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Summary

Stochastic Models For Unresolved Scales In Ocean Flows

If you stir the water in a bathtub, the water will quickly be populated by

eddies: chaotic and unpredictable water whirls. These eddies make the water

�rich in texture�. That is to say, eddies of all sizes whirl around the water.

The broader, deeper eddies whirl across the bathtub (approximately 1 meter in

length), and the smallest, fastest eddies can be just 1 millimeter in size.

Now, let us increase the scope of our example to the Earth's oceans, or,

in terms of our previous example: a very big bathtub being �stirred� by the

wind and density di�erences related to salinity and temperature. Ocean eddies

transport quantities such as heat and momentum across the �ow. Similar to the

bathtub example, the smallest ocean eddies are also around 1 millimeter in size.

But an important di�erence is that the largest ocean circulations can range up

to 10.000 kilometers in size. This makes the ratio between the smallest and

largest scales of these ocean circulation features an immense 10 billion. Across

this range one can characterize several types of scales. Most important for this

thesis are the mesoscale eddies (mésos is Greek for �middle�), with sizes in the

range 10-100 kilometers. Eddies with sizes of a few kilometers or less are called

submesoscale. At the other end of the spectrum are the major ocean gyres,

which span entire oceans.

Ocean �ows are very complex in nature. Therefore, some ocean features are

typically approximated in order to model ocean �ows. One such approximation

results from a choice of resolution so that eddies smaller than some scale are

e�ectively absent from the ocean model. Mesoscale eddies play an important

role in choosing such a resolution. While mesoscale eddies are signi�cantly

smaller than ocean-spanning phenomena such as the North Atlantic Gyre, they

are large enough that they cannot be ignored. In fact, the mesoscales are very

important for ocean models to characterize the large scale ocean �ows accurately.

Unfortunately, their small size and fast-evolving nature makes them too complex
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(i.e. computationally demanding) for most ocean models. In this way ocean

modeling is part of the �eld of multiscale modeling wherein interactions between

features across multiple scales or resolutions are considered.

In this thesis I propose several new mathematical models, called param-

eterizations, to approximate the e�ects of mesoscale eddies in ocean models.

Without parameterizations, these e�ects would be missing. Much of the work

in the �eld of mesoscale eddy parameterization is focused on deterministic mod-

els to represent the mesoscale eddies. In a deterministic relationship a certain

sequence of operations transforms a set of variables into another variable with

no randomness to the result. That is to say, a deterministic model will always

produce the same output for a given input. However, such deterministic models

can at best reproduce the mean e�ect of the eddies. Unfortunately, the �uctua-

tions around the mean of the mesoscale e�ects are instrumental in driving ocean

and atmosphere �ows. Instead, the work in this thesis is focused on probabilis-

tic/stochastic models for the mesoscale eddies. Stochastic models introduce a

degree of randomness that allows, for example, incorporating seemingly random

behavior of millions of particles, and �ltering of noise from observations.

A starting point for the developed methodologies here is the availability of

sample data for the mesoscale eddies. Such data can be obtained in various

ways: e.g. observational data from satellite measurements or highly accurate

simulated data on short intervals. This sample data is used to inform our

stochastic parameterizations with practical examples of the mesoscale eddies

without needing to calculate their complex e�ects.

Chapter 1 gives a brief introduction to several key topics for this thesis.

In Chapter 2 we introduce three stochastic methodologies with the purpose

of modeling mesoscale e�ects: an empirical approach that resamples the data

based on conditional probabilities, a conditional Markov Chain approach, and

an approach using the Ornstein-Uhlenbeck process. Each of these methodologies

are tested on the prototype multiscale Kac-Zwanzig heat bath model. All three

methodologies are able to reproduce the �rst four statistical moments of the

variable of interest as well as the temporal correlations.

In Chapter 3 we extend the resampling method proposed in Chapter 2 to

reproduce the unresolved eddy forcing in modal quasi-geostrophic potential-

vorticity equations in double-gyre con�guration. The resampling stochastic
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simulations are able to accurately reproduce all tested statistical and physical

criteria of the reference simulation. However, two di�culties arise in developing

this methodology further. One is handling the large amount of data, the other

is the challenge of reproducing spatial correlations. This motivates the work in

the next chapter.

In Chapter 4 we focus on the development of a stochastic parameterization

that explicitly reproduces spatial correlations without requiring large computer

memory. To this end we introduce a constrained vector autoregressive process

that imposes structures on each of its drift coe�cient matrices so that they are

sparse. This methodology is shown to be e�ective when tested on the Lorenz

'96 model under di�erent con�gurations.

In Chapter 5 we extend the VARX formulation from Chapter 4 to be fully

sparse by using sparse matrices for calculation of its noise term. To this end we

compare several state-of-the-art methodologies for estimating sparse approxi-

mations of the covariance matrix root or the inverse covariance matrix root.

We �nd the Convex Sparse Cholesky Selection (CSCS) method to be the most

e�ective in introducing sparsity while giving accurate approximations. With the

CSCS method, a sparse approximation of the inverse covariance matrix root is

estimated directly, without �rst estimating the covariance or its inverse.
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Samenvatting

Stochastische modellen voor onopgeloste schalen in oceaanstromen

Als het water in een badkuip geroerd wordt, dan wordt het water snel gevuld

met eddies: chaotische en onvoorspelbare waterwervelingen. Deze eddies geven

het water een �complexe samenhang�. Met andere woorden, eddies van vele

groottes wervelen rond in het water. De bredere, diepere eddies wervelen over

de lengte van de badkuip (ongeveer 1 meter) en de smallere, snellere eddies

kunnen zo klein zijn als 1 millimeter in grootte.

Vervang nu het domein van ons voorbeeld met de oceaanstromen van de

Aarde, of, in termen van ons vorig voorbeeld: een heel grote badkuip die �ge-

roerd� wordt door de wind en dichtheidsverschillen gerelateerd aan zoutgehalte

en temperatuur. Eddies in de oceaan transporteren hoeveelheden zoals hitte en

impuls door de stroming. Net zoals in het voorbeeld van de badkuip, zijn de

kleinste eddies in de oceaan ongeveer 1 millimeter groot. Maar een belangrijk

verschil is dat de grootste oceancirculaties zo groot kunnen worden als 10.000

kilometer. Hierdoor is de verhouding tussen de kleinste en grootste kenmerken

in oceaancirculaties een gigantische 10 miljard. Van klein tot groot kan men

meerdere schalen typeren voor eddies. Voor dit proefschrift zijn de mesoscha-

lige eddies (mésos is Grieks for �midden�) het belangrijkst, deze schalen variëren

in grootte van 10 tot 100 kilometer. Eddies met een maximale omvang van een

paar kilometer zijn de submesoschalen. Aan het andere uiterste bestaan er grote

eddies die over gehele oceanen stromen.

Oceanstromen zijn zeer complex, daarom worden eigenschappen van deze

stromingen vaak benaderd in oceaanmodellen. Een voorbeeld van zulke bena-

deringen resulteert direct uit de keuze voor resolutie, hierdoor worden eddies

kleiner dan een bepaalde schaal e�ectief weggelaten. Mesoschaal eddies zijn

belangrijk bij het kiezen van een resolutie. Ondanks dat mesoschaal eddies

signi�cant kleiner zijn dan oceaanbrede fenomenen zoals de Noord-Atlantische

gyre, zijn zij groot genoeg dat zij niet genegeerd kunnen worden. De meso-
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schalen zijn zeer belangrijk voor een accurate karakterisering van grootschalige

oceaan-stromen in oceaanmodellen. Helaas zijn de mesoschalen te complex (dat

is, computationaal veeleisend) door hun kleine omvang en snelle bewegingen

voor de meeste oceaanmodellen. Op deze manier is oceanmodellering een onder-

deel van het veld multischaal modellering waarin interacties beschouwd worden

tussen meerdere schalen of resoluties.

In dit proefschrift stel ik verscheidene nieuwe mathematische modellen voor,

zogeheten parametrisaties, om de e�ecten van mesoschaal eddies te benade-

ren in oceaanmodellen. Zonder parametrisaties zouden deze e�ecten ontbreken.

Deterministische modellen worden vaak gebruikt om mesoschaal eddies te re-

presenteren. Een deterministische relatie transformeert met een reeks operaties

een verzameling variabelen naar een andere variabele zonder willekeur in het

resultaat. Met andere woorden, een deterministisch model zal altijd dezelfde

uitkomst genereren voor een gegeven input. Maar zulke deterministische mo-

dellen representeren, op hun best, het gemiddelde e�ect van de eddies. Helaas

zijn de �uctuaties om het gemiddelde cruciaal om de oceaan- en atmosfeer-

stromen aan te sturen. Daarentegen richt het werk in dit proefschrift zich op

probabilistische/stochastische modellen om de mesoschaal eddies te karakteri-

seren. Stochastische modellen introduceren een willekeur die ze in staat stelt

om, bijvoorbeeld, het ogenschijnlijk willekeurige gedrag van miljoenen deeltjes

te verklaren en observatieruis weg te �lteren.

Een startpunt voor de methodologieën die hier ontwikkeld worden is de be-

schikbaarheid van voorbeelddata voor de mesoschaal eddies. Zulke data kan ver-

kregen worden op verscheidene manieren, bijvoorbeeld: geobserveerde data van

satellietmetingen of zeer accurate gesimuleerde data op korte intervallen. Deze

voorbeelddata wordt gebruikt om onze stochastische parametrisaties te infor-

meren met praktijkvoorbeelden voor de mesoschaal eddies zonder hun complexe

e�ecten te hoeven berekenen.

Hoofdstuk 1 introduceert kort een aantal hoofdonderwerpen voor dit proef-

schrift. In hoofdstuk 2 introduceren we drie stochastische methodologieën met

het doel de mesoschaal e�ecten te modelleren: een empirische aanpak die data

herbemonsterd gebaseerd op conditionele kansverdelingen, een aanpak van con-

ditionele Markovketens en een aanpak die een Ornstein�Uhlenbeck proces ge-

bruikt. Elk van deze methodologieën zijn getest op het prototype multischaal
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Kac�Zwanzig hittebad model. Alle drie de methodologieën zijn in staat de eer-

ste vier statistische momenten en de temporale correlaties van de doelvariabele

te herproduceren.

In hoofdstuk 3 breiden wij de herbemonsteringsmethode van hoofdstuk 2 uit

om de onopgeloste eddy-aandrijving te herproduceren in modale vergelijkingen

voor quasi-geostro�sche potentiële vorticiteit in een dubbel-gyre con�guratie.

De herbemonsteringssimulaties herproduceren accuraat alle geteste statistische

en fysische eigenschappen van de referentiesimulatie. Desondanks duiken er

twee uitdagingen op om deze methodologie verder te ontwikkelen. De één is het

verwerken van grote hoeveelheden data, de ander is het herproduceren van de

spatiële correlaties. Dit motiveert het werk in het volgende hoofdstuk.

In hoofdstuk 4 richten wij ons op het ontwikkelen van een stochastische

parametrisatie die expliciet spatiële correlaties herproduceert zonder grote hoe-

veelheden computergeheugen te vereisen. Om dit te bereiken, introduceren wij

een ingeperkt vector-autoregressief (VARX) model dat structuren oplegt aan elk

van haar driftcoë�ciënt-matrices zodat zij dunbezet zijn. Deze methodologie

blijkt e�ectief voor meerdere con�guraties van het Lorenz '96 model.

In hoofdstuk 5 breiden wij de VARX-formulering van hoofdstuk 4 uit om

dunbezette matrices te gebruiken om de ruisterm te berekenen. Hiervoor ver-

gelijken wij een aantal van de nieuwste methodologieën om de wortel van de

covariantiematrix of de wortel van de inverse covariantiematrix dunbezet te be-

naderen. Uit deze vergelijkingen blijkt dat de CSCS-methode het meest e�ectief

is om zowel dunbezette als accurate matrices te schatten. De CSCS-methode

schat direct een dunbezette benadering van de wortel van de inverse covarian-

tiematrix zonder eerst de covariantiematrix of zijn inverse te benaderen.
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Chapter 1

Introduction

1 Research question

Mesoscale turbulent eddies strongly in�uence the large-scale ocean circulation.

Global climate models need high spatial resolutions to directly resolve these

turbulent motions [74]. However, such high resolutions are infeasible in cur-

rent climate models due to computational limitations. Therefore, we utilize

mathematical models to emulate the e�ects of the turbulent motions.

Numerical ocean models are based on a system of partial di�erential equa-

tions (PDEs) known as the Navier�Stokes equations. Generally, the Navier�

Stokes equations describe motion of viscous �uids. Depending on the context,

di�erent forms of approximations of the Navier�Stokes equations are utilized.

Formally, this thesis considers coupled systems of ordinary di�erential equations

(ODEs) of the following form:

dx

dt
= f(x,y),

dy

dt
= g(x,y), (1.1)

where the system of coupled ODEs (1.1) is obtained by spatial discretization
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of the PDE for ocean �ow. Here, x and y represent oceanic �ow variables

discretized over a spatial grid. The nonlinear functions f and g govern the

temporal evolution of x and y, they combine e�ects of advection, dissipation,

forcing, and scale-to-scale interactions.

This class of ocean models (1.1) evolves di�erent �ow components x and y

over time, e.g. the ocean �ow decomposed into its barotropic (x) and baroclinic

(y) components. An important problem that motivates much of the work in this

thesis is that the components or features denoted by y are too computationally

costly to evaluate and evolve over time. This is motivated by the comparatively

small spatial and temporal scales that characterize these features. Therefore,

the features y are referred to as the unresolved �ow features. Of course, this is a

simpli�cation of the truth: there is a mix of resolved and unresolved �ow features

distributed over both x and y. Nevertheless, the term �unresolved� gives us a

convenient generalization of speci�c terminology (e.g. baroclinic features).

The approach proposed and studied across this thesis is to develop a stochas-

tic process ỹ that emulates the dynamical feedback of y on x as described by

the following system:
dx̃

dt
= f(x̃, ỹ), (1.2)

where x̃ represents the reduced �ow. Ideally, x̃ would be statistically equiv-

alent to x, but the tilde-notation (∼) is used to distinguish the two subtly

di�erent representations.

In summary: the main research question answered in this thesis is: how

does one construct a data-driven stochastic process to properly represent the

unresolved features in ocean �ows. The suggested approach is to replace the

computationally costly or unfeasible features y from the governing system (1.1)

with a stochastic process ỹ as in (1.2). The goal of the suggested approach is

then to stochastically drive x̃ such that the long-term statistical behavior of x̃

represents that of x accurately.

2 Mesoscale ocean features

This thesis treats the problem that is the modeling of mesoscale ocean eddies:

small turbulent features in ocean �ows. Mesoscale refers here to scales that

exist between the micro- and macroscales. The mesoscale �ow features exist
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on spatial scales as small as 10 km and up to hundreds of kilometers. These

scales fall largely below the grid resolution scale in many ocean models; for

example, the average ocean resolution in current state-of-the-art (CMIP6) Earth

System models is 58 km [74]. Mesoscale ocean eddies also propagate over very

short temporal scales (days or weeks) compared to the evolution of the climate.

For example, changes in the Atlantic Meridional Overturning Circulation, an

important element of the climate system, take place on timescales of decades

and longer. The requirement of both high-resolution temporal and spatial scales

make mesoscale ocean �ow features computationally very expensive to resolve

in detail.

3 Multiscale modeling

Traditional modeling approaches focus on one scale of operation. Macroscale

models focus on a �low resolution view� of the modeled quantities, while ap-

proximating the interactions between smaller scale features. To obtain models

of the interactions between smaller sub-grid features, such macroscale models

often have to make a lot of assumptions. However, to justify such assumptions

one typically requires extensive physical insights and empirical observations.

For complex systems these assumptions may be unfeasible or impractical, or

even unproductive, to formulate.

Microscale models, instead, focus on individual processes. However, mi-

croscale models scale badly to large spatial or long temporal scales as they

explicitly resolve an immense amount of features.

In multiscale modeling a system is described by a mix of models operating

on di�erent scales or resolutions. A primary di�culty of multiscale models is

that there is often no clear scale separation between �slow� and �fast� features.

So while one can rank the scales involved with several features, the domain

of possible scales is well covered. Therefore, typical modeling techniques that

consider di�erent integration scales of slow and fast features, e.g. averaging or

equation-free modeling, cannot be applied.

Research in the past decades [71, 108] has shown that the mesoscale ocean

features are instrumental in driving the global ocean �ow. Also, the mesoscale

ocean features span most of the range between microscales and macroscales.
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Therefore, the modeling of mesoscale ocean features can be categorized as a

concurrent multiscale modeling problem. That is, the macroscopic model is

missing essential information and needs to couple with the mesoscopic model

to supply the missing information. However, as explained above, the mesoscale

features cannot be resolved over the desired time scales. Therefore, some dy-

namical term is needed to emulate the sub-grid scale features.

4 Parameterizations (deterministic and stochastic)

Dynamical terms that are used to emulate sub-grid scale features in climate

models are typically parametric mathematical models, often refered to as param-

eterizations. Early work in formulating parameterizations for climate models

(at least up to the 1990s), was primarily focused on deterministic parameteriza-

tions. The most well-known and highly regarded among these are variations on

the Gent�McWilliams (GM) parameterization [62]. The GM parameterization

has an edge over other parameterization methods because it replicates baro-

clinic instability in such a way to ensure a global sink in potential energy. In

contrast, for example, the small slope approximation in Cox [28] implemented

di�usion along density surfaces. However, the small slope approximation needed

the inclusion of arti�cial di�usion to remain stable in long simulations [61, 68].

Recently, research has focused on the application of neural networks for such

deterministic parameterizations. For example, Bolton and Zanna [20] focused

on the application of convolutional neural networks to predict the oceanic �ow

�elds and showed robustness to some subsampling of the training data.

While deterministic approaches have proven very e�ective in certain mod-

els, they also have obvious limitations when there is a one-to-many relationship

from resolved to unresolved states. In a basic sense, most deterministic param-

eterizations represent the integrated e�ect of the unresolved scales on the mean

state. Such an integrated, or ensemble-mean, representation of the unresolved

scales is incapable of representing the one-to-many variability. To overcome

these limitations stochastic parameterizations have become popular in recent

years [16, 92, 116, 160].

In a stochastic parameterization, the feedback of the unresolved scales is

formulated as a stochastic process. In the context of climate models such a
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stochastic approach aims to emulate the dynamical e�ect of the mesoscale fea-

tures on the macroscopic �ow. Popular stochastic models in climate models

include Markov chains and stochastic cellular automata. These stochastic pro-

cesses are often made to be conditional on the macroscopic state to allow the

process' trajectory to follow along with the trajectory of the macroscopic �ow.

5 Data-driven modeling

For the data-driven methods developed in this thesis we rely on the availability

of sample data of the ocean �ow. One source of data is observations of the real

oceans, for example from satellite observations or tracer experiments. Alterna-

tively, from a synthetic perspective, it is possible to use simulation data from

a highly resolved ocean model, numerically integrated over a limited domain in

space or time. The sample data facilitates a data-driven learning of the stochas-

tic parameterization. In such a data-driven approach, the stochastic process can

learn to predict the relations indicated by the data. This thesis describes the de-

velopment of such data-driven stochastic approaches across several application

models.

Consider again the general system of ODEs described by (1.1). In the con-

text of ocean modeling the resolved variables x and the unresolved variables

y refer to the macroscopic and mesoscopic �ow components, respectively. For

now, let us ignore the in�uence of other model variables on the stochastic process

ỹ. If ỹ is trained on a time series for y, then, in an ideal sense, the stochastic

variable is sampled from the distribution of y, thus ỹ ∼ y. In the reality of

�nite time series, however, the empirical distribution will introduce errors with

respect to the true distribution. In the interest of conciseness we will not ex-

plicitly separate the empirical distribution P (ŷ) and the true distribution P (y)

unless otherwise speci�ed.

In this thesis, the goal is explicitly not to reproduce temporal trajectories of

model variables. Predicting the precise temporal trajectory of variables a�ected

by chaotic processes, such as turbulence, is numerically impossible by de�nition.

However, by employing training on dynamically relevant time series, the goal is

to replicate the long-term statistical behavior of such variables.
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6 Sampling from conditional distributions

By incorporating the macroscopic �ow features in the training, one can use

the macroscopic �ow as covariate, i.e. a predictor variable that correlates with

the mesoscale �ow features. This requires the predictor variable to be known

when the stochastic process needs to be evaluated. This is the case for the

macroscale variables x because these are resolved in both o�ine (training) and

online (stochastic variable evaluation in (1.2)) states. If the stochastic process

ỹ is trained including the e�ects of the macroscales x, then, analogously to

the previous section, the stochastic variable ỹ is e�ectively sampled from the

conditional distribution P (y |x), i.e. ỹ ∼ y |x. This informs the stochastic

variable ỹ with the state of the correlating variable x. Sampling from this con-

ditional distribution enables the stochastic trajectory to evolve together with

the macroscopic �ow variables, e.g. in case of transitions between di�erent sta-

tistical equilibria. Such an equilibrium shift is extremely di�cult to predict ex-

plicitly. However, the data-driven training of the conditional stochastic process

can learn to recognize such equilibrium shifts under the condition that the time

series encompasses di�erent equilibria and that the covariates are su�ciently

predictive.

More generally, one can condition the stochastic process on a function of any

resolved model variable (covariate). Speci�c covariates are typically selected

with a combination of physical insight and statistical observations. Altogether,

covariate selection is a di�cult but important task because the choice of covari-

ates can have signi�cant e�ects on the behavior of the stochastic process. As

an illustration, let us compare the conditional distributions that ỹ is sampled

from, in theory (analytically) and in practice (numerically). Theoretically, if

some function z of resolved variables was completely independent (orthogonal)

to the mesoscale features y, then the distribution ỹ ∼ y | z would be equiva-

lent to ỹ ∼ y. However, if, for instance, the probability space is undersampled

(which is a realistic concern when dealing with limited data points due to, e.g.,

memory constraints), then the distribution ỹ ∼ y | z might have signi�cant

bias compared to ỹ ∼ y. This is one example of the di�culties that �nite

sample data introduces in approximating process distributions. Therefore, an

important element of this thesis is covariate selection from both physical and

statistical perspectives.
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7 Thesis layout

The following chapters focus on these aspects:

� In the second chapter we propose and compare three di�erent stochastic

approaches to modeling coupled phenomena in the Kac�Zwanzig toy heat-

bath model. The main novel contributions of this chapter are the proposed

conditional methodologies that scale well to complex ocean models with

high numbers of degrees of freedom. Speci�cally, we propose three cate-

gories of parameterizations: the empirical, Markov chain, and Ornstein�

Uhlenbeck (OU) processes. Another main contribution is the construction

of robust OU estimators that do not incur the �nite time-step numerical

errors typical to traditional estimators.

� The main contribution of the third chapter is showing e�ective application

of the parameterization by sampling from the empirical distribution, as

presented in the second chapter, to a wind-driven ocean model of baro-

clinic instability. Herein it is shown that the empirical process is able to

drive the large scale �ow dynamics in a strongly reduced ocean model.

All tested statistical and physical properties of the �ow are reproduced

accurately with respect to reference simulations.

� In the fourth chapter we propose a di�erent category of stochastic ap-

proaches in the prototype Lorenz '96 model (L96). The main novel con-

tribution of this work is the successful deployment of vector autoregressive

processes with exogenous variables (VARX), conditioned on sample data,

using only sparse matrices for the drift components. Through this im-

posed sparsity, the VARX parameterization can incorporate spatial and

temporal correlations in a scalable way.

� The �fth chapter answers an important open question from the fourth

chapter. Namely, how to simulate the noise components of the VARX

using only sparse matrices. For this purpose, this chapter presents and

compares several state-of-the-art methodologies that estimate sparse (in-

verse) covariance matrix roots. The main contribution of the �fth chapter

is to select the best performing method to estimate a sparse inverse co-

variance matrix root suitable to be used for parameterization in numerical

7
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ocean models.

While each following chapter builds upon previous chapters, the individual

chapters are written to be stand-alone, and can therefore be read as such.
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Data-driven stochastic

representations of unresolved

features in multiscale models

In this study we investigate how to use sample data, generated by a fully re-

solved multiscale model, to construct stochastic representations of unresolved

scales in reduced models. We explore three methods to model these stochas-

tic representations. They employ empirical distributions, conditional Markov

chains and conditioned Ornstein�Uhlenbeck processes, respectively. The Kac�

Zwanzig heat bath model is used as a prototype model to illustrate the methods.

We demonstrate that all tested strategies reproduce the dynamics of the resolved

model variables accurately. Furthermore, we show that the computational cost

of the reduced model is several orders of magnitude lower than that of the fully

resolved model.

9
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1 Introduction

1.1 Background and motivation.

Multiscale modeling is an active research topic in such �elds as biomedical en-

gineering, materials science and climate modeling. The common property of

multiscale problems is the occurrence of a wide range of spatial and/or tempo-

ral scales, often resulting in an inability of numerical simulations to accurately

resolve the small and/or fast scales. However, processes at these scales can be

instrumental in driving the large scale processes, hence they must be represented

in a simpli�ed yet accurate manner in numerical models.

The motivation for this study comes primarily from atmosphere-ocean sci-

ence, where the problem of formulating suitable representations of unresolved

processes is well-known. In the �eld of atmosphere-ocean modeling, such rep-

resentations are known under the name parameterizations. In this �eld, early

developments on multiscale problems used deterministic methods to represent

the e�ect of unresolved processes. However, although deterministic methods

can reproduce the mean e�ect of the unresolved processes conditioned on the

resolved variables, they lack the ability to reproduce the �uctuations around this

mean. Recent work has focused on overcoming this limitation by using stochas-

tic methods to model this noise-like behavior, particularly in atmospheric con-

text [55, 69, 104, 116, 152]. Notable examples for the present study include [30]

and [39], which propose data-inferred conditional Markov chains to represent

atmospheric convection in coarse climate models. Recently, stochastic parame-

terizations have also started to receive attention in oceanic research, e.g. [13, 14]

and [117], which investigate stochastic eddy-forcing in ocean currents.

In this study we investigate data-driven stochastic methods to drive reduced

multiscale models. In atmosphere-ocean modeling, there are many scales but

no strong scale separation (or scale gap), so that techniques that rely on such

a scale gap to achieve computational e�ciency gains (e.g. averaging, equation-

free modeling [86], heterogeneous multiscale methods [44]) are less attractive. A

data-driven approach can be an interesting alternative in such cases. The idea

of such an approach is to infer a suitable stochastic process from data (time

series) of the feedback from the small/fast scales, and to couple this process

to a reduced model for the large/slow scales. The statistical inference step is

10
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performed o�-line, i.e. the stochastic process for the unresolved scales is pre-

computed. Thus, it can be considered a �sequential coupling� method [44]. As

we will demonstrate, the computational gain of this data-driven methodology

can be very substantial.

We emphasize that the methodology studied here is di�erent from inferring

a stochastic process for the large scale dynamics itself. Rather, it is aimed at

situations where an available but incomplete model for the large scale dynamics

needs to be augmented with a model for small scale feedbacks (as is the case in

e.g. atmosphere-ocean modeling). In general, a suitable stochastic model for the

small scale feedbacks must be dependent (conditioned) on the state of the large

scale degrees of freedom. The statistical inference step for such a conditioned

stochastic process is not straightforward. We approach this issue by considering

the large scale state as a covariate for the stochastic process that needs to be

inferred.

