W
t (3.24)

using the first-order condition (3.11).

Closing the Model

The model is closed with a resource constraint over consumption Ct and government
expenditure Gt

Yt = Ct +Gt (3.25)

and the government’s budget constraint where government expenditure equals taxes
Tt

Gt = Tt (3.26)

Market clearing in the goods market requires that supply equals demand∫ 1

0

Yt(m)dm =

∫ 1

0

(
Pt(m)

Pt

)−ζ

Ytdm = Yt∆
p
t (3.27)
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Hence, in a symmetric equilibrium

Yt =
Y W
t

∆p
t

(3.28)

A monetary policy rule for the nominal interest rate is given by the following
Taylor-type rule with a forward-looking inflation target

log

(
Rn,t

Rn

)
=ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θθ log

(
EtΠt+1

Π

)
+ θy log

(
Yt
Y

))
+ logMPSt

(3.29)

where MPSt is a monetary policy shock. The ex-ante nominal gross interest rate
Rn,t set at time t and the ex-post real interest rate, Rt are related by the Fischer
equation

Rt =
Rn,t−1

Πt

(3.30)

Exogenous processes evolve according to:

logAt − logA = ρA(logAt−1 − logA) + ϵA,t (3.31)

logMSt − logMS = ρMS(logMSt−1 − logMS) + ϵMS,t (3.32)

logMPSt − logMPS = ρMPS(logMPSt−1 − logMPS) + ϵMPS,t (3.33)

logGt − logG = ρG(logGt−1 − logG) + ϵG,t (3.34)

3.3.2 Heterogeneous Expectations with Endogenous Propor-

tions

To introduce heterogeneous expectations, this paper follows an Euler Learning ap-
proach by replacing all rational expectations terms, EtXt+1, in the model described
in Section 3.3 with a weighted average of different expectations,

Ē∗
tXt+1 = njEtXt+1 + (1− nj)E∗

tXt+1; j = h, f (3.35)

where nj is the share of representative agents adopting rational expectations and
E∗

tXt+1 defines bounded rational expectations. Thus, heterogeneous expectations
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influence households behaviour when forecasting the marginal utility of consump-
tion, Ē∗

h,tUC,t+1, and inflation, Ē∗
h,tΠt+1, and firms expectations on prices E∗

f,tJt+1,
E∗

f,tJJt+1 and E∗
f,tΠt+1.

In this study, bounded rationality takes the form of adaptive expectations on
contemporaneous variables:

E∗
tXt+1 = E∗

t−1Xt + (1− λ1)(Xt − E∗
t−1Xt)

As a result, naive expectations, according to which E∗
tXt+1 = Xt, arise as a special

case of (3.36) where the speed of learning parameter is null, λ1 = 0. Reinforcement
learning à la Brock and Hommes (1997) is embedded to allow the proportions of
rational households (nh,t) and firms (nf,t) to endogenously evolve in response to
model dynamics,

nj,t =
exp(−γ

(
ΦRE

j,t + CRE,j
)
)

exp(−γ
(
ΦRE

j,t + CRE,j
)
+ exp(−γΦBR

j,t )
; j = h, f (3.36)

where 0 ≤ γ < +∞ is the intensity of choice parameter determining the sensitivity
of agents to changes in the relative utility of being rational, Φt, given an exogenous
cost, CRE,j. A value of γ close to zero makes agents almost indifferent between the
two forecasting rules and the shares fluctuating around 0.5. On the contrary, large
values of γ causes high volatility with all agents switching from one forecasting rule to
the other for small changes in utility. The cost of being rational can be interpreted as
the price that agents pay to widen their cognitive abilities and gathering information,
and its effect is to reduce the attractiveness of full rationality. Moreover, it reduces
the share of rational agents in steady state - see equation (3.38).

Utility is defined by a fitness measure for j = h, f ,

ΦRE
j,t = µRE

j ΦRE
j,t−1 + (1− µRE

j )
(
weighted sum of forecast errors

)
ΦBR

j,t = µBR
j ΦBR

j,t−1 + (1− µBR
j )
(
weighted sum of forecast errors

)
(3.37)

where the memory parameters, 0 ≤ µj ≤ 1, rule the importance of past errors.
µ = 0 means agents do not give importance to past errors, but they evaluate forecast
rules only on the basis of their recent performance. Given the stochastic nature of
endogenous variables, the latter case results in agents randomly choosing forecast
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rules.
In the steady state, forecast errors are null, hence it follows that the shares of

agents in equilibrium, namely nh and nf reduce to

nj =
exp(−γCRE,j)

exp(−γCRE,j) + 1
; j = h, f (3.38)

from which it is possible to derive the cost of being rational, CRE,j, given nj and γ

CRE,j = −1

γ
log

nj

1− nj

; j = h, f (3.39)

Finally, CRE,js are assumed to follow an AR(1) processes:

logCRE,j
t − logCRE,j = ρCRE,j(logCRE,j

t−1 − logCRE,j) + ϵCRE,j ,t (3.40)

3.4 Empirical Analysis

This section presents the details of the empirical analysis. Measurement equations
and the results of identification tests are described in Sections 3.4.1 and 3.4.2. Then,
Section 3.4.3 illustrates the dataset used in Section 3.4.4 for estimating parameters of
a non-linear approximation of the model. Finally, the empirical strategy is validated
in Section 3.4.5.

3.4.1 Measurement Equations and Priors

Identification tests and the non-linear estimation of reinforcement learning parame-
ters are based on five observable variables: output, hours worked, the nominal policy
rate, the inflation rate and the share of rational agents. Concerning the latter, as
households are also firms owners in this model, their shares are assumed to coincide,
nt = nh

t = nf
t .

When shares of rational agents are not observed, the model assumes only four
observables and four shocks by excluding the shares of agents and the shock processes
for the cost of being rational, respectively.

This ensures the number of shocks and observables to be the same and allows to
back-out shocks with rational agents and perfect information.
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The corresponding measurement equations are:

dyobs = log

(
(1 + g)

Y c
t

Y c
t−1

)
(3.41)

labobs =
Ht −H

H
(3.42)

robs = Rn,t − 1 (3.43)

pinfobs = Πt − 1 (3.44)

nobs = nh
t = nf

t = nt (3.45)

(3.46)

The steady state values of the observables are dyobs = log(1 + g), labobs = 0,
robs = Rn − 1, pinfobs = Π− 1 and nobs = n.

The model with endogenous proportion of agents under the assumption of a
unique share of rational agents is characterised by 31 deep parameters:7

θ =[β, α, ζ, g, ξ, ϕ, k, ḡ, R̄n, Π̄, ρr, θΠ, θY , θ∆Y
,

ρA, ρMS, ρMPS, ρG, σA, σMS, σMPS, σG,

λ11h, λ12h, λ12f , λ13f , γ, µAE, µRE, ρCRE , σCRE ]

Some of the structural parameters are calibrated to match sample means while others
are parameterised to match economically sensible criteria on the basis of related
literature.

Knowing that the following relationships hold in steady-state,

Π =
Π̄

100
+ 1

Rn =
R̄n

100
+ 1

g =
ḡ

100

7The total number would increase to 36 assuming households and
firms form expectations separately, as some parameters would duplicate:
λ11f , µAE,h, µRE,h, µAE,F , µRE,F , ρCRE,h , σCRE,h , ρCRE,F , σCRE,F .
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the model is calibrated in accordance with sample averages by assigning empirical
values to the inflation rate, Π̄ = 3.196, the annualised policy rate R̄n = 1.24 and
by parametrising technological growth, ḡ = 0.0039, to match an annualised real
GDP growth of 1.569. Hence, the steady state value of β = 0.996 is singled out by
reorganising

Rn =
Π

β(1 + g)−1
=
R̄n

100
+ 1 (3.47)

as

β =
Π̄
100

+ 1(
R̄n

100
+ 1
) (

1 + ḡ
100

)−1
(3.48)

Following Deák et al. (2017b), the elasticity of substitution, ζ, and the production
elasticity to labour, α, were set to 7 and 0.3, respectively. Parameter k in the utility
function was calibrated to match a labour supply of 0.33 in steady state. Finally,
government expenditure was set to match a 36 % share of GDP in steady state.

Priors shown in Table 3.1 are based on Gelain et al. (2019) who employ distri-
butions from Smets and Wouters (2007) for structural parameters and from Levine
et al. (2012) for adaptive expectations. Concerning heterogeneous expectations pa-
rameters, I follow Gelain et al. (2019) for the share of rational agents in the fixed
proportion version of the model.

When moving to the non-linear version of the model with endogenous shares,
sample means are used to calibrate the steady-state value of nobs = n = 0.53.

This allows to compute the steady-state value of the cost of being rational as:

CRE = −1

γ
log

n

1− n
(3.49)

The intensity of choice γ is assumed to be Γ-distributed as in Grazzini et al. (2017)
so to reflect the implausibility of a negative γ as this would imply agents favour less
precise forecast rules and this would be illogical. The memory parameters, µAE and
µRE, range between 0 and 1 and are assumed to follow a B distribution.
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Parameter Prior Distribution
Density Mean S.D./df

Calvo prices ξ B 0.5 0.1
Labour Supply Elasticity ϕ N 2.0 0.75
Interest rate rule
Interest rate smoothing ρr B 0.5 0.1
Inflation θΠ N 2.0 0.25
Output θY N 0.12 0.05
Output growth θ∆y

N 0.12 0.05
Persistence in the AR(1) shock processes
Technology ρA B 0.5 0.2
Government spending ρG B 0.5 0.2
Price mark-up ρMS B 0.5 0.2
Monetary policy ρMPS B 0.5 0.2
Standard deviation of shocks
Technology σA Γ−1 0.001 0.02
Government spending σG Γ−1 0.001 0.02
Price mark-up σMS Γ−1 0.001 0.02
Inflation target σMPS Γ−1 0.001 0.02
Adaptive expectations - Speed of learning parameters
HH - Marginal Utility λ11h B 0.5 0.2
HH - Inflation λ12h B 0.5 0.2
Firm - Numerator price F.O.C. λ12f B 0.5 0.2
Firm - Denominator price F.O.C. λ13f B 0.5 0.2
Heterogenous expectations
B-H - Intensity of choice γ Γ 10 2.5
B-H - Memory adaptive µAE B 0.5 0.2
B-H - Memory rational µRE B 0.5 0.2
B-H - Persistence of Rationality Cost ρCRE B 0.5 0.2
B-H - Shock std of Rationality Cost σcRE Γ−1 0.001 0.02

Notation: std = standard deviation

Table 3.1: Parameters summary

3.4.2 Identification Tests based on Priors

Before starting with estimation attempts, it is important to understand which pa-
rameters can be identified given the structure of the model and the observables.
The aim of this section is to check whether parameters lacking identification in a
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linear approximation of the model can be eventually identified when moving to a
higher-order approximation.

In DSGE models, identification concerns with injectivity of two mappings: (i)
from the structural parameters to the reduced form of the model (i.e. the uniqueness
of solution), (ii) from the solution of the model to observed data (i.e. uniqueness of
the probability distribution).

A DSGE model can be described as a system, Et (f (zt, zt−1, zt+1,ut|θ)) = 0, of
n non-linear equations where zt are endogenous variables, ut are exogenous shocks
and θ is a m-dimensional vector of deep parameters. In this paper, we estimate
an order-i Taylor approximation of the model around its steady state, z∗, so that
zt = f θ(i) (z∗, z∗, z∗,0|θ) = 0. Hence, a solution for this Taylor expansion is zt =

hθ(i) (zt−1, ut|θ). In a linear approximation of the model around its steady-state,
zt = z∗+hθz (zt−1 − z∗)+hθu (ut), all equilibrium dynamics and steady-state properties
for a given realisation of the parameter vector ` are determined by hθz, Ω := hθuh

θ′
u and

z∗. The first injectivity problem consists in finding the parameters of f θ(i) influencing
the solution of the system through hθz, hθu and z∗.

For estimation purposes, one needs to complement the model solution - which
describes the transition equation - with measurement equations yt = h̃θ(i) (xt, ut|θ)
where yt are observables and xt are state variables. This introduces the second
injectivity problem on whether restrictions imposed from empirical moments indeed
allow to identify those parameters entering the solution of the model.

Iskrev (2008, 2010) sets the necessary and sufficient condition for local identifi-
cation of parameters from the reduced form of the first-order Taylor approximation
of the model. Namely, the Jacobian matrix containing the derivatives of first and
second-order moments entering the likelihood function must have full rank.

In this section, I study whether a higher-order Taylor expansion of the model
provides a leeway to identify parameters not entering the reduced form of a linear
approximation. Namely, given the below second-order Taylor expansion,

zt = z∗ + hθz (zt−1 − z∗) + hθu (ut)

+
1

2
[hθzz (zt−1 − z∗)⊗ (zt−1 − z∗) + 2hθxu (zt−1 ⊗ ut)

+ 2hθuu (ut ⊗ ut) + hθσσσ
2]

(3.50)
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I assess whether the additional restrictions imposed by hθzz, hθxu, huu and hθσσσ
2

help identifying the deep parameters of the model for a given set of observable vari-
ables. For this purpose, I apply the findings of Mutschler (2015, 2018) who extended
Iskrev (2008)’s methodology to non-linear approximations of the system. Mutschler
(2015) exploits the intrinsic linear structure of pruned higher-order Taylor approxi-
mations and, in the same spirit of Iskrev (2008), introduces rank conditions on the
reduced form of the pruned system. The latter allow to study how parameters affect
the higher-order moments (i.e. or the polispectra in the frequency domain) of the
pruned model solution. Then, local identification is tested around the non-stochastic
steady state evaluated at the prior mean. Technical details are presented in Appendix
C.5.8

Table 3.2 reports the results of the identification analysis. When observing Yt, Πt,
Ht and Rn

t , linear approximations allow to somehow identify the steady-state shares
of rational agents in a model with fixed shares. This result is in line with Gelain
et al. (2019) and Deák et al. (2017b) who find these parameters can be identified,
even though identification is weak because of high collinearity between the shares
and other parameters of the model. By contrast, this set-up is characterised by a
complete lack of identification of reinforcement learning parameters.

Moving to a second order approximation is not sufficient to improve parameters
identification. Although γ is identified through moment restrictions, it is collinear
to µAE,h which is not identified. This result is consistent with what found in other
studies. Grazzini et al. (2017) find it is not possible to identify these parameters
using Yt and Πt (i.e. the prior for γ overlaps the associated posterior). Using SMM,
Jang and Sacht (2016, 2020) conclude their estimates of the memory parameter were
not significant on the basis of Yt, Πt and Rn

t . Similarly, Kukacka and Sacht (2021)
calibrate the memory parameter equal to zero to reduce the computational burden
and avoid joint-identification issues.9

Against this background, I have augmented the model by assuming it is possible
to observe the shares of rational agents in populating the economy in each point

8Parameters identification is analysed with the identification toolbox implemented in Dynare
5.1.

9Kukacka and Sacht (2021) assessed the sensibility of estimates to different calibrations of the
memory parameters by estimating the model on simulated data, and opted for a null value of the
memory parameter because the overall estimation performance of the model tended to deteriorate
when increasing its value.
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in time. To guarantee invertibility of the system, one extra shock was added by
modelling the costs of being rational - CRE

t - as an AR(1) process.
Including observed shares allows to identify the core reinforcement learning pa-

rameters in a non-linear context. Testing a linear approximation of the model with
observed shares, it is possible to only identify the intensity of choice parameter,
but not the memory parameters. When moving to a second order approximation
of the model, restrictions on higher-order moments (i.e. cumulants computed from
the coefficients of higher-order Taylor expansions) allow to identify all parameters of
the model. Looking at Figure 3.1, all parameters are identified in this framework.
However, some parameters are more likely to influence the curvature of the posterior
distribution, as standard New Keynesian model parameters, than others, as the cost
of being rational parameters. As a result, comparing estimates of standard param-
eters obtained with the Behavioural model against those from a FIRE counterpart
might help understanding whether parameters were correctly estimated.
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Fixed Shares - not observed
Order 1

Parameter Identified ∆iθ
i

nh YES 12.8623
nf YES 3.6132
Endogenous shares - not observed

Order 1 Order 2
Parameter Identified ∆iθ

i Identified ∆iθ
i

γ NO - YES 0.0002
µAE,h NO - NO -
µRE,h NO - NO -
Endogenous shares - observed

Order 1 Order 2
Parameter Identified ∆iθ

i Identified ∆iθ
i

γ YES 0.9663 YES 0.2399
µAE,h NO - YES 0.0205
µRE,h NO - YES 0.0189
ρCRE,h NO - YES 0.0060
σCRE,h NO - YES 0.2000

Table 3.2: Identification tests.
Note: ∆iθ

i describes the identification strength of parameter θi based on the
Fischer information matrix normalized by the value of the parameter at the
prior mean θi (Iskrev, 2010). Jacobian matrices were computed analytically
using sylvester equations. The tolerance level for selecting nonzero columns

was set to 1e-08.
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Figure 3.1: Identification strength for a second-order Taylor approximation
with observed shares.

Blue bars present the log of ∆iθ
i. Red bars are scaled by the prior standard

deviation (Iskrev and Ratto, 2011).

3.4.3 Data

The main dataset is composed of quarterly frequency time-series for the US economy
spanning over the period from 1984-Q1 to 2008-Q4. The observable variables include
the inflation rate, growth in real GDP per capita, the monetary policy rate, hours
worked per capita and a proxy for the share of rational agents. Further details on the
sources, series keys and data transformations are exposed in the technical Appendix
C.4.

All macroeconomic variables are seasonally adjusted and they are sourced from
the FRED Database made available by the Federal Reserve Bank of St. Louis and
the US Bureau of Labour Statistics. Real Gross Domestic Product is expressed
in billions of chained 2012 Dollars. Following Smets and Wouters (2007), hours
worked are adjusted to consider the limited coverage of the NFB sector compared
to GDP: the index of average hours for the NFB sector is multiplied by the Civilian
Employment (over 16 years old). Finally, aggregate real GDP and hours worked
are expressed per capita, dividing the aggregate amounts by the population over
16 years old. Real GDP per capita is finally taken in first difference to match the
measurement equation for output. Inflation is the first difference of the log of the
implicit price deflator derived from GDP. For the policy rate, the FED fund rate is
adjusted to be consistent with quarterly frequency data.

When extending the sample beyond the financial crisis, the FED rate is replaced
with the Wu-Xia shadow interest rate (Wu and Xia, 2016; Wu and Zhang, 2019) to
take into account for the zero lower bound.



Chapter 3. Non-Linear Behavioural New Keynesian Models: Identification and
Estimation

121

Finding a good proxy for the shares of rational and bounded rational agents
is certainly not an easy task. Nonetheless, survey data on expectations provide
information on the dynamics characterizing the proportion of a agents following a
specific rule.

First, one has to decide who are the reference agents and choose the most suitable
survey, among those targeting professional forecasters, firms and consumers.

Even though surveys on professional forecasters are particularly rich of data,
these are of very limited use since the Behavioural DSGE model estimated in this
chapter is populated by households and firm owners only. Unfortunately, surveys on
expectations of firms’ owners are quite limited in number and long time-series are
not available for the US (Coibion and Gorodnichenko, 2015).

Therefore, I have decided to use data from the Survey of Consumer Expectations,
conducted by the University of Michigan since 1960. This is a source which was
often used for testing the mechanisms underpinning the formation of households’
expectations (Branch, 2004; Pfajfar and Santoro, 2010; Coibion and Gorodnichenko,
2015)- and provides qualitative and quantitative expectations on a number of eco-
nomic indicators.

Second, one has to choose a survey indicator which is linked to the shares of
agents and representative of the overall system dynamics.

In accordance with the theoretical literature on Behavioural DSGE models, I
assume the evolution of the shares of forward- and backward-looking agents over
time to co-move with the business cycle. For this reason, the share of näive agents is
computed from the qualitative question on business activity expectations: Would you
say that at the present time business conditions are better or worse than they were a
year ago?. Respondents can choose among the following options: “Better", “Worse",
“Unchanged". The share of näives populating the economy is assumed to reflect the
proportion of respondents reporting “Unchanged". Although the latter might include
a portion of rational agents actually thinking business activity will not vary over the
next future, this indicator is still a good compromise for approximating the share of
näive agents because what matters for model dynamics is the type of expectation
itself (i.e. agents considering future output coincides with what currently observed).

For the estimation exercise presented in section 3.4.4, I assume households own
firms and therefore their expectations coincide. This avoids arbitrary choices on how
to distinguish between households and firms expectations and allows to use the total



Chapter 3. Non-Linear Behavioural New Keynesian Models: Identification and
Estimation

122

index. This series has also the advantage of starting back in 1960, thereby easing
eventual robustness checks based on splitting the sample between Great Moderation
(1980-2008Q3) and Great Volatility (before 1980).

Figure 3.2 exhibits the series used to proxy rational households. This series is
quite stable and cyclically fluctuates around 50%. Interestingly, the average share was
slightly slower during the Great Volatility and tended to increase in recent periods.

Figure 3.2: Proxy for the share of rational agents based on business con-
ditions

Alternative approaches for modelling the shares of rational households and firms
separately are proposed in Appendix C.7.

3.4.4 Estimation Results

This section presents estimates of a second-order approximation of the Behavioural
New Keynesian (NK-BH) model based on the Extended Kalman filter developed by
Gustafsson and Hendeby (2012) - see Appendix C.6 for technical details. A sample
of five observables spanning between 1984-Q1 and 2008-Q4 was employed: real GDP
per capita, the inflation rate, the FED policy rate and survey data on consumers’
expectations from the University of Michigan “Survey of Consumer Expectations” to
approximate the share of rational agents.
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Although the main target of this exercise is to jointly estimate the reinforcement
learning parameters of the model, namely, the intensity of choice and the memory
parameters, estimates are compared against those obtained estimating a second-
order Taylor expansion of the same model assuming rational expectations and full
information (NK-RE) to better understand the relevance of information from survey
data.

Table 3.3 shows the parameters values at their posterior mode and the respective
standard deviation.

The Calvo parameter, ruling price stickiness, and the labour supply elasticity
present similar values across the two model specifications. The former was estimated
to be larger than its prior mean, 0.67 against 0.5, thereby implying that, on average,
firms can adjust prices every three periods. The Frisch labour supply elasticity,
defined as 1/ϕ, was estimated to be 0.29, a lower value with respect to what found
in a linear context by Deák et al. (2017b).

The parameters of the Taylor rule, i.e. interest rate smoothing, inflation, out-
put, and output growth, are qualitatively in line with similar studies. In accordance
with the Taylor principle, the Central Bank responds more than proportionally to
increases in the inflation rate. As in Deák et al. (2017b), the interest rate smoothing
parameter decreases when moving from the NK-RE to the a model with heteroge-
neous expectations. However, differently from Deák et al. (2017b) who estimated a
linear version of the model with fixed shares, I also observe a slight increase in the
Taylor rule parameters related to output. Having introduced endogenous shares of
agents, the Central Bank needs to adjust the policy rate more often and try to sta-
bilise output to maintain economic confidence and avoid excessive volatility episodes.

As in Deák et al. (2017b) and Gelain et al. (2019), the introduction of bounded
rationality in the form of hybrid expectations does not reduce, on balance, the per-
sistence of shock processes. Technology, monetary policy and government spending
shocks are more persistent than the price mark-up shock and the latter two capture
most of the volatility. Similarly, in the case of Gelain et al. (2019), who estimated
a linear Smets-and-Wouter’s (2007) NK-model with hybrid expectations, bounded
rationality translated into smaller habits and capital adjustments costs parameters,
but it did not affect the inflation indexation ones.



Chapter 3. Non-Linear Behavioural New Keynesian Models: Identification and
Estimation

124

Parameter Prior Prior Prior Post. Post. Post. Post.
Density Mean S.D./df Mode S.D./df Mode S.D./df

(1) (2) (3) (4)
Calvo prices ξ B 0.5 0.1 0.6798 0.0347 0.6703 0.0173
Labour Supply Elasticity ϕ N 2 0.75 3.3553 0.5872 3.6267 0.427
Contract length 1/(1− ξ) 3.1230 3.0331
Interest rate rule
Interest rate smoothing ρr B 0.5 0.1 0.5868 0.0655 0.2846 0.0763
Inflation θΠ N 2 0.25 2.5906 0.189 2.6558 0.1716
Output θY N 0.12 0.05 0.0793 0.03 0.0925 0.0215
Output growth θ∆y

N 0.12 0.05 0.1415 0.0425 0.1469 0.0412
Persistence in the AR(1) shock processes
Technology ρA B 0.5 0.2 0.9887 0.010 0.9763 0.0117
Government spending ρG B 0.5 0.2 0.97 0.0118 0.9973 0.0011
Price mark-up ρMS B 0.5 0.2 0.45 0.0575 0.5423 0.0599
Monetary policy ρMPS B 0.5 0.2 0.90 0.0154 0.8780 0.0136
Standard deviation of shocks
Technology σA Γ−1 0.001 0.02 0.0045 0.0003 0.005 0.0004
Government spending σG Γ−1 0.001 0.02 0.026 0.0029 0.0391 0.0029
Price mark-up σMS Γ−1 0.001 0.02 0.0186 0.0027 0.0213 0.0028
Monetary policy σMPS Γ−1 0.001 0.02 0.002 0.0003 0.0043 0.0005
Adaptive expectations - Speed of learning parameters
Marginal Utility λ11h B 0.5 0.1 0.9874 0.0095
Inflation λ12h B 0.5 0.2 0.3336 0.1353
Numerator price λ12f B 0.5 0.2 0.3528 0.0714
Denominator price λ13f B 0.5 0.2 0.7443 0.0904
Heterogenous expectations - Brock-Hommes parameters
Intensity of choice γ Γ 10 2.5 16.4196 2.2824
Cost of rationality − 1

γ log n
1−n 0.0755

Memory adaptive µAE B 0.5 0.2 0.9235 0.0543
Memory rational µRE B 0.5 0.2 0.5993 0.0804
Rationality Cost - Persistence ρCRE B 0.5 0.2 0.9923 0.0037
Rationality Cost - Shock std σcRE Γ−1 0.001 0.02 0.0658 0.0103
Standard deviation of measurement errors
Std Y obs σY OBS Γ−1 0.001 0.02 0.0014 0.0001 0.0006 0.0004
Std Hobs σHOBS Γ−1 0.001 0.02 0.0045 0.0004 0.0021 0.0012
Std Πobs σΠOBS Γ−1 0.001 0.02 0.0077 0.0011 0.0014 0.0002
Std Robs

n σRobs
n

Γ−1 0.001 0.02 0.0004 0.0001 0.0011 0.0002
Std nobs

h σnobs
h

Γ−1 0.001 0.02 0.0200 0.0037

Log data density -1707.49 -2267.85

Table 3.3: Posterior mode
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Estimates of the speed of learning parameters, λ11h, λ12h, λ12f , λ13f in Table 3.3,
show that agents follow some form of adaptive expectations: all parameters have
low positive values, indicating that backward-looking agents are not fully näives
but form their expectations by correcting somewhat current observations by their
forecast errors. The main exception is represented by the speed of learning parameter
associated to marginal utility of consumption which is close to one, indicating agents
do not adjust their expectations for current outcome.10

Turning to the core parameters of the reinforcement learning mechanism, the
intensity of choice parameter is estimated to be 16.4. Such value is higher than in
other studies (Kukacka and Sacht, 2021), likely due to the coexistence of adaptive
learners -using current observations instead of lagged ones- and fully rational agents,
who can quickly adjust their behaviour on the basis of recent changes in the fitness
measure. On the contrary, the model of Kukacka and Sacht (2021) included three
different kinds of backward-looking agents, who are not aware of the existence of
different agent-types and heuristically adjust their behaviour.

Adaptive agents are also characterised by higher values of memory parameters
with respect to rational agents, being 0.92 and 0.60, respectively. Lower values of
the memory parameter mean that agents do not assign much weight to past errors
and mostly consider newest available information when choosing their forecast rules.
These estimated parameters suggest that while adaptive agents stick to longer-term
memory for today’s choices, rational agents are capable of dismantling pre-existing
experience in favour of a fully rational information set.

The cost of being rational presents a strong persistence: intuitively, the cost
of gathering information and gaining knowledge about the true mechanism of the
economy is constant over time. Nevertheless, the standard deviation of the rationality
cost shock is relatively high and seems to capture most of the system volatility.

3.4.5 Validating the Empirical Strategy

This section evaluates the ability of the estimated Behavioural New Keynesian (NK-
BH) model to reproduce empirical moments. Given the different set of observables
used to estimate the Behavioural and the FIRE New Keynesian (NK-RE) models, a

10Further robustness checks might consider using only a single speed of learning parameter for
prices related expectations and assuming expectations on marginal utility to be fully rational in
accordance with literature on internal rationality (Adam and Marcet, 2011).



Chapter 3. Non-Linear Behavioural New Keynesian Models: Identification and
Estimation

126

comparison of the ability to replicate empirical moments can provide further insights
on the value added by including survey measures and validating the empirical strat-
egy. Following standard DSGE practice, I compare the ability of the two models
in matching volatility and autocorrelations. Moreover, as non-linear models were
proven to better match skewness and kurtosis, this section aims at understanding
whether including reinforcement learning results in an improvement on the non-linear
FIRE model.

Table 3.3 presents empirical moments computed over the estimation sample
(1984Q1-2008Q4) and compares them with moments based on simulated data
obtained from a third-order approximation of the model evaluated at the posterior
mode.11

In general, both the non-linear NK-BH and the NK-RE produce higher volatility
compared to what observed in the reference sample, with the only exception of hours
worked.

This is particularly evident for growth in real GDP per capita for which the
empirical standard deviation is roughly one-third of what generated by the models,
but also for inflation which is characterised by half of the volatility produced by the
NK-BH and two-thirds of the volatility resulting from the NK-RE.

Concerning the volatility of hours worked, actual data present higher volatility
than what produced by the models. This might be the result of the low level of the es-
timated Frisch elasticity, 1/ϕ, being around 30% for both model types. Nonetheless,
the reinforcement learning mechanism somehow compensates for the low volatility
implied by bulk parameters of standard NK models, by halving the gap observed be-
tween data simulated with the NK-RE model and actual ones. Finally, the empirical
standard deviation of the policy rate is in line with that produced by the NK-BH
model.

Skewness and kurtosis are important measures to evaluate the ability of a model
to reproduce the non-Gaussian features observed in empirical data in spite of using
normally distributed shocks. A normal distribution is characterised by a skewness
equal to zero and a kurtosis equal to three. Any divergence from these values im-
plies non-Gaussianity. In particular, a positive skewness indicates higher (lower)
probability mass to the right (left) of the distribution mean and a kurtosis above

11Simulations based on a second-order approximation of the model are qualitatively similar.
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(below) three results in a distribution with more (less) density on the tails relative
to a normal distribution.

The NK-BH always detects the direction which the distribution of actual data is
skewed towards, whereas the NK-RE experiences some difficulties in replicating the
skew of growth in real GDP per capita and inflation (which is positive but close to
zero). The NK-BH is able to generate the negative skewness observed for growth in
real GDP per capita, and - with the only exception of the nominal interest rate - the
skewness produced with this model is always closer to the empirical one compared
to that provided by the NK-RE.

Turning to kurtosis, results are less sharp, with the NK-RE providing a good
match of growth in real GDP per capita and the NK-BH being better for hours
worked per capita and inflation. Interestingly, the NK-BH always assigns more mass
around the mean with respect to the NK-RE. Looking at the estimated parameters,
this might be due to the lower value estimated for the persistence parameter of the
Taylor Rule, ρr, compared to the NK-RE case which allows the Central Bank to
reduce the frequency of extreme realisations of output and inflation.

Std Skew Kurt AR(1)

Y
Data 0.54 -0.42 3.62 0.36
NK-RE 1.84 0.13 3.09 0.98
NK-BH 1.68 -0.17 2.61 0.97
H
Data 1.98 0.43 1.90 0.99
NK-RE 0.87 0.13 3.06 0.95
NK-BH 1.44 0.16 2.63 0.97
π

Data 0.23 0.51 2.74 0.84
NK-RE 0.31 0.07 3.05 0.71
NK-BH 0.38 0.19 2.82 0.74
Rn

Data 0.60 0.13 2.60 0.95
NK-RE 0.43 0.34 3.18 0.96
NK-BH 0.55 0.67 3.17 0.91

Table 3.4: Empirical vs. simulated moments.