The data-driven methodology studied in this paper builds on the work pre-

sented in [30]. There, �nite-state Markov chains were used to model feedback

from unresolved scales in the context of the Lorenz '96 model. This condi-

tional Markov chain approach gave good results but involved the estimation of

many parameters. Furthermore, in [30] no experiments were performed with

di�erent sets of conditioning variables (or covariates). In the current study we

explore methods that require far less parameters to be estimated (or even none

at all). For completeness, a method that stays close to [30] is included in this

exploration. We also investigate the e�ect that varying the set of conditioning

variables has on the resulting reduced model.

In the remainder of the introduction we formally pose the discussed problem

and the questions this work attempts to answer. Section 2 describes the pro-

totype multiscale model and details on its numerical implementation. Section

3 presents the three di�erent strategies used to �t the stochastic process to the

sample data: the empirical, conditional Markov chain and Ornstein�Uhlenbeck

approaches, respectively. Lastly, the results, and their implications for future

work, are discussed in section 4.
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1.2 Problem description.

Given a stationary time series X = (x0,x1, . . . ,xM ), for xi ∈ Rd, we wish

to formulate a model such that when we integrate this model numerically, we

generate a time series X̃ = (x̃0, x̃1, . . . , x̃N ), for x̃i ∈ Rd, whose statistics

accurately resemble those of X. Throughout this paper we compare given data

sets, where variables are denoted normally (e.g. x), with data sets, denoted

with a tilde (e.g. x̃), generated by reduced models.

For the stochastic approach discussed here we assume that the given sample

data consists of both X and R, where R represents small-scale features. As an

example, one can think of �uid �ow, with X and R time series of the resolved-

scale �ow and the subgrid-scale stress term, respectively. Let X̃ be generated

by a reduced model g together with a stochastic process R̃ = (r̃0, r̃1, . . . , r̃N ),

for r̃i ∈ Rd, that is �tted to R. This construction describes the class of systems:

˙̃x = g(x̃) + r̃, ˙̃r = h(x̃, r̃), (2.1)

where ˙̃x denotes the temporal derivative of x̃ (and analogously for ˙̃r). This

class of systems �nds practical applications in, e.g, modeling the eddy forcing

term with r̃ in ocean �ow models [13], and was the inspiration for this work.

Note that we assume analytic solutions to the discussed problem to be un-

known. Therefore, we will make use of numerical integration schemes. Let us

introduce the following notations: ti = i∆t, xi = x(ti) denotes the (i + 1)-th

entry in the time series X, and ∆xi = xi+1 − xi.

Although we have no rigorous proof, we expect the statistics of X to be

accurately emulated by X̃ if it were possible to sample r̃i+1 = r̃(ti+1) from

the conditional distribution of ri+1 | (xi = x̃i, . . . ,x0 = x̃0, ri = r̃i, . . . , r0 =

r̃0). In general, however, such distributions are not known exactly, and the

size of sample data needed to accurately approximate conditional distributions

increases drastically with the number of conditions. Therefore, we investigate

how well the statistics of X̃ approximate those of X when conditioning r̃i+1

on a selection of past values of x and r. The approximation quality of X̃ is

measured by the degree to which speci�c sample moments and autocorrelations

of X are captured by X̃.

12



Chapter 2 1. Introduction

Formally, let r̃i+1 be sampled from the distribution of

ri+1 | (xi = x̃i, . . . ,xi−i′ = x̃i−i′ , ri = r̃i, . . . , ri−i′′ = r̃i−i′′)

, with 0 ≤ i′, i′′ ≤ i, and consider the following questions:

� Let the sample mean and standard deviation ofX be denoted by γ1(X) =

IE(xi) and γ2(X) = (IE(x2
i ) − IE(xi)

2)1/2, respectively (with IE denoting

expectation). Let the s-th sample moment of X (with s ≥ 3) be given by:

γs(X) = IE [(xi − IE(xi))
s] (Var(xi))

−s/2.

Let ϵ(γs) := γs(X) − γs(X̃) be the error of the s-th sample moment

as reproduced by X̃, and let S be the maximum moment one aims to

reproduce. How does ϵ(γs) depend on the number of past values of x and

r conditioning ri+1, i.e. how does ϵ(γs) depend on i′ and i′′? Particularly,

let E denote a maximum error one is willing to permit, for what i′ and i′′

does ϵ(γs) ≤ E hold for 1 ≤ s ≤ S?

� Let the autocorrelation function of X with lag l be given by:

ACFl(X) = IE [(xi − IE(xi))(xi+l − IE(xi))] (Var(xi))
−1.

Let ϵ(ACFl) := ACFl(X)−ACFl(X̃) be the error of the autocorrelation

with lag l as reproduced by X̃, and let L be the maximum correlation

lag time one aims to reproduce. How does ϵ(ACFl) depend on i′ and i′′?

Particularly, let E′ denote a maximum error one is willing to permit, for

what i′ and i′′ does ϵ(ACFl) ≤ E′ hold for 0 ≤ l ≤ L?

Rather than dealing with the technical intricacies and complications of test-

ing methodologies directly on highly complex multiscale models, we elect to

test our ideas on the simpler and more accessible Kac�Zwanzig heat bath model

[53, 162]. This model, described below, also belongs to the class of systems in

(2.1).

Assume a resolved heat bath model's sample data, (X,R) = (Q,P ,R),

where Q = (q0, q1, . . . , qM ), P = (p0, p1, . . . , pM ), and R = (r0, r1, . . . , rM ), for

qi, pi, ri ∈ R, is given. The question we attempt to answer here is: how can we
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�t a stochastic process R̃ to R in such a way that the reduced model variables'

time series, Q̃ and P̃ , reproduce the statistics of Q and P , respectively? With

respect to this heat bath model, a thorough theoretical analysis of the questions

asked in this section eludes us. Therefore, we approach these questions from a

numerical perspective.

2 Kac�Zwanzig heat bath: a prototype model

2.1 Model description.

In the heat bath model, one considers the temporal evolution of a distinguished

particle, moving in a potential V and coupled to J heat bath particles. The

distinguished particle has unit mass, position q and momentum p. We use

the set-up from [138], with a double-well potential V (q) = 1/4(q2 − 1)2 and

linear coupling of the heat bath particles to the distinguished particle. The

heat bath particles are oscillators, each with their own momentum uj , position

vj , mass χj and sti�ness ξj , with 1 ≤ j ≤ J . Following [138], let us de�ne

the oscillators' natural frequency through ω2
j = ξj/χj , and choose the oscillator

mass χj = G2/j2 and sti�ness ξj = G2. The considered heat bath model's

Hamiltonian system is then given by the following ordinary di�erential equations

(ODEs):

q̇ = p, ṗ = −V ′(q) +G2(r − Jq), u̇j = vj , v̇j = −j2(uj − q), (2.2)

where V ′(q) = dV (q)/dq and r(t) :=
∑J

j=1 uj(t). While these ODEs can be

solved numerically, the computational cost of evolving p and, more impor-

tantly, every uj and vj over time will signi�cantly slow down any numerical

solver. Therefore, to decrease the required computational work, we introduce a

stochastic process R̃ that approximates the dynamical e�ect of R. Writing rm

for
∑

j uj(tm), we have

R = (r0, r1, . . . , rM ).

By using R̃ instead of R, the heat bath particles (i.e., uj and vj) no longer need

to be evolved, thus reducing the full system in (2.2) to:

˙̃q = p̃, ˙̃p = −V ′(q̃) +G2(r̃ − Jq̃), ˙̃r = h(q̃, p̃, r̃), (2.3)
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where the function h that evolves r̃ over time is yet to be de�ned.

As mentioned in 1.2, this construction is meant to provide our strategies

with a test bed that naturally extends to geophysical �uid �ow models. With

this in mind, let us motivate our choice for the heat bath model. First, the heat

bath particles span a great variety of time scales without a scale gap (because

the natural frequencies range from O(1) to O(J)), similar to the range of time

scales in ocean �ow models (as mentioned in 1.1). Also, the reduced heat bath

(2.3) and reduced ocean �ow models [13] belong to the same class of systems

(2.1), in the sense that the stochastic term r̃ enters in an additive fashion (i.e.

r̃ is added linearly to the ODE for x̃, there is no multiplication with a function

of x̃). These reasons, together with its technical simplicity, make the heat bath

model a suitable choice for our experiments. We remark that we do not attempt

to preserve the Hamiltonian structure or the conserved quantities of (2.2) in the

reduced model, as this is less relevant for applications in geophysical �uid �ow.

Furthermore, we do not consider the limit J → ∞, as is done in e.g. [138],

rather we keep J �xed at a �nite value.

2.2 Numerical integration schemes.

System (2.2) is integrated in time using the symplectic Euler method, which cor-

rectly resolves the distinguished particle's motion under the condition ωj∆t =

O(1) [138]. Table 2.1 shows all model parameter settings used for the simula-

tions in this paper. The discretized integration scheme for (2.2) equals:

pi+1 = pi −∆t V ′(qi) + ∆t G2(ri − Jqi), vi+1,j = vi,j −∆t j2(ui,j − qi),

qi+1 = qi +∆t pi+1, ui+1,j = ui,j +∆t vi+1,j .

Let N (x, y2) denote a normal distribution with mean x and variance y2;

the harmonic oscillators are initialized by vj(0) = 0 and uj(0) ∼ N (0, 1/(βkj)).

The distinguished particle is initialized at q0 = 1 and p0 = 0.

Because of the chosen values for ωj and the condition ωj∆t = O(1), one

sees that J∆t = O(1) must also hold. This means that ∆t must decrease as J

increases for the symplectic integration scheme to properly resolve all the heat

bath particle's scales. Since uj and vj are not evolved in the reduced model,

the integration time step of a reduced simulation can generally be chosen to be
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much larger. Therefore, we make a distinction between ∆t and ∆τ to refer to

the time steps of the resolved and reduced model, respectively. Furthermore,

the resolved time series is stored with a sampling interval δt (≥ ∆t), see Table

2.1. Recall from section 1.2 that, throughout this paper, we use the notation

q̃ to refer to a variable in the reduced model that is the counterpart of the

variable q in the fully resolved model. Discretizing (2.3) results in the following

integration scheme for the reduced model:

p̃i+1 = p̃i −∆τ V ′(q̃i) + ∆τ G2(r̃i − Jq̃i),

q̃i+1 = q̃i +∆τ p̃i+1,

r̃i+1 = r̃i +∆τ h(q̃i, p̃i, r̃i),

(2.4)

where the initial conditions are chosen to be p̃0 = p0, q̃0 = q0 and r̃0 = r0.

The function h in (2.4) is not known analytically, but will be inferred from

the data (Q,P ,R). The di�erent stochastic methods proposed here all aim to

model R̃ in such a way that Q̃ and P̃ together with R̃ reproduce the statistics

of Q and P . In the next section we discuss the binning procedure used in our

methods.

Table 2.1: Heat bath model parameters
Parameter Resolved model Reduced model

G2 mass and sti�ness scaling 1 1
β inverse temperature 10−4 −
J number of harmonic oscillators 102 −
M number of sample points 107 107

δt sampling interval 10−2 10−2

∆t integration time step resolved model 10−4 −
∆τ integration time step reduced model − 10−2

NB number of bins per continuous conditioning
variable

10 10

2.3 Approximating conditional distributions by binning.

In the reduced model (2.4), R is approximated with the random process R̃. The

strategies discussed in this paper sample r̃ from the distribution of r conditioned

on a set of resolved model variables c := c(q, p, r):

r̃i+1 ∼ ri+1 | (ci = c̃i) . (2.5)
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A simple example is ci = {ri}; in this case r̃i+1 is a time-correlated stochastic

process. In this work, we consider di�erent methods of approximating the dis-

tribution ri+1 | (ci = c̃i), or ri+1 | ci for short, because the exact distribution is

usually unknown. The majority of these methods approximate this distribution

using a binning procedure, as explained further below.

Let us consider a set of conditioning variables ci with cardinality C + D,

where C and D are the number of continuous and discrete conditioning vari-

ables, respectively. The discrete variables only apply to the CMC approach, and

are discussed in section 3.2 (in other sections D = 0 holds). The range between

the minimum and maximum of each continuous conditioning variable is then

independently partitioned in NB equidistant intervals. This partitioning results

in C-dimensional disjoint bins αb, where 1 ≤ b ≤ B := (NB)
C . Each of these

bins describes a set of ri+1-values ρb, also with 1 ≤ b ≤ B. This procedure is

illustrated in Figure 2.1 for the case ci = {qi} in (2.5). This �gure shows that

through discretizing the qi-domain, one �nds a mapping from intervals over qi

to sets of ri+1-values.

−20 −10 0 10 20

−4000

0

4000

qi

r
i+

1

Figure 2.1: An equidistant partitioning of the range of q in 20 bins.

The major advantage of the equidistant binning strategy is its simplicity in

both concept and implementation. A caveat is that bins are not guaranteed to

contain sample points, in fact, bins are frequently empty in higher dimensional

discretizations. One could extensively investigate strategies that describe how to

handle these occurrences, however, this is beyond the scope of the current study.

Here we simply let empty bins be described by the closest, in Euclidean sense,

nonempty bin. In the occurrence of multiple closest bins, our implementation

chooses the �rst closest bin listed in the storage format of the data set. While
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this is an ad hoc choice, we stress that with our chosen sample size M and bin

size NB (see Table 2.1), this is an extremely rare occurrence. This did not occur

at all in most of our experiments; in the worst case (C = 4, see section 3.3) it

a�ected only 0.01% of the reduced model time steps. However, this could be a

point of improvement in future work.

In Figure 2.2, we show the simple algorithm used to integrate the reduced

heat bath model (2.3) over time. In the following sections we discuss the stochas-

tic methods that describe the temporal evolution of r̃.

input : Q : vector of sample data for q, length M .
P : vector of sample data for p, length M .
R : vector of sample data for r, length M .
ci : set of conditioning variables, size C.
αb : C-dimensional bins, for all 1 ≤ b ≤ B.
min(αb) : vector of minimum values per dimension over all αb,

length C.
step(αb) : vector of bin size per dimension, length C.
method : the stochastic approach used to approximate r̃,

options: empirical, CMC, bin-wise OU,
and linear OU.

(q̃0, p̃0, r̃0) = (q0, p0, r0)
i = 0
for i := 0 to N − 1 do

/* Update q̃ and p̃ */
p̃i+1 = p̃i −∆τ V ′(q̃i) + ∆τ G2(r̃i − Jq̃i)
q̃i+1 = q̃i −∆τ p̃i+1

/* Find the bin number b such that c̃i ∈ αb */
b = ⌈c̃i −min(αb)⌉./step(αb)

/* Update r̃ by random sampling */
r̃i+1 ∼ distr(method, b)

endfor

Figure 2.2: Algorithm for the time integration of the reduced model for a given
set of conditioning variables c and stochastic approach.
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3 Numerical methods

3.1 Empirical distribution.

In this section we discuss the method of sampling r̃ directly from the sample

data's empirical distribution, as formally de�ned in (2.6). This strategy has an

obvious limitation in that it can only sample from the values of r observed in

the fully resolved simulation. However, for a stationary process, this empirical

distribution of r conditioned on past values (see section 1.2) will converge to

the exact joint distribution in the limit of in�nite data. Basic experiments show

that simulations sampling instead from an unconditioned empirical distribution

are highly unstable.

3.1.1 Reproducing statistical moments of distinguished particle.

Let us de�ne U(ρb) to denote the uniform distribution on the discrete set ρb,

i.e. if U ∼ U(ρb) then U has equal probability of being any element of the set

ρb. The empirical approach �ts the conditional residual term r̃ to r as follows:

r̃i+1 ∼ U(ρb), where b : c̃i ∈ αb. (2.6)

Since qi and ri+1 show a strong correlation, let us consider sampling r̃i+1

from the distribution of ri+1 | qi. We integrate the reduced model by using the

algorithm in Figure 2.2 and (2.6) with ci = {qi}, and compare the resulting

distributions of p̃ and q̃ to those of the fully resolved p and q. Each of the

distributions is plotted in Figure 2.3.

Figure 2.3 shows that sampling from the distribution in (2.6) is e�ective

in that the general shape of the distributions is reproduced, but there is also

clearly room for improvement, e.g. one notices an underestimated standard

deviation for both q̃ and p̃. As suggested in section 1.2, one expects better

results when expanding the set of conditioning variables ci. Therefore, let us

compare the previous approach to the conditioned distribution of ri+1 | qi, ri.
To clearly illustrate the di�erences, we plot the absolute error of the resulting

distributions in Figure 2.4.

Figure 2.4 shows that the distributions of p̃ and q̃ for ci,1 := {qi} are im-

proved upon greatly by ci,2 := {qi, ri}. As suggested in section 1.2, the �rst
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Figure 2.3: The distributions for positions q, q̃ (left) and momenta p, p̃ (right).
The conditioned empirical distributions approximate sampling from ri+1 | qi. A
comparison between the distributions resulting from the reduced model (dotted
lines) and resolved model (solid lines).

four sample moments of q and p, along with those of q̃ and p̃ for several cases

are compared in Table 2.2. From this table one can conclude that conditioning

on ci,2 provides an overall improvement to ci,1, the major improvement being

the accuracy of the standard deviation for both q̃ and p̃, but also the kurtosis

is more accurately reproduced. Since both qi and ri show a clear correlation

with ri+1, these results are expected. However, neither of the conditioning pa-

rameters improves the temporal correlation, as both condition on the same time

step i. This is clearly shown in the autocorrelation functions plotted in Figure

2.5, where both of the approximations produce an inaccurate autocorrelation

function. Because these procedures condition on speci�c time steps, the auto-

correlation functions are dependent on the size of ∆τ , the integration time step

of the reduced simulation; simulations discussed here use the parameter values

as shown in Table 2.1.

3.1.2 Reproducing autocorrelation of distinguished particle.

Our strategy for improving the autocorrelation function is to build more tempo-

ral correlation into the conditioning, i.e. we condition ri+1 on system variables

from previous time steps. As comparison to the results in section 3.1.1, let us
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Figure 2.4: Absolute errors of the distributions for positions (left) and momenta
(right). The conditioned empirical distributions approximate sampling from
ri+1 | ci. The absolute errors of both ci,1 = {qi} (dotted) and ci,2 = {qi, ri}
(dashed) are plotted.

Table 2.2: Sample moments for empirical approximations
mean std.dev. skewness kurtosis

xi γ1(xi) γ2(xi) γ3(xi) γ4(xi)

pi (reference) 0.00 68.4 3.7 · 10−4 3.00
p̃i (ci,1 = {qi}) 0.00 54.2 −8.6 · 10−4 2.96
p̃i (ci,2 = {qi, ri}) 0.00 70.2 −1.8 · 10−3 3.00
p̃i (ci,3 = {qi, ri, ri−1}) 0.00 68.6 1.5 · 10−4 3.02
qi (reference) 0.01 6.83 −5.5 · 10−3 2.18
q̃i (ci,1 = {qi}) 0.00 6.04 −0.3 · 10−3 2.16
q̃i (ci,2 = {qi, ri}) -0.01 6.86 −0.5 · 10−3 2.19
q̃i (ci,3 = {qi, ri, ri−1}) 0.02 6.78 −4.8 · 10−3 2.19

sample r̃i+1 from the distribution of ri+1 | ci,3, with ci,3 = {qi, ri, ri−1}. Both

the probability distributions of the approximated p̃ and q̃, as well as the as-

sociated autocorrelation functions are shown in Figure 2.6. As can be seen,

they resemble the distributions and autocorrelations of the fully resolved model

very closely. One can conclude that adding a greater dependency on the history

of the sample data is greatly bene�cial for approximating the autocorrelation

function. Also, the sample moments of the reduced model variables remain

comparable in quality (for q̃) or even improve (for p̃), see Table 2.2.

3.2 Conditional Markov chain approach.

A natural evolution from the empirical approach, as described in Section 3.1,

is to attempt to �t a continuous stochastic process to the sample data of r.

Especially in situations where one can not be convinced that the sample data is
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Figure 2.5: Autocorrelation functions for positions (left) and momenta (right).
The conditioned empirical distributions approximate sampling from ri+1 | ci.
The autocorrelations for both ci,1 = {qi} (dotted lines) and ci,2 = {qi, ri}
(dashed lines) are plotted against the resolved autocorrelations (solid lines).

su�ciently representative of the entire range of possible values of the data, the

empirical approach will likely not perform to speci�cation, because the empirical

distribution samples exclusively from previously observed discrete values. In this

section we discuss how to use conditional Markov chains (CMCs) to model the

stochastic process, similar (but not identical) to the approach from [30] and [39]

(see also [109]).

3.2.1 De�nition of the CMC.

Expanding on the ideas put forward in [30], we de�ne a CMC in which r̃

switches randomly between K deterministic functions fk, with 1 ≤ k ≤ K.

These functions describe the strong correlation between q and r: ri = fki(qi),

where ki = k(ti) denotes the index of the speci�c function f in the i-th time

step. Important here is that this method constructs r̃ as a piece-wise (in time)

deterministic variable, therefore, one approximates transition distributions for

ki+1 | ci rather than distributions of the form ri+1 | ci. The numerical inte-

gration steps for a reduced model driven by a CMC residual term are de�ned

as:

p̃i+1 = p̃i − ∆τV ′(q̃i) + ∆τ G2(r̃i − Jq̃i), q̃i+1 = q̃i +∆τ p̃i+1,

k̃i+1 ∼ ki+1 | ci = c̃i, r̃i+1 = f
k̃i+1

(q̃i+1).
(2.7)

We take linear functions fki . An illustration of such functions �tted over a

(q, r)-scatter plot is shown in Figure 2.7.

The conditioning variables ci contain both model variables (e.g. qi) and
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Figure 2.6: Distributions (top) and autocorrelation functions (bottom) for po-
sitions (left) and momenta (right). The conditioned empirical distributions are
sampled from ri+1 | qi, ri, ri−1. A comparison between the distributions and
autocorrelations resulting from the reduced model (marked by +) and from the
resolved model (solid lines).

indices (e.g. ki). The model variables are continuous, so they are binned as

described in section 2.3. Although many choices for ci are possible, here we

consider two sets, denoted ci,3 and ci,4 and de�ned as ci,3 = {qi, qi+1, ki} and

ci,4 = {qi, qi+1, ki, ki−1}. We emphasize that ci,3 and ci,4 are not implicit con-

ditioning sets, because q̃i+1 is calculated before r̃i+1 is updated, see (2.7). As

ki can take integer values ranging from 1 to K, the transition from ki to ki+1 is

governed by a set of (K ×K) transition probability matrices in the case of ci,3,

one matrix for every bin αb. There are B = (NB)
C bins in total, where C is the

number of continuous variables in ci (C = 2 for ci,3 and ci,4). With ci,4, there

are BK transition probability matrices of size (K ×K), due to the additional

conditioning on ki−1.
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Figure 2.7: Example of �ve linear functions fk �tted over the scatter plot of qi
vs. ri.

3.2.2 Numerical results.

To approximate the bin-wise transition probabilities one �rst applies the map-

ping (qi, ri) → (qi, ki) to all data points, where ki := argmink |ri−fk(qi)|, i.e. ki
is chosen so that fki is the function with minimal distance to the point (qi, ri) in

the r-direction. After applying this mapping, one can easily count occurrences

of transition paths in the sample data.

Constructing the transition probability matrices in this manner implies that

ki+1 is dependent on all of ki, qi and qi+1. This has as e�ect that, for correct

usage of these transition probabilities in the reduced model, the conditioning

variables should at least include qi, qi+1 and ki. In fact, we found that simula-

tions where ci does not include all three of these are often unstable.

Figure 2.8 compares the reduced model results of the simulations with con-

ditioning variables ci,3 = {qi, qi+1, ki} and ci,4 = {qi, qi+1, ki, ki−1}. The con-

ditioning variable ki−1 added in ci,4 signi�cantly improves the reproduced au-

tocorrelation functions, similar to the results of the empirical distribution in

section 3.1.2.

The sample moments of the resolved simulation and the reduced simulations

are shown in Table 2.3. This table shows that the conditioning parameters ci,3

give a better approximation of moments of q and p than ci,4, although with

ci,4 the autocorrelation functions are reproduced more accurately. Because we

posed in section 1.2 that additional conditional variables to the distribution

of r̃ should result in increased accuracy of the reduced model, this result is

unexpected. However, a large number of parameters must be estimated to
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Figure 2.8: Distributions (top) and autocorrelation functions (bottom) for po-
sitions (left) and momenta (right). The CMC approach approximates sampling
from ri+1 | ci. A comparison between the distributions and autocorrelations
resulting from the reduced models for ci,3 = {qi, qi+1, ki} (marked by +) and
for ci,4 = {qi, qi+1, ki, ki−1} (marked by ◦), and from the resolved model (solid
lines).

approximate the distribution of ki+1 | ci. We recall the following de�nitions: C

and D are the number of continuous and discrete variables in ci, B = (NB)
C is

the total number of bins, and K is the number of di�erent functions fk(q). The

number of parameters to be estimated for the CMC approach conditioning on

a set of variables ci is given by (NB)
C KD+1.

For the results in Figure 2.8 and Table 2.3 we used K = 9 and B = 100

(10× 10 bins for qi and qi+1 combined). This results in 8100 parameters when

using ci,3 and 72900 parameters when using ci,4. This exponential scaling of

the number of parameters is the bottleneck of the CMC approach: even for

relatively simple problems it requires a very large data set to approximate all

transition probabilities accurately.
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Table 2.3: Sample moments for the CMC approximations
#params. mean std.dev. skewness kurtosis

xi γ1(xi) γ2(xi) γ3(xi) γ4(xi)

pi (reference) − 0.00 68.4 3.7 · 10−4 3.00
p̃i (ci,3 = {qi, qi+1, ki}) 8100 0.00 71.8 1.2 · 10−3 3.00
p̃i (ci,4 = {qi, qi+1, ki, ki−1}) 72900 0.00 74.3 −3.4 · 10−4 3.02
qi (reference) − 0.01 6.83 −5.5 · 10−3 2.18
q̃i (ci,3 = {qi, qi+1, ki}) 8100 0.00 7.00 −3.4 · 10−3 2.18
q̃i (ci,4 = {qi, qi+1, ki, ki−1}) 72900 0.00 7.11 −2.8 · 10−3 2.19

Due to the described stability issues and exponential scaling of the number

of parameters we choose not to pursue the CMC approaches any further here.

Instead, in the next section we explore the use of a continuous-in-space stochastic

process, so that the number of parameters remains minimal.

3.3 Ornstein�Uhlenbeck process.

As discussed in section 3.2.2, the CMC strategy requires a very large number

of estimated parameters. In this section we present a stochastic representation

that reduces the number of parameters signi�cantly. Let us assume that the

evolution of r can be approximated by an Ornstein�Uhlenbeck (OU) process:

ṙ = −θ(r − µ) + σẆ ,

with Wiener process W and unknown parameters µ, θ and σ. The evolution of

r, as observed from the full model, is then used to approximate an OU process

r̃ de�ned by:
˙̃r = −θ̂(r̃ − µ̂) + σ̂Ẇ . (2.8)

The parameters θ̂ := (µ̂, θ̂, σ̂) in (2.8) approximate the OU parameters θ :=

(µ, θ, σ), thus implicitly �tting r̃ to r. In the following sections we discuss

di�erent methods for de�ning these OU estimators. We start in section 3.3.1

with constant θ̂ (i.e., independent of ci), whereas in later sections we let θ̂

depend on ci.

3.3.1 Unconditional parameters.

Introduce the notations Rc =
∑M

i=1 ri, Rm =
∑M

i=1 ri−1, Rcc =
∑M

i=1 r
2
i , Rmm =∑M

i=1 r
2
i−1 and Rcm =

∑M
i=1 riri−1. The subscripts c and m are chosen to denote
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current and minus, respectively. Then, assuming a zero-limit of the sampling

interval δt, the standard discrete-in-time estimators θ̂st := (µ̂st, θ̂st, σ̂st) for the

OU parameters are given by [113]:

µ̂st =M−1Rc,

θ̂st =
Rmm −Rcm − µ̂st(Rm −Rc)

δt(Rmm − 2µ̂stRm +M(µ̂st)2)
,

(σ̂st)2 =M−1δt−1(Rcc − 2Rcm +Rmm).

(2.9)

Sometimes, however, a small δt can not be guaranteed because of run-time

requirements, or a small δt is undesired [113]. If δt is not small, the estimators

in (2.9) are biased. Therefore, let us also consider the more exact maximum

likelihood (ML) estimators θ̂ex := (µ̂ex, θ̂ex, σ̂ex), as discussed in, e.g, [139]. By

omitting the assumption δt → 0 and using the Markovian nature of the OU

process, these exact ML estimators follow from maximizing the log likelihood

function:

logL(θ̂ex | R) = logP (r0 | θ̂ex) +
M∑
i=1

logP (ri | ri−1, θ̂
ex). (2.10)

Making the additional assumption that the sample data is stationary, we

know:

ri | ri−1, θ̂
ex ∼ N

(
ri−1η + µ̂ex(1− η), (ζσ̂ex)2

)
,

where η := exp(−θ̂exδt) and ζ2 := (2θ̂ex)−1(1− η2).

We assume the distribution of r0 does not depend on θ̂, therefore we ignore

the term P (r0 | θ̂ex) for the maximization of (2.10). Substituting the conditional

probabilities and removing the conditional distribution P (r0 | θ̂ex) from (2.10)

results in the following log likelihood:

logL(θ̂ex | R) ≈
M∑
i=1

logP (ri | ri−1, θ̂
ex) = −M

2
log(2π)−

M log(ζσ̂ex)− 1

2(ζσ̂ex)2

M∑
i=1

(ri − ri−1η − µ̂ex (1− η))2 .

(2.11)

By maximizing (2.11) with respect to each of the parameters, the exact ML
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estimators are found to equal:

µ̂ex =
RcRmm −RmRcm

M(Rmm −Rcm)−R2
m +RcRm

,

θ̂ex = −δt−1 log
Rcm − µ̂ex(Rc +Rm) +M(µ̂ex)2

Rmm − 2µ̂exRm +M(µ̂ex)2
,

(σ̂ex)2 = 2θ̂exM−1(1− η2)−1 ( Rcc − 2ηRcm + η2Rmm

− 2µ̂ex(Rc − ηRm)(1− η) +M(µ̂ex)2(1− η)2 ).

(2.12)

These estimators are equivalent to the standard ML estimators (2.9) if one

assumes the limits δt → 0 and M → ∞, see Appendix A. Note that the exact

ML estimators (2.12) can be calculated sequentially from sample data.

Next, let us compare the quality of the respective methods by �tting both

sets of estimators to sample data generated by a reference OU process with

known parameters. Because both µ̂st and µ̂ex are independent of δt, we only

compare approximations for σ and θ. Both the standard and exact ML esti-

mators, �tted to this reference process, are shown in Figure 2.9. This �gure

shows that the standard ML estimators (2.9) indeed become strongly biased as

δt increases, whereas the exact ML estimators (2.12) remain very accurate up to

at least δt values of 1.5, where sampling error starts to be an issue. Therefore,

the exact ML estimators are the clear choice for the rest of our experiments.

3.3.2 Conditional parameters with binning.

We now generalize the methods from section 3.3.1 to be in line with those in

sections 3.1 and 3.2 by conditioning the OU parameters (and thus the process

R̃), on the model variables c. Building on the binning strategy, as explained

in section 2.3, we de�ne estimators θ̂pc := (µ̂pc, θ̂pc, σ̂pc) that are piece-wise

constant in ci. It must be mentioned that this approach implicitly relies on

small δt because the piece-wise constant assumption.

The ci-dependency, being piece-wise constant, can be included in the likeli-

hood function. First, we introduce the notation:

µ̂pc(ci) := µ̂pcb , θ̂pc(ci) := θ̂pcb , σ̂pc(ci) := σ̂pcb , if ci ∈ αb.

The parameters θ̂pcb := (µ̂pcb , θ̂
pc
b , σ̂

pc
b ) can be calculated by restricting the esti-
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Figure 2.9: Mean (solid) and standard deviation (dashed) of the standard (gray)
and exact (black) ML estimators, in (2.9) and (2.12) respectively, for a reference
OU process with (µ, σ, θ) = (1, 0.5, 3). The estimates plotted for each sampling
interval δt are averages over 100 independent OU simulations with the given
parameters. Each OU simulation stores 106 data points, where a data point
is saved after 100 time steps of the reference process. The sampling interval
of the OU simulations is 10−3. We test the estimators as δt ranges from 10−3

to 2, in increments of 10−3. This causes the growing sampling error shown as
δt→ 2. Note that while the standard deviation of the standard ML estimators
(gray dotted lines) is plotted in the �gures, these dotted lines lie too close to
the standard ML estimator mean to be visible.

mators (2.12) to the sample data points that lie in αb. Note that we assume

that ri is only dependent on ci, and not on ci′ with i
′ < i. Similar to (2.11), the

log likelihood function can now be written as:

logL(θ̂pc | R,C) ≈
M∑
i=1

logP (ri | ri−1, θ̂
pc
b ), where ci−1 ∈ αb (2.13)

Maximizing (2.13) over the parameters (3B in total) is straightforward and

leads to the following estimators for each of the bins:

µ̂pcb =
Rb,cRb,mm −Rb,mRb,cm

|ρb|(Rb,mm −Rb,cm)−R2
b,m +Rb,cRb,m

,

θ̂pcb = −δt−1 log
Rb,cm − µ̂pcb (Rb,c +Rb,m) + |ρb|(µ̂pcb )2

Rb,mm − 2µ̂pcb Rb,m + |ρb|(µ̂pcb )2
,

(σ̂pcb )2 = 2θ̂pcb |ρb|−1(1− η2b )
−1 ( Rb,cc − 2ηbRb,cm + η2bRb,mm

− 2µ̂pcb (Rb,c − ηbRb,m)(1− ηb) + |ρb|(µ̂pcb )2(1− ηb)
2 ),

(2.14)
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where |ρb| is the number of sample points in the bin αb. Analogous to be-

fore, the following notations are used to restrict terms to a speci�c bin b:

ηb = exp(−θ̂pcb δt), Rb,c =
∑M

i=1 ri1(ci−1 ∈ αb), Rb,m =
∑M

i=1 ri−11(ci−1 ∈ αb),

Rb,cc =
∑M

i=1 r
2
i 1(ci−1 ∈ αb), Rb,mm =

∑M
i=1 r

2
i−11(ci−1 ∈ αb) and Rb,cm =∑M

i=1 riri−11(ci−1 ∈ αb).

Let us illustrate this approach by calculating the bin-wise estimators for

the one-dimensional conditioning ri+1 | qi. The stationary distribution of an

OU process with parameters (µ̂pcb , θ̂
pc
b , σ̂

pc
b ) is N (µ̂pcb , (σ̂

pc
b )2/2θ̂pcb ); the resulting

mean and standard deviation for each bin are plotted over a (q, r) scatter plot

in Figure 2.10.

−20 −10 0 10 20

−4000

0

4000

qi

r
i

Figure 2.10: The mean (solid lines) and standard deviation (dotted lines) de-
scribed by the stationary distribution of the OU estimators for each of the 20
bins approximating the distribution ri+1 | qi. (Note that only 1% of the total
number of data points used to obtain the estimators is shown in the plot.)

3.3.3 Conditional parameters with a linearly �tted mean.

In the speci�c case r̃i+1 ∼ ri+1 | qi, the means and standard deviations of the

OU processes in the di�erent bins are approximately linear (in q) and constant,

respectively, as can be seen in Figure 2.10. In fact, our experiments show that

the OU parameters themselves are either (approximately) constant (θ̂pcb and

σ̂pcb ), or linear in q (µ̂pcb ). This indicates that we can reduce the total number

of parameters signi�cantly by using constant or linear functions of q. Thus, we

de�ne (µ̂lf(q), θ̂lf(q), σ̂lf(q)) by

µ̂lf(qi) = µ̂lf0 + µ̂lf1qi, θ̂lf(qi) = θ̂lf0 , σ̂lf(qi) = σ̂lf0 , (2.15)
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where θ̂lf := (µ̂lf0 , µ̂
lf
1 , θ̂

lf
0 , σ̂

lf
0 ) is constant. When compared to the piece-wise con-

stant OU estimators (2.14), this approach reduces the number of OU parameters

from 3B to 4. Similar to (2.13), one can write the log likelihood function for

the parameters in (2.15) as:

logL(θ̂lf | R, Q) ≈
M∑
i=1

P (ri | ri−1, qi−1, θ̂
lf). (2.16)

Analogous to section 3.3.1, one obtains expressions for the estimators θ̂lf by

maximizing (2.16) with respect to each of the parameters µ̂lf0 , µ̂
lf
1 , θ̂

lf
0 and σ̂lf0 (see

Appendix B for details on notation):

µ̂lf1 = − 1

3P3

(
P2 + C +

∆0

C

)
,

µ̂lf0 =
(µ̂lf1)

2A0 + µ̂lf1B0 + C0

µ̂lf1D0 + E0

θ̂lf0 = −δt−1 log( (Rmm − 2µ̂lf0Rm − 2µ̂lf1Xmm + 2µ̂lf0 µ̂
lf
1Qm +M(µ̂lf0)

2

+ (µ̂lf1)
2Qmm)−1(Rcm − µ̂lf0(Rc +Rm)− µ̂lf1(Xcm +Xmm)

+ 2µ̂lf0 µ̂
lf
1Qm +M(µ̂lf0)

2 + (µ̂lf1)
2Qmm) )

(σ̂lf0 )
2 = 2θ̂lf0M

−1(1− η20)
−1 ( Rcc − 2η0Rcm + η20Rmm

+ (1− η0)(2µ̂
lf
0(η0Rm −Rc) + 2µ̂lf1(η0Xmm −Xcm))

+ (1− η0)
2(M(µ̂lf0)

2 + 2µ̂lf0 µ̂
lf
1Qm + (µ̂lf1)

2Qmm ).

(2.17)

The stationary distribution of the OU process with q �xed is given byN (µ̂lf0+

qµ̂lf1 , (σ̂
lf
0 )

2/2θ̂lf0 ); the resulting mean and standard deviation are plotted over a

(q, r) scatter plot in 2.11.

3.3.4 Numerical results.

As discussed in section 2.3, it is possible that not all bins contain samples if

they are equally sized. For the empirical approach in section 3.1, this posed

no serious problem. However, the accuracy of the estimated OU parameters

is strongly a�ected if the sample size is too small. To keep the tests between

methods comparable, we opt not to change the binning procedure, but instead

to consider bins with less than 100 samples as empty.
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Figure 2.11: The mean and standard deviation of the stationary distribution
described by linear OU parameters that approximate sampling r̃i+1 from the
distribution of ri+1 | qi. (Note that only 1% of the total number of data points
used to obtain the estimators is shown in the plot.)

Simulations that sample r̃ from the unconditioned distribution of r (using

the constant ML estimators in (2.12)) are unstable. However, modeling r̃ as an

OU process that is either piece-wise constant or linear in ci (using the bin-wise

or linearly �tted ML estimators, (2.14) or (2.17)) compares favorably to the pre-

viously discussed strategies. Whereas both the empirical and CMC approaches

need 2 and 3 conditioning variables, respectively, to accurately reproduce the

distributions of q and p, the reduced simulations using the conditioned OU

process need only ci,1 = {qi} to reproduce these distributions very accurately.

These results are illustrated in Figure 2.12 and presented with more detail in

Table 2.4. The accurate reconstruction of the model variables' distributions is

especially impressive for the OU parameters with linearly �tted mean (referred

to from now on as linearly �tted OU parameters), because the linearly �tted

OU process only uses 4 parameters, whereas the CMC approach and bin-wise

OU approach need (NB)
C KD+1 (see section 3.2.2) and 3(NB)

C parameters re-

spectively. As is the case with all other strategies, however, the autocorrelation

function is reconstructed less accurately for ci,1.

A downside of the linearly �tted OU parameters is that they are de�ned

speci�cally for the case ci,1 = {qi}. Generalization to other cases is nontrivial.

The piece-wise constant OU parameters, however, can be easily conditioned on

multiple variables. Similarly to the empirical approach, the resolved autocor-

relation functions are approximated with high accuracy when the conditioning
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Figure 2.12: Distributions (top) and autocorrelation functions (bottom) for po-
sitions (left) and momenta (right). The applied OU approaches approximate
sampling from ri+1 | qi. A comparison between the distributions and autocor-
relations resulting from the bin-wise (marked by +) and linearly �tted (marked
by ◦) ML estimators, and from the resolved model (solid lines).

variables are extended to ci,3 = {qi, ri, ri−1}, as shown in Figure 2.13.

4 Discussion

In this study we investigate how to use sample data, generated by a fully re-

solved multiscale model, to construct stochastic representations of unresolved

processes in reduced models. We discuss three methods to model these stochas-

tic representations, and tested the methods using the Kac�Zwanzig heat bath

model. This heat bath model describes the dynamics of a distinguished par-

ticle, which is coupled linearly to a number of heat bath particles and moves

over a potential. The stochastic methods aim to model the dynamical e�ects

of the heat bath particles to drive a reduced model that only resolves the dis-
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Table 2.4: Sample moments for the OU approximations
#params. mean std.dev. skewness kurtosis

xi γ1(xi) γ2(xi) γ3(xi) γ4(xi)

pi (reference) − 0.00 68.4 3.7 · 10−4 3.00
p̃i (ci,1 = {qi}) linearly �tted 4 0.00 69.2 4.5 · 10−4 3.01
p̃i (ci,1 = {qi}) bin-wise 30 0.00 70.3 −1.2 · 10−3 3.02
p̃i (ci,2 = {qi, ri}) 300 0.00 72.1 −2.6 · 10−3 3.02
p̃i (ci,3 = {qi, ri, ri−1}) 3000 0.00 69.3 −3.5 · 10−3 2.99
qi (reference) − 0.01 6.83 −5.5 · 10−3 2.18
q̃i (ci,1 = {qi}) linearly �tted 4 -0.01 6.87 2.8 · 10−3 2.18
q̃i (ci,1 = {qi}) bin-wise 30 0.00 6.86 3.6 · 10−4 2.19
q̃i (ci,2 = {qi, ri}) 300 -0.01 6.94 −1.3 · 10−4 2.19
q̃i (ci,3 = {qi, ri, ri−1}) 3000 0.01 6.82 −1.8 · 10−3 2.18
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Figure 2.13: Autocorrelation functions for positions (left) and momenta (right).
The piece-wise constant OU parameters are �tted to approximate sampling from
ri+1 | qi, ri, ri−1. A comparison between the autocorrelations resulting from the
reduced model (marked by ∗) and from the resolved model (solid lines).

tinguished particle. We compared the fully resolved model and the reduced

models by the probability distributions, �rst four statistical moments and au-

tocorrelation functions of the position q and momentum p of the distinguished

particle.

In the reduced models, the sum of the positions of the heat bath particles,

denoted r, is modeled as a stochastic process. This is done in three di�erent

ways: (i) sampling from the empirical (conditional) distribution of r, (ii) using

a discrete Markov chain to switch between several functions r = fk(q), and (iii)

modeling r as an OU process with q-dependent parameters. As mentioned, the

stochastic processes driving the reduced model were conditioned on the position

of the distinguished particle. In some tests, the past state of r was also added

to the set of conditioning variables. Extending the set of conditioning variables

improves results, as is demonstrated most visibly in section 3.1.2. We note that

extending this set typically increases the number of parameters in the stochastic
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model, so that more data may be needed to estimate these accurately, see section

3.2. Notwithstanding, with appropriate conditioning of the stochastic process

for r, the distributions and autocorrelations of q̃ and p̃ in the reduced model

resemble those of q and p of the fully resolved model very closely, see in particular

�gures 2.6 and 2.13.

The advantage of the empirical distribution approach over the other methods

is that it is more robust if the available data set is rather small. The empirical

distribution samples uniformly from the data, so that any nonempty sample set

is, by construction, somewhat representative of the dynamics of r. However, this

also restricts the empirical distribution sampling to the range of the data set,

which might not be representative of the exact joint distribution of r for small

data sets. In this approach, no parameters are estimated, the data only needs

to be partitioned into bins. By contrast, the CMC and binned OU approaches

are more sensitive to small data sets, because limited data a�ects the parameter

estimates. These approaches involve a large number of parameters that must

be estimated, most notably the CMC approach, see tables 2.3 and 2.4.

The linearly �tted OU approach reduces the number of parameters to 4,

and is still able to reproduce the distributions of the resolved model variables

very accurately. However, we note that extending this approach to one where

the OU parameters θ and σ also have functional dependence on q (or some

other conditioning variable) will be di�cult, as will generalizations to nonlinear

functional dependence.

As mentioned, the data needed for �tting the stochastic models for r come

from a simulation of the fully resolved model. It may seem super�uous to

formulate a reduced model if simulations with the full model are computationally

feasible. However, if one wishes to simulate a multiscale system over a very

long time interval, but fully resolved simulations are only feasible over a much

shorter time interval, an e�cient yet accurate reduced model can be very useful.

Furthermore, in some cases it is possible to use data from observations instead

of simulation data (see [40] for an example). In those situations, data-driven

modeling approaches are also useful. Finally, for spatially extended systems

such as atmospheric or oceanic �ows, a fully resolved simulation may be only

computationally feasible on part of the spatial domain of interest. The methods

discussed in this study allow one to construct a spatially localized stochastic
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model for unresolved processes. By using identical yet independent copies of

this local stochastic model, one can cover the entire spatial domain.

We emphasize that the computational gain of simulating with the reduced

model instead of the fully resolved model can be very large. The Kac-Zwanzig

heat bath model as used in this study has 202 degrees of freedom (positions and

momenta of the distinguished particle and all 100 heat bath particles), and is

integrated with time step 10−4. By contrast, the reduced model has 3 degrees

of freedom (q̃, p̃, r̃) and integration time step 10−2. An application example is

[39], where the fully resolved model is a Large Eddy Simulation (LES) model

for atmospheric convection. The LES model in that study used 512× 512× 80

gridpoints for spatial discretization, and an integration time step on the order

of seconds. The CMC used to represent convection as simulated by the LES

model contained 10 discrete states, with random switching between the discrete

states at time steps of 1 minute.

In future work we aim to use the methods presented here for ocean circula-

tion models. For example, the strategies described in [117] propose a covariate

that correlates strongly to the residual term in reduced vorticity equations. In-

vestigating how our methods can be applied to such models is an exciting topic

for future study.
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Appendix

A The equivalence of the exact and standard ML es-

timators in appropriate limits

The unconditional maximum likelihood (ML) estimators, as described in section

3.3.1, are obtained by maximizing the log likelihood in (2.11). Here we make

a distinction between two types of ML estimators: the standard estimators

θ̂st = (µ̂st, θ̂st, σ̂st) in (2.9), and the exact estimators θ̂ex = (µ̂ex, θ̂ex, σ̂ex) in

(2.12). The standard ML estimators are obtained by imposing the limit δt ↓ 0

on the log likelihood equation, but the exact ML estimators make no such

assumption. However, we show here that the exact estimators tend to the

standard estimators as δt and the sample size M go to 0 and ∞, respectively.

Let us make the following assumptions about the model's sample data R =

(r0, r1, . . . , rM ):

1. |ri| <∞, for 0 ≤ i ≤M .

2. r̄ := IE(ri) ∀i (stationarity), and |r̄| <∞.

3. Var(r) = IE(ri − r̄)2 ∀i (stationarity), and 0 < Var(r) <∞
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limits

4. ACF := (IE(riri−1) − r̄2)Var(r)−1, and |ACF| < 1. Note that ACF is

dependent on δt, therefore let us also assume:

(a) lim
δt↓0

ACF = 1.

(b) lim
δt↓0

(δt−1(ACF−1)) =: −a, with 0 < a <∞. This essentially restricts

the right derivative of the autocorrelation function from nearing in-

�nite or zero as δt goes to 0.

To show that the standard and exact ML estimators are equivalent in the

limits M → ∞ and δt ↓ 0, we will �rst consider each estimator in the limit

M → ∞. Let us therefore list the following known properties:

lim
M→∞

(M−1Rc) = r̄,

lim
M→∞

(M−1Rm) = r̄,

lim
M→∞

(M−1Rcc) = r̄2 + Var(r),

lim
M→∞

(M−1Rmm) = r̄2 + Var(r),

lim
M→∞

(M−1Rcm) = IE(riri−1) = r̄2 + Var(r)ACF.

(2.18)

Equivalence for µ̂

It follows directly from (2.18) that

lim
M→∞

µ̂st = r̄. (2.19)

Now, let us consider the estimator µ̂ex (2.12):

µ̂ex =
RcRmm −RmRcm

M(Rmm −Rcm)−R2
m +RcRm

=
Rm(Rmm −Rcm) +Rmm(rM − r0)

M(Rmm −Rcm) +Rm(rM − r0)

=
Rm
M (Rmm

M − Rcm
M ) + Rmm

M ( rM−r0
M )

(Rmm
M − Rcm

M ) + Rm
M ( rM−r0

M )
.

Because we analyze µ̂ex in the limit of M → ∞, we �rst show that the
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denominator above does not go to 0 (using the properties in (2.18)):

lim
M→∞

(
(
Rmm

M
− Rcm

M
) +

Rm

M
(
rM − r0
M

)

)
= r̄2 + Var(r)− r̄2 − Var(r)ACF

= Var(r)(1−ACF) > 0,

(2.20)

which allows us to split the limit:

lim
M→∞

µ̂ex =

lim
M→∞

(
Rm

M

)
lim

M→∞

(
Rmm

M
− Rcm

M

)
+ lim

M→∞

(
Rmm

M

)
lim

M→∞

(
rM − r0
M

)
lim

M→∞

(
Rmm

M
− Rcm

M

)
+ lim

M→∞

(
Rm

M

)
lim

M→∞

(
rM − r0
M

)

=

lim
M→∞

(
Rm

M

)
lim

M→∞

(
Rmm

M
− Rcm

M

)
lim

M→∞

(
Rmm

M
− Rcm

M

)
= lim

M→∞

(
Rm

M

)
= r̄.

And this, together with (2.19) proves:

lim
M→∞

µ̂st = lim
M→∞

µ̂ex.

Equivalence for θ

Directly from (2.18) we see that:

lim
M→∞

δtθ̂st = 1−ACF,

and because δt and M are independent, we even see that:

lim
δt↓0

(
lim

M→∞
θ̂st

)
= lim

δt↓0

(
δt−1(1−ACF)

)
= a. (2.21)
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Next, let us consider the following operations on the estimator θ̂ex (2.12):

1− e−θ̂exδt =
Rmm −Rcm − µ̂ex(Rm −Rc)

Rmm − 2µ̂exRm +M(µ̂ex)2

=
Rmm
M − Rcm

M − µ̂ex(Rm
M − Rc

M )
Rmm
M − 2µ̂exRm

M + (µ̂ex)2
.

Let us �rst show that the above denominator does not tend to 0 in the limit

of M → ∞.

lim
M→∞

(
Rmm

M
− 2µ̂ex

Rm

M
+ (µ̂ex)2

)
= Var(r) > 0. (2.22)

This allows us to split the limit by using (2.20) and (2.22):

lim
M→∞

(
1− e−θ̂exδt

)
=

Var(r)(1−ACF)

Var(r)
= 1−ACF,

(2.23)

which, since the log-function is continuous in 1−ACF (because −1 < ACF < 1),

results in:

lim
M→∞

θ̂ex = −δt−1 log(ACF). (2.24)

To evaluate (2.24) in the limit δt ↓ 0, note that both log(ACF) and δt go to

0 in the limit δt ↓ 0, let us apply L'Hôspital's rule for one-sided limits:

lim
δt↓0

(
lim

M→∞
θ̂ex

)
= lim

δt↓0

(
− d(ACF)

ACFd(δt)

)
= lim

δt↓0

(
−δt−1(ACF− 1)

)
= a.

(2.25)

Therefore, from (2.21) and (2.25), one concludes that:

lim
δt↓0

lim
M→∞

θ̂st = lim
δt↓0

lim
M→∞

θ̂ex = a. (2.26)

Equivalence for σ

Directly from (2.18) we see that:

lim
M→∞

(σ̂st)2 = 2δt−1(1−ACF)Var(r).
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Let us then use assumption 4(b) to arrive at:

lim
δt↓0

lim
M→∞

(σ̂st)2 = 2aVar(r). (2.27)

Now, we recall from section 3.3.1 the de�nition η := exp(−θ̂exδt), and rewrite
the estimator σ̂ex (2.12) to:

lim
M→∞

(σ̂ex)2 = lim
M→∞

(
2θ̂ex

1− η2
(
Rcc

M
− 2η

Rcm

M
+ η2

Rmm

M

− 2µ̂ex(
Rc

M
− η

Rm

M
)(1− η) + (µ̂ex)2(1− η)2)).

(2.28)

From (2.23) we know that:

lim
M→∞

1− η2 = 1−ACF2 > 0,

which shows that the denominator in (2.28) does not go to 0 in the limitM → ∞,

therefore we can split up the limit and look at each of the elements separately.

Rigorous algebraic operations lead to the simpli�ed equation:

lim
M→∞

(σ̂ex)2 = −2δt−1 log(ACF)Var(r),

to which we apply the limit δt ↓ 0 (like in (2.25)) to �nally obtain:

lim
δt↓0

(
lim

M→∞
(σ̂ex)2

)
= −2aVar(r). (2.29)

Therefore, from (2.27) and (2.29), one concludes:

lim
δt↓0

lim
M→∞

(σ̂st)2 = lim
δt↓0

lim
M→∞

(σ̂ex)2. (2.30)

B Explicit formulas for linearly �tted OU parameters

First, let us introduce the notations: η0 := exp(−θ̂lf0 δt), Qc =
∑M

i=1 qi, Qm =∑M
i=1 qi−1, Qcc =

∑M
i=1 q

2
i , Qmm =

∑M
i=1 q

2
i−1, Qcm =

∑M
i=1 qiqi−1, Xcc =∑M

i=1 riqi, Xmm =
∑M

i=1 ri−1qi−1, Xcm =
∑M

i=1 riqi−1, Xmc =
∑M

i=1 ri−1qi and
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Chapter 2 B. Explicit formulas for linearly �tted OU parameters

A0 = Qmm(Rc −Rm)−Qm(Xcm −Xmm),

A1 =M(Xcm −Xmm)−Qm(Rc −Rm),

B0 = Rm(Xcm +Xmm) +Qm(Rcm −Rmm)− 2RcXmm,

B1 = Xmm(Rc +Rm)−Qm(Rmm −Rcm)− 2RmXcm,

C0 = RcRmm −RmRcm,

C1 = RmmXcm −RcmXmm,

D0 =M(Xcm −Xmm)−Qm(Rc −Rm)),

D1 = Qmm(Rc −Rm)−Qm(Xcm −Xmm),

E0 =M(Rmm −Rcm) +RcRm −R2
m,

E1 = Qmm(Rmm −Rcm)−Xmm(Xmm −Xcm).