Looking at the ability of capturing time-series persistence, even though both
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models present some limits, the NK-BH performs slightly better than the NK-RE
at reproducing the one-period autocorrelation. Table 3.4 shows that NK-BH bet-
ter captures the AR(1) for hours worked and inflation, whereas the NK-RE better
reproduces autocorrelation for the nominal interest rate. Both models overestimate
autocorrelations for output. As exhibited in Figure 3.3, the autocorrelation for out-
put is about three times larger than the empirical one when looking at the first lag
and continue being very persistent until the 10th lag. Concerning other variables,
the NK-BH better captures autocorrelation profile for the inflation rate and the NK-
RE for the nominal interest rate. Regarding hours worked, the NK-BH generates
autocorrelations which are closer to empirical ones over shorter lags, whereas the
NK-RE is better over farther lags.

Figure 3.3: Autocorrelation function
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3.5 Conclusions and Future Research

This paper designs and estimates a non-linear New Keynesian (NK) Behavioural
model with trend inflation, heterogeneous expectations and bounded rational agents
forming expectations on the basis of reinforcement learning (Brock and Hommes,
1997). Novel identification tests for non-linear DSGE models (Mutschler, 2015) show
that the core parameters of the learning mechanism (i.e. the intensity of choice and
the memory parameters) can only be jointly identified with higher-order approxima-
tions while including observations on the proportion of agents adopting a specific
forecast rule. Thus, the model is estimated with Bayesian techniques applying a
second-order Extended Kalman filter (Gustafsson and Hendeby, 2012) by expanding
the information set with data from the Survey of Consumers Expectations from the
University of Michigan to proxy the share of näive agents populating the economy.

Estimation results deliver a high value of the intensity of choice compared to
what usually assumed in the literature. Furthermore, the memory parameters were
found to be higher for backward-looking agents than for fully rational ones.

A possible explanation might reside in the presence of fully rational agents. This is
an important difference with respect to the majority of other studies on DSGE mod-
els with reinforcement learning where usually all agents are endowed with bounded
rationality. Fully rational agents can quickly adapt their behaviour by knowing the
structure of the model, including the performance of other forecast rules. Addition-
ally, they can timely update their information set and are able to understand whether
past forecast errors might be of help. These theoretical insights are thus consistent
with the estimated intensity of choice and memory parameters.

A validation exercise suggests that the Behavioural New Keynesian model outper-
forms the fully rational and fully informed counterpart in replicating key moments of
the observed sample. On balance, it was able to better replicate volatility, skewness
and kurtosis while providing a similar match of time series persistence.

In conclusion, this study bridges the gap between micro-level empirical evidence
on expectations formation and standard DSGE models, thereby providing a comple-
mentary tool for testing policy measures.

Future research might focus on testing whether other forms of bounded rationality
provide a better fit with the data or on testing alternative survey measures for check-
ing the robustness of estimates - see appendix C.7 for an exploration of alternative
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indicators. The difficulty in matching empirical volatility and series autocorrela-
tions, often affecting maximum likelihood estimators, suggests further refinements
of model estimates might come from future research adopting endogenous priors for
shocks based on second moments (Del Negro and Schorfheide, 2008). Then, struc-
tural parameters might be estimated with a two step-approach similar to Born and
Pfeifer (2014) or Noh (2020)where part of the parameters are estimated on the basis
of non-linear filtering techniques and part with the method of moments. The estima-
tion exercise might be further refined using third-order Taylor expansions or higher,
by means of stronger computing power. Moreover, one might study optimal policy
design under heterogenous expectations and reinforcement learning.
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Appendix A

Chapter 1: RBC model

A.1 RBC Zero-Growth Steady State Representa-

tion

The zero growth steady-state is:

U = β

(
log (C) + ψ

(1−H)(1−σ) − 1

1− σ

)
(A.1)

Y = AKαH1−α (A.2)

Y = AKαH1−α (A.3)

K = K(1− δ) + µI (A.4)

C +K = Y +K(1− δ) (A.5)

which can be expressed in recursive form, knowing that A=1, µ=1 and H=0.33 in
steady state:

K = H

((
1

β
− (1− δ)

)(
1

A (1− α)

))−( 1
α)

(A.6)

Y = AKαH1−α (A.7)

I =
δK

µ
(A.8)

C = Y +K(1− δ)−K (A.9)
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ψ =
α

C

Y

H
(1−H)σ (A.10)

A.2 Laplace Approximation of the Posterior Den-

sity

The Laplace approximation is a Gaussian approximation of the likelihood p(z|θ) that
can be reproduced from the second-order Taylor approximation of the log-posterior
h (θ) ≡ log(p(z|θ)) + log(p(θ)) :

h (θ) = h (θ∗)− 1

2
(θ − θ∗)′ hθθ (θ − θ∗) (A.11)

where θ = θ∗ denotes the vector of parameters at the mode and hθθ = ∂2h(θ)
∂θ∂θ′

|θ=θ′ It
follows that:

(p(z|θ, V (θ0, ξ0, T )))p(θ)

≈(p(z|θ∗, V (θ0, ξ0, T )))p(θ
∗)exp

(
−1

2
(θ − θ∗)′ hθθ (θ − θ∗)

)
Where the the k stochastic variables are distributed according to a k-dimensional
Gaussian distribution:

1

(2π)
k
2

| hθθ |
1
2 exp

(
−1

2
(θ − θ∗)′ hθθ (θ − θ∗)

)

∫
1

(2π)
k
2

| hθθ |
1
2 exp

(
−1

2
(θ − θ∗)′ hθθ (θ − θ∗)

)
dθ = 1

Then:

p (z) =

∫
p (z|θ) p (θ)

≈
∫
p (z|θ∗) p (θ∗) exp

(
−1

2
(θ − θ∗)′ hθθ (θ − θ∗)

)
dθ

= (2π)
k
2 | hθθ |−

1
2 p (z|θ∗) p (θ∗)
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which can be used to compare models for different parameters values:

θi ∼ N
(
θ∗i , [h

−1
θθ ]ii

)
(A.12)

A.3 Application with Flat Priors

Parameter Actual CKF EKF MGM MGS PF
300

α 0.67 0.6496 0.6634 0.666 0.6628 0.59
β 0.99 0.9856 0.9886 0.9892 0.9891 0.9471
σ 0.025 0.0298 0.0267 0.0262 0.0258 0.0359
ρz 2.75 2.5524 2.8645 2.9887 2.8706 54.6542
δ 0.95 0.9522 0.9516 0.9521 0.954 0.8152
ρM 0.72 0.9448 0.6585 0.6401 0.6458 0.3258
σM 0.06 0.0139 0.0691 0.0735 0.0712 0.0817
σZ 0.007 0.0063 0.0074 0.0074 0.0073 0.0092
σC 0.004 0.0046 0.0038 0.0038 0.0038 0.0045
σI 0.019 0.0046 0.0013 0.0014 0.0014 0.0273
σH 0.009 0.0091 0.009 0.0091 0.0091 0.0095
RMSE 10.5% 22.7% 21.6% 22.7% 25.7%
RMSE 10% 7.9% 12.6% 13.3% 15.4% 9.33%
RMSE 90% 13.4% 32.7% 33.1% 35.5% 42.8%
ARB 24% 19% 17% 19% 255%
Time 00:04:23 00:26:08 00:11:21 00:12:33 00:14:58
Log-Likelihood -6198 -6229 -6227 -6227 -4270

Table A.1: Benchmark calibration with flat priors.
CKF: Cubature Kalman Filter; EKF: Full Second-order Extended Kalman
Filter; MG-M: Approximation around the ergodic mean; MG-S: Approxima-
tion around the stochastic steady-state; SM-CKF: Sparse-matrix Cubature
Kalman Filter;PF 300: Particle filter with 300 particles and systematic re-
sampling. Observables: consumption, C, hours worked, H, investment, I.
The experiment was run on 100 samples of 500 observations using CMAES
algorithm to compute the mode, mh_replic=0. RMSE are normalised by
the sample average of state variables. [10%,90%] are RMSEs at the 10th and

90th percentiles.
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Parameter Actual CKF EKF MGM MGS PF
300

α 0.67 0.6638 0.6631 0.6708 0.6656 0.6706
β 0.99 0.9894 0.9893 0.9901 0.99 0.99
δ 0.025 0.0251 0.0254 0.0249 0.0253 0.0249
σ 0.05 0.0138 0.0427 0.1637 0.0889 0.0807
ρz 0.95 0.9511 0.9475 0.9468 0.9488 0.9503
ρM 0.72 0.9255 0.7193 0.7492 0.7484 0.72
σM 0.06 0.0171 0.0568 0.0578 0.0546 0.0435
σZ 0.035 0.0253 0.0348 0.0372 0.0354 0.0374
σC 0.0039 0.0069 0.004 0.0039 0.0039 0.0054
σI 0.019 0.0238 0.0021 0.0061 0.0076 0.0162
σH 0.0092 0.0102 0.009 0.0098 0.0097 0.0096
RMSE 36.0% 27.7% 28.1% 29.3% 24.0%
RMSE 10% 14.7% 19.9% 20.5% 20.7% 16.9%
RMSE 90% 31.2% 40.5% 40.8% 42.3% 28.5%
ARB 30.12% 17.79% 42.28% 48.14% 26.30%
Time 00:02:13 00:11:46 00:01:05 00:01:00 00:23:05
Log-Likelihood -4686 -5008 -4815 -4816 -4879

Table A.2: Risky calibration with flat priors.
CKF: Cubature Kalman Filter; EKF: Full Second-order Extended Kalman
Filter; MG-M: Approximation around the ergodic mean; MG-S: Approxima-
tion around the stochastic steady-state; SM-CKF: Sparse-matrix Cubature
Kalman Filter; PF 300: Particle filter with 300 particles and systematic re-
sampling. Observables: consumption, C, hours worked, H, investment, I.
The experiment was run on 100 samples of 500 observations using CMAES
algorithm to compute the mode, mh_replic=0. RMSE are normalised by
the sample average of state variables. [10%,90%] are RMSEs at the 10th and

90th percentiles.
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A.4 Application Benchmark Scenario with Flat Pri-

ors

Parameter Actual CKF EKF MGM MGS SM-CKF PF
300 300

σ 2.75 2.85 2.7402 2.749 2.7468 2.9406 4.1269
ρz 0.95 0.9589 0.9509 0.951 0.9512 0.9505 0.8983
ρM 0.72 0.7918 0.6529 0.676 0.6676 0.9517 0.4672
σM 0.06 0.0384 0.0714 0.0682 0.0698 0.0231 0.0952
σZ 0.007 0.0063 0.0072 0.0072 0.0072 0.0068 0.0071
σC 0.004 0.0045 0.004 0.004 0.004 0.0043 0.0054
σI 0.019 0.0046 0.0016 0.0017 0.0016 0.0033 0.0045
σH 0.009 0.009 0.009 0.009 0.009 0.009 0.0089
RMSE 16.55% 23.19% 22.44% 22.13% 9.37% 32.02%
RMSE 10% 12.8% 15.4% 17.8% 14.6% 7.8% 11.5%
RMSE 90% 21.4% 29.7% 25.7% 26.2% 11.2% 60.4%
ARB 19.79% 18.77% 17.66% 18.12% 25.3% 42.71%
Time 00:03:01 00:08:59 00:01:00 00:01:02 00:03:08 00:08:58
Log-Likelihood -6208 -6242 -6240 -6240 -6214 -6202

Table A.3: Benchmark calibration with informative priors on 100 obser-
vations and α, β and δ fixed. CKF: Cubature Kalman Filter; EKF: Full
Second-order Extended Kalman Filter; MG-M: Approximation around the
ergodic mean; MG-S: Approximation around the stochastic steady-state;
SM-CKF: Sparse-matrix Cubature Kalman Filter; PF 300: Particle filter
with 300 particles and systematic resampling. Observables: consumption,
C, hours worked, H, investment, I. The experiment was run on 100 sam-
ples of 100 observations using CMAES algorithm to compute the mode,
mh_replic=0. RMSE are normalised by the sample average of state vari-

ables. [10%,90%] are RMSEs at the 10th and 90th percentiles.
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A.5 Application Benchmark Scenario with α, β and

δ Fixed

Parameter Actual CKF EKF MGM MGS SM-CKF PF
300 300

σ 2.75 2.8542 2.7248 2.7312 2.7287 2.9316 2.7248
ρz 0.95 0.959 0.9516 0.9517 0.9519 0.9498 0.9516
ρM 0.72 0.7885 0.6532 0.6759 0.6674 0.9509 0.6532
σM 0.06 0.0387 0.0709 0.0677 0.0693 0.0231 0.0709
σZ 0.007 0.0063 0.0072 0.0072 0.0072 0.0068 0.0072
σC 0.004 0.0046 0.004 0.004 0.004 0.0044 0.004
σI 0.019 0.0046 0.0017 0.0018 0.0018 0.0034 0.0017
σH 0.009 0.009 0.009 0.009 0.009 0.009 0.009
RMSE 14.4% 26.52% 22.4% 21.82% 9.21% 22.89%
RMSE 10% 11.6% 18.8% 18.1% 15.4% 7.7% 19.1%
RMSE 90% 17.6% 35.1% 27.9% 29.1% 10.7% 29.3%
ARB 19.82% 18.1% 16.97% 17.44% 25.43% 18.1%
Time 00:01:50 00:09:07 00:01:03 00:01:08 00:03:02 00:16:41
Log-Likelihood -6210 -6243 -6243 -6243 -6218 -6243

Table A.4: Benchmark calibration with informative priors on 500 observa-
tions and α, β and δ fixed.

CKF: Cubature Kalman Filter; EKF: Full Second-order Extended Kalman
Filter; MG-M: Approximation around the ergodic mean; MG-S: Approxima-
tion around the stochastic steady-state; SM-CKF: Sparse-matrix Cubature
Kalman Filter; PF300: Particle filter with 300 particles and systematic re-
sampling. Observables: consumption, C, hours worked, H, investment, I.
The experiment was run on 100 samples of 500 observations using CMAES
algorithm to compute the mode, mh_replic=0. RMSE are normalised by
the sample average of state variables. [10%,90%] are RMSEs at the 10th and

90th percentiles.
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A.6 Application with the Symplex Algorithm

Actual ckf ekf mgm mgs GF300 PF300
Parameter
σ 2.75 2.85 2.7407 2.75 2.75 2.9405 3.0753
ρz 0.95 0.9589 0.9509 0.95 0.95 0.9505 0.968
ρM 0.72 0.7918 0.6531 0.72 0.72 0.9517 0.7432
σM 0.06 0.0384 0.0714 0.06 0.06 0.0231 0.0634
σZ 0.007 0.0063 0.0072 0.007 0.007 0.0068 0.0077
σC 0.004 0.0045 0.004 0.004 0.004 0.0043 0.0044
σI 0.019 0.0046 0.0016 0.019 0.019 0.0033 0.008
σH 0.009 0.009 0.009 0.009 0.009 0.009 0.0098
RMSE 13.13% 18.81% 19.04% 20.62% 8.65% 21.86%
ARB 19.79% 18.78% .% .% 25.3% 16.12%
Time 00:05:12 00:16:01 00:00:12 00:00:11 00:12:46 00:03:04
Log-Likelihood -6208 -6242 -6553 -6553 -6214 -6106

Table A.5: Benchmark calibration with informative priors and α,β and
δ fixed. CKF: Cubature Kalman Filter; EKF: Full Second-order Extended
Kalman Filter; MG-M: Approximation around the ergodic mean; MG-S:
Approximation around the stochastic steady-state; GF300: Sparse-matrix
Cubature Kalman Filter;PF300: Particle filter with 300 particles and sys-
tematic resampling. Observables: consumption, C, hours worked, H, invest-
ment, I. The experiment was run on 100 samples of 500 observations using
Matlab Symplex algorithm modified by the Dynare team to compute the
mode, mh_replic=0. The optimisation was run in two steps, the first with
a more global step size and the second with a more local step size by initial-
ising the algorithm at the mode of the first step. RMSE are normalised by

the sample average of state variables,
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Chapter 2

B.1 The Full Non-linear Model

This appendix presents the details of the full non-linear system of equations com-
posing the model.