An explicit formula for µ̂lf1 is then given by the real root of the third order

polynomial (µ̂lf1)
3P3 + (µ̂lf1)

2P2 + µ̂lf1P1 + P0, where the polynomial's coe�cients

are given by:

P3 =A0A1B0 +A0B1D0 −A0D1E0 −D2
0E1

P2 =A1B
2
0 + 2A0A1C0 +A0B1E0 +B0B1D0 + C1D

2
0 −B0D1E0−

C0D0D1 − 2D0E0E1

P1 =2A1B0C0 +B0B1E0 +B1C0D0 + 2C1D0E0 − C0D1E0 − E2
0E1

P0 =A1C0 +B1C0E0 + C1E
2
0 .

After introducing the last notations∆0 = P 2
2−3P3P1,∆1 = 2P 2

2−9P3P2P1+

27P 2
3P0 and C =

3

√
∆1+

√
∆2

1−4∆3
0

2 , one obtains the explicit formula for µ̂lf1 and

sequentially obtainable solutions for µ̂lf0 , θ̂
lf
0 and σ̂lf0 in (2.17).
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Chapter 3

Covariate-based stochastic

parameterization of baroclinic

ocean eddies

In this study we investigate a covariate-based stochastic approach to parame-

terize unresolved turbulent processes within a standard model of the idealised,

wind-driven ocean circulation. We focus on vertical instead of horizontal coarse-

graining, such that we avoid the subtle di�culties of horizontal coarse-graining.

The corresponding eddy forcing is uniquely de�ned and has a clear physical

interpretation related to baroclinic instability. We propose to emulate the baro-

clinic eddy forcing by sampling from the conditional probability distribution

functions of the eddy forcing obtained from the baroclinic reference model data.

These conditional probability distribution functions are approximated here by

sampling uniformly from discrete reference values. We analyze in detail the dif-

ferent performances of the stochastic parameterization dependent on whether

the eddy forcing is conditioned on a suitable �ow-dependent covariate or on
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a time-lagged covariate or on both. The results demonstrate that our non-

Gaussian, non-linear methodology is able to accurately reproduce the �rst four

statistical moments and spatial/temporal correlations of the stream function,

energetics, and enstrophy of the reference baroclinic model.

1 Introduction

1.1 Background and motivation

The large-scale ocean circulation is strongly in�uenced by mesoscale turbulent

eddies [71, 108]. Baroclinic instability is the primary generating mechanism for

mesoscale eddies in oceanic �ows [110, 136, 142]. How accurately the impact of

baroclinic instability is represented in ocean models depends on the accuracy of

the baroclinic eddy forcing that appears in the equations of motion. Mesoscale

ocean eddies exist on spatial scales roughly between O(10 km) and O(100 km).

Therefore, global climate models need grid resolutions smaller than O(10 km) in

their ocean component in order to directly resolve these turbulent motions. Due

to computational limitations, such high resolution is still infeasible in current

climate models, and the e�ects of turbulent eddies must be parameterized. Pa-

rameterizations here are understood to be parametric mathematical models to

be applied to an ocean model with a spatial resolution that leaves eddy forcing

partly unresolved.

Mesoscale eddy parameterizations are commonly formulated in a deter-

ministic way, typically based on the Gent�McWilliams (GM) parameterization

[43, 47, 62, 147]. Deterministic eddy parameterizations represent an approx-

imation of the integrated e�ects of the unresolved processes in terms of the

resolved scale �ow. These parameterizations are motivated by the idea that

the properties of the unresolved scale processes can be uniquely represented by

the resolved scale states. However, in practice, the resolved states are asso-

ciated with many possible unresolved states [16, 54]. Therefore, deterministic

parameterizations can, at best, provide an ensemble-mean representation of the

unresolved scale processes. To overcome the limitations of deterministic pa-

rameterizations, atmospheric research has in recent years started to focus on

stochastic parameterizations [16, 55, 104, 116]. Examples in an atmospheric

context relevant to our work include Markov Chain models to represent atmo-
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spheric convection [30, 39, 89]. Stochastic eddy parameterizations are a more re-

cent development in oceanic research. Grooms and Majda [69] developed a new

approach combining elements from superparameterization and stochastic pa-

rameterizations applicable to quasi-geostrophic turbulence. Cooper and Zanna

[27] posed a linear stochastic term that stochastically parameterizes transient

eddies in an idealized barotropic ocean gyre model. They suggested an e�cient

search method along parameter space that optimizes their parameters with re-

spect to a reference climatological mean, variance, and decorrelation time scales

of the horizontal �ow velocities.

In the current work we explore how to use the novel data-driven stochastic

methodology posed in Verheul and Crommelin [143] for eddy parameterization.

The main assumption for our parameterization is that sample data from a `high-

resolution' ocean model is available. We use this sample data to approximate

conditional probability distribution functions (CPDFs) for the mesoscale eddy

forcing. By conditioning on appropriately chosen covariates, i.e. model variables

that correlate signi�cantly with the mesoscale eddy forcing, we de�ne a �ow-

dependent parameterization that samples directly from the CPDFs. The main

goal of this parameterization is to drive a reduced ocean model in such a way

that the resulting stochastic model is able to emulate the dynamics produced

by the full model.

Typically, in such a reduced model the vertical discretization of the `high-

resolution' ocean model is preserved, and the horizontal grid resolution is re-

duced, see e.g. [14, 84, 117]. While such a horizontal coarse-graining set-up

preserves some of the properties induced by the vertical strati�cation, a clear

de�nition of the associated mesoscale eddy forcing is di�cult both numeri-

cally and physically. Numerically, one is faced with nontrivial �ltering options

[117, 146] that subtly change the de�nition of the eddy forcing. In turn, physi-

cal interpretations of such eddy forcings are non-transparent to a certain extent

because horizontally coarse-grained terms mix partly resolved processes of both

barotropic and baroclinic nature. To avoid such concerns, we focus instead on a

`vertical coarse-graining' set-up which preserves horizontal grid resolution, but

reduces the vertical discretization [63, 81]. This less common approach enables

a clear and unambiguous de�nition of the eddy forcing with the clear physical

interpretation related solely to the baroclinic nature of the �ow. The `vertical
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coarse-graining' allows us to focus fully on the development of our stochastic

methodology in this spatially extended setting without being detracted by the

aforementioned concerns.

In this study, we aim to drive a reduced ocean model with �ow-dependent

as well as spatially and temporally correlated stochastic forcing. Recent related

work using �ow-dependent stochastic parameterizations include the following

examples. Using the stochastic approach of [56], Kitsios et al. [91] parame-

terizes subgrid eddy-eddy interactions as a combination of deterministic eddy

viscosity and stochastic backscatter eddy viscosity. Furthermore, in [91] they

formulated scaling laws for the respective coe�cients dependent on the resolu-

tion, enstrophy �ux, Rossby radius, and energy range. Jansen and Held [84]

modeled the amplitude of the �ow-dependent energy source due to backscatter

forcing with simple spatially uncorrelated Gaussian white noise. By combining

a standard hyperviscous closure with this stochastic term they successfully re-

turned the energy otherwise spuriously dissipated, as is typical for hyperviscous

closures. Finally, some recent studies have focused on increasing the e�ciency

of superparameterization, an extremely expensive computational approach to

parameterization that embeds high-resolution simulations in grid cells of low-

resolution large scale simulations [66, 67, 87]. Majda and Grote [102] proposed a

framework that models the small-scale dynamics with quasilinear stochastic par-

tial di�erential equations, which was later implemented with success in Grooms

and Majda [70] for a one-dimensional turbulent system. However, the feed-

back to the large scales was e�ectively non-stochastic in this implementation.

Grooms and Majda [69] successfully used unidirectional plane waves in random

directions for e�cient computation of the �ow-dependent Fourier integrals that

determine the stochastic feedback to the large scales.

Most relevant to our proposed methodology are the studies by Berlo� [11,

14], and by Zanna and colleagues [117, 160]. The goal in these studies is to

model the spatio-temporal correlations of the ocean �ow, a goal that we share

here. Moreover, Zanna and colleagues employ a stochastic methodology based

on the use of a covariate, again similar to what is proposed here. Regarding

the former, Berlo� [14] showed that the temporal correlations of a diagnosed

eddy forcing can be reproduced by forcing a `non-eddy-resolving' stationary

double gyre ocean model with a simple �ow-independent but spatially varying
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autoregressive process. This approach showed good results in reproducing the

desired statistics in the stochastic model, however it required many parameters

to be estimated. In Berlo� et al. [11] this methodology was extended to model

spatio-temporal correlations in a coupled ocean-atmosphere model. The low-

frequency coupled variability in this system gave novel non-stationary statistical

properties of the reference ocean eddy forcing. These properties were modeled

in the stochastic forcing by introducing �ow-dependency in the variance of the

forcing (dependent on the baroclinicity of the ocean �ow).

In Porta Mana and Zanna [117] it was proposed to reproduce spatio-temporal

correlations by sampling from reference values of the eddy forcing. To achieve

this, the CPDFs for the eddy forcing were approximated with Gaussian distri-

butions, conditioned on a suitable covariate. The stochastic and deterministic

feedback to a double gyre quasi-geostrophic ocean model using this covariate

were explored in Zanna et al. [160]. This parameterization drastically improved

the mean state and variability of the ocean state. While similar in design phi-

losophy to our work here, we note some important di�erences.

Firstly, Zanna and colleagues [117, 160] develop their methodology in a set-

up of horizontal coarse-graining, with the related di�culties discussed earlier

in this introduction. Secondly, the covariate speci�ed in [117, 160] is based

on temporal tendencies of the vorticity, however these tendencies are in turn

dependent on the unresolved eddy forcing. To close the system, the temporal

tendencies must be approximated. By contrast, in the approach developed here

we use resolved model variables and lagged self-conditioning to formulate our

parameterization. Thirdly, this lagged self-conditioning allows us to explicitly

represent temporal correlations in the parameterization. This feature is implic-

itly included only with respect to the sampling interval in [117, 160]. Fourthly,

whereas in [117, 160] the CPDFs for the eddy forcing are approximated with

Gaussian distributions, we assume no underlying distribution. Instead, we sam-

ple directly from the CPDFs as described by the sample data. Fifthly, and lastly,

while the covariate used in [117, 160] is motivated physically as well as justi�ed

numerically, the parameterization concerns a single covariate. Therefore, all

dynamical e�ects on the ocean �ow are attributed to that one covariate. We

aim to make the dynamical e�ects of our covariates intuitive and transparent

by using multiple simple covariates. This allows us to perform sensitivity anal-
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yses, as well as compare between two-way coupled simulations with di�erent

con�gurations to illustrate the di�erences between covariates.

The presentation of this work is as follows: in the remainder of this section

we present a formal problem description. In Section 2 we de�ne the physical

ocean model. The stochastic model and methodology are detailed in Section

3. Finally, di�erent choices for stochastic models and the accompanying results

are discussed in Sections 4 and 5, respectively.

1.2 Problem description.

An ocean-climate model consists of coupled partial di�erential equations (PDEs)

resulting from a set of conservation laws [36, 110]. In an abstract description of

an ocean model a state vector u is evolved over time in response to some external

forcing F , a linear operator Lu and some non-linear operator N (u). Without

loss of generality, we consider the state vector to consist of two orthogonal modes

u := (u0, u1). The coupled PDEs with quadratic N can then be written as:

∂tu0 = F0 + L0u0 +N00(u0, u0) +N01(u0, u1)

∂tu1 = F1 + L1u1 +N11(u1, u1) +N10(u0, u1),

whereN00,N11 indicate the nonlinear self-interaction of each mode, andN01,N10

represent the nonlinear coupling of the di�erent modes.

Next, we consider a reduced ocean model where only the variable u0 is

evolved. To distinguish it from the u0 in the coupled model above, we denote

it as ũ0 in the reduced model in the following. Without parameterization to

compensate for the missing term N01, the dynamics of the reduced model can

di�er signi�cantly from the dynamics of u0 in the full, coupled model. The

stochastic approach explored in this study aims to remedy this shortcoming by

driving the reduced model with a stochastic process R̃, i.e. to de�ne a stochastic

reduced model:

∂tũ0 = F0 + L0ũ0 +N00(ũ0, ũ0) + R̃.

The main objective of our work is to choose the stochastic process R̃, the so-

called stochastic eddy forcing, in such a way that both the long-term statistical

behavior and the physical properties of ũ0 resemble those of u0. Hence, the

criteria that we use to assess the accuracy of our stochastic reproduction are
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the �eld's �rst four statistical sample moments, the autocorrelations, and spatial

covariances and correlations, as well as the energetics and enstrophy (see Section

D for formal de�nitions of these quantities).

2 Physical model

In this study, we consider a standard model of idealised ocean dynamics, namely,

quasi-geostrophic (QG), potential-vorticity (PV) equations in a classical double-

gyre con�guration (see e.g. Vallis [142]). The �uid-dynamic model describes ide-

alised, wind-driven midlatitude ocean circulation with prescribed density strat-

i�cation in a �at-bottom square basin with north-south and east-west bound-

aries. We employ a set-up in which the vertical discretisation is done by pro-

jection onto the two leading vertical eigenmodes (see e.g. [52, 63, 81]), i.e. the

barotropic mode and the �rst baroclinic mode. The potential vorticity conser-

vation for the barotropic (baroclinic) mode stream function ψ0 (ψ1) with rigid

lid vertical boundary conditions then reads:

∂tq0 + J(ψ0, q0)+R+ β∂xψ0 = AH∇4ψ0 +
∂xτ

y − ∂yτ
x

ρH
,

∂tq1 + J(ψ1, q0)+J(ψ0, q1) + ϵ111J(ψ1, q1) + β∂xψ1 =

AH∇4ψ1 +
γ(∂xτ

y − ∂yτ
x)

ρH
,

(2M)

where J(f, g) := (∂xf)(∂yg) − (∂yf)(∂xg), the relative PVs are given by q0 =

∇2ψ0 and q1 = ∇2ψ1 − λ−2ψ1, respectively, and R is de�ned as:

R(x, y, t) := J(ψ1(x, y, t), q1(x, y, t)). (3.1)

The term R acts as the feedback of the baroclinic mode on the barotropic

mode, and is interpreted as baroclinic eddy forcing term in this study. In the

following, we denote the 2-mode model with 2M, and we refer to the �rst equa-

tion of 2M with a stochastic representation of R as the stochastic 1-mode model

(S1M, see Section 3), and to the �rst equation of 2M with R set to zero as the

deterministic 1-mode model (D1M):

∂tq0 + J(ψ0, q0) + β∂xψ0 = AH∇4ψ0 +
∂xτ

y − ∂yτ
x

ρH
. (D1M)

49



Chapter 3 2. Physical model

The code for above deterministic models is part of OMUSE [115] and is avail-

able at the OMUSE project website: https://bitbucket.org/omuse. In our

numerical model simulations, the �ow is driven at the surface by the asymmetric

double-gyre zonal wind stress (as e.g. in [14]),

τx(y) = τ0

[
cos

(
2π(y − L/2)

L

)
+ 2 sin

(
π(y − L/2)

L

)]
, τy = 0 ,

where τ0 = 0.05 Nm−2, and L = 4000 km is the size of the square basin with

0 ≤ x, y ≤ L. The �rst internal Rossby radius of deformation, λ, represents a

length scale of baroclinic eddies and is set to λ = 50 km, a typical value for the

midlatitude ocean circulation. We use an eddy-resolving horizontal resolution

of 10 km in our numerical simulations with a correspondingly small lateral

viscosity coe�cient, AH = 100 m2s−1, as well as free-slip boundary conditions.

Furthermore, we use typical values for the mean ocean depth, H = 4000 m,

the mean density of sea water, ρ = 1000 kgm−3, and the meridional variation

of the Coriolis parameter, β = 1.8616× 10−11m−1s−1. Finally, we consider the

idealized case of constant strati�cation such that ϵ111 = 0 and γ =
√
2 (see e.g.

Hua and Haidvogel [81]). All numerical model simulations in this work have

a spin-up time of 30 years and an integration length of another 30 years. See

Table 3.1 for an overview of parameter values used in this study.

Figure 3.1 shows snapshots as well as the temporal averages µ(Hψ0) and

standard deviations std(Hψ0) of the barotropic stream function ψ0 in Sverdrup

(1 Sv = 106 m3s−1) for 2M and D1M, respectively. The statistical quantities are

calculated from simulation results stored on a weekly basis. For both models

the time-mean �ow (see Figures 3.1b and 3.1e) consists of the southern (sub-

tropical) and northern (subpolar) gyres that �ll about 2/3 and 1/3 of the basin,

respectively, which is consistent with the wind stress pattern. In the eastern

part of the basin the �ow is characterized by the linear Sverdrup balance which

leads to essentially identical time-mean �ow �elds for both 2M and D1M. Near

the western boundary, on the other hand, narrow boundary currents close the

circulation and nonlinear terms are signi�cant. The magnitude and the merid-

ional extension of the time-mean western boundary currents are signi�cantly

larger for 2M than for D1M. In terms of �uctuations, for both models the basin

can be partitioned into the more energetic western boundary region, character-
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ized by strong vortices, and the less energetic eastern part, dominated by the

planetary waves (see [15] for details). However, in addition to the strengthened

time-mean �ow, the variability is signi�cantly more pronounced as well for 2M,

as visible in both snapshots (Figures 3.1a and 3.1d) and standard deviation

�elds (Figures 3.1c and 3.1f). In particular, signi�cantly larger and stronger

vortices are present at the western boundary. Variability is also dominant in

the rest of the basin, whereas for D1M the instantaneous �ow pattern in the

eastern part largely resembles the time-mean �ow pattern. Finally, Figures 3.2a

and 3.2b show corresponding time series of kinetic energy in joules (1 J = 1

kgm2s−2) and enstrophy in kgs−2 which again demonstrate larger mean values

and stronger variability for 2M than for D1M.
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Figure 3.1: Properties of ψ0 in 2M/D1M: (a)/(d) snapshot, (b)/(e) pointwise
temporal mean, (c)/(f) pointwise temporal standard deviation.

We consider 2M as a minimal model that captures the main barotropic and

baroclinic processes of interest, as well as the interactions between these dynam-

ical processes. Notwithstanding, it is clear that 2M is strongly idealized, because

of e.g. the assumption of QG dynamics, the idealized square basin geometry and

the coarse vertical discretization with only two vertical modes. The model could

be made more realistic, e.g. by increasing the number of vertical modes, by in-

cluding a vertically dependent strati�cation, or by applying di�erent boundary
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conditions. In particular, the relatively small eastward jet extension (related to

the boundary conditions and strati�cation, see Figure 3.1) is not very realistic.

However, the model allows for straightforward implementation of our stochastic

modeling approach, as we discuss in the next section. Therefore, we consider it

an appropriate test model for the purposes of developing the stochastic method-

ology from Verheul and Crommelin [143] in the setting of a spatially extended

model.

As already mentioned in the introduction, in this study we focus on model

reduction by vertical coarse-graining instead of horizontal coarse-graining. We

aim to formulate a reduced model for the barotropic stream function and vor-

ticity, with a stochastic representation of the baroclinic feedback R. Here, it

amounts to reducing the number of degrees of freedom by a factor of 2, a modest

reduction compared to what can be achieved with the more commonly pursued

horizontal coarse-graining. We point out that it is straightforward to generalize

to a higher number of vertical modes, by changing the de�nition of R in (3.1) to

the sum of nonlinear feedback terms on the barotropic mode,
∑

i J(ψi, qi). For

a recent investigation into the roles of the di�erent individual baroclinic modes

and their interaction, see Shevchenko and Berlo� [131]. In our context the en-

tire e�ect of baroclinicity is reduced to the one baroclinic eddy forcing of the

barotropic mode (for any number of baroclinic modes in the reference model).

Consequently, our approach is formally una�ected by more baroclinic modes in

the reference model. Finally, Shevchenko and Berlo� [131] reports mainly quan-

titative changes due to the inclusion of more baroclinic modes with the overall

eddy e�ects remaining qualitatively similar. We speculate that the same will

hold for the baroclinic eddy forcing and its stochastic parameterization.

More importantly, with vertical coarse-graining the full (baroclinic) model

and the reduced model are both discretized on the same horizontal grid, so that

R purely represents the e�ects of baroclinic instability. In this way, we avoid the

conceptual di�culties of �ltering (coarse-graining) �elds that are discretized on

a lattice, as also discussed in the introduction. R has a clear physical interpre-

tation and we do not have to disentangle physical e�ects of unresolved processes

from, e.g, grid transfer e�ects and reduced accuracy of discretized di�erential

operators.
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Table 3.1: Parameter settings for all modal ocean numerical models (2M, D1M,
S1M)

Parameter Explanation Value

α Robert�Asselin �lter parameter 0.1
β rate of Coriolis change 1.8616× 10−11 m−1s−1

AH lateral viscosity coe�cient 102 m2s−1

ρ mean density 103 kgm−3

H ocean depth 4× 103 m
τ0 magnitude of wind-forcing 5× 10−2 Nm−2

ϵ111 triple interaction coe�cient 0

φ1(z = 0) surface eigenfunction
√
2

λ �rst Rossby radius of deformation 5× 104 m
∆x horizontal grid spacing x-direction 104 m
∆y horizontal grid spacing y-direction 104 m
Lx horizontal domain size x-direction 4× 106 m
Ly horizontal domain size y-direction 4× 106 m
Nx number of grid points x-direction 401
Ny number of grid points y-direction 401
∆t integration time step 1.8× 103 s
δt sampling interval 1.8× 103 s
Tc conditioning interval 9.43488× 108 s
Ts spin-up time 9.43488× 108 s
T integration time 9.43488× 108 s
NB number of bins per conditioning

variable
5

2.1 Spatial structure and restriction of the eddy forcing

Figures 3.3a and 3.3b show the temporal average µ(R) and standard deviation

std(R) of the eddy forcing R as diagnosed from 2M. Both �elds exhibit the same

order of magnitude and are essentially con�ned to a narrow band at the western

boundary. Within this region, µ(R) exhibits a dipole structure with negative

values in the southern half and positive values towards the north. The two local

extrema in µ(R) correspond to two local maxima in std(R).

The spatial structure of R suggests that it might be su�cient to model R

within only a subdomain at the western boundary instead of the entire basin.

In order to test this, we performed a `truncated' 2-mode model simulation,

T2M, which is identical to 2M except that R is set to zero outside the western
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Figure 3.2: Comparison of scalar physical properties between the deterministic
models: (a) enstrophy, (b) kinetic energy.
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Figure 3.3: Properties of R in the reference 2M: (a) pointwise temporal mean,
(b) pointwise temporal standard deviation.

boundary region WB = [10, 490] × [500, 3490] km. Figure 3.2 also shows the

corresponding time series of enstrophy and the kinetic energy for T2M. The

mean levels as well as both the short and long-term variability of enstrophy and

kinetic energy are similar for T2M and 2M (the same holds when comparing

the spatial �elds shown in Figures 3.1a�3.1c with corresponding T2M �elds, not

shown) which indicates that T2M and 2M essentially produce the same �ow

dynamics for our model set-up. Consequently, we will focus on modeling R

restricted to WB in the following; this has the practical advantage of reducing

the volume of data that must be handled in our stochastic modeling of R (see

Section 3.4).
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3 Stochastic model

The goal of this work is to formulate a stochastic process R̃ that emulates the

eddy forcing R (see (3.1)). Adding this stochastic eddy forcing to D1M results

in the stochastic 1-mode model (S1M):

∂tq̃0 + J(ψ̃0, q̃0) + R̃+ β∂xψ̃0 = AH∇4ψ̃0 +
∂xτ

y − ∂yτ
x

ρH
. (S1M)

Recall that throughout this work we compare variables from deterministic

models (e.g. ψ0) with their counterparts in a stochastic model (e.g. ψ̃0), and

we use the same symbols for both but emphasize the di�erence with a tilde.

3.1 Conditioning procedure

To close the system S1M, a model that describes the temporal evolution of R̃ is

needed. We model R̃ as a stochastic process, following the approach discussed

in Verheul and Crommelin [143]. This approach is a form of resampling, in

which R̃ is sampled uniformly from conditioned observed values of R. However,

whereas in [143] we considered a situation in which R was a scalar quantity, here

we are dealing with a spatially extended system in which R is a two-dimensional

�eld. Therefore, we extend the method from [143] to a multidimensional setting,

and apply it pointwise to sample the �eld R̃. In this extension, we preserve the

modular design philosophy behind the stochastic methodology, as well as the

ability to represent non-linear and non-Gaussian behavior.

Our stochastic methodology makes use of sample data (Ψ,Q,R) from the

full model 2M. As follows from (3.1), let us write Rn := J(ψ1(x, y, n∆t),

q1(x, y, n∆t)) and R = (R0, . . . , RN ) to denote the time series of R result-

ing from a 2M simulation. Let Rn(i, j) denote the eddy forcing value in grid

point (i, j) at time n. The stochastic forcing R̃ in S1M is then sampled point-

wise from sample data R conditioned on two types of covariates: time-lagged

R-values R̃n−lθ(i,j)(i, j) and a �ow-dependent model variable C(ψ̃n
0 )(i, j):

R̃n+1(i, j) ∼ Rn+1(i, j) | (Rn−lθ(i,j)(i, j) = R̃n−lθ(i,j)(i, j),

C(ψn
0 )(i, j) = C(ψ̃n

0 )(i, j)), ∀i, j ∈ WB,
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or for short:

R̃n+1(i, j) ∼ Rn+1(i, j) | (R̃n−lθ(i,j)(i, j), C(ψ̃n
0 )(i, j)), ∀i, j ∈ WB, (3.2)

where lθ(i, j) + 1 denotes the conditioning time lag for grid point (i, j) (see

Section 3.2), and C(ψ̃n
0 )(i, j) is a function of ψ̃n

0 (see Section 3.3). Also, the

stochastic forcing is generated only in the region WB and considered zero outside

of this region (see Section 2.1).

Intuitively, the formulation in (3.2) says that the stochastic values are sam-

pled from precisely those reference R-values that occurred in 2M when certain

model variables in 2M matched the values of the corresponding variables in

S1M. The distributions Rn+1(i, j) | (R̃n−lθ(i,j)(i, j), C(ψ̃n
0 )(i, j)) are usually not

known, therefore we approximate them with a simple binning method (see Sec-

tion 3.4).

An important detail that we highlight is that the sampling interval used in

the conditioning procedure (3.2) equals the integration time step (half an hour,

see Table 3.1). This allows our parameterization a level of detail not usually

seen in stochastic climate models, but this does come at a cost in the form of

considerable memory requirements.

Crucially, the temporal evolution of R̃ is governed by sampling from the

CPDFs in (3.2). Obviously, the set of conditioning model variables could be

chosen arbitrarily large, making this methodology easily extendable. But for

the sake of simplicity, and the test cases we discuss here, we consider at most

one of each covariates: a single function C(ψ0) and a single lagged value of

R. The set of conditioning variables is denoted {Rn−lθ , C(ψ0))}. Di�erent

choices for lθ(i, j) and C(ψ
n
0 )(i, j) give di�erent sampling methods, and, in turn,

di�erent discrete stochastic processes R̃. These stochastic processes together

with S1M de�ne several stochastic models. In the following we discuss several

sets of conditioning model variables, and we denote each stochastic model by

their variable choices, i.e. S1M-R[lθ]C. For example, if one chooses lθ(i, j) =

0, {C(ψn)(i, j)} = ∅, then S1M-R[0] describes the 1-mode model S1M forced by

a simple time-correlated stochastic process (see (3.2)).
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3.2 Time-lagged covariate

An important criterion for our stochastic simulations is the reproduction of the

autocorrelations of ψ0 exhibited in the full model 2M. To reproduce the tem-

poral correlations of R we condition the CPDFs in (3.2) on temporally lagged

values of R, i.e. Rn−lθ(i,j) for some lθ(i, j) ≥ 0 (see (3.2)). The choice for

lag times relates to an interesting, but di�erent, question entirely: if one could

sample the stochastic term R̃n+1 from the conditioned probability distribution

Rn+1 | R̃n, . . . , R̃n−L, how large does L need to be to accurately reproduce tem-

poral correlations shown in (Ψ,Q,R)? This question can be phrased intuitively

as: how much information of the history of the stochastic process is su�cient

for our conditioning procedure. While this is an interesting problem, we con-

sider this investigation outside of the scope of this paper, and take a heuristic

approach.