The representative household behave following a separable utility function:

(B.1)Ut = log (Ct)−
1

1 + 1
φ

Lt
1+ 1

φ

UC
t = (Ct)

−1 (B.2)

UL
t = −L

( 1
φ
)

t (B.3)

leading to the following first order conditions:
C:

(B.4)λt = UC
t

L:
(B.5)

−UL
t

λt
= Wt

BS:

1 + ϕLH kLH

BLH
t

(
kLH

BS
t

BLH
t

− 1

)
=

λt+1β

λt

(
RS

t

πt+1

) (B.6)
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BLH :

1− ϕLH k
LHBS

t

(BLH
t )2

(
kLH

BS
t

BLH
t

− 1

)
=

µt+1β

µt

(
RL

t+1

πt+1

) (B.7)

where

kLH =
BLH

BS
(B.8)

is household’s preferred ratio of long-term to short-term bonds in equilibrium. The
budget constraint features the following portfolio adjustment costs:

ACL
t =

ϕLH

2

(
kLH

BS
t

BLH
t

− 1

)2

(B.9)

Firms operate in a standard monopolistic competition environment characterised
by a Calvo lottery where the price of firms adjusting prices in time t is

P ∗
t

Pt

=
Jt
JJt

(B.10)

and JJt and Jt are computed by optimizing firms profits

JJt − ξEt

[
Λt,t+1π

ε−1
t+1JJt+1

]
= Yt (B.11)

Jt − ξEt

[
Λt,t+1π

ε
t+1Jt+1

]
= (

ε

ε− 1
)YtMCtz

u
t (B.12)

with
log zut = ϕu log z

u
t−1 + ϵut (B.13)

Then, the average price in t can be expressed as

1 = ξπε−1
t + (1− ξ)

(
Jt
JJt

)1−ε

(B.14)

with price dispersion defined as

∆P
t = ξπε

t∆
P
t−1 (1− ξ)

(
Jt
JJt

)−ε

(B.15)
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For each retail producer, wages are equal to real marginal costs:

Wt =MCtAt =
PW
t

Pt

(B.16)

The intermediate sector faces the following productivity function:

(B.17)Y W
t = LtAt

The stochastic discount factor between t-1 and t is:

(B.18)Λt−1,t = β
λt
λt−1

Total output is equal to output divided dispersion.

(B.19)Yt =
Y W
t

∆P
t

However, as inflation is assumed to be zero at the steady state, price dispersion
does not affect total output. Finally, technology is assumed to follow a standard
AR(1) process.

logAt = ϕA logAt−1 + ϵAt (B.20)

Government: Government budget constraint:

BS
t +BLT

t = RS
t−1B

S
t−1 +RL

t B
LT
t−1 +GTt (B.21)

Total bonds in the economy:
(B.22)Zt = BS +BLT

Total long-term bonds held by the Central Bank:

(B.23)BLCB
t = BLT

t WB
t

Total long-term bonds held by households:

(B.24)BLH
t = BLT

t

(
1−WB

t

)
Total short-term bonds:

BS
t = BS > 0 (B.25)
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Total long-term bonds:

BLT
t = BLH

t +BCB
t = BLT > 0 (B.26)

Balance-sheet shock:

logWB
t = −

(
θΠ log Ẽt{πt+1} + θX log Ẽt{X̂t+1}

)
+ log zBt (B.27)

log zBt = ϕB log zBt−1 + ϵBt (B.28)

GTt = GT + αB

(
BLT

t −BLT
)
= GT (B.29)

Long-term interest rates:

(B.30)RL
t =

(
1 + χQL

t

)
QL

t−1

Central Bank:
Taylor rule on short-term interest rates:

RS
t = απ log Ẽ{πt+1}+ αX log Ẽ{X̂t+1}+ ϵRt (B.31)

Resource constraint of the economy:

(B.32)Yt = Ct +GTt + ACL
t

B.2 The Zero-growth Steady State

This section presents the steady-state value of equations from Appendix B.1.
Utility function:

U = log (C)− 1

1 + 1
φ

L1+ 1
φ (B.33)

(B.34)UC = C−1

(B.35)UL = −L
1
φ

Household FOCs:
C:

(B.36)λ = UC
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L:
(B.37)

−UL

λ
= W

BS:
(B.38)RS =

π

β

BLH :
(B.39)RL =

π

β

kLH =
BLH

BS
(B.40)

Portfolio adjustment costs:

ACL =
ϕL

2

(
kLH

BS

BLH
− 1

)2

= 0 (B.41)

Firm’s problem:

∆P = ξπε∆P + (1− ξ)

(
J

JJ

)−ε

(B.42)

(B.43)Y W = LA

(B.44)Y =
Y W

∆P

Λ = β
λ

λ
= β (B.45)

JJ
(
1− ξEt

[
Λπε−1

])
= Y (B.46)

J (1− ξEt [Λπ
ε]) = (

ε

ε− 1
)YMC (B.47)

1 = ξπε−1 + (1− ξ)

(
J

JJ

)1−ε

(B.48)

W =MCA (B.49)

PW

P
=MC (B.50)
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log (A) = ϕA log (A) (B.51)

log (zu) = ϕzu log (z
u) (B.52)

Consolidated Government-=Central Bank:

(B.53)BS +BLT = RSBS +RLBLT +GT

(B.54)Z = BS +BLT

(B.55)WB =
BLCB

BLT

BLH = BLT
(
1−WB

)
(B.56)

BS = BS > 0 (B.57)

BLT = BLH +BLCB > 0 (B.58)

Balance-sheet shock:

logWB = − ( θΠ log π + θX logX) (B.59)

log zB = ϕB log zB (B.60)

GT = GT + αB

(
BLT −BLT

)
= GT (B.61)

(B.62)RL =
1 + χqL

χqL

RS
t = απ (π) + αX (X) (B.63)

Resource constraint of the economy:

(B.64)Y = C +GT + ACL

= C +GT

B.3 Steady State in Recursive Form

The zero-growth steady state can be expressed in recursive form as:
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(B.65)Y = 1;

(B.66)A = 1

zu =
1

1− ϕzu
(B.67)

zB =
1

1− ϕzB
(B.68)

(B.69)Z = 1

(B.70)π = 1

(B.71)Λ = β

ACL =
ϕLH

2

(
KLH BS

BLH
− 1

)2

= 0 (B.72)

JJ =
Y

(1− ξΛπε−1)
; (B.73)

J = JJ

[
(1− ξπε−1)

(1− ξ)

] 1
1−ε

(B.74)

MC =

(
ε− 1

ε

)
J

Y
(1− ξΛπε) (B.75)

P ∗

P
=

J

JJ
(B.76)

PW

P
=MC (B.77)

W =MCA (B.78)

∆P =
(1− ξ)

(1− ξπε)

(
J

JJ

)−ε

(B.79)

Y W = Y∆P (B.80)

L =
Y W

A
(B.81)

(B.82)UL = −L(1/φ);
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(B.83)λ = −U
L

W

(B.84)UC =
λ

(1− γβ)

(B.85)C = UC−1
;

U = log (C)− L(1+(1/φ))

1 + 1/φ
(B.86)

(B.87)RS =
π

β

(B.88)GT = Y − C

(B.89)BLT = 0.5;

BS = 1 (B.90)

WB = 0 (B.91)

(B.92)BLCB = WBBLT

(B.93)RL =
π

β

qL =
χ(

π
β
− 1
) (B.94)

GT =
(
BS +BLT

)
−
(
RLBLT −RSBS

)
(B.95)

(B.96)BLH = (1−X)BLT

(B.97)Z = BS +BLT ;

(B.98)kLH =
BLH

BS
;
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B.4 Log-linearisation

Linearisation at the zero-inflation steady state π = 1.
The marginal utility of consumption is

UC
t = (Ct)

−1 (B.99)

Using total differentiation yields:

ÛC
t = −Ĉt (B.100)

The marginal utility of labour is

UL
t = −L

( 1
φ
)

t (B.101)

Using total differentiation yields:

ÛL
t = (

1

φ
)L̂t (B.102)

Household FOCs:
Household’s first-order condition for consumption,

(B.103)λt = UC
t

can be linearised to:
(B.104)λ̂t = ÛC

t

Similarly, the first-order condition for labour

(B.105)
−UL

t

λt
= Wt

becomes:
(B.106)ÛL

t − λ̂t = Ŵt

For short-term bonds

1 + ϕLH kLH

BLH
t

(
kLH

BS
t

BLH
t

− 1

)
=

λt+1β

λt

(
RS

t

πt+1

) (B.107)
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one obtains:

ϕLH

BS

(
B̂S

t − B̂LH
t

)
=

R̂S
t + λ̂t+1 − π̂t+1 − λ̂t

(B.108)

Finally, for long-term bonds

1− ϕLH k
LHBS

t

(BLH
t )2

(
kLH

BS
t

BLH
t

− 1

)
λt+1β

λt

(
RL

t+1

πt+1

) (B.109)

the log-linearised version is:

− ϕLH

BLH

(
B̂S

t − B̂LH
t

)
=

RL
t+1 − π̂t+1 + λ̂t+1 − λ̂t

(B.110)

The production function

(B.111)Y W
t = LtAt

becomes:

(B.112)Ŷ W
t = L̂t + Ât

The discount factor

(B.113)Λt−1,t = β
λt
λt−1

can be linearised as
(B.114)Λ̂t−1,t = λ̂t − λ̂t−1

Equations from (B.10) to (B.15) can be linearised and combined to form a stan-
dard Phillips-curve:

π̂t = βπ̂t+1 +
(1− χ) (1− βχ)

(χ)
M̂Ct (B.115)

Log-linearizing
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Wt =MCtAt (B.116)

leads to

Ŵt − Ât = M̂Ct (B.117)

Shock processes become

(B.118)Ât = ϕAÂt−1 + ϵAt

(B.119)ẑut = ϕzu ẑ
u
t−1 + ϵut

Government:
Government budget constraint:

(B.120)RS
t−1B

S
t−1 +RL

t B
LT
t−1 +GTt = BS

t +BLT
t

(B.121)RSBS
(
R̂S

t−1 + B̂S
t−1

)
+BLTRL

(
R̂L

t + B̂LT
t−1

)
+GTĜT t = BSB̂S

t +BLT B̂LT
t

(B.122)Zt = BS
t +BLT

t

= 0

(B.123)BLCB
t = BLT

t WB
t

(B.124)BLCBB̂LCB
t = BLT B̂LT

t +WBŴB
t

(B.125)BLH
t = BLT

t (1−Xt)

BLHB̂LH
t = BLT B̂LT

t −BLTX
(
B̂LT

t + ŴB
t

)
(B.126)

(B.127)GTĜT t = 0

(B.128)RL
t =

(
1 + χqLt

)
χqLt
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(B.129)RLR̂L
t = − q̂

L
t

qL

Central Bank:
Asset purchase decision rule:

ŴB
t = −

(
θΠ Ẽt{π̂t+1} + θX Ẽt{X̂t+1}

)
+ zBt (B.130)

(B.131)ZẐt = BSB̂S
t + B̂LT

t

R̂S
t = απẼ (π̂t+1) + αXẼ

(
X̂t+1

)
+ ϵRt (B.132)

Resource constraint of the economy:

(B.133)Yt = Ct +GTt + ACL
t

(B.134)Y =
C

Y
Ĉt +

GT

Y
ĜT t

B.5 Details on Aggregate Demand and Term Struc-

ture

This section clarifies details on the derivation of the term structure (2.72) and the
aggregate demand equation (2.73) with on short- and long-term interest rates.

The term-structure results from the combination of linearised household’s FOCs
for short-term, (B.108), and long-term bonds, (B.110):

R̂S
t = Ĉt+1 − Ĉt + π̂t+1 +

ϕLH

BS

(
B̂S

t − B̂LH
t

)
(B.135)

R̂L
t+1 = Ĉt+1 − Ĉt + π̂t+1 −

ϕLH

BLH

(
B̂S

t − B̂LH
t

)
(B.136)

By subtracting (B.135) from (B.136):
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R̂L
t+1 − R̂S

t = −
ϕLH

(
BS +BLH

)
BSBLH

(
B̂S

t − B̂LH
t

)
(B.137)

The aggregate demand equation can be expressed in three equivalent different
ways depending on the purpose of the analysis. The staring point of the derivation
resides in representative households’ FOCs, (B.138), (B.139), (B.140) which in our
simplified model with logarithmic utility in consumption and no habits become:

UC
t = C−1

t (B.138)

(B.139)λt = UC
t

1 + ϕLH kLH

BLH
t

(
kLH

BS
t

BLH
t

− 1

)
=
λt+1β

λt

RS
t

πt+1

(B.140)

Combining (B.138) to (B.140), leads to:

1 + ϕLH kLH

BLH
t

(
kLH

BS
t

BLH
t

− 1

)
=

Ctβ

Ct+1

RS
t

πt+1

(B.141)

Log-linearizing, we obtain an expression of the aggregate demand with explicit
bonds:

R̂S
t = Ĉt+1 − Ĉt + π̂t+1 +

ϕLH

BS

(
B̂S

t − B̂LH
t

)
(B.142)

As government transfers are zero in steady state,then, Yt = Ct, and:

Ŷt = Ŷt+1 −
(
R̂S

t − π̂t+1

)
+
ϕLH

BS

(
B̂S

t − B̂LH
t

)
(B.143)

The second representation, which is the one used for my simulations, explicitly
depends on long-term interest rate and it is obtained by rearranging (B.136)
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ϕLH
(
B̂S

t − B̂LH
t

)
= −BLHR̂L

t+1 +BLHĈt+1 −BLHĈt +BLH π̂t+1 (B.144)

and plugging it into (B.143):

Ŷt = Ŷt+1 −
(
1 +

BLH

BS

)−1 [(
R̂S

t − π̂t+1

)
+
BLH

BS

(
R̂L

t+1 − π̂t+1

)]
(B.145)

or:

Ŷt = Ŷt+1 − w1

(
R̂S

t − π̂t+1

)
− w2

(
R̂L

t+1 − π̂t+1

)
(B.146)

where, w1 = 1

1+BLH

BS

and w2 =
BLH

BS

1+BLH

BS

are the weights of short-term and long-term

interest rates in the aggregate demand equation, respectively.
Finally, one might want to show the relationship between output and the term

structure. This might be presented by plugging a rearranged (B.137)

ϕLH
(
B̂S

t − B̂LH
t

)
= − BSBLH

(BS +BLH)

(
R̂L

t+1 − R̂S
t

)
(B.147)

into (B.143):

Ŷt = Ŷt+1 −
(
R̂S

t − π̂t+1

)
− BLH

(BS +BLH)

(
R̂L

t+1 − R̂S
t

)
telling that when the term structure between long- and short-term bonds narrows
down there is a positive effect on output.
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B.6 Comparison to Sims, Wu, Zhang Linear Four-

Equations Model

In this section, I compare the four-equation model developed in Harrison (2017) and
the one presented in Sims et al. (2020). Even though the former is a RANK (repre-
sentative agent model) and theirs is a TANK (two agents model) one, the linearised
version of the two models present only one relevant difference in the Phillips-Curve
specification and in the presence of a credit market shock.

In Sims et al. (2020)’ s framework, the quantitative easing shock directly enter the
Phillips Curve whereas in Harrison (2017) its effects only influence inflation indirectly
through aggregate demand. Sims et al. (2020) suggest this feature seems to be in
line with empirical literature showing differences between standard monetary policy
shocks and Central Bank balance-sheet shocks with the former having similar effects
on output and inflation and the latter having a more limited impact on inflation.
However, Harrison (2017) can be opportunely calibrated to obtain similar effects as
shown by the generalised impulse responses in Figure B.1 below.

For completeness, the model of Sims et al. (2020) is reported:

Ŷt =Et

(
Ŷt+1

)
− 1− z

σ

(
R̂S

t − Et (π̂t+1)
)
...

...− z
[
b̄FI (Et (θt+1)− θt) + b̄CB (Et (qet+1)− qet)

] (B.148)

π̂t = γξŶt −
zγσ

1− z

[
b̄FIθt + b̄CBqet

]
+ βEt

(
Ŷt+1

)
(B.149)

R̂S
t = ϕπEt (π̂t+1) + ϕYEt

(
Ŷt+1

)
+ σRϵR (B.150)

qet = ρqeqet−1 + σqeϵqet (B.151)
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θt = ρθθt−1 + σθϵθt (B.152)

Following appendix B of Sims , Wu, Zhang’s, I could rearrange equation (B.148)
to have a representation of the model tracking long-term interest rate as shown
for Harrison’s model in appendix B.5 for Harrison’s model. Equation (B.148) is
substituted by:1

Ŷt = Et

(
Ŷt+1

)
− 1− z

σ

(
R̂S

t − Et (π̂t+1)
)
− z

σ
Et

(
R̂L

t+1 − Et (π̂t+1)
)

(B.153)

and

R̂L
t+1 = Et (π̂t+1) +

[
b̄FI (Et (θt+1)− θt) + b̄CB (Et (qet+1)− qet)

]
(B.154)

Figure B.1: Generalised impulse responses to a balance-sheet shock

1see equations B36-B38 at page 54
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B.7 Determinacy Conditions under Rational Expec-

tations with Forward-looking Taylor Rules

To study determinacy conditions the models needs to be written in form of difference
equation. Rearranging equations while assuming rational expectations yields:

[
Etπ̂t+1

EtX̂t+1

]
=

[(
1− αX − w3θ

X
)
+ k̄

β
(1−απ−w3θπ)
(1−αX−w3θX)

−(1−απ−w3θπ)
β(1−αX−w3θX)

1
β

(
1− k̄

)
1
β

][
π̂t

X̂t

]
= Γ

[
π̂t

X̂t

]
(B.155)

where w3 = V LHw2.
As shown in Woodford (2003), determinacy is ensured by the following three

conditions:

1. det(Γ) > 1

2. det (Γ) - trace (Γ) > 1

3. det(Γ) + trace(Γ) > 1

det (Γ) =

(
1

β

)2
[(

1− αX − w3θ
X
)2

+ (1− απ − w3θ
π) k̄

(1− αX − w3θX)

]
(B.156)

trace (Γ) =
1

β

[
1 +

(
1− αY − w3θ

X
)2

+ (1− απ − w3θ
π) k̄

(1− αX − w3θX)

]
(B.157)

B.8 Additional Generalised Impulse Response
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Figure B.2: Balance-sheet shock - persistence, only naives
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Appendix C

Chapter 3

C.1 Equilibrium

A symmetric equilibrium is determined by the following equations:

Ut = log(Ct)− κ
H1+ϕ

t

1 + ϕ
(C.1)

Vt = Et

[
∞∑
s=0

βsUt+s

]
= Ut + βEtVt+1 (C.2)

UC,t =
1

Ct

(C.3)

UH,t = −κHϕ
t (C.4)

Λt,t+1 = β
UC,t+1

UC,t

(C.5)

Rt =
Rn,t−1

Πt

(C.6)

1 = Et [Λt,t+1Rt+1] (C.7)

Wt = −UH,t

UC,t

(C.8)

Y W
t = AtH

α
t (C.9)

Wt = α
PW
t

Pt

Y W
t

Ht

(C.10)

MCt =
PW
t

Pt

(C.11)

Jt =
1

1− 1
ζ

YtMCtMSt + ξEtΛt,t+1Π
ζ
t,t+1Jt+1 (C.12)

JJt = Yt + ξEtΛt,t+1Π
ζ−1
t,t+1JJt+1 (C.13)
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1 = ξΠζ−1
t + (1− ξ)

(
Jt
JJt

)1−ζ

(C.14)

Yt =
Y W
t

∆p
t

(C.15)

∆p
t = ξΠζ

t∆
p
t−1 + (1− ξ)

(
Jt
JJt

)−ζ

(C.16)

Yt = Ct +Gt (C.17)

log

(
Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θθ log

(
EtΠt+1

Π

)
+ θy log

(
Yt
Y

))
+ logMPSt (C.18)

logAt − logA = ρA(logAt−1 − logA) + ϵA,t (C.19)

logMSt − logMS = ρMS(logMSt−1 − logMS) + ϵMS,t (C.20)

logMPSt − logMPS = ρMPS(logMPSt−1 − logMPS) + ϵMPS,t (C.21)

logGt − logG = ρG(logGt−1 − logG) + ϵG,t (C.22)

where we have introduced a mark-up shock MSt.

C.2 Stationary Equilibrium

Labour-augmenting technical progress parameter is decomposed into a cyclical com-
ponent, Ac

t , and a deterministic trend Āt:

At = ĀtA
c
t

Āt = (1 + g)Āt−1

Rewrite the equilibrium conditions as

Ut − log(Āt) = log(Ct/Āt)− κ
H1+ϕ

t

1 + ϕ
(C.23)

Vt = Ut + βEtVt+1 (C.24)

ĀtUC,t =
1

Ct/Āt

(C.25)
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UH,t = −κHϕ
t (C.26)

Λt,t+1 =
β

Āt+1/Āt

Āt+1UC,t+1

ĀtUC,t

(C.27)

Rt =
Rn,t−1

Πt

(C.28)

1 = Et [Λt,t+1Rt+1] (C.29)
Wt

Āt

= − UH,t

ĀtUC,t

(C.30)

Y W
t

Āt

=
At

Āt

Hα
t (C.31)

Wt

Āt

= α
PW
t

Pt

Y W
t /Āt

Ht

(C.32)

MCt =
PW
t

Pt

(C.33)

Jt
Āt

=
1

1− 1
ζ

Yt
Āt

MCtMSt + ξEt
Āt+1

Āt

Λt,t+1Π
ζ
t,t+1

Jt+1

Āt+1

(C.34)

JJt
Āt

=
Yt
Āt

+ ξEt
Āt+1

Āt

Λt,t+1Π
ζ−1
t,t+1

JJt+1

Āt+1

(C.35)

1 = ξΠζ−1
t + (1− ξ)

(
Jt/Āt

JJt/Āt

)1−ζ

(C.36)

Yt
Āt

=
Y W
t /Āt

∆t

(C.37)

∆p
t = ξΠζ

t∆
p
t−1 + (1− ξ)

(
Jt/Āt

JJt/Āt

)−ζ

(C.38)

Yt
Āt

=
Ct

Āt

+
Gt

Āt

(C.39)

log

(
Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θθ log

(
Πt

Π

)
+ θy log

(
Yt
Y

))
+ logMPSt

(C.40)

logAt − logA = ρA(logAt−1 − logA) + ϵA,t (C.41)

logMSt − logMS = ρMS(logMSt−1 − logMS) + ϵMS,t (C.42)

logMPSt − logMPS = ρMPS(logMPSt−1 − logMPS) + ϵMPS,t (C.43)

logGt − logG = ρG(logGt−1 − logG) + ϵG,t (C.44)
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Use change of variables to arrive to the following equilibrium conditions:1

U c
t = log(Cc

t )− κ
H1+ϕ

t

1 + ϕ
(C.45)

V c
t = U c

t + βEtV
c
t+1 (C.46)

U c
C,t =

1

Cc
t

(C.47)

UH,t = −κHϕ
t (C.48)

Λt,t+1 =
β

1 + g

U c
C,t+1

U c
C,t

(C.49)

Rt =
Rn,t−1

Πt

(C.50)

1 = Et [Λt,t+1Rt+1] (C.51)

W c
t = −UH,t

U c
C,t

(C.52)

Y W,c
t = Ac

tH
α
t (C.53)

W c
t = α

PW
t

Pt

Y W,c
t

Ht

(C.54)

MCt =
PW
t

Pt

(C.55)

J c
t =

1

1− 1
ζ

Y c
t MCtMSt + ξ(1 + g)EtΛt,t+1Π

ζ
t,t+1J

c
t+1 (C.56)

JJ c
t = Y c

t + ξ(1 + g)EtΛt,t+1Π
ζ−1
t,t+1JJ

c
t+1 (C.57)

1 = ξΠζ−1
t + (1− ξ)

(
J c
t

JJ c
t

)1−ζ

(C.58)

Y c
t =

Y W,c
t

∆p
t

(C.59)

∆p
t = ξΠζ

t∆
p
t−1 + (1− ξ)

(
J c
t

JJ c
t

)−ζ

(C.60)

Y c
t = Cc

t +Gc
t (C.61)

log

(
Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
1The first equation is based on a hunch. Since the normalisation of utility is additive, we cannot

have a different discount factor. However, we cannot derive the first equation above from (C.2).
We can derive it starting from the definition V c

t = Et

[∑∞
s=0 β

sU c
t+s

]
.
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+ (1− ρr)

(
θθ log

(
Πt

Π

)
+ θy log

(
Y c
t

Y c

))
+ logMPSt

(C.62)

logAc
t − logAc = ρA(logA

c
t−1 − logAc) + ϵA,t (C.63)

logMSt − logMS = ρMS(logMSt−1 − logMS) + ϵMS,t (C.64)

logMPSt − logMPS = ρMPS(logMPSt−1 − logMPS) + ϵMPS,t (C.65)

logGc
t − logGc = ρG(logG

c
t−1 − logGc) + ϵG,t (C.66)

This is a system of 22 equation in the following 22 “variables” (in order of appearance):
V c, U c, Cc, H, Λ, R, W c, U c

H , U c
C , Y W,c, Ac, PW

P
, J c, Y c, MC, MS, Π, JJ c, ∆p, Gc,

Rn, MPS.

C.3 Steady State

The exogenous variables have steady states Ac = MS = MPS = 1. Given the
steady-state inflation rate Π and the steady-state nominal interest rate Rn, the
steady-state values of the other variables can be computed as

(C.49) ⇒ Λ =
β

1 + g
(C.67)

(C.51) ⇒ R =
1

Λ
(C.68)

(C.58) ⇒ J c

JJ c
=

(
1− ξΠζ−1

1− ξ

) 1
1−ζ

(C.69)

(C.56), (C.57) ⇒ MC =

(
1− 1

ζ

)
J c

JJ c

1− ξβΠζ

1− ξβΠζ−1
(C.70)

(C.60) ⇒ ∆p =
(1− ξ)

(
Jc

JJc

)−ζ

1− ξΠζ
(C.71)

(C.54), using (C.47), (C.48),

(C.52), (C.55), (C.59), (C.61) ⇒ H =

(
α∆pMC

κ(1− gy)

) 1
1+ϕ

(C.72)

(C.53) ⇒ Y W,c = (AcH)α (C.73)

(C.59) ⇒ Y c =
Y W,c

∆
(C.74)
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Gc = gy ∗ Y c (C.75)

(C.61) ⇒ Cc = Y c −Gc (C.76)

(C.56) ⇒ J c =
Y cMCMS

(1− 1
ζ
)(1− ξβΠζ)

(C.77)

(C.57) ⇒ JJ c =
Y c

(1− ξβΠζ−1)
(C.78)

(C.45) ⇒ U c = log(Cc)− κ
H1+ϕ

1 + ϕ
(C.79)

(C.47) ⇒ U c
Cc =

1

Cc
(C.80)

(C.48) ⇒ UH = −κHϕ (C.81)

(C.55) ⇒ PW

P
=MC (C.82)

(C.54) ⇒ W c = α
PW

P

Y W,c

H
(C.83)

(C.46) ⇒ V c =
U c

1− β
(C.84)

Finally we can define

CEquivt = Et

[
∞∑
t=s

βsU(1.01Ct+s, Ht+s)

]
− Et

[
∞∑
t=s

βsU(Ct+s, Ht+s)

]

= Et

[
∞∑
t=s

βs

{
log(1.01Cc

t+s)− κ
H1+ϕ

t+s

1 + ϕ
− log(Cc

t+s)− κ
H1+ϕ

t+s

1 + ϕ

}]

= log(1.01)
∞∑
t=s

βs =
log(1.01)

1− β
(C.85)

The stationary version should be the same.

C.4 Data Sources and Transformations

Macroeconomic variables were retrieved from FRED portal by the Federal Reserve
Bank of St. Louis: https://fred.stlouisfed.org/

Real Gross Domestic Product, Billions of Chained 2012 Dollars, Seasonally
Adjusted Annual Rate [GDPC1]

https://fred.stlouisfed.org/
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Source: U.S. Department of Commerce, Bureau of Economic Analysis https:

//fred.stlouisfed.org/series/GDPC1

Gross Domestic Product - Implicit Price Deflator - Index 2012=100, Seasonally
Adjusted [GDPDEF]
Source: U.S. Department of Commerce, Bureau of Economic Analysis
https://fred.stlouisfed.org/series/GDPDEF

U.S. Bureau of Labor Statistics, Employment Level [CE16OV]
Source: U.S. Department of Labor: Bureau of Labor Statistics
https://fred.stlouisfed.org/series/CE16OV

Nonfarm Business Sector: Average Weekly Hours Worked for All Employed
Persons [PRS85006023]
Source: U.S. Bureau of Labor Statistics
https://fred.stlouisfed.org/series/PRS85006023

Population Level - 16 Years and Older - Not Seasonally Adjusted [CNP16OV
or LNU00000000]
Source: U.S. Bureau of Labor Statistics
https://fred.stlouisfed.org/series/CNP16OV

Federal Funds Effective Rate [FEDFUNDS]
Source: Board of Governors of the Federal Reserve System (US)
https://fred.stlouisfed.org/series/FEDFUNDS

For the period after 2008Q4, it is extended with Shadow Interest Rate based
on Wu and Xia (2016); Wu and Zhang (2019) as shown at https://sites.

google.com/view/jingcynthiawu/shadow-rates.
Data was downloaded from: https://www.atlantafed.org/cqer/research/
wu-xia-shadow-federal-funds-rate

Following Smets and Wouters (2007), raw data was transformed to map measure-
ment equations in the following way:

dyobs = ∆(LN((GDPC1)/CNP16OV ) ∗ 100)

labobs = LN((PRS85006023 ∗ index_CE16OV/100)/CNP16OV ) ∗ 100

− mean[t:T ](LN((PRS85006023 ∗ index_CE16OV/100)/CNP16OV ) ∗ 100)

https://fred.stlouisfed.org/series/GDPC1
https://fred.stlouisfed.org/series/GDPC1
https://fred.stlouisfed.org/series/GDPDEF
https://fred.stlouisfed.org/series/CE16OV
https://fred.stlouisfed.org/series/PRS85006023
https://fred.stlouisfed.org/series/CNP16OV
https://fred.stlouisfed.org/series/FEDFUNDS
https://sites.google.com/view/jingcynthiawu/shadow-rates
https://sites.google.com/view/jingcynthiawu/shadow-rates
https://www.atlantafed.org/cqer/research/wu-xia-shadow-federal-funds-rate
https://www.atlantafed.org/cqer/research/wu-xia-shadow-federal-funds-rate
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pinfobs = LN(GDPDEF/GDPDEF (−1)) ∗ 100

robs = FEDFUNDS/4

where the ∆ = Xobs
t −Xobs

t−1.
Concerning the shares of rational agents, data was collected from “Table 26:

Expected Change in Business Conditions in a Year" from the Survey of Consumers by
the University of Michigan: https://data.sca.isr.umich.edu/subset/subset.

php

The reference qualitative question is: “The question was: And how about a year
from now, do you expect that in the country as a whole, business conditions will be
better, or worse than they are at present, or just about the same". Possible replies are:
“Better", “Same", “Worse", “Don’t know". The Don’t knows were equally distributed
across other replies. Answer the “Same" was considered to be näive and the residual
to be rational and nobs coincides with the rational group.

C.5 Higher-order Identification Test (Mutschler,

2015)

A DSGE model can be described as a system,

Et (f (xt+1,ut+1, yt+1, xt,ut, yt|θ)) = 0

xt+1 = h(xt, ut+1, σ|θ)

yt+1 = g(xt, ut+1, σ|θ)

where xt are states, yt are controls, ut are stochastic shocks, σ is a perturbation
parameter and θ is a m-dimensional vector of deep parameters. It is assumed that
all control variables are observables, E(ut) = 0 and that E(utu′t) = σηη′ is finite
and there is no serial correlation. Moreover, ut is nth-order white noise with finite
higher-order moments with n being the order of approximation.

Under rational expectations the solution to this model is provided by policy func-
tions h and g solving the system of equations f . By applying perturbation meth-
ods as in Schmitt-Grohé and Uribe (2004b) the solution around the non-stochastic

https://data.sca.isr.umich.edu/subset/subset.php
https://data.sca.isr.umich.edu/subset/subset.php
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steady state can be expressed as x∗ = h(x∗, 0, 0|θ), y∗ = g(x∗, 0, 0|θ), u∗ = 0 and
f ∗ = h(x∗, y∗, u∗|θ) = 0. Then, Taylor expansions of order n can be evaluated in this
point in closed form.

However, many applications have shown higher-order approximations are often
explosive, even if the linear version of the model is stable. In response to this prob-
lem, pruned approximations of non-linear Taylor expansions were in introduced by
Kim et al. (2008) and further generalised by Andreasen et al. (2018). The idea un-
derpinning the pruning scheme consists in excluding from the policy functions all the
elements of order higher than the approximation order.