We condition the CPDFs in (3.2) on a single lagged R̃. We consider temporal

decorrelation for each grid point to be the time at which the autocorrelation

function �rst drops below the threshold θ = e−1. Figure 3.4 shows that the

decorrelation time of R varies widely over the grid, i.e. anywhere from a day

near the western boundary to 10 weeks around the eastward jet. Therefore,

we expect the need to choose a pointwise lagged time lθ in the conditioning

procedure (3.2), i.e. to de�ne a spatially dependent lag time lθ(i, j). In Sections

4.1 and 4.3 we show results from stochastic simulations conditioning with lag

times constant over the grid, as well as with spatially varying lθ(i, j).
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Figure 3.4: Pointwise decorrelation time (in days) of R over the region WB.
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3.3 Flow-dependent covariate

Ideally, one conditions the CPDFs in (3.2) on resolved covariates, i.e. resolved

model variables (in both D1M and 2M) that correlate strongly with the eddy

forcing. The existence of such model variables in any multiscale model is not

guaranteed. However, several studies have investigated and proposed candidates

in related climate models (e.g. Porta Mana and Zanna [117]). In this section

we choose a set of covariate candidates from the di�erent terms constituting the

PV budget. Expressing the eddy forcing R in 2M in terms of the other model

variables gives:

R = −∂t∇2ψ0 − J(ψ0, q0)− β∂xψ0 +AH∇4ψ0 +
∂xτ

y − ∂yτ
x

ρH
. (3.3)

This means that the eddy forcing R is expressed directly as a linear com-

bination of each of the terms in the right-hand-side equation (3.3). However,

unlike [117], we don't consider ∂t∇2ψ0 as a covariate candidate, because this

is an unresolved term dependent on R itself. Each of the resolved terms in

(3.3) are natural candidates for our covariate selection procedure. Therefore,

we de�ne the set of covariate candidates V as:

V := {ψ0, q0, β∂xψ0, J(ψ0, q0), AH∇4ψ0,
∂xτ

y − ∂yτ
x

ρH
}.

We use linear regression analysis and standard Pearson coe�cient plots to

assess these candidate covariates. For the regression analysis all model candi-

date variables in V are considered the regressors, and R the response variable,

respectively. The r2-value (not to be confused with the eddy forcing R) for a

given linear regression is a statistical quantity for the percentage of the response

variable's variability that is `explained' by the covariates. While a high r2-value

indicates a good regression �t, it by no means guarantees the best covariate.

Therefore, we make the following observations associated with r2-values only to

compare di�erent sets of covariates, and not to `prove' quality.

Our pointwise regression analysis shows that from all variables in the set V ,

it is the Jacobian J(ψ0, q0) that explains most of the variability of R. This can

be seen by comparing two di�erent regressions, �rst between the entire set V and

R, second between J(ψ0, q0) and R. Figures 3.5a and 3.5b show the pointwise
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r2-values for these two regressions. Comparing the two di�erent plots, one

sees near identical r2-values. This strongly indicates that the other candidates

provide hardly any additional information for the regression. However, while

the Jacobian shows the highest r2-values, we note that it is far from a perfect

predictor, as the central and eastern regions of WB remain badly represented.

Let us next compare the point wise Pearson correlation coe�cients pX,Y =

Cov(X,Y )(stdXstdY )
−1, where Cov(X,Y ) denotes the covariance between X

and Y , and stdX and stdY the standard deviations of X and Y respectively.

Comparing each candidate in V coupled with R, we con�rm the previous as-

sessments that J(ψn
0 , q

n
0 ) correlates signi�cantly with R, see Figure 3.5c. The

highest correlation found between the Jacobian and R is located within the

region WB described in Section 2.1. Other candidates in V show either signi�-

cantly lower correlation to R or signi�cantly lower r2-values (not shown).

In addition to the statistical analysis above, our intuitive understanding for

why the Jacobian is the most suitable covariate is that the Jacobian is the only

resolved scale-coupling term in (3.3), i.e. term that is dependent on both small

and large scale vortices. Therefore, despite the relatively low r2-values in large

parts of WB, J(ψ0, q0) is our choice for covariate out of the tested candidates,

and we choose C(ψ̃n
0 )(i, j) := J(ψ̃n

0 (i, j), q̃
n
0 (i, j)) in the following sections.
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Figure 3.5: Covariate selection criteria. r2-values for each grid point in
[10, 490] × [500, 3490] km for pointwise regression analysis: (a) with regressor
J(ψ0, q0), (b) with regressors V . (c) Pearson coe�cient J(ψ0, q0) per grid point.
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3.4 Sampling from empirical distribution

We choose the set of conditioning variables to contain either one or both of the

time-lagged R-values R̃n−lθ(i,j)(i, j) (see Section 3.2) and the Jacobian

J(ψ̃n
0 (i, j), q̃

n
0 (i, j)) (see Section 3.3). Following the set-up from Verheul and

Crommelin [143], we apply an equidistant binning procedure to approximate

the CPDFs in conditioning procedure (3.2). We refer to uniformly drawing

samples from these bins as sampling from the empirical distribution. To estab-

lish the binning associated with the chosen covariates, the range between the

minimum and maximum of each covariate is independently partitioned in NB

equidistant intervals, with the outer intervals considered half-open. This parti-

tioning results in disjoint bins, each of which describes a set of Rn+1(i, j)-values.

Through this discretization, one obtains a mapping from conditioning variables

to sets of Rn+1(i, j)-values. See Appendix B for further technical details on the

binning procedure.

Because our stochastic sampling procedure (3.2) acts pointwise, excessive

arti�cial spatial roughness can arise in the generated �elds R̃. To prevent this

phenomenon, we apply Gaussian spatial smoothing to the stochastic �elds, as

detailed in Appendix C. This is an ad hoc way to promote spatial smoothness,

but one we consider adequate for the scope of this work. We leave a more

systematic way to generate smooth �elds for a future study.

A limitation of discrete sampling methods is that there is no predetermined

way of handling situations in which the values of the conditioning variables are

outside of the ranges exhibited in the sample data. We refer to bins outside

of the ranges of the sample data as empty bins. When conditioning on both

covariates, the bins are projected onto the linear trend Ĵ between Rn−lθ(i,j)(i, j)

and J(ψn
0 (i, j), q

n
0 (i, j)) to more e�ciently use the available bins (see Appendix

A).

Furthermore, during simulations of the S1M, the Jacobian is removed from

the conditioning variables whenever it goes outside the range in the sample data.

The same is done at grid points where the correlation between J and R is low

in the sample data (see Figure 3.5c).

We point out the computational e�ciency of this sampling procedure. To

evolve our stochastic model for the eddy forcing over time, we only need to

calculate from which bin to sample for each grid point, and then draw a uniform
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random sample from that bin from memory. For comparison, in, for example,

the approach from Cooper and Zanna [27], also relying on availability of high-

resolution data, a system of linear stochastic ordinary di�erential equations

(SDE) must be evolved at each model time step, involving six parameters and

two variables per model grid point (for the model grid used here, this would

amount to an SDE with 320000 variables). Besides the computational cost

of integrating the model in time, the cost of constructing the stochastic eddy

forcing model (i.e. the `training phase') can be substantial. For our approach, it

involves simple binning of data, with negligible computational cost. By contrast,

the approach from [27] requires an expensive optimization procedure involving

many reduced model runs.

3.5 Emulated stochastic eddy forcing

Similar to the investigations in [117], let us verify our stochastic methodology

before coupling the stochastic process for R back to the reduced barotropic

model. We use the output from a 2M simulation (i.e. sample data J and R)

to generate a so-called o�ine `emulation' of the stochastic process. For the

purposes of such an emulated process, let us choose l = 0:

R̃n+1(i, j) ∼ Rn+1(i, j) | (R̃n(i, j), J(ψ̃n
0 (i, j), q̃

n
0 (i, j))), ∀i, j ∈ WB.

This stochastic term is then compared to the same reference eddy forcing

sample data. While not directly testing our ultimate goal of driving a reduced

model with stochastic forcing, this poses an interesting question in itself: can our

methodology reproduce the statistical properties of the reference eddy forcing

when the input to our conditional sampling method is known to be `correct'?

Thus, this test should be considered a veri�cation of the consistency of our

procedure, rather than a validation. As intuition would suggest, even this simple

veri�cation can fail if, e.g, the number of bins is chosen too small or if the

conditioning variables are not e�ective predictors.

Individual snapshots over time of these emulated stochastic �elds show very

little error. The long-term statistics are shown in Figure 3.6, where one can see

an accurately reproduced mean and standard deviation for the spatially �ltered

emulated stochastic forcing. We note that the spatial smoothing (see Section
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C) decreases the standard deviation of R̃ somewhat, compared to R. This

should not be surprising, given that the variability of R̃ is arti�cially smoothed

out. However, based on our experiments, we consider the bene�t from the

spatial cohesion and smoothness of R̃ as a result of this spatial smoothing more

signi�cant than the disadvantage of its decreased standard deviation.
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Figure 3.6: Comparison between pointwise temporal mean (a)-(b) and standard
deviation (c)-(d) for the reference R (a) and (c) versus the �ltered emulated R̃
(b) and (d).

4 Results

The natural point of comparison between S1M and 2M is the evolution of the

barotropic modes ψ̃0 and ψ0. Therefore, we assess our stochastic parameteriza-

tion by inspecting how well ψ̃0 reproduces the physical and statistical properties

of ψ0 in the reference 2M. The speci�c quantities we compare are: the enstrophy,

kinetic energy, and energy transfer related to R (physical), and the statistical

moments, and spatial and temporal correlations (statistical). See Appendix D

for a reference of formal de�nitions for each of these.

4.1 One-way coupling

Here, we consider a �ow-independent sampling method, i.e. we consider only the

time-lagged eddy forcing Rn−lθ(i,j) as covariate and condition one-dimensionally:

Rn+1 | R̃n−lθ(i,j). Let us start with a spatially constant lθ(i, j) = l:

R̃n+1(i, j) ∼ Rn+1(i, j) | R̃n−l(i, j) ∀i, j ∈ WB. (R[l])
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While we will use such simulations to highlight the reasons that spatially de-

pendent lag times are desired, they also result in some interesting observations.

Let us discuss these results for three di�erent choices for l (recall the choice for

half an hour integration time-step, see Section 2): half an hour (S1M-R[12h]), a

day (S1M-R[1d]), and three days (S1M-R[3d]).

These three reduced model simulations reproduce the mean barotropic stream

function very well (not shown), with somewhat better results for longer time

lags. The standard deviation of these barotropic stream functions (not shown)

are a major improvement over D1M (Figure 3.1f), but are still signi�cantly

smaller than in 2M (Figure 3.1c). Figure 3.7a shows that the mean enstro-

phy (3.14) is also reproduced accurately for each of the lag time choices with a

maximal error of 11% for S1M-R[3d] and an error of only 0.9% for S1M-R[1d].

For each of the lag options the enstrophy's variability is slightly overestimated

compared to the 2M reference diagnostics. Both the kinetic energy (3.15) and

the energy exchange term in watts (1 W = 1 Js−1, 3.16) are signi�cantly un-

derestimated compared to 2M, as shown in Figures 3.7b and 3.7c, respectively.

The mean kinetic energies in Figure 3.7b deviate between 20% and 30% from

2M, in addition to showing long excursions from their means, unlike what the

reference diagnostic exhibits. The energy transfer means deviate between 2%

(for S1M-R[1d]) and 29% (for S1M-R[3d]), but show standard deviations that

are between 18% and 26.7% o� from the reference values. However, we do

consider these results to be remarkably good, considering the straightforward

methodology that generated them.
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Figure 3.7: Comparison of scalar physical properties between 2M, and S1M-R[l]
for di�erent lags l: (a) enstrophy, (b) kinetic energy, (c) energy exchange term.

Figure 3.8 shows that similar plots result from spatially dependent lag times
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lθ(i, j) (chosen equal to the time at which the autocorrelation function (ACF,

3.13) �rst crosses some threshold θ):

R̃n+1(i, j) ∼ Rn+1(i, j) | R̃n−lθ(i,j)(i, j) ∀i, j ∈ WB. (R[lθ])

All means and deviations of the stochastic barotropic stream function im-

prove signi�cantly, a trend illustrated in Table 3.2. The temporal means of

the kinetic energy plots in Figure 3.8b improve compared to Figure 3.7b to an

error between 9% and 16%. Aside from this result, Figure 3.8 indicates that

spatially dependent lag times in S1M-R[lθ] fail to signi�cantly improve the diag-

nostic physical results. However, these results instead illustrate the limitations

of �ow-independent conditioning methods R[l] and R[lθ], as supported by later

results in Section 4.3.

To illustrate the reproduction of temporal correlations with a scalar quantity

we �rst consider the ACFs in the two grid points [200, 2390] km and [440, 3190]

km in two di�erent dynamical areas in region WB. The ACF plots in Figures

3.11 and 3.12 show that, unlike the energetics and enstrophy, a signi�cant im-

provement can be seen when comparing the S1M-R[l] simulations (Figure 3.11)

with the S1M-R[lθ] simulations (Figure 3.12). This should not be surprising

given that the constant lag times chosen are shorter than the lθ(i, j)-values,

even for θ = 0.9. This means that the information added to the stochastic

process by the process history is relatively insigni�cant, i.e. the lagged R-values

are not signi�cantly decorrelated.

The spatial covariances here are represented by the covariances between

ψ̃0 in a central grid point and its surrounding grid points (we again choose

both [200, 2390] km and [440, 3190] km as the two example points). Figures

3.10c and 3.10d show that the S1M-R[12h] very accurately reproduces the spatial

structure of the reference covariances in Figures 3.10g and 3.10h, unlike the D1M

covariances in Figures 3.10a and 3.10b. Note the signi�cantly smaller magnitude

for the barotropic references in Figures 3.10a and 3.10b, illustrating the strong

improvement by each of the stochastic simulations over D1M. Quantitatively,

however, the spatial covariances in these grid points (Figures 3.10c and 3.10d)

are signi�cantly underestimated compared to Figures 3.10g and 3.10h.
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Figure 3.8: Comparison of scalar physical properties between 2M, and S1M-
R[lθ] for di�erent spatial lag patterns lθ: (a) enstrophy, (b) kinetic energy, (c)
energy exchange term.

4.2 Two-way coupling: single conditioning variable

The results from Section 4.1 already show promise for the suggested methodol-

ogy, but could use improvement when it comes to the scalar physical quantities

and spatial covariances, see Figures 3.10c and 3.10d. We expect both aspects

to improve by conditioning on the Jacobian, which simultaneously adds �ow-

dependency and implicitly represented spatial correlations to neighboring grid

points (as discussed in Section 3.3):

R̃n+1(i, j) ∼ Rn+1(i, j) | J(ψ̃n
0 (i, j), q̃

n
0 (i, j)) ∀i, j ∈ WB. (J)

Similar to the results in the previous section, S1M-J reproduces the mean

barotropic stream function very well (not shown). However, it also signi�cantly

overestimates the standard deviation (not shown). Figure 3.9 shows that the

comparisons to the �ow-independent methods in Section 4.1 are unfavorable.

The S1M-J simulation severely overestimates all of the previously considered

physical quantities.

Comparing the ACF plots of ψ̃0 between S1M-J and S1M-R[l]/R[lθ] sim-

ulations tells a similar story. Figures 3.11 and 3.12 show that the ACFs are

reproduced much more accurately when conditioning on time lagged values for

R. This di�erence is to be expected, given that the �ow-dependent conditioning

(J) does not involve the process' history.

In contrast to the covariance plots for D1M (Figures 3.10a and 3.10b), the

covariance plots for S1M-J (Figures 3.10e and 3.10f) show the same spatial
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Figure 3.9: Comparison of scalar physical properties between 2M, and S1M-J :
(a) enstrophy, (b) kinetic energy, (c) energy exchange term (with wider range
on y-axis).

structure of the covariances shown for 2M (Figures 3.10g and 3.10h). However,

whereas the covariances for S1M-R[12h] are signi�cantly underestimated, the

covariances for S1M-J are signi�cantly overestimated.

The overall conclusion from these tests is then that the Jacobian leads to

overestimated amplitudes for most considered diagnostic criteria, i.e. enstro-

phy, energetics, spatial covariances, and standard deviation of ψ0 (see Table

3.2), whereas the autocorrelations are underestimated. This further emphasizes

our assessment that the Jacobian is far from a perfect predictor (as brie�y dis-

cussed in Section 3.3). However, this �ow-dependent spatially correlated driving

force, albeit too erratic as sole conditioning variable, can improve the previously

discussed �ow-independent results.

4.3 Two-way coupling: double conditioning variables

By combining the aspects of the tests described in Sections 4.1 and 4.2, one

arrives at the two-fold conditioning procedure, as described in (3.2), where

C(ψn
0 )(i, j) = Ĵ(ψn

0 (i, j), q
n
0 (i, j)) (Ĵ denotes the linearly �tted J , see Section

A).

Similar to the tests in Section 4.1, let us �rst consider the simulations that

condition on lagged R-values with constant lag l:

R̃n+1(i, j) ∼ Rn+1(i, j) | (R̃n−l(i, j), Ĵ(ψ̃n
0 (i, j),q̃

n
0 (i, j))),

∀i, j ∈ WB.
(R[l] Ĵ)
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Figure 3.10: Covariance plots for ψ0 between grid point
[200, 2390] km/[440, 3190] km and neighbouring grid points (see (3.17))
for each of the following models: (a)/(e) D1M, (b)/(f) S1M-R[12h], (c)/(g)
S1M-J , (d)/(h) 2M.
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Figure 3.11: Comparison of ACFs of ψ0 between D1M, 2M, S1M-J , and S1M-
R[l] for di�erent lags l for grid point: (a) [200, 2390] km, (b) [440, 3190] km.
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Figure 3.12: Comparison of ACFs of ψ0 between D1M, 2M, and S1M-R[lθ] for
di�erent lag patterns lθ for grid point: (a) [200, 2390] km, (b) [440, 3190] km.
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The motivation for the sampling method (R[l] Ĵ) is to combine the bene�ts

of both conditioning variables, i.e. the spatial structure of the Jacobian, and

temporal correlations from lagged R-values, respectively.

Similar to previous simulations, all the tested simulations reproduce the

mean barotropic stream function excellently (not shown), but the S1M-R[4h] Ĵ

and S1M-R[3d] Ĵ simulations overestimate the standard deviation (not shown).

While an immediate improvement over the S1M-R[l] simulations in Section 4.1

can be seen, the results with the S1M-R[l]J model are quite sensitive to the

choice of l. This is illustrated in Figure 3.13, where physical results from a

S1M-R[4h] Ĵ simulation are shown in addition to the same lag-time choices dis-

cussed in Section 4.1. In Figure 3.13 the enstrophy and energetics are plotted

for the various spatially constant lag times. On the one hand, the simulations

S1M-R[12h] Ĵ and S1M-R[1d] Ĵ result in major improvements over the physi-

cal diagnostics resulting from S1M-R[l] (Figure 3.7) and S1M-J (Figure 3.9).

Speci�cally, the mean of the kinetic energy only deviates 2.9% and 1.7% from

2M's reference for S1M-R[12h] Ĵ and S1M-R[1d] Ĵ , respectively. On the other

hand, the S1M-R[4h] Ĵ model performs overall worse than S1M-R[l] (Figure

3.8).
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Figure 3.13: Comparison of scalar physical properties between 2M, and S1M-
R[l] Ĵ for di�erent lags l: (a) enstrophy, (b) kinetic energy (with wider range on
y-axis), (c) energy exchange term.

The sensitivity discussed above stems from the choice for a constant lag

l because, as discussed in Section 3.2, decorrelation times of R vary widely

between grid points. Instead of using the spatially constant lag times, we use

spatially variable lag times based on the decorrelation time scales of the eddy

forcing R(i, j). As in Section 4.1, this spatially variable lθ(i, j) is chosen equal
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to the time lag at which the ACF for R(i, j) �rst crosses some threshold θ:

R̃n+1(i, j) ∼ Rn+1(i, j) | (R̃n−lθ(i,j)(i, j), Ĵ(ψ̃n
0 (i, j),q̃

n
0 (i, j))),

∀i, j ∈ WB.
(R[lθ] Ĵ)

The results for S1M-R[lθ] Ĵ are shown in Figure 3.14, for several values of

θ. With θ = 0.9, enstrophy and energy exchange are too high. We hypothesize

that with θ = 0.9, the lagged R-values are still very strongly correlated, so that

they add little information and the conditioning is dominated by the Jacobian.

As a result, S1M-R[l0.9] Ĵ su�ers from similar errors as S1M-J (see Section 4.2).

The results with θ = 0.7 and θ = e−1 are overall very good, with diagnostics

in Figure 3.14 close to those of the reference model 2M. We focus here on S1M-

R[l0.7] Ĵ , however results for S1M-R[le−1 ] Ĵ are highly comparable. For θ = 0.7

the mean of the enstrophy, kinetic energy, and energy exchange terms are all

reproduced excellently, with an error of 3.5, 0.9%, and 9.2%, respectively. Addi-

tionally, the standard deviation of the energy exchange term is also within 4.7%

of the reference, proving another signi�cant improvement over the previously

tested approaches.
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Figure 3.14: Comparison of scalar physical properties between 2M, and S1M-
R[lθ] Ĵ for di�erent spatial lag patterns lθ: (a) enstrophy, (b) kinetic energy, (c)
energy exchange term.

We note that the standard deviation of the kinetic energy is too high for all

S1M-R[lθ] Ĵ . This is caused by the limited spatial dependency in our sampling

method (R[lθ] Ĵ), which can lead to forcing �elds that are spatially less smooth

than in the 2M reference model. This increased spatial roughness a�ects local

gradients and thereby the kinetic energy (see (3.15)). Despite this shortcoming,
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S1M-R[l0.7] Ĵ performs well by all other criteria.

By preserving the temporal information provided by the lagged R-values,

the ACFs for 2M in [200, 2390] km and [440, 3190] km are reproduced almost ex-

actly, as shown in Figure 3.15. This drastically improves on the autocorrelations

reproduced by S1M-J and S1M-R[l] (Figure 3.11), and equals the best results

obtained with pure temporal stochastic parameterizations S1M-R[lθ] (Figure

3.12).
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Figure 3.15: Comparison of the ACFs of ψ0 between the two grid points
[200, 2390] km (line and crosses) and [440, 3190] km (dashed and circles) be-
tween 2M and S1M-R[l0.7] Ĵ

Let us next consider ACFs more comprehensively by focusing on the entire

WB region. Consider the exponential decorrelation time scales, i.e. the time

lag at which the ACF for the barotropic stream function �rst dips below e−1,

pointwise over the whole western boundary region (WB). Figure 3.16 shows

the drastic di�erences of exponential decorrelation time scales between D1M

and 2M; the signi�cantly weaker vortices near the western boundary present in

D1M cause much longer decorrelation time scales across the WB region.
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Figure 3.16: Pointwise exponential decorrelation time (in days) of ψ0 in each of
the following models: (a) D1M, (b) 2M.

Consistent with the ACFs in Figures 3.11a and 3.11b, S1M-J preserves little
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of the temporal history (Figure 3.17a), as its ACFs decorrelate much faster

over the whole WB region. However, this result already presents a strong

improvement over decorrelation time scales exhibited in D1M (Figure 3.16a).

Signi�cant improvements come once again when we observe the results for sim-

ulations that condition on lagged R-values: qualitatively similar patterns for

both S1M-R[12h] (Figure 3.17b) and S1M-R[l0.7] Ĵ (Figure 3.17c). These pat-

terns approximate the reference 2M (Figure 3.16b) very well. None of the tested

simulations are able to adequately reproduce the high decorrelation time scales

in the [10, 40]×[1800, 2300] km region. This may be caused by boundary e�ects,

or by the dynamic complexities of the gyre's detachment point at this location.

We do, however, emphasize that the main outcome from these results is that our

goal of improving the stochastic model for R̃ by combining spatial and temporal

information (through conditioning on J and R[lθ], respectively) is accomplished

with the spatially dependent sampling method (R[lθ] Ĵ).
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Figure 3.17: Pointwise exponential decorrelation time (in days) of ψ̃0 in each of
the following models: (a) S1M-J , (b) S1M-R[12h], (c) S1M-R[l0.7] Ĵ .

Table 3.2 shows the expectation and maximum of the absolute errors ϵi over

the grid for the �rst four statistical moments, e.g. ϵ1 = µ(Hψ0) − µ(Hψ̃0).

Multiple errors for S1M-R[12h] Ĵ are higher than their corresponding values for

either S1M-R[12h] or S1M-J , illustrating the previously discussed di�culties

with spatially constant lag times. However, the S1M-R[l0.7] Ĵ simulation does

not solve this completely, as the error ϵ1 is shown to be worse than for S1M-

R[l0.7]. One sees that adding conditioning variables for our discrete sampling

method does not guarantee a universal improvement to the statistical quantities,

because the added conditioning variable J does correlate strongly with the eddy

forcing in only part of the WB region. Aside from the �rst statistical moment,
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the S1M-R[l0.7] Ĵ simulation gives the best overall results for the statistical

moments, consistent with our motivations and results, described earlier in this

section. The most drastic improvements with respect to the D1M are found in

the errors of the standard deviation, reducing the error by an order of magnitude.

Crucially, these results are further emboldened by observing the spatial �elds of

the statistical moments of ψ̃0. Figures 3.18a and 3.18b show that the reference

mean and standard deviation of ψ0 (Figures 3.1b and 3.1c) are indeed extremely

well reproduced by S1M-R[l0.7] Ĵ .
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Figure 3.18: Pointwise temporal statistical moments of ψ̃0 in S1M-R[l0.7] Ĵ : (a)
mean, (b) standard deviation.

Table 3.2: Mean and maximum absolute errors of the �rst four statistical mo-
ments ϵs of the barotropic stream functions of stochastic simulations with dif-
ferent sets of conditioning variables.

IE max IE max IE max IE max
conditioning ϵ1 ϵ1 ϵ2 ϵ2 ϵ3 ϵ3 ϵ4 ϵ4
magnitude 10−1 101 100 101 10−2 100 10−1 101

unit Sv Sv Sv Sv − − − −

D1M 3.33 2.82 8.19 3.33 7.16 3.31 3.81 3.00

S1M-R[ 1
2
h] 1.95 1.18 2.80 1.20 5.56 3.15 2.12 3.04

S1M-R[l0.7] 1.42 0.71 1.00 0.97 5.24 3.22 2.73 3.02

S1M-J 2.05 1.03 5.50 1.81 6.13 4.38 2.40 3.01

S1M-R[ 1
2
h] Ĵ 1.75 0.95 0.77 1.39 6.02 2.83 2.02 3.01

S1M-R[l0.7] Ĵ 1.64 0.83 0.72 0.77 5.45 2.94 1.92 2.97

Figure 3.19 shows that, besides improving the energetics and statistical mo-

ments of the system, S1M-R[l0.7] Ĵ is also able to reproduce spatial covariances

present in 2M, as can be seen by comparing Figure 3.19 with Figures 3.10g and
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3.10h. This is a signi�cant improvement over both S1M-R[12h] (Figures 3.10c

and 3.10d) and S1M-J (Figures 3.10e and 3.10f). Given that both S1M-R[12h]

and S1M-J reproduced the spatial patterns of the covariances qualitatively well,

this quantitative improvement is most likely due to the more accurately repro-

duced standard deviation of the barotropic stream �eld (see Table 3.2).
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Figure 3.19: Covariance plots for ψ0 for S1M-R[l0.7] Ĵ between grid point
[200, 2390] km/[440, 3190] km) in (a)/(b) and neighbouring grid points.