For example, given the below second-order Taylor expansion,

x̂t+1 = x∗ + hθxx̂t + hθu (ut+1)+

1

2

[
hθxx (x̂t ⊗ x̂t) + 2hθxux̂t ⊗ ut+1 + 2hθuu (ut+1 ⊗ ut+1) + hθσσσ

2
] (C.86)

where the Kronecker products in the second row can deliver elements of order higher
than two. Then, the equivalent pruned system can be obtained by decomposing the
state-vector into first-order (x̂ft ) and second-order (x̂st) effects (x̂ = x̂ft + x̂st) and
eliminate all higher-order effects by rewriting the system in the following way:

x̂ft+1 = x∗ + hθxx̂
f
t + hθu (ut+1) (C.87)

x̂st+1 = hθxx̂
s
t +

1

2
Hθ

xx

(
x̂ft ⊗ x̂ft

)
+

1

2
Hθ

xu

(
x̂ft ⊗ ut+1

)
+

1

2
Hθ

ux

(
ut+1 ⊗ x̂ft

)
+

1

2
Hθ

uu (ut+1 ⊗ ut+1) + hθσσσ
2

(C.88)

ŷt+1 = gθx

[
x̂ft + x̂st

]
+ gθuut+1

1

2
Gθ

xx

(
x̂ft ⊗ x̂ft

)
+

1

2
Gθ

xu

(
x̂ft ⊗ ut+1

)
+

1

2
Gθ

ux

(
ut+1 ⊗ x̂ft

)
+

1

2
gθuu (ut+1 ⊗ ut+1) + gθσσσ

2
(C.89)

whereHxx is an nx x n2
x matrix ruling all second-order terms for the i-th state variable

in the i-th row, and Gxx is an ny x n2
x matrix ruling all second-order terms for the
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i-th control variable in the i-th row. Hxu, Hux, Gxu and Gux rule the relationship
between states and shocks, and Huu, Guu provide information on second-order terms
for the product of shocks. As a result, all elements of order higher than two (i.e.
x̂ft ⊗ x̂st and x̂st ⊗ x̂st) are excluded.

Then, one can create an extended state vector z̃t := [(x̂ft )
′, (x̂st)

′, (x̂ft ⊗ x̂ft )
′]′ and

one can rewrite the second-order Taylor expansion as pruned state-space:

z̃t+1 = c+ Az̃t +BΞt+1 (C.90)

ŷt+1 = d+ Cz̃t +BΞt+1 (C.91)

with A :=

hx 0 0

0 hx
1
2
Hxx

0 0 hx ⊗ hx

 , B :=

hu 0 0 0

0 1
2
Huu

1
2
Hux

1
2
Hxu

0 hu ⊗ hu hu ⊗ hx hx ⊗ hu

 ,

C :=
[
gx gx

1
2
Gxx

]
, D :=

[
gu

1
2
Guu

1
2
Gux

1
2
Gxu

]
,

Ξt+1 :=


ut+1

ut+1 ⊗ ut+1 − vec(Σ)

ut+1 ⊗ xft

xft ⊗ ut+1

 ,
c :=

 0
1
2
Hσσσ

2 + 1
2
Huuvec(Σ)

hu ⊗ huvec(Σ)


d :=

[
1
2
gσσσ

2 + 1
2
Guuvec(Σ)

] ,

Being linear in z̃, the pruned state-space can benefit of some properties of stan-
dard linear models. Andreasen et al. (2018) showed that if the first-order approxi-
mation of the model is stable, then also higher-order pruned state-space systems are
stable. Moreover, if the first fourth-moment of ut is finite, it can be shown that the
pruned state-space has finite second moments. Mutschler (2015) shows that if ut has
finite eighth moment, the pruned state-space has finite fourth moments. Finally, it
is important to notice that the distribution of Ξt is non-Gaussian even for Gaussian
ut and for this reason higher-order moments might contain additional information to
identify model parameters.

In this context, Mutschler (2015, 2018) exploits restrictions introduced by cumu-
lants (i.e. higher-order statistics based on the coefficients of the Taylor expansion
of the log-moment generating function in the time domain). For the k-th order
stationary and zero-mean process z̃t are provided by the nk

z vectors Ck,z:

C2,z(t1) := E[z̃0 ⊗ z̃t1 ]
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C3,z(t1, t2) := E[z̃0 ⊗ z̃t1 ⊗ z̃t2 ]

C4,z(t1, t2, t3) := E[z̃0 ⊗ z̃t1 ⊗ z̃t2 ⊗ z̃t3 ]− C2,z(t1)⊗ C2,z(t2 − t3)

−P ′
nz
(C2,z(t2)⊗ C2,z(t2 − t3))− P ′

nz
(C3,z(t3)⊗ C2,z(t1 − t2))

where Pnz = Inz ⊗ Un2
zxnz

and Un2
zxnz

is a (n3
zxn

3
z) permutation matrix with unity

entries in elements [(i−1)nz+ j, (j−1)n2
z],i = 1, .., n2

z and j = 1, .., nz, and zero else-
where. For the purpose of testing identification, cumulants are stacked into vectors
and expressed in y terms (Mutschler, 2015):

m2(θ, T ) = (C2,y(0)′, ..., C2,y(T − 1)′)′,

m3(θ, T ) = (C3,y(0, 0)′, ..., C3,y(T − 1, T − 1)′)′,

m4(θ, T ) = (C4,y(0, 0, 0)′, ..., C4,y(T − 1, T − 1, T − 1)′)′

Iskrev (2010)’s moment-based criteria are extended to higher-order models. First,
Mutschler (2015) defines the rank criteria to identify θ from the structure of the
model.

In particular, θ0 ∈ Θ and θ1 ∈ Θ are considered observationally equivalent given
a vector of observables {yt} if they generate the same four moments. Then, θ0 ∈ Θ

is defined as locally identifiable from the first four moments of yt, if there is an open
neighborhood of θ0 in which µy(θ0) = µy(θ1), m2(θ0) = m2(θ1), m3(θ0) = m3(θ1),
m4(θ0) = m4(θ1) imply θ0 = θ1 for any θ1 ∈ Θ.

Let q ⩽ T and assume that m̄(θ, q) := (µy,m2(θ, q)
′,m3(θ, q)

′,m2(θ, q)
′)′ is a

continuously differentiable function of θ ∈ Θ. Let θ0 ∈ Θ be a regular point, theta is
then locally identifiable at a point θ0 from the first four cumulants of yt, if and only
if M̄(θ, q) := ∂m̄(θ0,q)

∂(θ′)
has a full column rank equal to the number of parameters for

q ⩽ T

C.6 Second Order Extended Kalman Filter (Gustafs-

son and Hendeby, 2012)

The Extended Kalman filter is based on the approximation of the non-linear tran-
sition equation with a Taylor series expansion along under the assumption that the
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filtering density is Gaussian - p(st|z1:t) ≃ N (st|mt,Qt)
2.

The version exposed here is based on the second-order extended Kalman filter
with additive errors in the measurement equation (Gustafsson and Hendeby, 2012;
Holden, 2018).3 For this paper, the Dynare implementation proposed in Holden
(2018) is used as it allows to apply this filtering technique on a pruned system so to
guarantee system stability.

The main advantage of the second-order Extended Kalman filter is the possibility
of computing an exact closed form representation of mean and variance in a fashion
similar to the linear Kalman filter. This should help both in the accuracy and speed
of the algorithm and allows for a more stable computation of distributions moments.
Given the generalized non-linear state-space representation with additive noise,

st = f (st−1; θ) + εt εt ∼ N(0,Σε) (C.92)

zt = g (st; θ) + vt vt ∼ N(0,Σv) (C.93)

one can derive the moments characterising the prediction and updating steps.
The mean and the covariance matrix of the prediction step are:

mt̄ = f(mt−1) +
1

2

∑
i

eitr
(
F

(i)
SS(mt−1)Qt−1

)
(C.94)

Qt̄ = FS(mt−1)Qt−1F
T
S (mt−1)+

+
1

2

∑
i,i′

eie
T
i′ tr

(
F

(i)
SS(mt−1)Qt−1F

(i′)
SS (mt−1)Qt−1

)
+ Σϵ,t−1 (C.95)

These can be used to build all the elements needed to recover the filtering distri-
bution in the updating step:

2Alternatively, the non-linear dynamic can be approximated by means of statistical linearization
(Stengel, 1994). This technique has the advantage of providing a more global approximation of the
distribution but it often encounters issues due to very complex expectations to be computed in the
prediction step of the filter - see Särkkä (2013) book for further details.

3Särkkä (2013) actually generalizes this algorithm to the case of non-additive noise.



Appendix C. Chapter 3 168

ht = zt − g(mt̄)−
1

2

∑
i

eitr
(
G

(i)
SS(mt̄)Qt̄

)
(C.96)

Xt = GS(mt̄)Qt̄G
T
S (mt̄)+

+
1

2

∑
i,i′

eie
T
i′ tr

(
G

(i)
SS(mt̄)Qt̄G

(i′)
SS (mt̄)Qt̄

)
+ Σv,t (C.97)

Kt = Qt̄G
T
S (mt̄)X

−1
t (C.98)

mt = mt̄ +Ktht (C.99)

Qt = Qt̄ −KtXtK
T
t (C.100)

with:

FS(m) =
∂fj(x, ε)

∂sj
[s=m,ε=0] (C.101)

GS(m) =
∂gj(s,v)

∂sj
[s=m,v=0] (C.102)

FSS(m) =
∂2fi(s)

∂sj∂sj′
[s=m] (C.103)

GSS(m) =
∂2gi(s)

∂sj∂sj′
[s=m] (C.104)
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C.7 Michigan Survey Data - Alternative Shares Def-

initions

This section proposes alternative measures for approximating the proportion of ra-
tional and bounded rational agents by continuing the discussion exposed in section
3.4.3.

In case one would like to model the evolution of firms and households expectations
separately, it is possible to exploit the income or education breakdowns (only starting
in 1978).

For instance, one might approximate the share of näive firms by using number of
“Unchanged" replies to the question on business expectations in the highest income
or education quartile. By contrast, the share of näive households would result from
the average share of the lowest three income quartiles. Then, the average value of
the proxy for the share of rational households based on income quartiles is 4% and
that of rational firms about 20%.

Figure C.1: Proxy for the share of rational agents based on business con-
ditions by income

Alternatively, one might want to choose an indicator that is representative of the
macroeconomic variables forecasted by model agents, namely inflation.
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In building a proxy for the share of rational agents, I follow the findings of Pfajfar
and Santoro (2010) who study how households form expectations across the different
percentiles of the quantitative question on inflation. Specifically, they find agents
adopt a rational-expectation rule in bins between the 55th and 63rd before 1988 and
in bins between the 47th and the 50th. Moreover, results show households tend to
be näives in lower percentiles and more adaptive in the highest ones.

Against this background, the share of rational agents might be approximated by
the share of households reporting a qualitative answer in an interval corresponding
to current value of median expectations. As shown in Figure C.2, the resulting series
is a combination of the various qualitative time-series. To understand this with some
examples, the value of median expectations was 10.2 percent in 1980-Q1, so the red
line reports the share of households replying prices would grow “between 10 and 14
percent". Similarly, median inflation expectations were about 1.1 percent in 2001-Q4
so the red line reports the share of households replying between 1 and 2 percent.

Figure C.2: Proxy for the share of rational agents based on qualitative
inflation

As the model estimated in this paper assumes households and firms can choose
different forecasting rules, I have applied the methodology presented above on a
breakdown of replies by income. As shown in Figure C.1, the share of replies around
the median is larger for households in the highest quartile whereas other quartiles
present lower and similar values. Assuming the results of Pfajfar and Santoro (2010)
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can be extended to subgroups of the population, one can interpret the latter result
in favour of a higher share of “more rational” households withing the highest income
group.



172

Bibliography

Adam, K. and Marcet, A. (2011). Internal rationality, imperfect market knowledge
and asset prices. Journal of Economic Theory, 146(3):1224–1252.

Adjemian, S. and Karame, F. (2016). Gaussian Particle Filtering with Dynare. 2017
meeting papers, MACFINROBODS.

Agliari, A., Massaro, D., Pecora, N., and Spelta, A. (2017). Inflation Targeting,
Recursive Inattentiveness, and Heterogeneous Beliefs. Journal of Money, Credit
and Banking, 49(7):1587–1619.

Aguiar, M. (2011). Comment on “On Graduation from Default, Inflation and Banking
Crises: Elusive or Illusion?”. In NBER Macroeconomics Annual 2010, Volume 25,
pages 37–46. University of Chicago Press.

Alpanda, S. and Kabaca, S. (2020). International Spillovers of Large-Scale Asset
Purchases. Journal of the European Economic Association, 18(1):342–391.

Altavilla, C. and Giannone, D. (2017). The effectiveness of non-standard monetary
policy measures: Evidence from survey data. Journal of Applied Econometrics,
32:952–964.

Altavilla, C., Giannone, D., and Lenza, M. (2016). The Financial and Macroeconomic
Effects of the OMT Announcements. International Journal of Central Banking,
12(3):29–57.

Altavilla, C., Lemke, W., Linzert, T., Tapking, J., and von Landesberger, J. (2021).
Assessing the efficacy, efficiency and potential side effects of the ECB’s monetary
policy instruments since 2014. Occasional Paper Series 278, European Central
Bank.



BIBLIOGRAPHY 173

Amisano, G. and Tristani, O. (2010). Euro area inflation persistence in an estimated
nonlinear DSGE model. Journal of Economic Dynamics and Control, 34(10):1837–
1858.

Andreasen, M. (2010). How to Maximize the Likelihood Function for a DSGE Model.
Computational Economics, 35(2):127–154.

Andreasen, M. M. (2013). Non-Linear DSGE Models And The Central Difference
Kalman Filter. Journal of Applied Econometrics, 28(6):929–955.

Andreasen, M. M., Fernández-Villaverde, J., and Rubio-Ramírez, J. F. (2018). The
Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical
Applications. Review of Economic Studies, 85(1):1–49.

Andrieu, C., Doucet, A., and Punskaya, E. (2001). Sequential Monte Carlo Methods
for Optimal Filtering, pages 79–95. Springer New York, New York, NY.

Andrés, J., López-Salido, J. D., and Nelson, E. (2004). Tobin’s Imperfect Asset
Substitution in Optimizing General Equilibrium. CEPR Discussion Papers 4336,
C.E.P.R. Discussion Papers.

Angelini, P., Neri, S., and Panetta, F. (2011). Monetary and macroprudential poli-
cies. temi di discussione (economic working papers) 801, bank of italy. Economic
Research and International Relations Area.

Arasaratnam, H. and Haykin, S. (2009). Cubature Kalman Filters. Automatic Con-
trol, IEEE Transactions on, 54:1254 – 1269.

Aruoba, S. B., Cuba-Borda, P., Higa-Flores, K., Schorfheide, F., and Villalvazo, S.
(2021). Piecewise-Linear Approximations and Filtering for DSGE Models with
Occasionally Binding Constraints. Review of Economic Dynamics, 41:96–120.

Ascari, G. (2004). Staggered prices and trend inflation: some nuisances. Review of
Economic dynamics, 7(3):642–667.

Ascari, G., Bonomolo, P., and Lopes, H. F. (2019). Walk on the wild side: Tem-
porarily unstable paths and multiplicative sunspots. American Economic Review,
109(5):1805–42.



BIBLIOGRAPHY 174

Ascari, G., Castelnuovo, E., and Rossi, L. (2011). Calvo vs. Rotemberg in a trend
inflation world: An empirical investigation. Journal of Economic Dynamics and
Control, 35(11):1852–1867.

Ascari, G., Fagiolo, G., and Roventini, A. (2015). Fat-tail distributions and business-
cycle models. Macroeconomic Dynamics, 19(2):465–476.

Ascari, G. and Ropele, T. (2009). Trend inflation, Taylor principle and indetermi-
nacy. Temi di discussione (Economic working papers) 708, Bank of Italy, Economic
Research and International Relations Area.

Ascari, G. and Sbordone, A. M. (2014). The macroeconomics of trend inflation.
Journal of Economic Literature, 52(3):679–739.

Assenza, T., Heemeijer, P., Hommes, C., and Massaro, D. (2013). Individual Ex-
pectations and Aggregate Macro Behavior. Tinbergen Institute Discussion Papers
13-016/II, Tinbergen Institute.

Assenza, T., Heemeijer, P., Hommes, C., and Massaro, D. (2021). Managing self-
organization of expectations through monetary policy: A macro experiment. Jour-
nal of Monetary Economics, 117:170–186.

Beck, R., Duca, I. A., and Stracca, L. (2019). Medium term treatment and side
effects of quantitative easing: international evidence. Working Paper Series 2229,
European Central Bank.

Beqiraj, E., Bartolomeo, G. D., Pietro, M. D., and Serpieri, C. (2018). Bounded-
rationality and heterogeneous agents: Long or short forecasters? JRC Working
Papers JRC111392, Joint Research Centre (Seville site).

Bernanke, B. S. (2020). The new tools of monetary policy. American Economic
Review, 110(4):943–83.

Bianchi, F. and Nicolò, G. (2021). A generalized approach to indeterminacy in linear
rational expectations models. Quantitative Economics, 12(3):843–868.

Binning, A. and Maih, J. (2015). Sigma point filters for dynamic nonlinear regime
switching models. Working Papers No 4/2015, Centre for Applied Macro- and
Petroleum economics (CAMP), BI Norwegian Business School.



BIBLIOGRAPHY 175

Boehl, G., Goy, G., and Strobel, F. (2020). A structural investigation of quantitative
easing. Working paper.

Boneva, L. M., Braun, R. A., and Waki, Y. (2016). Some unpleasant properties
of loglinearized solutions when the nominal rate is zero. Journal of Monetary
Economics, 84:216–232.

Bordalo, P., Gennaioli, N., Ma, Y., and Shleifer, A. (2020). Overreaction in Macroe-
conomic Expectations. American Economic Review, 110(9):2748–2782.

Born, B. and Pfeifer, J. (2014). Policy risk and the business cycle. Journal of
Monetary Economics, 68(C):68–85.

Boswijk, H. P., Hommes, C. H., and Manzan, S. (2007). Behavioral heterogeneity in
stock prices. Journal of Economic Dynamics and Control, 31(6):1938–1970. Tenth
Workshop on Economic Heterogeneous Interacting Agents.

Branch, W., Carlson, J., Evans, G., and McGough, B. (2009). Monetary Pol-
icy, Endogenous Inattention and the Volatility Trade-off. Economic Journal,
119(534):123–157.

Branch, W. A. (2004). The Theory of Rationally Heterogeneous Expectations:
Evidence from Survey Data on Inflation Expectations. Economic Journal,
114(497):592–621.

Branch, W. A. and McGough, B. (2009). A New Keynesian model with heteroge-
neous expectations. Journal of Economic Dynamics and Control, 33(5):1036–1051.
Complexity in Economics and Finance.

Branch, W. A. and McGough, B. (2010). Dynamic predictor selection in a new
Keynesian model with heterogeneous expectations. Journal of Economic Dynamics
and Control, 34(8):1492–1508.

Breckenfelder, J., De Fiore, F., Andrade, P., Karadi, P., and Tristani, O. (2016).
The ECB’s asset purchase programme: an early assessment. Working Paper Series
1956, European Central Bank.

Brock, W. A. and Hommes, C. H. (1997). A rational route to randomness. Econo-
metrica, 65(5):1059–1095.



BIBLIOGRAPHY 176

Brock, W. A. and Mirman, L. J. (1972). Optimal economic growth and uncertainty:
The discounted case. Journal of Economic Theory, 4(3):479–513.

Busetti, F., Delle Monache, D., Gerali, A., and Locarno, A. (2017). Trust, but verify.
De-anchoring of inflation expectations under learning and heterogeneity. Working
Paper Series 1994, European Central Bank.

Calvert Jump, R., Hommes, C., and Levine, P. (2019). Learning, heterogeneity,
and complexity in the New Keynesian model. Journal of Economic Behavior and
Organization, 166(C):446–470.

Calvo, G. A. (1983). Staggered prices in a utility-maximizing framework. Journal of
Monetary Economics, 12(3):383–398.

Carlstrom, C. T., Fuerst, T. S., and Paustian, M. (2017). Targeting long rates in
a model with segmented markets. American Economic Journal: Macroeconomics,
9(1):205–242.

Castelnuovo, E. and Pellegrino, G. (2018). Uncertainty-dependent effects of monetary
policy shocks: A New-Keynesian interpretation. Journal of Economic Dynamics
and Control, 93:277–296. Monetary and Fiscal Policy Stabilization amid a Debt
Crisis.

Chen, H., Cúrdia, V., and Ferrero, A. (2012). The Macroeconomic Effects of Large-
scale Asset Purchase Programmes. Economic Journal, 122(564):289–315.

Chopin, N., Jacob, P. E., and Papaspiliopoulos, O. (2013). SMC2: an efficient
algorithm for sequential analysis of state space models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 75(3):397–426.

Christiano, L. J. and Eichenbaum, M. (2012). Notes on linear approximations, equi-
librium multiplicity and e-learnability in the analysis of the zero lower bound.
Manuscript, Northwestern University.

Christiano, L. J., Eichenbaum, M., and Evans, C. L. (2005). Nominal rigidities and
the dynamic effects of a shock to monetary policy. Journal of political Economy,
113(1):1–45.



BIBLIOGRAPHY 177

Coeré, Benoit (2018). The persistence and signalling power of central bank asset pur-
chase programmes. url: https://www.ecb.europa.eu/press/key/date/2018/

html/ecb.sp180223.en.html.

Coibion, O. and Gorodnichenko, Y. (2015). Information rigidity and the expecta-
tions formation process: A simple framework and new facts. American Economic
Review, 105(8):2644–78.

Cornea-Madeira, A., Hommes, C., and Massaro, D. (2019). Behavioral Heterogeneity
in U.S. Inflation Dynamics. Journal of Business & Economic Statistics, 37(2):288–
300.

Cova, P. and Ferrero, G. (2015). The Eurosystem asset purchase programmes for
monetary policy purposes. Questioni di Economia e Finanza (Occasional Papers)
270, Bank of Italy, Economic Research and International Relations Area.

Creel, M. and Kristensen, D. (2011). Indirect Likelihood Inference. Dynare Working
Papers 8, CEPREMAP.

De Grauwe, P. (2011). Animal spirits and monetary policy. Economic Theory,
47(2/3):423–457.

De Grauwe, P. (2012a). Booms and busts in economic activity: A behavioral expla-
nation. Journal of Economic Behavior and Organization, 83(3):484–501.

De Grauwe, P. (2012b). Lectures on behavioral macroeconomics. Lectures on Be-
havioral Macroeconomics, pages 1–136.

De Grauwe, P., Foresti, P., and Ji, Y. (2020). Animal Spirits and Fiscal Policy.
Journal of Economic Behavior and Organization, 171:247–263.

De Grauwe, P. and Ji, Y. (2017). The International Synchronisation of Business
Cycles: the Role of Animal Spirits. Open Economies Review, 28(3):383–412.

De Grauwe, P. and Ji, Y. (2019). Inflation targets and the zero lower bound in a
behavioural macroeconomic model. Economica, 86(342):262–299.

De Grauwe, P. and Ji, Y., editors (2020a). Behavioural Macroeconomics: Theory
and Policy. Oxford University Press.

https://www.ecb.europa.eu/press/key/date/2018/html/ecb.sp180223.en.html
https://www.ecb.europa.eu/press/key/date/2018/html/ecb.sp180223.en.html


BIBLIOGRAPHY 178

De Grauwe, P. and Ji, Y. (2020b). Should central banks be forward-looking? CEPR
Discussion Papers 14540, C.E.P.R. Discussion Papers.

De Grauwe, P. and Ji, Y. (2021). On the Use of Current or Forward-Looking Data
in Monetary Policy: A Behavioural Macroeconomic Approach. CESifo Working
Paper Series 8853, CESifo.

De Grauwe, P. and Macchiarelli, C. (2015). Animal spirits and credit cycles. Journal
of Economic Dynamics and Control, 59(C):95–117.

Deák, S., Holden, T., and Mele, A. (2018). An advanced course on the science and
art of DSGE Modelling. Technical report, University of Surrey – Summer School.

Del Negro, M. and Schorfheide, F. (2008). Forming priors for DSGE models (and how
it affects the assessment of nominal rigidities). Journal of Monetary Economics,
55(7):1191–1208.

Dell’Ariccia, G., Rabanal, P., and Sandri, D. (2018). Unconventional Monetary
Policies in the Euro Area, Japan, and the United Kingdom. Journal of Economic
Perspectives, 32(4):147–72.

Demary, M. (2017). Yield curve responses to market sentiments and monetary policy.
Journal of Economic Interaction and Coordination, 12(2):309–344.

Deák, S., Levine, P., Pearlman, J., and Yang, B. (2017a). Internal Rationality,
Learning and Imperfect Information. School of Economics Discussion Papers 0817,
School of Economics, University of Surrey.

Deák, S., Levine, P., Pearlman, J., and Yang, B. (2017b). Internal Rationality,
Learning and Imperfect Information. School of Economics Discussion Papers 0817,
School of Economics, University of Surrey.

Dixit, A. K. and Stiglitz, J. E. (1977). Monopolistic competition and optimum
product diversity. The American Economic Review, 67(3):297–308.

D’Amico, S. and King, T. B. (2013). Flow and stock effects of large-scale treasury
purchases: Evidence on the importance of local supply. Journal of Financial
Economics, 108(2):425–448.



BIBLIOGRAPHY 179

Eser, F. and Schwaab, B. (2016). Evaluating the impact of unconventional mon-
etary policy measures: Empirical evidence from the ECB’s Securities Markets
Programme. Journal of Financial Economics, 119(1):147 – 167.

Eusepi, S. and Preston, B. (2011). Expectations, Learning, and Business Cycle
Fluctuations. American Economic Review, 101(6):2844–2872.

Evans, G. and Honkapohja (2001). Learning and Expectations in Macroeconomics.
Princeton University Press.

Falagiarda, M. (2013). Evaluating Quantitative Easing: A DSGE Approach. MPRA
Paper 49457, University Library of Munich, Germany.

Falagiarda, M. and Reitz, S. (2015). Announcements of ECB unconventional pro-
grams: Implications for the sovereign spreads of stressed Euro area countries.
Journal of International Money and Finance, 53(C):276–295.

Fernández-Villaverde, J., Gordon, G., Guerrón-Quintana, P., and Rubio-Ramirez,
J. F. (2015). Nonlinear adventures at the zero lower bound. Journal of Economic
Dynamics and Control, 57:182–204.

Fernández-Villaverde, J. and Rubio-Ramírez, J. F. (2007). Estimating macroe-
conomic models: A likelihood approach. The Review of Economic Studies,
74(4):1059–1087.

FernÃ¡ndez-Villaverde, J., Rubio-RamÃrez, J., and Schorfheide, F. (2016). Solution
and Estimation Methods for DSGE Models. In Taylor, J. B. and Uhlig, H., editors,
Handbook of Macroeconomics, volume 2 of Handbook of Macroeconomics, chapter 0,
pages 527–724. Elsevier.

Fernández-Villaverde, J., Guerrón-Quintana, P., Rubio-Ramírez, J. F., and Uribe,
M. (2011). Risk matters: The real effects of volatility shocks. American Economic
Review, 101(6):2530–61.

Fernández-Villaverde, J. and Guerrón-Quintana, P. A. (2021). Estimating DSGE
Models: Recent Advances and Future Challenges. Annual Review of Economics,
13(1):229–252.



BIBLIOGRAPHY 180

Fernández-Villaverde, J. and Rubio-Ramírez, J. F. (2005). Estimating dynamic equi-
librium economies: Linear versus nonlinear likelihood. Journal of Applied Econo-
metrics, 20(7):891–910.

Friedman, B. M. and Woodford, M., editors (2010). "DSGE Models for Monetary
Policy Analysis", Handbook of Monetary Economics, Chapter 7, pages 285-367,
volume 3 of Handbook of Monetary Economics. Elsevier, 1 edition.

Gabaix, X. (2020). A Behavioral New Keynesian Model. American Economic Review,
110(8):2271–2327.

Gagnon, J., Raskin, M., Remache, J., and Sack, B. (2011a). The Financial Market
Effects of the Federal Reserve’s Large-Scale Asset Purchases. International Journal
of Central Banking, 7(1):3–43.

Gagnon, J. E. (2016). Quantitative Easing: An Underappreciated Success. Policy
Briefs PB16-4, Peterson Institute for International Economics.

Gagnon, J. E., Raskin, M., Remache, J., and Sack, B. P. (2011b). Large-scale asset
purchases by the Federal Reserve: did they work? Economic Policy Review,
17(May):41–59.

Galì, J. (2008). Introduction to Monetary Policy, Inflation, and the Business Cycle:
An Introduction to the New Keynesian Framework. In Monetary Policy, Infla-
tion, and the Business Cycle: An Introduction to the New Keynesian Framework,
Introductory Chapters. Princeton University Press.

Galì, J. (2015). Monetary Policy, Inflation, and the Business Cycle: An Introduction
to the New Keynesian Framework and Its Applications Second edition. Number
10495 in Economics Books. Princeton University Press.

Gelain, P., Iskrev, N., J. Lansing, K., and Mendicino, C. (2019). Inflation dynamics
and adaptive expectations in an estimated DSGE model. Journal of Macroeco-
nomics, 59(C):258–277.

Gertler, M. and Karadi, P. (2011). A model of unconventional monetary policy.
Journal of Monetary Economics, 58:17–34.



BIBLIOGRAPHY 181

Gertler, M. and Karadi, P. (2013). QE 1 vs. 2 vs. 3. . . : A Framework for Analyzing
Large-Scale Asset Purchases as a Monetary Policy Tool. International Journal of
Central Banking, 9(1):5–53.

Geweke, J. (1999). Using simulation methods for Bayesian econometric models:
inference, development, and communication. Econometric Reviews, 18(1):1–73.

Giovannini, M., Ratto, M., and Pfeifer, J. (2021). Efficient and robust inference of
models with occasionally binding constraints. JRC Working Papers in Economics
and Finance JRC124394, JRC.

Goy, G., Hommes, C., and Mavromatis, K. (2020). Forward Guidance and the Role
of Central Bank Credibility under Heterogeneous Beliefs. Journal of Economic
Behavior and Organization.

Grazzini, J., Richiardi, M. G., and Tsionas, M. (2017). Bayesian estimation of agent-
based models. Journal of Economic Dynamics and Control, 77(C):26–47.

Gustafsson, F. and Hendeby, G. (2012). Some Relations Between Extended and
Unscented Kalman Filters. Signal Processing, IEEE Transactions on, 60:545 –
555.

Hansen, N. and Kern, S. (2004). Evaluating the CMA Evolution Strategy on Mul-
timodal Test Functions. In Yao, X., Burke, E. K., Lozano, J. A., Smith, J.,
Merelo-Guervós, J. J., Bullinaria, J. A., Rowe, J. E., Tiňo, P., Kabán, A., and
Schwefel, H.-P., editors, Parallel Problem Solving from Nature - PPSN VIII, pages
282–291, Berlin, Heidelberg. Springer Berlin Heidelberg.

Harrison, R. (2011). Asset purchase policies and portfolio balance effects: A DSGE
analysis. Interest Rates, Prices and Liquidity: Lessons from the Financial Crisis,
pages 117–143.

Harrison, R. (2012). Asset purchase policy at the effective lower bound for interest
rates. Bank of England working papers 444, Bank of England.

Harrison, R. (2017). Optimal quantitative easing. Bank of England working papers
678, Bank of England.



BIBLIOGRAPHY 182

Herbst, E. and Schorfheide, F. (2015). Bayesian estimation of DSGE models. Prince-
ton University Press.

Herbst, E. and Schorfheide, F. (2019). Tempered particle filtering. Journal of Econo-
metrics, 210(1):26–44.

Hesse, H., Hofmann, B., and Weber, J. M. (2018). The macroeconomic effects of
asset purchases revisited. Journal of Macroeconomics, 58(C):115–138.

Holden, T. (2017). Tractable estimation and smoothing of highly non-linear
dynamic state-space models. https://github.com/tholden/EST-NLSS/raw/

master/EstimationPaper.pdf.

Holden, T. (2018). Trends and cycles without balanced growth. https:

//ec.europa.eu/research/participants/documents/downloadPublic?

documentIds=080166e5bfb8cbbf&appId=PPGMS.

Hommes, C. (2015). Behavioral Rationality and Heterogeneous Expectations in Com-
plex Economic Systems. Number 9781107564978 in Cambridge Books. Cambridge
University Press.