To support these claims, let us investigate spatial correlations over the region

[10, 690] × [1700, 3200] km, i.e. the region of the domain where the standard

deviation of the barotropic stream is signi�cant (see Figure 3.1c). Similar to the

spatial covariances, for each grid point in the region we compute the correlations

between ψ0 in this central grid point and its surrounding grid points, see (3.18).

Contrasted with the reference correlations in 2M, the mean absolute correlation

errors in grid point (i, j) for a stochastic model are given by:

g(i, j) = P (i, j)−1·∑
i′,j′>0

i−20≤i′≤i+20
j−20≤j′≤j+20

|Corr(ψ0(i, j), ψ0(i
′, j′))− Corr(ψ̃0(i, j), ψ̃0(i

′, j′)) |, (3.4)

where P (i, j) denotes the number of grid points (i′, j′) over which the sum-

mation in (3.4) runs (the summation cannot run over grid points that exceed

the boundaries of the full domain), and ψ0 and ψ̃0 are the barotropic stream

functions of 2M and of the stochastic model, respectively.

These mean absolute correlation errors are shown in Figure 3.20 for each of

the highlighted test models. The �gure shows that the two grid points chosen to

illustrate the covariances in Figure 3.10 are representative for the globally repro-
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duced correlations. Importantly, Figure 3.20 shows that all stochastic models

improve signi�cantly on the spatial correlations as reproduced by the barotropic

reference D1M. Additionally, one sees that, besides overestimating the magni-

tude of the covariances (Figures 3.10e and 3.10f), S1M-J (Figure 3.20b) re-

produces the spatial patterns of the correlations with less accuracy than both

S1M-R[12h] (Figure 3.20c) and S1M-R[l0.7] Ĵ (Figure 3.20d). These latter two

reproduce the spatial correlations of the reference 2M with a similarly high ac-

curacy. This indeed indicates that the improvements to the spatial covariances

by S1M-R[l0.7] Ĵ (Figures 3.19a and 3.19b) are due to the standard deviation

of the �ow being better resolved, and is less likely attributed to the spatial

correlations.
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Figure 3.20: Mean absolute correlation error (3.4) of ψ̃0 in each of the following
models: (a) D1M, (b) S1M-J , (c) S1M-R[12h], (d) S1M-R[l0.7] Ĵ .

Concluding, we have successfully introduced �ow-dependency into the stochas-

tic parameterization. In many respects the �ow-independent parameterization

S1M-R[l0.7], discussed in Section 4.1, already shows promising results. By in-

troducing the Jacobian into the conditioning S1M-R[l0.7] Ĵ we have further im-

proved almost all of the considered physical and statistical criteria posed in

Section 1.2.

5 Summary and discussion

In this study we investigated a covariate-based stochastic approach to parame-

terize unresolved processes within a standard model of the idealised, wind-driven

ocean circulation. We considered the reduction of the reference 2-mode baro-
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clinic model (2M) to a 1-mode barotropic model (D1M). The reduced D1M lacks

the baroclinic feedback given by the baroclinic eddy forcing R. We developed a

stochastic model for R, and coupled it to the 1-mode model to obtain a stochas-

tic 1-mode barotropic model (S1M). With a suitable stochastic model for R,

S1M is able to mimic the behavior of the barotropic mode in the reference 2M

closely.

We focused on vertical instead of horizontal coarse-graining, such that all

considered models (2M, D1M, S1M) are discretized on the same high-resolution

horizontal grid. Hereby, we avoid the subtle di�culties of horizontal coarse-

graining (e.g. choices of �lter and grid transformation), and can fully focus on

the stochastic model formulation. The corresponding eddy forcing R is uniquely

de�ned and has a clear physical interpretation solely related to the baroclinic

nature of the �ow.

The stochastic parameterization of the eddy forcingR is based on a covariate-

approach recently developed in Verheul and Crommelin [143] within a scalar set-

up. Here we construct a pointwise spatial extension of the covariate-approach

such that it can be applied to a spatially extended ocean model. More precisely,

in S1M the eddy forcing R is modeled as a spatially extended stochastic pro-

cess R̃. Sample data from a 2M reference simulation for both the eddy forcing

R and the resolved model variables is assumed to be given for our approach.

The stochastic term R̃ is sampled uniformly from conditional probability dis-

tribution functions (CPDFs) approximated over the available sample data, i.e.

sampled from the so-called conditional empirical distributions. The CPDFs are

approximated with a simple binning procedure. R̃ is then conditioned on both

the most suitable �ow-dependent covariate, which turned out to be the resolved

nonlinear advection �eld, and past states of R̃ itself, inducing adequate tem-

poral correlations. For our speci�c ocean model, the volume of employed data

could be signi�cantly reduced by limiting the stochastic forcing to the western

boundary sub-region of the grid, which in diagnostic tests proved to reproduce

the �ow dynamics of 2M.

In order to evaluate the performance of the stochastic parameterization, we

compared the reference and reduced stochastic models (i.e. 2M and S1M) with

respect to a range of physical and statistical criteria. These criteria are the �rst

four statistical moments, the autocorrelation function, spatial covariances and
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correlations of the stream function, kinetic energy, energy conversion, and the

enstrophy.

The results show that the �ow-dependent covariate and the past states of

R̃ each contribute in their own way to the stochastic model. Conditioning on

the past states of R̃ introduces temporal consistency (Section 4.1). The �ow-

dependent covariate introduced an energetic driving force and improved the

spatial cohesion of the system, but by itself is an insu�cient predictor for the

eddy forcing (Section 4.2).

Conditioning both on the �ow-dependent covariate and on past R̃-values

resulted in a good model for R, so that S1M reproduced many characteristics of

the 2M reference model very well (Section 4.3). In order to achieve this it turned

out to be crucial to account for the spatial dependence of the decorrelation time

scale of R.

Overall our �nal results with S1M show a large improvement over D1M,

as well as very close similarity to the reference 2M. Additionally, the results

provide further proof of concept of our methodology, extending the approach

from Verheul and Crommelin [143] to a spatially extended setting. Because the

empirical distribution is discrete and needs only one sample point per bin to

sample from, it is a method robust to small sample sets. However, practical

limitations can pose challenges, because of large amount of data involved for

spatially extended systems. This led us to develop straightforward methods to

use sample data more e�ectively, as well as to rethink ways to handle sparsely

populated bins (Section 3.4). With a large amount of data, e�cient storage

and access of the data becomes more important for our methodology. In this

study, optimization of memory usage and data storage was not our priority,

however we point out that several straightforward optimizations are possible for

our approach, e.g. reduced sampling interval, fast database-based lookup tables,

and interpolated sample data. We leave these for future study. Furthermore, we

emphasize the computational e�ciency of the methodology developed here, as

our methodology requires only straightforward calculations to determine what

piece of memory to read out, i.e. what bin to sample from.

In future work we intend to explore methods to remedy these limitations.

The approach proposed here can be further extended to improve the represen-

tation of spatial structures and correlations in the parameterized eddy forcing
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�elds by, e.g, exploring additional types of �ow-dependent covariates (e.g. based

on energetics). A more thorough sensitivity analysis of the conditioning time

lags of R̃ would also be helpful and insightful for the covariate selection. Fur-

thermore, we are interested in exploring continuous approximation methods for

the CPDFs, as well as other continuous stochastic parameterizations.
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A Linear �t details

The conditioning procedure as de�ned in Section 3.1 is de�ned pointwise over

the grid, therefore the number of sample points for each approximated CPDF

in (3.2) is limited by the length of the time series (Tc/δt, see Table 3.1). This

proved somewhat problematic in our experiments, because a straightforward

equidistant binning (see Appendix B) did not always result in su�ciently �lled

bins in the case where (3.2) is conditioned on both the covariate J(ψ̃n
0 , q̃

n
0 ) and

the time lagged R̃n−lθ(i,j). Therefore, in the case where we condition on both,

we project the binning on the linear trend between J(ψ̃n
0 , q̃

n
0 ) and R̃n−lθ(i,j).

This linear �t allows us to make more e�cient use of the number of bins, i.e. to

more evenly partition the sample data over the number of bins.

Let us de�ne:

J(ψ0(i, j), q0(i, j)) = k(i, j) +m(i, j)R(i, j), (3.5)

to be the linear trend between J(ψ0(i, j), q0(i, j)) and R(i, j) (see (3.1)), where

[k(i, j),m(i, j)] = (XTX)−1XTy, and X(i, j) = [1, (R)T ] a (T/δt× 2)-tensor,
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and y(i, j) = (J)T a (T/δt× 1)-columnvector. Then, by subtracting this linear

trend from the Jacobian values we get:

Ĵ(ψ0(i, j), q0(i, j)) = J(ψ0(i, j), q0(i, j))− J(ψ0(i, j), q0(i, j)),

and using the conditioning set {R̃n−lθ(i,j)(i, j), Ĵ(ψ̃n
0 (i, j), q̃

n
0 (i, j))} results in

the linearly �tted sampling procedure:

R̃n+1(i, j) ∼ Rn+1(i, j) | R̃n−lθ(i,j)(i, j), (Ĵ(ψ̃n
0 (i, j), q̃

n
0 (i, j))

for i ∈ {1, . . . , Nx}, j ∈ {1, . . . , Ny}
(3.6)

B Empirical distribution details

Here we elaborate on the general description of the empirical distribution that is

found in Section 3.4. The equidistant binning method independently partitions

the range between the minimum and maximum of each of the covariates into

NB intervals αb. Each of the intervals αb describes a set ρb of Rn+1-values.

Let U(A) denote a uniform distribution over the elements of the set A, i.e. if

a′ ∼ U(A) then ∀a ∈ A : P (a′ = a) = |A|−1. The conditional sampling method

(3.2) is then approximated by the empirical approach:

R̃n+1(i, j) ∼ U(ρb(i, j)),

where b : (R̃n(i, j), Ĵ(ψ̃n
0 (i, j), q̃

n
0 (i, j)) ∈ αb(i, j).

(3.7)

This empirical approach is a prototypical example of a discrete sampling

method. An obvious limitation of such methods is that they can exclusively

sample from observed sample values. Therefore, the stochastic model has no

predetermined way of handling situations in which the values of the conditioning

variables are outside of the ranges exhibited in the sample data. With respect

to the equidistant binning procedure, see Section 3.4, this situation manifests as

empty bins, i.e. a bin αb(i, j) for which ρb(i, j) is empty. The likelihood of the

conditioning variable's values to arrive at an empty bin is predominantly deter-

mined by three factors: the number of conditioning variables D, the number of

bins per conditioning variable NB, and the limitations on the amount of sample

data. With each of the aforementioned factors, this is a non-trivial issue. We

solve this problem by linking each of the empty bins to a nonempty bin in the
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training phase of the simulation. Because the covariate Ĵ(ψ0, q0) is least likely

to hold predictive qualities for the sampling procedure (as explained in Section

3.4), the predictive quality of this covariate is considered negligible in empty

bins. And thus, the conditioning in empty bins is considered 1-dimensional,

i.e. in empty bins we condition only on Rn−l(i,j), which is, by construction,

guaranteed to be in range of sample data.

C Spatial smoothing

With the pointwise conditioning procedure (see Section 3.1) the spatial corre-

lations of R are only modeled implicitly by conditioning on the Jacobian term

J(ψ0, q0). As discussed in Section 1, �nding more rigorous ways to explicitly

reproduce spatial correlations will stay a topic for an immediate future project.

We use a more heuristic method to introduce spatial smoothness and remedy

the spatially uncorrelated �elds here. Namely, we use a truncated Gaussian

smoothing �lter G(x, y):

G′(x, y) =
1√
2πσ

e−
(x−µ)2+(y−µ)2

2σ2 , G(x, y) =
G′(x, y)∑
x,y G

′(x, y)
, (3.8)

where we choose a basic 3× 3 �lter G(x, y) with µ = 0 and σ = 0.5, where

x, y ∈ {−1, 0, 1}. Ilustrating snapshots are shown in Figure 3.21, where one

can see the spatially smoothed snapshot more closely resembling the resolved

R, both in structure and spatial smoothness.
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Figure 3.21: A comparison between snapshots of the resolved R (left), the un�l-
tered emulated stochastic forcing (middle), and the �ltered emulated stochastic
forcing (right).
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As previously mentioned, this smoothing is an added heuristic method to

strengthen the spatial correlations between neighboring grid points. But more

importantly, because the stochastic procedure, as de�ned in (3.2), works com-

pletely pointwise over the grid, this Gaussian �lter will smooth out unwanted

spatial roughness. Otherwise, the spatial roughness would arti�cially `add en-

ergy' into the system, spuriously exciting the system beyond realistic goals.

D De�nitions of diagnostic criteria

� The �rst four statistical sample moments: mean, standard deviation,

skewness, and kurtosis over the model variables ψ0 (pointwise in phys-

ical space):

µ(ψ0) = IE(ψi
0) (3.9)

std(ψ0) =
(
IE((ψi

0)
2)− (IE(ψi

0))
2
)1/2

(3.10)

γ(ψ0) = IE
[
(ψi

0 − IE(ψi
0))

3
]
(Var(ψi

0))
−3/2 (3.11)

Kurt(ψ0) = IE
[
(ψi

0 − IE(ψi
0))

4
]
(Var(ψi

0))
−2 (3.12)

� The autocorrelation function (ACF) with time lag l over the model vari-

able ψ0:

ACFl(ψ0) = IE
[
(ψi

0 − IE(ψi
0))(ψ

i+l
0 − IE(ψi

0))
]
(Var(ψi

0))
−1 (3.13)

� The mean, standard deviation, and the variability (both short-term and

long-term variability) of the time-dependent scalar quantities enstrophy

E , kinetic energy KE, and energy exchange/transfer EE as horizontally

integrated over grid A:

E =
ρH

2

∫
A
q20, (3.14)

KE = − ρH

2

∫
A
(∇ψ0)

2, (3.15)

EE = ρH

∫
A
ψ0 J(ψ1, q1). (3.16)
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� The covariance Cov(ψ0) between grid points (i, j) and (i′, j′) for model

variable ψ0:

Cov(ψ0(i, j), ψ0(i
′, j′)) =

IE([ψ0(i, j)− IE(ψ0(i, j))][ψ0(i
′, j′)− IE(ψ0(i

′, j′))])
(3.17)

� Similar to the covariance above, the correlation Corr(ψ0) between grid

points (i, j) and (i′, j′) for model variable ψ0:

Corr(ψ0(i, j), ψ0(i
′, j′)) =

Cov(ψ0(i, j), ψ0(i
′, j′))

std(ψ0(i, j))std(ψ0(i′, j′))
(3.18)

E Numerical integration details

The numerical implementation uses the standard centered di�erence scheme

(∆x)−n δnxf(x, y, t) of order O((∆x)2) to approximate the n-th order spatial

derivatives [140] in 2M, where:

δnxf(x, y, t) =



n∑
i=0

(−1)i
(
n

i

)
f(x+

(n
2
− i

)
∆x, y, t) if n even,

n∑
i=0

(−1)i
(
n

i

)
1

2

[
f(x+

(
n+ 1

2
− i

)
∆x, y, t)+

f(x+

(
n− 1

2
− i

)
∆x, y, t)

]
if n odd,

(3.19)

and analogously for partial derivatives to y.

We choose the Arakawa stencil J1 =
1
3(J

++ + J+× + J×+) to discretize the

Jacobian terms for its conservation properties, this Arakawa scheme satis�es

�nite di�erence analogs of energy and mean squared vorticity conservation laws

[3].

To integrate D1M, 2M, and S1M over time, let us consider the second-

order centered-di�erence leapfrog scheme [42, 72, 85], which is used widely in

weather and climate models. The leapfrog time stepping method admits a

well-documented spurious computational mode that manifests as spurious os-

cillations between even and odd time steps that amplify during nonlinear sim-

ulations [42, 95, 157]. This phenomenon is referred to as time-splitting. The
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Robert�Asselin �lter [5, 119] is an oft-used time-�ltering solution (for a list of

examples in climate models see, e.g, Williams [155]) that dampens this computa-

tional mode and thus controls the time-splitting instability. The combination of

the leapfrog scheme with the Robert�Asselin �lter results in the Asselin-leapfrog

scheme:

ψn+1 = ψ
n−1

+ 2∆t F (ψn), (3.20)

where F (ψ) denotes the right-hand side terms in the PDE governing the tem-

poral evolution of ψ, and the bar notation in (3.20) denotes the Robert�Asselin

time-�lter:

ψ
n
= ψn + α(ψ

n−1 − 2ψn + ψn+1), (3.21)

where the parameter α denotes the Robert�Asselin �lter strength.

We further impose the free-slip condition n⊥ · (∇ ◦ ∇)ψm = 0 along the

lateral boundaries, where n⊥ denotes the horizontal unit vector normal to the

boundary, and ◦ is the Hadamard product, de�ned for matrices A and B with

same dimensions by (A ◦B)ij = (A)ij(B)ij .

All our choices for model parameters are shown in Table 3.1. The discussed

discretization methods result in the following discretized integration scheme for

the 2-mode referemce model 2M:

ψn+1
0 = ψ

n−1
0 + 2∆t S0(ψ

n
0 , ψ

n
1 ), ψn+1

1 = ψ
n−1
1 + 2∆t S1(ψ

n
0 , ψ

n
1 ),

where ∇2S0(ψ
n
0 , ψ

n
1 ) =− J(ψn

0 , q
n
0 )−Rn − β∂xψ

n
0 +AH∇4ψn−1

0 +

∂xτ
y − ∂yτ

x

ρH

where ∇2S1(ψ
n
0 , ψ

n
1 ) =− J(ψn

1 , q
n
0 )− J(ψn

0 , q
n
1 )− ϵ111J(ψ

n
1 , q

n
1 )−

β∂xψ
n
1 +AH∇4ψn−1

1 +

φn
1 (z = 0)(∂xτ

y − ∂yτ
x)

ρH
,

(3.22)

where numerical solutions to the Poisson's equations for ∇2Sm are found with

the Intel MKL Poisson solver. The viscosity terms above are taken from the

previous time-step for numerical stability purposes.

The discretized 2M (3.22) is initialized with the conditions ψ
n=−1
0 = ψ

n=−1
1 =

ψn=0
0 = ψn=0

1 = 0 and q00 = q01 = 0. To equilibrate any baroclinic simulation

starting from rest, a su�cient spin-up period needs to be performed. For all our
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experiments, we choose a 30 year spin-up time. The integration time-step ∆t is

chosen to be half an hour for both the barotropic and baroclinic models, these

choices are made to �nd comparison with similar set ups (e.g. [10, 13, 117]).

Applying the pointwise sampling method (3.2) to evolve R̃ over time, and nu-

merically integrating S1M results in the following numerical integration scheme

for the discretized stochastic 1-mode model:

ψ̃n+1
0 =ψ̃

n−1

0 + 2∆t S(ψ̃n
0 ),

R̃n+1 ∼Rn+1 | (Rn−lθ , C(ψ0))) = (R̃n−lθ , C(ψ̃0))

with ∇2S(ψ̃n
0 ) =− J(ψ̃n

0 , q̃
n
0 )− R̃n − β∂xψ̃

n
0 +AH∇4ψ̃n−1

0 +

∂xτ
y − ∂yτ

x

ρH
,

(3.23)

where the initial conditions are chosen to start from an equilibrated baroclinic

state before starting the 30 years spin-up for the stochastic simulation: ψ̃
−1

0 =

ψ
M−1
0 , ψ̃

−1

1 = ψ
M−1
1 , ψ̃0

0 = ψM
0 , ψ̃0

1 = ψM
1 and q̃00 = qM0 , q̃01 = qM1 .
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Chapter 4

Stochastic parameterization

with VARX processes

In this study we investigate a data-driven stochastic methodology to parameter-

ize small-scale features in a prototype multiscale dynamical system, the Lorenz

'96 (L96) model. We propose to model the small-scale features using a vector

autoregressive process with exogenous variable (VARX), estimated from given

sample data. To reduce the number of parameters of the VARX we impose a di-

agonal structure on its coe�cient matrices. We apply the VARX to two di�erent

con�gurations of the 2-layer L96 model, one with common parameter choices

giving unimodal invariant probability distributions for the L96 model variables,

and one with non-standard parameters giving trimodal distributions. We show

through various statistical criteria that the proposed VARX performs very well

for the unimodal con�guration, while keeping the number of parameters linear

in the number of model variables. We also show that the parameterization per-

forms accurately for the very challenging trimodal L96 con�guration by allowing

for a dense (non-diagonal) VARX covariance matrix.
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1 Introduction

1.1 Background

For many spatially extended dynamical systems the equations of motion cannot

be solved on su�ciently �ne scales because of unfeasible computational costs.

The typical approach for dealing with this problem is to formulate a reduced

system that describes the variables of interest, usually the large-scale degrees of

freedom. To compensate for the missing dynamical e�ects (feedback) that arise

from the small scales, some dynamical term that represents or approximates

these missing e�ects needs to enter the reduced system. Following common

terminology in ocean-atmosphere science where this is an important problem,

we call such terms parameterizations. In a previous study, we considered dis-

crete resampling-based methods [143, 145]. These methods were successful in

reproducing various important statistical and physical aspects in the reduced

models. These promising results notwithstanding, their capability to model spa-

tial correlations in the dynamical feedback from the small scales is limited. Here,

instead, we investigate parameterizations that are better able to reproduce the

spatio-temporal correlations explicitly, without signi�cant computational cost.

Speci�cally, we propose to use a vector autoregressive process with exoge-

nous parameters (VARX) for parameterization. We include endogenous and

exogenous variables in the VARX process with coe�cient matrices that have

sparse structure, e.g. (tri)-diagonal. The main aim is that the reduced model

with the parameterization accurately reproduces the statistical properties of the

reference (fully resolving, non-reduced) model, including its spatial correlations.

Moreover, our stochastic parameterization assumes no knowledge of the under-

lying physical structure of the system. We use available sample data from the

fully resolving reference model to infer the VARX model, similar in spirit to the

data-driven approaches in Crommelin and Vanden-Eijnden [30], Porta Mana and

Zanna [117], Verheul and Crommelin [143], Verheul et al. [145]. In the context

of ocean-atmosphere modeling, various other forms of stochastic parameteriza-

tions have been considered, e.g. stochastic cellular automata [9, 29, 133], and

Markov chain approaches [30, 41, 89, 103], see also [16] for a recent overview.

We consider multiscale models wherein the state vector z := (x,y1, . . . ,yJ)

evolves over time according to a set of coupled ordinary di�erential equations
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(ODEs) that include a constant forcing F , a linear operator Lz, and some non-

linear operator B(z). This set of ODEs can result from the spatial discretization

of a partial di�erential equation; in this study we focus on the ODE formulation

in which the elements of the state vector are associated with, e.g, values on a

spatial grid. We consider nonlinear ODEs of the following form (occurring in

e.g. ocean models [13, 81]):

dx

dt
= F + Lxx+ Bxx(x) + Bxy(x,y1, . . . ,yJ) (4.1)

dyj

dt
= L′

xx+ Lyyj + Byy(y1, . . . ,yJ) + Byx(y1, . . . ,yJ ,x), (4.2)

where the vector x := (x1, . . . , xK) represents the large-scale processes, the

vectors yj := (yj,1, . . . , yj,k) represent the small-scale processes, where 1 ≤ j ≤
J , 1 ≤ k ≤ K are spatial grid indices, and each xk is coupled to J small-

scale yj,k. Thus, K is the total number of gridpoints on which the large-scale

processes are de�ned. This number can be very large for spatially extended

systems (e.g. K = 106 for a system with 2 spatial dimensions, speci�ed on a

1000× 1000 grid). The yj,k can be thought of as being de�ned on a micro-grid

(with J gridpoints) associated with each macro-gridpoint k.

The operator Byy denotes the nonlinear self-interaction of the yj variables,

and Bxy denotes the nonlinear feedback of the yj variables on the x variables.

The operators Bxx and Byx have analogous interpretations. We assume that an

analytic solution to (4.1)-(4.2) is not available, so that we have to resort to nu-

merical integration. The computational bottleneck for numerical integration of

Equations (4.1)�(4.2) is evolving all yj variables for each xj . Therefore, we con-

struct a reduced model involving only the variables of interest x. This reduced

model consists of (4.1) with Bxy replaced by a stochastic (VARX) parameteriza-

tion b̃ := b̃(x̃) that is meant to emulate b := Bxy(x,y1, . . . ,yJ). To distinguish

between variables in the original deterministic model (e.g. x), and their ana-

logues in the reduced stochastic model (e.g. x̃) we use the tilde-notation for all

variables in the stochastic model. Thus, the reduced model is

dx̃

dt
= F + Lxx̃+ Bxx(x̃, x̃) + b̃(x̃) . (4.3)

The state-dependence of b̃(x̃) allows the properties of the stochastic pro-
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cess to evolve together with the resolved variables (x̃). The parameters of

the process b̃(x̃) are inferred from reference simulation data (X,B), obtained

by numerical integration of Equations (4.1)�(4.2). Here X := (x1, . . . ,xN ),

B := (b1, . . . , bN ) in which xn := x(tn) := x(n∆t) denotes the n-th time-

instance of x and bn := Bxy(x
n,yn

1 , . . . ,y
n
J ) denotes the n-th time-instance of

b. Finally, N denotes the number of sample points (or time steps).

In section 2 we present a simple and straightforward VARX framework that

uses sparse coe�cient matrices. Then in Section 3 we apply our parameteriza-

tion to the Lorenz '96 (L96) model [99], a frequently used test bed for developing

parameterization methods [25, 30, 111, 153]. Next, we discuss technical details

of our parameterization in Section 4 and present numerical results in Section 5.

2 VARX representation

We model the stochastic term b̃ in (4.3) as a VARX process (see, e.g, Lütkepohl

[100]). Numerical implementation of such a process is straightforward (e.g.

Pavliotis [114]). We make no assumptions about the underlying physics of

b, instead we infer the VARX process from the second-order statistics of b

estimated from the available sample data (X,B).

2.1 Mean: linear combination of covariates

A complete characterization of a VARX(p), i.e. VARX of order p, is given by

its drift matrices Ai, i = 1, . . . , p and D and covariance matrix ΣΣT :

b̃n = a0 +A1b̃
n−1 + · · ·+Apb̃

n−p +Dxn +Σξn (4.4)

where a0 is the linear o�set, A1, . . . , Ap represent the endogenous drift matrices,

D is the exogenous drift matrix, ΣΣT is the covariance matrix, and ξn is a

vector of independent normally distributed random variables, ξn ∼ N (0, I).

The matrices Ai, D, and Σ all have size K ×K.