Hommes, C. and in ’t Veld, D. (2017). Booms, busts and behavioural heterogeneity
in stock prices. Journal of Economic Dynamics and Control, 80:101–124.

Hommes, C. and Lustenhouwer, J. (2019). Inflation targeting and liquidity traps
under endogenous credibility. Journal of Monetary Economics, 107(C):48–62.

Hommes, C., Lustenhouwer, J., and Mavromatis, K. (2018). Fiscal consolidations
and heterogeneous expectations. Journal of Economic Dynamics and Control,
87(C):173–205.

Hommes, C., Mavromatis, K., Ozden, T., and Zhu, M. (2019). Behavioral learning
equilibria in the New Keynesian model. DNB Working Papers 654, Netherlands
Central Bank, Research Department.

Honkapohja, S., Mitra, K., and Evans, G. W. (2011). Notes on Agents Behavioral
Rules Under Adaptive Learning and Studies of Monetary Policy. CDMA Working
Paper Series 201102, Centre for Dynamic Macroeconomic Analysis.

https://github.com/tholden/EST-NLSS/raw/master/EstimationPaper.pdf
https://github.com/tholden/EST-NLSS/raw/master/EstimationPaper.pdf
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5bfb8cbbf&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5bfb8cbbf&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5bfb8cbbf&appId=PPGMS


BIBLIOGRAPHY 183

Iiboshi, H., Shintani, M., and Ueda, K. (2020). Estimating a Nonlinear New Keyne-
sian Model with the Zero Lower Bound for Japan. Working Papers e154, Tokyo
Center for Economic Research.

Iiboshi, H., Shintani, M., and Ueda, K. (2022). Estimating a Behavioral New Key-
nesian Model with the Zero Lower Bound. Carf working papers, Tokyo Center for
Economic Research.

Iskrev, N. (2008). Evaluating the information matrix in linearized DSGE models.
Economics Letters, 99(3):607–610.

Iskrev, N. (2010). Local identification in DSGE models. Journal of Monetary Eco-
nomics, 57(2):189–202.

Iskrev, N. and Ratto, M. (2011). Identification analysis of DSGE models with
DYNARE. JRC Working Papers 225149, MONFISPOL.

Ivashchenko, S. (2014). DSGE Model Estimation on the Basis of Second-Order
Approximation. Computational Economics, 43(1):71–82.

Ivashchenko, S. (2016). Estimation and filtering of nonlinear MS-DSGE models. HSE
Working papers WP BRP 136/EC/2016, National Research University Higher
School of Economics.

Jang, T.-S. and Sacht, S. (2016). Animal Spirits and the Business Cycle: Empirical
Evidence from Moment Matching. Metroeconomica, 67(1):76–113.

Jang, T.-S. and Sacht, S. (2020). Forecast heuristics, consumer expectations, and
New-Keynesian macroeconomics: A Horse race. Journal of Economic Behavior
and Organization.

Jess, B. and A., F. R. E. (1994). Indeterminacy and Increasing Returns. Journal of
Economic Theory, 63(1):19–41.

Joyce, M., Tong, M., and Woods, R. (2011). The United Kingdom’s quantitative
easing policy: design, operation and impact. Bank of England Quarterly Bulletin,
51(3):200–212.



BIBLIOGRAPHY 184

Julier, S. and Uhlmann, J. (2004). Unscented filtering and nonlinear estimation.
Proceedings of the IEEE, 92:401 – 422.

Julier, S., Uhlmann, J., and Durrant-Whyte, H. (1995). A new approach for filtering
nonlinear systems. In Proceedings of 1995 American Control Conference - ACC’95,
volume 3, pages 1628–1632 vol.3.

Jump, R. C. and Levine, P. (2019). Behavioural New Keynesian models. Journal of
Macroeconomics, 59(C):59–77.

Kabaca, S., Maas, R., Mavromatis, K., and Priftis, R. (2020). Optimal Quantitative
Easing in a Monetary Union. Staff Working Papers 20-49, Bank of Canada.

Kapetanios, G., Mumtaz, H., Stevens, I., and Theodoridis, K. (2012). Assessing the
economy-wide effects of quantitative easing. Bank of England working papers 443,
Bank of England.

Kim, J., Kim, S., Schaumburg, E., and Sims, C. A. (2008). Calculating and us-
ing second-order accurate solutions of discrete time dynamic equilibrium models.
Journal of Economic Dynamics and Control, 32(11):3397–3414.

Kim, J. and Ruge-Murcia, F. (2009). How much inflation is necessary to grease the
wheels? Journal of Monetary Economics, 56(3):365–377.

Kim, J. and Ruge-Murcia, F. (2019). Extreme Events and Optimal Monetary Policy.
International Economic Review, 60(2):939–963.

Kim, J.-Y. (2002). Limited information likelihood and Bayesian Analysis. Journal
of Econometrics, 107:175–193.

Kliem, M. and Meyer-Gohde, A. (2022). (Un)expected monetary policy shocks and
term premia. Journal of Applied Econometrics, 37(3):477–499.

Kollmann, R. (2015). Tractable Latent State Filtering for Non-Linear DSGE Models
Using a Second-Order Approximation and Pruning. Computational Economics,
45(2):239–260.

Kollmann, R. (2017). Tractable likelihood-based estimation of non-linear DSGE
models. Economics Letters, 161(C):90–92.



BIBLIOGRAPHY 185

Kotecha, J. and Djuric, P. (2003). Gaussian sum particle filtering. IEEE Transactions
on Signal Processing, 51(10):2602–2612.

Krishnamurthy, A. and Vissing-Jorgensen, A. (2011). The Effects of Quantitative
Easing on Interest Rates: Channels and Implications for Policy. NBER Working
Papers 17555, National Bureau of Economic Research, Inc.

Kukacka, J., Jang, T.-S., and Sacht, S. (2018). On the estimation of behavioral
macroeconomic models via simulated maximum likelihood. Economics Working
Papers 100372, Christian-Albrechts-University of Kiel, Department of Economics.

Kukacka, J. and Sacht, S. (2021). Estimation of Heuristic Switching in Behavioral
Macroeconomic Models. Economics Working Papers 2021-01, Christian-Albrechts-
University of Kiel, Department of Economics.

Kuttner, K. N. (2018). Outside the box: Unconventional monetary policy in the
great recession and beyond. Journal of Economic Perspectives, 32(4):121–46.

Lan, H. and Meyer-Gohde, A. (2013a). Dynare add-on for Pruning in Perturbation
DSGE Models. QM&RBC Codes, Quantitative Macroeconomics & Real Business
Cycles.

Lan, H. and Meyer-Gohde, A. (2013b). Pruning in perturbation DSGE models:
Guidance from nonlinear moving average approximations. Technical report, SFB
649 Discussion Paper.

Levine, P., Pearlman, J., Perendia, G., and Yang, B. (2012). Endogenous Persistence
in an estimated DSGE Model Under Imperfect Information. Economic Journal,
122(565):1287–1312.

Levine, P. and Yang, B. (2015). A New Keynesian Behavioural Model with Individual
Rationality and Heterogeneous Agents. School of economics discussion papers,
CEF.

Lindé, J. and Trabandt, M. (2017). Should we use linearised models to calculate
fiscal multipliers? European Economy - Discussion Papers 2015 - 064, Directorate
General Economic and Financial Affairs (DG ECFIN), European Commission.



BIBLIOGRAPHY 186

Liu, C. and Minford, P. (2014). Comparing behavioural and rational expectations
for the US post-war economy. Economic Modelling, 43(C):407–415.

Mankiw, N. G., Reis, R., and Wolfers, J. (2004). Disagreement about Inflation Ex-
pectations. In NBER Macroeconomics Annual 2003, Volume 18, NBER Chapters,
pages 209–270. National Bureau of Economic Research, Inc.

Massaro, D. (2013). Heterogeneous expectations in monetary DSGE models. Journal
of Economic Dynamics and Control, 37(3):680–692.

Meyer-Gohde, A. (2014a). Dynare add-on for Risk-Sensitive Linear Approximations.
QM&RBC Codes, Quantitative Macroeconomics & Real Business Cycles.

Meyer-Gohde, A. (2014b). Risky linear approximations. Technical report, SFB 649
Discussion Paper.

Miao, J. (2014). Economic dynamics in discrete time. MIT press.

Milani, F. (2007). Expectations, learning and macroeconomic persistence. Journal
of Monetary Economics, 54(7):2065–2082.

Motto, R., Altavilla, C., and Carboni, G. (2015). Asset purchase programmes and fi-
nancial markets: lessons from the Euro area. Working Paper Series 1864, European
Central Bank.

Mumtaz, H. and Zanetti, F. (2013). The Impact of the Volatility of Monetary Policy
Shocks. Journal of Money, Credit and Banking, 45(4):535–558.

Murray, L., Jones, E., and Parslow, J. (2012). On Disturbance State-Space Models
and the Particle Marginal Metropolis-Hastings Sampler. SIAM/ASA Journal on
Uncertainty Quantification, 1.

Muth, J. F. (1961). Rational expectations and the theory of price movements. Econo-
metrica, 29(3):315–335.

Mutschler, W. (2015). Identification of DSGE models - The effect of higher-order
approximation and pruning. Journal of Economic Dynamics and Control, 56:34 –
54.



BIBLIOGRAPHY 187

Mutschler, W. (2018). Higher-order statistics for DSGE models. Econometrics and
Statistics, 6:44 – 56. Statistics Of Extremes and Applications.

Noh, S. (2019). Posterior Inference on Parameters in a Nonlinear DSGE Model via
Gaussian-Based Filters. Computational Economics.

Noh, S. (2020). The effects and origins of house price uncertainty shocks. SSRN
Electronic Journal.

Pfajfar, D. and Santoro, E. (2010). Heterogeneity, learning and information stick-
iness in inflation expectations. Journal of Economic Behavior and Organization,
75(3):426–444.

Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle
filters. Journal of the American Statistical Association, 94(446):590–599.

Reis, R. (2021). Losing the inflation anchor. CEPR Discussion Papers 16664,
C.E.P.R. Discussion Papers.

Rogers, J. H., Scotti, C., and Wright, J. H. (2018). Unconventional Monetary Policy
and International Risk Premia. Journal of Money, Credit and Banking, 50(8):1827–
1850.

Ruge-Murcia, F. (2012). Estimating nonlinear DSGE models by the simulated
method of moments: With an application to business cycles. Journal of Economic
Dynamics and Control, 36(6):914–938.

Ríos-Rull, J.-V., Schorfheide, F., Fuentes-Albero, C., Kryshko, M., and Santaeulàlia-
Llopis, R. (2012). Methods versus substance: Measuring the effects of technology
shocks. Journal of Monetary Economics, 59(8):826–846.

Sacht, S. (2014). Analysis of Various Shocks within the High-Frequency Versions
of the Baseline New-Keynesian Model. Annual Conference 2014 (Hamburg):
Evidence-based Economic Policy 100372, Verein für Socialpolitik / German Eco-
nomic Association.

Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press,
USA.



BIBLIOGRAPHY 188

Scalone, V. (2018). Estimating Non-Linear DSGEs with the Approximate Bayesian
Computation: an application to the Zero Lower Bound. Working papers 688,
Banque de France.

Schmitt-Grohé, S. and Uribe, M. (2004a). Optimal operational monetary policy
in the Christiano-Eichenbaum-Evans model of the US business cycle. Technical
report, National Bureau of Economic Research.

Schmitt-Grohé, S. and Uribe, M. (2004b). Solving dynamic general equilibrium
models using a second-order approximation to the policy function. Journal of
economic dynamics and control, 28(4):755–775.

Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1):1–48.

Sims, E. and Wu, C. (2020a). Are QE and Conventional Monetary Policy Substi-
tutable? International Journal of Central Banking, 16(1):195–230.

Sims, E. and Wu, C. (2020b). Evaluating Central Banks’ toolkit: Past, present, and
future. Journal of Monetary Economics.

Sims, E., Wu, C., and Zhang, J. (2020). The Four Equation New Keynesian Model.
Working paper.

Slobodyan, S. and Wouters, R. (2012). Learning in a Medium-Scale DSGE Model
with Expectations Based on Small Forecasting Models. American Economic Jour-
nal: Macroeconomics, 4(2):65–101.

Smets, F. and Wouters, R. (2005). Comparing shocks and frictions in US and Euro
area business cycles: a Bayesian DSGE Approach. Journal of Applied Economet-
rics, 20(2):161–183.

Smets, F. and Wouters, R. (2007). Shocks and Frictions in US Business Cycles: A
Bayesian DSGE Approach. American Economic Review, 97(3):586–606.

Vats, D., Flegal, J. M., and Jones, G. L. (2019). Multivariate output analysis for
Markov chain Monte Carlo. Biometrika, 106(2):321–337.

Wan, E. A. and van der Merwe, R. (2001). The Unscented Kalman Filter, chapter 7,
pages 221–280. John Wiley and Sons.



BIBLIOGRAPHY 189

Woodford, M. (2001). Fiscal Requirements for Price Stability. Journal of Money,
Credit and Banking, 33(3):669–728.

Woodford, M. (2003). Interest and Prices: Foundations of a Theory of Monetary
Policy. Princeton University Press.

Wu, J. C. and Xia, F. D. (2016). Measuring the Macroeconomic Impact of Monetary
Policy at the Zero Lower Bound. Journal of Money, Credit and Banking, 48(2-
3):253–291.

Wu, J. C. and Zhang, J. (2019). A shadow rate New Keynesian model. Journal of
Economic Dynamics and Control, 107(C):1–1.

Yun, T. (1996). Nominal price rigidity, money supply endogeneity, and business
cycles. Journal of Monetary Economics, 37(2-3):345–370.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Non-linear Estimation of DSGE Models: Assessing Gaussian Filters
	Introduction
	Estimation Methods
	Likelihood Based Filtering
	Cubature Kalman Filter
	Unscented Kalman Filter
	Kalman Filter by means of Risky Linear Approximations
	Extended Kalman Filter
	Sequential Importance Filtering with Resampling
	Gaussian Particle Filter

	The Model
	RBC Application
	A Neo-classical Growth Model with High Non-linearity

	Solution Methods and Likelihood Evaluation

	Evaluating Filtering Techniques
	Estimation and Filters Assessment
	Results
	Benchmark Calibration
	Risky Calibration


	Conclusions

	Asset Purchase Programs in bad and good times
	Introduction
	Literature Review
	Empirical Evidence
	Theories on the Transmission of Quantitative Easing
	Behavioural DSGE Macroeconomic Models

	The Model
	Microfoundation of the Behavioural Model
	Household Problem
	The Supply Sector
	Consolidated Government-Central Bank:
	Aggregate Demand under Euler Learning
	Phillips Curve Derivation under Euler Learning

	A small-NK Model with Asset Purchases
	Heuristics
	Sentiment Indicator and Central Bank Credibility
	Model Solution

	Simulations
	Calibration
	Policy Analysis
	Role of Heterogenous Expectations
	Asset Purchase Programs
	Analysis of the Parameter Space and Optimal Policy


	Conclusions

	Non-Linear Behavioural New Keynesian Models: Identification and Estimation
	Introduction
	Literature Review
	The Full Non-linear Model
	The Rational Expectation Model
	Households
	Firms in the Wholesale Sector
	Firms in the Retail Sector
	Profits
	Closing the Model

	Heterogeneous Expectations with Endogenous Proportions

	Empirical Analysis
	Measurement Equations and Priors
	Identification Tests based on Priors
	Data
	Estimation Results
	Validating the Empirical Strategy

	Conclusions and Future Research

	Appendices
	Chapter 1: RBC model
	RBC Zero-Growth Steady State Representation
	Laplace Approximation of the Posterior Density
	Application with Flat Priors
	Application Benchmark Scenario with Flat Priors
	Application Benchmark Scenario with alpha, beta and delta Fixed
	Application with the Symplex Algorithm

	Chapter 2
	The Full Non-linear Model
	The Zero-growth Steady State
	Steady State in Recursive Form
	Log-linearisation
	Details on Aggregate Demand and Term Structure
	Comparison to Sims, Wu, Zhang Linear Four-Equations Model
	Determinacy Conditions under Rational Expectations with Forward-looking Taylor Rules
	Additional Generalised Impulse Response

	Chapter 3
	Equilibrium
	Stationary Equilibrium
	Steady State
	Data Sources and Transformations
	Higher-order Identification Test 
	Second Order Extended Kalman Filter  
	Michigan Survey Data - Alternative Shares Definitions