Borrowing some terminology from statistics, the variable b̃n is known as the

regressand and the variables b̃n−1, . . . , b̃n−p,xn are known as the regressors. By

choosing regression coe�cient matrices Ai or D to be nonzero, the variable b̃n

becomes dependent on those regressors. By imposing certain sparsity patterns
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on the drift matrices in (4.4) we can choose to make b̃n conditional on b̃ or x at

speci�c space or (past) time points. For example, b̃nk can be made conditionally

dependent on its previous state (n − 1) at neighboring gridpoints (k ± 1) by

letting the matrix elements (A1)l,m be nonzero if (l,m) = (k±1, k) or if (l,m) =

(k, k ± 1). Similarly, if D is diagonal, b̃nk is conditionally dependent on xnk (i.e.,

at the same spatial grid point with index k) but not on xnk′ at grid points k′ ̸= k.

Typically, the matrices Ai and D in (4.4) are obtained through maximum

likelihood estimation. We apply the weighted least squares procedure [137] to

obtain accurate estimators. The training phase of our proposed algorithm con-

sists primarily of calculating the regression coe�cients (i.e., the elements of the

matrices Ai, D and ΣΣT ). Since the weighted least squares procedure is highly

optimized, this training phase is very cost-e�cient. Generalizations of this ap-

proach are possible by modeling b̃ as realizations of a Gaussian process where

the drift components are represented as generalized linear models (GLIMs) (see

e.g. McCullagh and Nelder [107] for a detailed description on GLIMs).

With data-driven approaches, the number of parameters that must be esti-

mated and/or the amount of sample data needed, can grow exponentially in the

number of conditioning variables, see, e.g, the binning approach in Verheul and

Crommelin [143], Verheul et al. [145] or the conditional Markov chain setups in

Crommelin and Vanden-Eijnden [30], Dorrestijn et al. [38], Gottwald et al. [65].

Here we mitigate this problem by imposing the structure of VARX, wherein,

even if all matrices in (4.4) are fully dense (and thus b̃nk is conditional on the

entire vector xn as well as on all vectors b̃n
′
with n− p ≤ n′ ≤ n− 1), we still

only have K+K2(p+2) parameters. By restricting the drift matrices in (4.4) to

be sparse, the number of parameters reduces further. For example, if we choose

all Ai, D and ΣΣT to be diagonal matrices, then the number of parameters

grows linearly in p and K.

With this approach, estimation and order selection are nontrivial issues. For

example, order selection is di�cult because b will be very strongly correlated

with itself at short lag times and e�ectively decorrelated at long lag times. For

a more detailed discussion of the order selection problem, see Section 3.2.1. An-

other di�culty for estimation is that the model needs to satisfy the stationarity

constraints, otherwise the trajectory of the model variables can diverge to in-

�nity. In order for the VAR(p) to be stationary, the matrix elements of the Ai
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must satisfy the VAR(p) stability constraint [101]:

∀λ :
∣∣Inλp −A1λ

p−1 −A2λ
p−2 · · · −Ap

∣∣ = 0 ⇒ |λ| < 1. (4.5)

Equivalently, the VAR(p) is stationary if the eigenvalues of the companion

matrix F have modulus less than one, where the companion matrix of (4.4) is

de�ned as: 
A1 A2 . . . An

1n 0 . . . 0

0
. . . 0

...

0 . . . 1n 0

 . (4.6)

The development of regression methods that explicitly enforce this stability

constraint is beyond the scope of this study. We only verify that our models

satisfy the stability constraint a posteriori.

2.2 Covariance and resulting VARX

We consider two di�erent forms of the covariance ΣΣT of the VARX process

(4.4). In one, the covariance matrix is a multiple of the identity matrix, i.e. all

cross-covariances are ignored and auto-covariances do not depend on k. In the

other, the covariance matrix is fully dense, allowing for nonzero cross-covariances

and k-dependent auto-covariances.

Given the constant o�set a0 and the matrices {Ai}1≤i≤p and D, we calculate

the residuals bn − a0 −A1b
n−1 − · · · −Apb

n−p −Dxn of the regression �t from

the sample time series (X,B). For the �rst form of the covariance we set

ΣD := σI, where σ is the averaged standard deviation over the residuals over

all k. Although this form is extremely simple, it has only a single parameter (σ)

so that it can easily be used even when K is very large. For a dense covariance

matrix we compute all the pairwise sample covariances from residuals. ΣL is

then obtained from the Cholesky decomposition of the sample covariance matrix.

This is straightforward and general but becomes unfeasible for largeK (we recall

that the covariance matrix and hence also ΣL is of size K ×K). However, we

include this covariance structure as an �optimal� reference for the current study.

Applying this VARX(p)model as forcing b̃ to the reduced model (4.3) results
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in the following stochastic model:

x̃n+1 = T
(
∆t, F + Lxx̃

n + Bxx(x̃
n, x̃n) + b̃n

)
,

b̃n = a0 +A1b̃
n−1 + · · ·+Apb̃

n−p +Dx̃n +Σξn,
(4.7)

where T represents a numerical integration scheme of choice (see Section 4),

and Σ can be either ΣD or ΣL. We emphasize the coupling between x̃ and b̃

goes in both directions: b̃ enters as a forcing term in the time integration of

x̃, whereas the time evolution of b̃ depends on x̃ through the dependence of

the VARX process on x̃. Such a state-dependence allows for the modeling of

di�erent dynamical regimes of b̃. If x and the chosen lagged b are adequate

predictors, such regimes can occur in a similar fashion as in the sample data

(X,B).

We note that while the VARX process allows for a spatially varying (i.e.,

k-dependent) mean and covariance, only the mean is able to vary temporally.

Therefore, we expect our parameterization to be less suitable for cases where the

small-scale processes have multiple variance regimes under the same large-scale

state x.

2.3 Computational complexity

The methodology we propose here requires very little computational cost in

the training stage. First, the regression matrices Ai and D in (4.7) are calcu-

lated with a single least squares call. The least squares algorithm is very e�cient

with computational complexity O(K2N), and a well-optimized routine on many

computational platforms. Second, the covariance ΣΣT is estimated straightfor-

wardly with the sample (co)variances calculated from the residuals, also with

complexity O(K2N). In the case of VARX models with diagonal covariance, the

matrix root ΣD of ΣDΣ
T
D is computed directly with sample standard deviations.

In the alternate case of fully dense covariance, the matrix root ΣL is computed

with a Cholesky decomposition. For N > K, the Cholesky decomposition is a

less costly operation with O(K3) complexity that only needs to be calculated

once in the initialization phase because our covariance is constant over time.

The motivation for restricting the regression matrices Ai, D and Σ (by im-

posing sparsity, e.g. a diagonal form) has two origins: �rst, the memory us-
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age. Many ocean-atmosphere studies consider models with very large grids, e.g.

K = 5122 gridpoints. Full covariance matrices for such grids would contain

upward of 5124 nonzeroes. Such matrices typically are too large to �t in the

computing platform's work memory, making e�cient online computations un-

feasible. Second, the cost of numerically integrating x̃ over time, i.e. the online

costs of the stochastic methodology. The online cost of our stochastic method-

ology is dominated by the matrix vector products (MVPs) required to simulate

b̃ (4.7). If we restrict the number of nonzero conditioning variables, the drift

matrices Ai and D become sparse, e.g. (K ×K)-band matrices. This reduces

the complexity of the drift MVPs in (4.7) to linear in K. The structure of

the covariance has a di�erent impact on the computational complexity of (4.7).

The diagonal (K ×K)-matrix ΣD gives linear (in K) complexity of the MVPs

in (4.7). By contrast, the lower-triangular ΣL gives O(K2) complexity of the

MVPs in (4.7), causing a computational bottleneck for large K. Imposing spar-

sity (other than diagonality) on Σ in a statistically and dynamically consistent

way is nontrivial yet important for systems with large K; we leave this topic for

future study.

2.4 Comparison to other stochastic parameterizations

In this study we compare di�erent stochastic parameterizations in terms of their

e�ect on the long-term statistical behavior of the resolved model variables (see

Section 5). Besides the VARX model proposed here, this comparison includes

parameterizations based on AR(1) and on NARMAX processes that have been

proposed before in the literature. For clarity, we label the di�erent parameteri-

zations with short descriptive names (e.g. (VARX(30) ΣL)) instead of referring

to equation numbers. We compare the following parameterizations:

� WN: white noise process. This is an �unconditioned� parameterization (no

conditioning on x̃ or on past values of b̃). It is included as it represents

the simplest stochastic model, and enables us to assess the merit of more

complicated stochastic models.

� AR(1): autoregressive process, independently applied to each of the grid

points k. Discussions on AR processes can be found in standard text books

on time series analysis. In Arnold et al. [4], parameterization with AR(1)
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is proposed and discussed in more detail. They consider a parameteriza-

tion consisting of both a deterministic and stochastic part: a regressed

polynomial dependent on x (deterministic) and a one-step autoregression

(stochastic) with varying options for noise models (we compare to their

"additive" noise model). They show both that the stochastic parame-

terizations improve signi�cantly over deterministic parameterizations and

that the autoregression models are a major improvement over WN. We

include this parameterization as it is a special case of the VARX models

proposed here.

� VARX(p) ΣD: vector autoregressive process with exogenous variable. We

choose all matrices Ai = 0 for i ̸= p (see (4.4)) and we enforce sparsity by

requiring the drift matrices Ap, D and the noise matrix ΣD all to be diag-

onal. We choose a single nonzero drift matrix Ai to circumvent parameter

estimation issues, as resolving these would require a study of itself, see

Section 3.2.1 for a detailed discussion. As discussed above, imposing spar-

sity on the regression coe�cient matrices is intended to limit the number

of parameters and to make this parameterization approach more tractable

for high-dimensional ocean and atmosphere models.

� VARX(p) ΣL: similar as VARX(p) ΣD, however with a lower triangular

(non-diagonal) root covariance matrix ΣL instead of a diagonal one (ΣD).

This allows us to explicitly model the cross-correlations between spatial

points. ΣL is not sparse; we leave the case of a non-diagonal but sparse

covariance matrix for a follow-up study (nearing completion).

� NARMAX1,2,0,1 and NARMAX1,1,1,0: nonlinear autoregression moving

average with exogenous input models, proposed for parameterization by

Chorin and Lu [25]. The subscripts denote the values of parameters

(p, r, s, q) that de�ne the speci�c NARMAX structure (e.g. the num-

ber of endogenous variables, or the number of moving average terms).

The NARMAX parameterization in Chorin and Lu [25] is applied inde-

pendently to each grid point. Thus, NARMAX is scalar-valued, whereas

VARX is vector-valued. When the matrices Ap, D and Σ are all multiples

of the identity matrix, VARX can be seen as a speci�c case of NARMAX:

in addition to the VARX description, NARMAX includes moving average
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noise and nonlinearities in the regressed terms.

While model selection for NARMAX (selecting the structure of nonzero

model variables in its general form) is a nontrivial problem, we compare

to the speci�c two NARMAX models proposed in Chorin and Lu [25].

These models were selected for the exact same test con�guration as the

unimodal con�guration in this study (see Table 4.1) and the con�guation

in Crommelin and Vanden-Eijnden [30]. Here we test how these NAR-

MAX models perform in case of the trimodal con�guration. We refer to

Chorin and Lu [25] for the extensive algorithmic details of the NARMAX

parameterizations and model choices.

3 Lorenz '96 model

The 2-layer Lorenz '96 (L96) model [99] is frequently used to test and develop

stochastic parameterizations. It was formulated as an idealized representation

of atmospheric �ow, but has similarities to various multiscale models. The L96

model equations from Lorenz [99] were reformulated in Fatkullin and Vanden-

Eijnden [48] to explicitly express the time scale gap ϵ between the variables xk

and variables yj,k:

d xk
dt

= xk−1(xk+1 − xk−2)− xk + F + bk (4.8)

d yj,k
dt

=
1

ϵ
[yj+1,k(yj−1,k − yj+2,k)− yj,k + hyxk] (4.9)

with bk :=
hx
J

J∑
j=1

yj,k, (4.10)

where k = 1, . . . ,K and j = 1, . . . J can be interpreted as spatial indices for the

variables xk and yj,k on a circle with constant latitude. Because of the circle's

periodicity, the following periodic boundary conditions hold:

xk = xk+K , yj,k = yj,k+K , yj+J,k = yj,k+1. (4.11)
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3.1 Model parameter con�gurations

Generally, the variables xk and yj,k are referred to as the �large-scale� and �small-

scale� variables. When setting ϵ ≪ 1 there is clear time scale separation, with

xk and yj,k the fast and slow variables, respectively. Instead, we choose ϵ = 0.5,

so that no clear temporal scale gap exists, as is more realistic for oceanic and

atmospheric �ows (see also Crommelin and Vanden-Eijnden [30]). This choice

also provides a more challenging setup for parameterizations because it does

not allow for parameterization by averaging of the fast variables. We test two

L96 model con�gurations, with di�erent parameters, as detailed below. The

parameter choices for these two con�gurations are also listed in Table 4.1 for

clarity.

For the �rst con�guration we follow the setup from Crommelin and Vanden-

Eijnden [30] and Chorin and Lu [25], with parameters (ϵ,K, J, F, hx, hy) =

(0.5, 18, 20, 10,−1, 1). This con�guration of the L96 model results in a refer-

ence distribution for xk that is unimodal and not too far from Gaussian (see,

for example, Figure 4.5a). We refer to this as the unimodal con�guration.

To put our suggested parameterization approach further to the test we also

use a nonstandard con�guration of the L96 model that we call the trimodal

con�guration. By increasing the forcing F , the number of spatial points K, and

the feedback parameter from the fast to the slow scales hx, the stationary dis-

tribution and dynamics of the L96 model become signi�cantly more di�cult to

reproduce with the reduced model with stochastic parameterization (see Figure

4.5b for the stationary distribution of xk). The model parameters that de�ne

the unimodal and trimodal con�gurations are listed in Table 4.1.

3.2 Stochastic model

The L96 system is ergodic [48] and invariant under spatial translations. The

statistical properties of each xk are identical. As a direct consequence, the cross-

correlations are the same for each spatial point k, this satis�es the assumptions

of the simple covariance form discussed in Section 2.2.

The sample data (X,B) of the two di�erent deterministic L96 reference sim-

ulations reveal strong correlations between xk and bk, as illustrated for one such

k in Figures 4.1a and 4.1b. Because the statistical properties of xk are identical

for all k, this �gure is equivalent to that for any other k. Additionally, Figures
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4.2a and 4.2b show that the conditional probability density function (CPDF)

P (bk|xk) can change signi�cantly for di�erent ranges of xk-values. Therefore,

because xk is a resolved variable in both the deterministic and stochastic L96

models, xk is a valuable predictor variable for (the distribution of) bk. Clearly,

the presence of a good predictor is not guaranteed, and identifying one may be

nontrivial for some problems or application �elds. For ocean modeling, this was

explored in [13, 117, 160].

Because the (conditional) distributions of bk in Figure 4.2a resemble normal

distributions, we assume the underlying distribution of bk to be Gaussian. This

starting point will test the robustness of our parameterization, because the

trimodal con�guration exhibits distinct multi-modality in bk. While Figure 4.1b

does suggest a clear correlation between xk and bk for the trimodal con�guration,

there is a distinct circular pattern present in the scatter plot. The marginal

distributions of bk and xk are also clearly trimodal, see Figures 4.2b and 4.5b,

respectively.
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Figure 4.1: Strong correlation between xk and bk shown by scatter plots for the
reference deterministic L96 eqs. (4.8)�(4.10): (a) unimodal, and (b) trimodal
con�gurations.

The stochastic L96 model is obtained by forcing a reduced version (without

bk) of (4.8) with the VARX b̃ (4.7) that aims to approximate bk in each k.

Following the model reduction approach as described in Section 2, the stochastic

L96 model then becomes:

x̃n+1
k = T

(
∆t, x̃nk−1(x̃

n
k+1 − x̃nk−2)− x̃nk + F + b̃nk

)
(4.12)
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Figure 4.2: CPDFs for bk dependent on xk for the reference deterministic refer-
ence L96 eqs. (4.8)�(4.10): (a) unimodal, and (b) trimodal con�gurations

b̃n = a0 +A1b̃
n−1 + · · ·+Apb̃

n−p +Dx̃n +Σξn, (4.13)

where T is the numerical integration scheme of choice (see Section 4).

3.2.1 Order selection - lag time choice

The order selection of the VARX(p) b̃ in (4.4) determines the temporal decor-

relation of the VARX. By choosing the order p appropriately, one can match

the stochastic model with the decorrelation timescale of the reference model.

In this section, let us consider the choice for nonzero lag times p, i.e. the order

selection for the VARX(p). The reference xk has strongly oscillating, slowly

decaying correlations (see also Figures 4.6a and 4.6b later on). To model this

behavior perfectly one would need a high order VARX process. However, esti-

mating a VARX(1) that is numerically stable is rather straightforward whereas

estimating a stable VAR(p) of arbitrary order p is di�cult due to the constraint

(4.5). This constraint can only be veri�ed a posteriori; we are not aware of

estimation methods that guarantee (4.5) is satis�ed a priori. Therefore, we opt

for a single nonzero Ap and, in doing so, interpret the process as VARX(1) over

an interval p times larger than the sampling interval. This leaves us with the

choice for the nonzero lag contribution p.

Because we choose the coe�cient matrices Ap and D diagonal (see Section

2.3), connections to univariate autoregressive (AR) models are easily made,

particularly in the case of ΣD (as it is also diagonal). In univariate time series
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Figure 4.3: The partial autocorrelation functions (PACFs) for bk for (a) the
unimodal and (b) the trimodal �resolving� deterministic reference L96 simula-
tions (see Table 4.1).

analyses, the order p of AR(p) models is often determined with the Box�Jenkins

method [21]. Both the ACF and partial autocorrelation function (PACFs) are

used to determine the order of an AR model for approximating timeseries data.

Here the partial autocorrelation of lag n′ is the autocorrelation between bnk
and bn+n′

k that is not accounted for by lags 1 through n′ − 1, i.e. the partial

autocorrelation is a conditional correlation that controls for all shorter lags:

PACF(bk, l) =
Cov(bnk , b

n−l
k | bn−1

k , . . . , bn−l+1
k )√

Var(bnk | b
n−1
k , . . . , bn−l+1

k )Var(bn−l
k | bn−1

k , . . . , bn−l+1
k )

(4.14)

Although the sample (P)ACFs do not necessarily describe the same autore-

gressive properties as the analytical (P)ACFs, they typically are used in model

selection. It is common practice that when the ACF shows sinusoidal behavior

with no clear decay to 0 (as is the case for both the unimodal and trimodal

deterministic reference simulations, see Figures 4.6a�4.6b), the order p of the

modeling AR(p) is chosen at the last spike in the PACF after which the PACF

no longer returns to this same level [83]. The PACFs of the �resolving� unimodal

and trimodal bk are plotted in Figure 4.3. The PACF in Figure 4.3a shows such

a spike around ∆τ = 0.14, hence we pick p = 14 for the unimodal case. The

PACF in the trimodal case, Figure 4.3b, decays very gradually, showing no

clear steep monotonous decline. This necessitates, according the Box�Jenkins

method, the choice for a relatively long time scale of approximately ∆τ = 0.3,

i.e. p = 30.
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4 Practical implementation of stochastic parameteri-

zation

The stochastic L96 model Equations (4.12)�(4.13) is forced by the VARX model

b̃ in (4.13) dependent on exogenous (x̃) and endogenous (past b̃) states. The

reference data (X,B) is used to approximate appropriate CPDFs from which b̃

is sampled, determined by the selection of endogenous and exogenous variables.

For example, if we select D and A1 to be scalar matrices and Ai = 0 for i > 1,

then by (4.13) b̃n is sampled from the Gaussian approximation of the CPDF

P (bn | xn = x̃n, bn−1 = b̃n−1), or P (bn | x̃n, b̃n−1) for short.

We solve the L96 system directly using a classical second-order Runge�Kutta

integration scheme [48]. The regression coe�cients and covariance matrix of

the VARX (4.13) are precomputed with least squares. The VARX is integrated

over time together with the L96 system and applied to the timestepping of x̃k

(4.12). The pseudo-code for our stochastic L96 model is shown in Figure 4.4.

All parameters used in our deterministic and stochastic simulations are listed

in Table 4.1.

Table 4.1: Parameter settings for all deterministic and stochastic L96 models
Parameter Explanation unimodal L96 trimodal L96

ϵ scale separation 0.5 0.5
K # discretized large-scale spatial points / # re-

solved x-variables
18 32

J # discretized small-scale spatial points /# un-
resolved y-variables per x-variable

20 16

F forcing on the x variables 10 18
hx scale coupling constant −1 −3.2
hy scale coupling constant 1 1
∆t integration time step full L96 model 10−3 10−3

∆τ integration time step reduced L96 model 10−2 10−2

δt sampling interval 10−2 10−2

N Number of integration time steps in a simula-
tion

106 + p 106 + p

We choose the sampling interval δt of the reference data (X,B) to be larger

than the integration time step ∆t of the full L96 model. We pick δt = 10∆t,

same as in Crommelin and Vanden-Eijnden [30]. This reduces the amount of

data that must be handled, at the price of loosing some high-frequency (short

timescale) information. However, as we set the integration time step of the

reduced model equal to the sampling interval, i.e. ∆τ = δt (see Table 4.1),
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input : X : concatenated vector of sample data for xn
k , size NK × 1.

B : concatenated vector of sample data for bnk , size NK × 1.

/* Precompute the VARX coe�cients a0, Ai, and D */
Z = (1,X(lag 0,B(lag 1), . . . ,B(lag p)), the regressor variable matrix, size K(N − p)× (p+ 2)
(a0, D,A1, . . . , Ap) = (ZTZ)−1ZTB

/* Either compute ΣD */
R = VEC(bn − a0 −A1bn−1 − · · · −Apbn−p −Dxn), where R the

concatenated residual vector (K(N − p)× 1)

ΣD =
√

Var(R) IK×K

/* Or compute ΣL */
/* Let [R] denote the reshaped ((N − p)×K)-matrix corresponding to R */
ΣL = Chol(Cov([R])), where Cov([R]) a (K ×K)-matrix

(x̃−p+1,...,0, b̃−p+1,...,0) = (x−p+1,...,0, b−p+1,...,0)
for i := 0 to N − 1 do

/* Sample b̃ */

b̃n = a0 +A1b̃n−1 + · · ·+Apb̃n−p +Dx̃n +Σξn, where ξn ∼ N (0, I)

/* Update x̃ with second order Runge�Kutta, notation: let x+d denote the
module rotation of points xk, e.g. x+1 := (x2, . . . , xK , x1)) */

x̃′ = x̃n + ∆τ
2

(x̃n
−1(x̃

n
+1 − x̃n

−2)− x̃n + F + b̃n)

x̃n+1 = x̃n +∆τ(x̃′
−1(x̃

′
+1 − x̃′

−2)− x̃′ + F + b̃n)
endfor

Figure 4.4: Algorithm for the time integration of the stochastic L96 model.
Notation: B(lag i) is the vector of concatenated sample data bj for all p+1−i ≤
j ≤ N − i, i.e. the sample data of bk at i time steps in the past (where the �rst
p− i vectors b of B are skipped to make each B(lag i) equal in length). Similar
notation is used for X(lag 0) to denote the vector of concatenated sample data
xj for all p+ 1 ≤ j ≤ N .

these are very short timescales that are not resolved by the reduced model

anyway.

5 Numerical results

In this section we compare the statistical behavior of the reduced model with

VARX stochastic parameterization Equations (4.12)�(4.13) with the reference

model Equations (4.8)�(4.9). Recall from Section 3 that the statistics of xk

are identical for all k. Therefore, the statistical properties determined for

xk describe the full statistics of x, i.e. equal for all k. Let µ := IE(xk) and

σ :=
√
IE((xk)2)− IE(xk)2 denote the mean and standard deviation of xk, re-
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spectively, where IE denotes the average over time. We assess the following

statistical criteria of the variable of interest x of the models:

� The probability density function (PDF) of xk.

� The autocorrelation coe�cient (ACF) of xk:

ACF(τ) := σ−2IE
[
(xtk − µ)(xt+τ

k − µ)
]
.

� The cross-correlation coe�cient (CCF) between xk and xk+1: CCF :=

σ−2IE
[
(xtk − µ)(xtk+1 − µ)

]
.

� The mean wave amplitude IE(|um|) for each wave number 0 ≤ m ≤ K/2,

where a time series for the wavenumber vector u := x̂ is obtained by

calculating the Fourier transform of x at every time step.

� The wave variance IE(|um − IE(um)|2),

For the VARX model in (4.13) we use several di�erent settings, each de-

scribed explicitly in the following subsections. We show a representative selec-

tion of the results. All VARX models have a single nonzero Ap for chosen lag

time p to circumvent VARX estimation stability issues (as discussed earlier).

Furthermore, all VARX models until Section 5.3.2 have a diagonal covariance

structure, i.e. a diagonal matrix ΣD. To reduce the number of parameters we

choose the coe�cient matrices Ap and D to be diagonal in all cases.

First, in Section 5.1, we illustrate for completeness the contrast between the

deterministic reference L96 simulations and simulations with the simplest pos-

sible stochastic model, denoted (WN ), in which the b̃k are independent white

noise terms. Then, in Section 5.2 we discuss results for stochastic model sim-

ulations with a single regressor: either only endogenous (Multi AR(1)) or ex-

ogenous (WND), respectively. Next, we demonstrate that with both regressors

(VARX(14) ΣD) (called �double regressor�) the unimodal L96 reference statis-

tics are reproduced very accurately in Section 5.3.1. However, we also show

that (VARX(30) ΣD) does not perform well in case of the trimodal L96 model

con�guration. In Section 5.3.2, we therefore compare the (VARX(30) ΣD) and

(VARX(30) ΣL) simulations, and show that by allowing for a non-diagonal

structure of the covariance we also succeed at reproducing the statistics of the

trimodal L96 model accurately. In section 5.4, we compare the results for our
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VARX models to those for the NARMAX models proposed in Chorin and Lu

[25]. While the NARMAX models perform very accurately for the unimodel

L96 test case, we show that the NARMAX models do not perform well for the

trimodal L96 con�guration. Neither the trimodal distribution of xk nor the

wave statistics were reproduced accurately. All our simulations here use the

parameter con�gurations as listed in Table 4.1.

5.1 White noise parameterizations

We start with an `unconditioned' stochastic parameterization, that is to say a

parameterization in which b̃nk is not conditioned on its own past state(s) nor on

x̃n:

b̃n = σI ξn, (WN )

where ξn is a vector of independent normally distributed random variables.

Note that this model is equivalent to choosing A0, . . . , Ap, D = 0 and Σ = σI in

(4.13). In this simplest possible stochastic parameterization, the time evolution

of each b̃k is a series of Brownian motion increments, i.e. a white noise process,

therefore we denote it (WN ). We include it here to verify the added value of

conditioning in the more complicated parameterizations discussed later on.

In Figures 4.5a and 4.5b we plot the distributions of xk for the two L96 model

con�gurations. First, the �resolved� reference simulation obtained with the full

L96 model Equations (4.8)�(4.9), second, the �unresolved� reference simulation,

i.e. (4.8) with bk = 0. The former is what we aim to reproduce with our reduced

models. The latter of the two we include as a worst-case reference, the result

of a reduced model with no parameterization at all to account for the missing

unresolved scales.

The overall shape of the distribution of xk in the unimodal L96 model is

reproduced (although the details are not well captured), both with the (WN )

parameterization and without any parameterization (the �unresolved� case), see

Figure 4.5a. This result is in line with, e.g, Crommelin and Vanden-Eijnden

[30] and Chorin and Lu [25], where it was also found that the distribution of

xk is not very di�cult to reproduce with a reduced model, in case of the L96

unimodal con�guration. However, Figure 4.5b shows that the distribution of xk

for the trimodal L96 con�guration is not reproduced at all by (WN ), nor by the

�unresolved� case.
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Interestingly, Figures 4.5 and 4.6 show that the (WN ) parameterization

introduces no signi�cant changes to the long-term statistics of the �unresolved�

model without any parameterization. Thus, the perturbations of the white noise

are not able to alter the dynamics of the �unresolved� model.
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Figure 4.5: Comparison between PDFs of interest for (a) the unimodal L96 and
(b) the trimodal L96 con�guration (see Table 4.1) resulting from unconditioned
stochastic simulations using (WN ), as well as �resolving� and �unresolving� (bk =
0) deterministic reference simulations.

Similarly, the ACF, CCF, and wave criteria are not reproduced to any sat-

isfactory degree with (WN ), see Figures 4.6a-4.6h. In Figures 4.6a and 4.6b

one sees that the reduced model with (WN ) exhibits ACFs that are very simi-

lar to those of the unresolved deterministic model; neither the amplitudes nor

the long decorrelation scales shown by the resolved deterministic simulation

are reproduced. The CCFs in Figures 4.6c and 4.6d show the same problems.

The mean wave amplitudes and wave variances of (WN ) in Figures 4.6e-4.6f

and Figures 4.6g-4.6h, respectively, show that the reduced models have more

uniform spread over the larger wave numbers and do not peak at the correct

wavenumbers, compared to the resolved deterministic model.

5.2 Single regressor parameterizations

Next, we consider reduced model simulations with single regressors for the

VARX models. We expect that the state-dependency, temporally correlated

mean, and exogenous predictor variable of the VARX model will improve the

performance, capturing more of the features from the resolving L96 reference

simulation.

104



Chapter 4 5. Numerical results

0 1 2 3 4 5 6 7 8 9 10

-0.5

0

0.5

1

(a)

0 1 2 3 4 5 6 7 8 9 10

-0.5

0

0.5

1

(b)

0 1 2 3 4 5 6 7 8 9 10

-0.5

0

0.5

1

(c)

0 1 2 3 4 5 6 7 8 9 10

-0.5

0

0.5

1

(d)

0 1 2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

3

(e)

0 2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

2.5

(f)

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(g)

0 2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(h)

Figure 4.6: Comparison between ACFs (a)-(b), CCFs (c)-(d), wave mean am-
plitude (e)-(f), and wave variance (g)-(h) for the unconditioned stochastic
simulations (WN ) as well as the �resolving� and �unresolving� deterministic ref-
erence simulations for unimodal (a), (c), (e), and (g) and trimodal (b), (d),
(f), (h) con�gurations.
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First, let us consider the autoregressive model (Multi AR(1)) consisting of

multiple independent AR(1) processes due to its diagonal drift coe�cient matrix

(A1):

b̃n = a0 +A1b̃
n−1 +ΣDξ

n. (Multi AR(1))

Second, we consider a vector of independent white noise processes with drift:

b̃n = a0 +Dx̃n +ΣDξ
n, (WND)

As can be seen from the criteria plotted in Figure 4.7, the (Multi AR(1))

model does not signi�cantly improve over (WN ) (cf. Figures 4.5a�4.6b). By

contrast, Figure 4.7a shows that the (WND) model reproduces the unimodal

distribution of xk signi�cantly better than the (WN ) model. This is due to the

xk dependence of (WND). It suggests that the exogenous variable x indeed holds

predictive value for Bxy (as suggested in Section 1). Also, the (Multi AR(1))

model is independent of x̃, unlike (WND). However, while (WND) reproduces

the distribution of xk accurately in the unimodal case (Figure 4.7a), it fails to

do so in the trimodal case (Figure 4.7b). Furthermore, (WND) improves only

slightly on the ACFs of xk when compared to (WN ) (see Figure 4.7c). These

same conclusions are reached for the CCFs and wave criteria (not shown). To

introduce more spatio-temporal consistency in the VARX we test combinations

of endogenous and exogenous regressors in the next section.

5.3 Double regressor parameterizations

5.3.1 Diagonal covariance

As motivated in Section 3.2.1, we suggest the (VARX(14) ΣD) model here for

parameterization in the case of the unimodal L96 con�guration:

b̃n = a0 +A14b̃
n−14 +Dx̃n +ΣDξ

n. (VARX(14) ΣD)

Figure 4.8 shows that the state-dependence and temporal correlation intro-

duced by D and A14 in (VARX(14) ΣD) result in near-perfect approximations

of the reference statistics. Not only does the distribution of x̃k match perfectly

to the reference (Figure 4.8a), but also the wave criteria (Figures 4.8b and 4.8c)

and correlations (Figures 4.8d and 4.8e) match almost exactly. We emphasize
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Figure 4.7: Comparison between (a)-(b) the PDFs and (c)-(d) the ACFs of
interest for both the unimodal and trimodal L96 con�gurations (see Table 4.1),
respectively, resulting from stochastic simulations with single regressor variables.

the accuracy of the reproduced long sinusoidal decorrelation structure visible in

4.8d and 4.8e, a particularly challenging feature of the reference L96 simulations.

However, this strong performance does not extend fully to the trimodal L96

con�guration. For this con�guration we suggested p = 30 in Section 3.2.1, i.e.

the following (VARX(30) ΣD) model:

b̃n = a0 +A30b̃
n−30 +Dx̃n +ΣDξ

n. (VARX(30) ΣD)

The results with this model for parameterization are shown in Figure 4.9.

The PDF of xk (Figure 4.9a), the wave mean (4.9b), the wave variance (4.9c)

and ACF (4.9d) are qualitatively correct, but not fully accurate. For example,

the wave variance (Figure 4.9c) has peaks at wavenumbers 6 and 12 that are

too high. Also, the oscillation periods of the ACF and CCF are too long (by

circa 10%) with the reduced model.
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Figure 4.8: Comparison of (a) PDFs, (b) mean wave amplitude, (c) wave
variance, (d) ACFs, and (e) CCFs of the reduced model using (VARX(14) ΣD)
and of the unimodal deterministic reference.

5.3.2 Fully dense covariance

The trimodal L96 con�guration has strongly non-Gaussian features, making

this a particularly challenging test case for our approach to use VARX (i.e.

Gaussian) processes for parameterization. As displayed in Figures 4.5b and 4.7b,

the trimodal nature of the PDF for xk is not captured at all with the (WN ),

(WND) and (Multi AR(1)) parameterizations. The results with (VARX(30)

ΣD) in the previous section are a major improvement. In this section we aim

to improve further by using a fully-dense covariance matrix ΣLΣ
T
L instead of a

diagonal one, as described in Section 2.2:

b̃n = a0 +A30b̃
n−30 +Dx̃n +ΣLξ

n. (VARX(30) ΣL)

Figure 4.10 shows the results using (VARX(30) ΣL). The trimodal structure

in the PDF of xk is reproduced accurately, as shown in Figure 4.10a. The main

deviation from the trimodal L96 reference is a slightly higher kurtosis in the

PDF for x̃k. Furthermore, the oscillations in the ACF and CCF have somewhat

shorter period compared to those resulting from (VARX(30) ΣD), and align
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Figure 4.9: Comparison of (a) PDFs, (b) mean wave amplitude, (c) wave
variance, (d) ACFs, and (e) CCFs of the reduced model using (VARX(30) ΣD)
and of the trimodal deterministic reference.

better (albeit not perfectly) with the reference trimodal L96 model, compare in

particular Figures 4.9e and 4.10e to see an improved CCF reproduction. Finally,

the mean amplitude and variance of most wave numbers di�er only slightly from

the reference values in Figures 4.10b and 4.10c. Altogether, the results, while

not perfect, are very satisfactory for this highly challenging test case.

5.4 NARMAX parameterizations

As motivated in Section 2.4, we compare the VARX parameterizations from

Sections 5.2 and 5.3 to the NARMAX parameterization proposed in Chorin and

Lu [25]. Speci�cally, we compare to the performance of the two con�gurations

of NARMAX used in Chorin and Lu [25] de�ned by the function Φ (for further

details on the NARMAX description see Chorin and Lu [25]):

Φn = µ+ a1z
n−1 + b1,1x

n−1 + b2,1x
n−2 + d1ξ

n−1, (NARMAX1,2,0,1)

Φn = µ+ a1z
n−1 + b1,1x

n−1 + b1,2(x
n−1)2+

b1,3(x
n−1)3 + c1,1(Rδ(x

n−1)), (NARMAX1,1,1,0)
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Figure 4.10: Comparison of (a) PDFs, (b) mean wave amplitude, (c) wave
variance, (d) ACFs, and (e) CCFs of the reduced model using (VARX(30) ΣL)
and of the trimodal deterministic reference.

where ξn are independent Gaussian random variables with zero mean and vari-

ance σ2, Rδ(x) represents the resolved features of the L96 model that are only

dependent on x, and µ, σ2, ai, bi, ci, di are the parameters to be estimated. The

NARMAX parameterization is applied independently to each grid point k. Be-

cause the L96 model is spatially homogeneous, the estimated NARMAX param-

eters are equal for all grid points k.

Chorin and Lu [25] show that the NARMAX models above perform very well

for the unimodal L96 con�guration (see Table 4.1), using di�erent sampling

intervals. The (NARMAX1,2,0,1) model gives good results with δt = 10−2,

whereas (NARMAX1,1,1,0) performs well with δt = 5 ·10−2. It is not dicussed in

Chorin and Lu [25] how these speci�c con�gurations of NARMAX were selected.

The choice of con�guration is important though: we applied (NARMAX1,1,1,0)

to the case with δt = 10−2 (including re-estimation of parameters) and found it

to be less accurate than (NARMAX1,2,0,1) (results not shown).

Analogous to the tests in Section 5.3 we test the performance of the NAR-

MAX models also with the trimodal L96 con�guration (see Table 4.1). The

estimated model parameters resulting from the maximum likelihood estimation
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(see Chorin and Lu [25]) are shown in Table 4.2.

Figure 4.11 shows that the NARMAX models have comparable performance

for the trimodal L96 con�guration. Neither of the NARMAX models reproduces

the trimodal distribution of xk accurately, as shown in Figure 4.11a. However,

they do reproduce accurately the mean and variance of the distribution.

Table 4.2: Estimated parameters in the NARMAX models for δt = 0.01
(NARMAX1,2,0,1) a1 b1,1 b2,1 d1 µ σ2

0.9780 -0.1276 0.1134 0.9998 - 0.0096 0.0028

(NARMAX1,1,1,0) a1 b1,1 b1,2 b1,3 c1,1 µ σ2

0.9729 -0.0669 -0.0001 0.0001 -0.0028 0.0467 0.0106

Figures 4.11b and 4.11c show that the wave statistics are also not reproduced

accurately. The most prominent peak at wavenumber 5 is shifted, and some of

the higher wavenumbers have overestimated mean and variance. For the corre-

lation functions (ACF and CCF), both (NARMAX1,2,0,1) and (NARMAX1,1,1,0)

result in oscillations with periods that are somewhat too short (Figures 4.11d

and 4.11e), whereas the VARX models in section 5.3 gave periods that are a bit

too long in the trimodal case (e.g. Figure 4.10).

Overall, the VARX models (in particular (VARX(30) ΣL)) show better per-

formance on the trimodal test case than the NARMAX models, with more

accurate reproduction of the PDF and wave statistics. It must be noted that

although we estimated the parameters of the NARMAX models speci�cally for

the trimodal test case (see Table 4.2), we did not alter their con�gurations (i.e.,

the parameters p, r, s, q that determine the structure of the NARMAX model).

A di�erent NARMAX con�guration may be more optimal for the trimodal test

case, however we have no guidance on how to select such a con�guration.

6 Discussion

In this study we proposed a method for data-driven stochastic parameterization

using vector autoregressive processes with exogenous variable (VARX). This

method is used to parameterize the feedback from unresolved processes in re-

duced models of multiscale dynamical systems. The choice for VARX is aimed

speci�cally at spatially extended dynamical systems, for which it is important

to capture spatial correlations, while keeping the number of parameters that
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Figure 4.11: Comparison of (a) PDFs, (b) mean wave amplitude, (c) wave
variance, (d) ACFs, and (e) CCFs of the NARMAX models proposed in Chorin
and Lu [25] and of the trimodal deterministic reference.

must be estimated from data as low as possible.

We tested the proposed VARX parameterization method on the 2-layer L96

model (4.8) - (4.10), replacing the feedback vector b by a VARX b̃ so that the

�small-scale� variables yj,k no longer had to be resolved. The process b̃ was

trained to emulate the dynamical e�ects of b. With a proper formulation of

b̃ the simulations of the reduced model were able to reproduce the statistical

criteria of the reference simulation accurately. We note that these criteria focus

on long-term statistical properties rather than on the accuracy of short-term

predictions.

The stochastic approach formulated in this study was developed with the

aim to limit the amount of required computer memory and number of parame-

ters, as these can become computational bottlenecks in large, spatially extended

systems (see e.g. Verheul et al. [145]). To this end, we modeled the VARX mod-

els with diagonal coe�cient matrices Ai and D. The covariance was estimated

in a straightforward manner from the regression residuals. We considered both a

diagonal and a fully dense covariance matrix. Our VARX model set-up is a par-

ticular case of a Gaussian process that uses generalized linear models (GLIMs)

to describe its mean matrix, where the covariates of the GLIM represent spatio-
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temporal process variables. In this study we chose to formulate our approach

in the more speci�c terms of VARX processes.

In order to test the performance of the proposed stochastic parameteriza-

tions, we compared the reduced stochastic model simulations with two di�erent

con�gurations of the deterministic L96 reference model. First, the unimodal

con�guration, where �unimodal� refers to the overall shape of the probability

distribution of x, the variable of interest. This is a �standard� con�guration of

the L96 model that has also been used in previous studies. Second, to provide

a very challenging test case and push our methodology to its limits, we also

considered a trimodal con�guration of the L96 model. This is a non-standard

con�guration for the L96 model that exhibits three clear distinct peaks in the

distribution of x. The trimodal con�guration tests the robustness of the pro-

posed VARX process. As mentioned, the performance was assessed using a

number of statistical criteria of the resolved model variable x: the probability

density function (PDF), the autocorrelations (ACFs), cross-correlations (CCFs),

and the mean and variance of the wavenumber vector of x.

In our results we compared di�erent stochastic parameterizations for the re-

duced model Equations (4.12)�(4.13). First, we tested both conditioning on the

state vector x and self-conditioning on the stochastic process b in parameteri-

zations (WND) and (Multi AR(1)), respectively. Here, self-conditioning refers

to conditioning on the process itself at previous times. The results show that

these regressors serve di�erent roles in the conditioning. The state-dependent

regressor x served e�ectively as predictor variable for the unresolved process,

whereas the self-conditioning on b was instrumental in preserving temporal

(de)correlations in the VARX. Each of these regressors by themselves was un-

successful in giving satisfying results. However, combining the state-dependent

and self-conditioning regressors proved very successful. The statistical criteria

of the reference unimodal L96 model were reproduced very accurately using just

a diagonal covariance matrix. For the trimodal test case, VARX with a diago-

nal covariance matrix gave qualitatively correct but not very accurate results.

We showed quantitative improvement of results using a fully-dense covariance

structure.

Finally, we also compared the performance of the VARX models to the

NARMAX models proposed in Chorin and Lu [25]. As shown in Chorin and Lu
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[25], the NARMAX models perform very accurately for the unimodal L96 test

case. However, we showed that for the trimodal test case, the NARMAX models

were not able to reproduce the trimodal distribution of the resolved variable xk

accurately, nor its wave statistics.

The NARMAX models provide a parameterization for a single grid point, so

they are applied independently to all grid points. By contrast, the VARX model

can give a parameterization for the entire grid at once (as the VARX process

is vector-valued), making it easier to include spatial correlations and spatial

inhomogeneity. These spatial characteristics can be important for applications

such as ocean modeling.

In future work we plan to develop the VARX stochastic parameterization

methodology further. An important issue to consider is how to compute e�-

ciently with a covariance structure that allows for spatial correlations without

having to construct a fully dense matrix. This should involve a number of pa-

rameters that is at most linear in the number of spatial degrees of freedom, e.g.

grid points. We intend to apply these methods in tests with a complex ocean

model.
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A comparison of methods for

estimating sparse covariance and

precision matrix roots

We study the problem of estimating the covariance and precision matrices, as

well as their roots, from data of a high-dimensional spatially correlated process.

To facilitate e�cient sampling of a stochastic process that has approximately

the same covariance as the data, it is highly bene�cial if the root of either the

covariance or the precision is a sparse matrix. Moreover, the dimension of the

process can be so high that loading the fully dense sample covariance matrix

in its entirety into memory is not practically feasible, not even as part of an

algorithm to estimate a sparse approximation.

A variety of methods exists for estimating sparse covariance and precision

matrices and their roots, many of which are variations of the graphical lasso. In

this study we compare several state-of-the-art estimation methods, using data

generated by a prototype SPDE model. We assess the errors and the sparsity of
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the estimates obtained by the di�erent methods, and we compare their eigen-

spectrum against that of the (non-sparse) sample covariance computed directly

from the data. We �nd that the Convex Sparse Cholesky Selection (CSCS)

algorithm proposed by Khare et al. [88] gives the best performance. The CSCS

method yields e�cient and accurate solutions and gives the user control over the

balance between accuracy and sparsity by means of its regularization parameter.

1 Introduction

In this study we consider the problem how to sample from a high-dimensional

correlated Gaussian distribution without placing a fully dense covariance matrix

(or its square root) in memory. It is motivated by our recent work on stochastic

parameterization with a vector autoregressive model with exogenous variables

(VARX process) in Verheul and Crommelin [144]. That work was aimed to-

wards application in the domain of numerical ocean modeling where the system

state can be of very high dimension. Therefore an important concern is how to

handle cases where the dimension of the VARX process is high. As an example,

the (idealized) ocean model used in Verheul et al. [145] was formulated on a

horizontal numerical grid of size 401 × 401, so that if a VARX parameteriza-

tion were used for that model over its entire spatial domain, the VARX process

would have dimension 4012.

To make simulations computationally e�cient it is highly bene�cial if the

coe�cient matrices that determine the VARX process are sparse. Let us write

the VARX process of order p as yn = a0+A1y
n−1+ · · ·+Apy

n−p+Dxn+Sξn,

where ξn is the noise vector and xn the vector of exogenous variables. Ai (i =

1, ..., p), D and S are coe�cient matrices. If dim(yn) = K, these matrices are

of size K ×K so it is clear that sparsity becomes important if e.g. K = O(105)

as in the example mentioned earlier.

In Verheul and Crommelin [144] we focused on sparse matrices for the drift

components of a VARX process, i.e. on the matrices Ai and D. In the current

study we turn to the noise component of the VARX process with its matrix S

and the associated covariance matrix SST , and to the question how to estimate

these matrices. We explore and review state-of-the-art methods for estimating a

sparse covariance matrix, its inverse, and their matrix roots. To our knowledge,
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no previous studies exist that explore such methods to use them for stochastic

parameterization in ocean modeling, the application of primary interest to us.

In the remainder of this introduction we discuss the following. In Section

1.1 we summarize several assumptions and limitations that arise from the ocean

modeling application. These are important factors for the selection and assess-

ment of the methods discussed in this study. We also list some main notation

used throughout the paper. In Section 1.2 we brie�y introduce some basic

concepts and results from the �eld of sparse covariance and inverse covariance

matrix estimation. In Section 1.3 we introduce the graphical lasso, the method

that forms the basis for most of the methodologies considered in this paper.

Section 1.4 presents an overview of the material discussed in the rest of the

paper.

1.1 Assumptions, limitations, and notation

The study we present here is motivated by ocean modelling and stochastic pa-

rameterization. This intended application entails some assumptions and limita-

tions that we summarize here as they are relevant to the selection and evaluation

of the estimation methods in later sections. For more extensive discussions of

the relevant background of ocean modeling and of stochastic parameterizations,

see Verheul et al. [145], and Verheul and Crommelin [143] and Verheul and

Crommelin [144], respectively.

1. Stochastic modelling: In ocean modeling, the so-called mesoscale tur-

bulent eddies in the ocean need to be parameterized because it is compu-

tationally infeasible to resolve them explicitly. Deterministic parameteri-

zations are insu�cient because they can, at best, represent the ensemble-

mean of the e�ect of the unresolved scales (denoted with y). Stochastic

parameterizations are required to capture the variability around this mean

and its impact on the resolved scales (denoted x).

2. Unresolved scale distribution: We assume that the dynamical e�ects

of the unresolved scales on the resolved scales can be represented with a

high-dimensional VARX process with correlated noise (corresponding to

spatial correlations).
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3. Spatial decorrelation: We assume there exists a �nite spatial decorre-

lation scale ρ > 0 such that the model variables yi and yj are (approx-

imately) pairwise conditionally independent if d(i, j) > ρ (where d is a

distance function). That is, the process y evaluated in spatial grid indices

i and j for which d(i, j) > ρ is pairwise conditionally independent, mean-

ing that yj is independent from yi conditional on all other y-components:

yj ⊥ yi | y\{i,j}. This is a reasonable assumption for the mesoscale eddy

forcing in ocean modeling.

4. Spatial inhomogeneity: The correlation between model variables yi and

yj is determined by both the distance between i and j and the absolute

location of i and j on the spatial grid.

5. Data availability: We assume the availability of sample data of length

N both for the resolved-scale ocean state (x) and for the e�ect of the

unresolved scales (y), e.g. in the form of satellite measurements or a

highly accurate simulation over short spatiotemporal intervals.

6. High-dimensionality: In ocean modelling, the number of spatial grid

points K can be on the order of 105 or more. For the methodologies we

investigate it is important that they can be scaled to such high dimensions.

In particular, the problem dimension can be higher than the number of

available data points, i.e. K > N .

7. Memory limitations: For high-dimensional problems it is unfeasible to

load the covariance matrix (or its inverse) in computer memory if it is

dense. This makes methodologies that need to construct either of the two

matrices in full unsuitable.

8. Gradual fraction of explained variance: The mesoscale turbulent

eddy forcing cannot be represented well with a small number of principal

components [123]. Thus, if λ are the (ordered) eigenvalues of the covari-

ance matrix Σ (i.e. λkvk = Σvk), the fraction of explained variance,

i∑
k=1

λk /

K∑
k=1

λk, (5.1)
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increases only gradually with i. There is no small number i such that this

fraction is close to 1.

In the above, we introduced the general grid index i. Of course, a single

index i only coincides precisely with corresponding grid coordinates in the case

of a one-dimensional grid. In case of a D-dimensional grid with multi-index

i := (i1, . . . , iD), we use i as a single-index notation (e.g. by de�ning i =

i1+K1(i2−1) if D = 2 and i1 runs from 1 to K1). The distance function d(i, j)

must be de�ned accordingly.

Finally, in Table 5.1 we list notation used throughout this study.

Table 5.1: Notation used throughout this study

Notation Format Explanation

p ∼ P Real-valued scalar Random variable p is sampled
from distribution P

xni Real-valued scalar Deterministic model variable at
time n∆t at grid point i

ỹni Real-valued scalar Stochastic model variable at time
n∆t at grid point i

yi Vector of length N Model variables at grid point i,
i.e. yi = (y1i , . . . , y

N
i )

yn Vector of length K Model variables at time n∆t, i.e.
yn = (yn1 , . . . , y

n
K)

Y Matrix of size (N,K) Model variable y across all tem-
porally and spatially sampled
points

Σij Real-valued scalar True covariance between stochas-
tic variables yi and yj

Σ Matrix of size K ×K True covariance matrix of
stochastic �eld y

Σ Matrix of size K ×K Sample covariance matrix based
on sample data Y

Σ̂ Matrix of size K ×K Approximated covariance matrix
based on sample data Y

z ∼ N (µ,Σ) Vector of length K Sample from K-variate Gaussian
distribution with mean µ and co-
variance Σ
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1.2 Sparse covariance and precision matrix estimation

In Verheul and Crommelin [144] we developed a stochastic parameterization

method that �ts vectorized autoregressive processes with exogenous parameters

(VARXs) to given model data (X,Y ) resulting from a deterministic reference

model. A VARX of order p, denoted by VARX(p), with exogenous parameter

x̃ is given by (see e.g, Lütkepohl [100]):

ỹn = a0 +A1ỹ
n−1 + · · ·+Apỹ

n−p +Dx̃n + Sξn. (5.2)

In the VARX(p) de�nition above, a0 is the linear o�set, A1, . . . ,Ap are the

endogenous drift matrices, D is the exogenous drift matrix, ξn ∼ N (0, I) is

a vector of independent normally distributed random variables, and S is the

root of the covariance matrix, i.e. Σ = SST . Numerical implementation of

such a process is straightforward (e.g. Pavliotis [114]). We can infer accurate

sparse approximations of the VARX drift matrices and linear o�sets from the

second-order statistics estimated from the available sample data (X,Y ) [144].

To obtain a sparse VARX representation of y, we also need a sparse rep-

resentation (or approximation) of the covariance root S in (5.2), within the

limitations put forward in Section 1.1. The covariance matrix Σ is sparse if

many of the random variables are uncorrelated. That is, let z ∼ N (µ,Σ) be a

vector of Gaussian random variables, then we have:

Property 1. Σij = 0 if and only if zi and zj are mutually independent.

In an ocean model, variables at di�erent grid points are typically correlated,

albeit only weakly over longer distances [123]. In such cases, Σ will not be

sparse. As an alternative, we can use the precision matrix Θ and its root

L. These are de�ned by Θ := Σ−1 and LTL = Θ, so that we have Θ−1 =

L−1(L−1)T . The distribution N (µ,Θ−1) = N (µ,L−1(L−1)T ) is equivalent to

N (µ,Σ). Therefore, the VARX in (5.2) is equivalent to:

ỹn = a0 +A1ỹ
n−1 + · · ·+Apỹ

n−p +Dxn +L−1ξn (5.3)

where the product L−1 ξn =: bn can be computed by solving the system Lbn =

ξn with forward substitution.

It is convenient to work with the equivalent VARX formulation (5.3) because
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in many applications the precision matrix is sparse, e.g. speech recognition

[124, 125], genetics [24, 75, 154], and macroeconomics [37, 93].

The assumption we make here is that one can more easily get a sparse yet

accurate approximation of the precision matrix than of the covariance matrix.

This is due to the inherent relationship between the precision matrix and con-

ditional dependence in the random variable: each zero element in the precision

matrix corresponds to conditional independence in the random variable. That

is:

Property 2. Θij = 0 if and only if zi and zj are conditionally independent

given all other elements in z.

For example, the Matérn covariance function is shown to have sparse preci-

sion matrix when ν + d/2 is integer [96, 150, 151]. This is illustrated in Figure

5.1, where the Matérn covariance matrix for a one-dimensional grid with 100 grid

points is fully dense, but the corresponding precision matrix is highly sparse.

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

Figure 5.1: Sparsity patterns for the covariance (left) and precision (right) ma-
trices generated by a Matérn covariance function.

Due to memory limitations (see Limitation 7), we want to avoid explicit

calculation of the full sample covariance matrix. Consequently, calculating the

matrix root or the inverse directly from the full sample covariance matrix is

also unwanted. Therefore, an approximation method to �nd Σ̂ or Θ̂, or directly

Ŝ or L̂, should not require to put either Σ or Θ fully in memory. So here

�the approximated covariance� is a di�erent approximation than the sample
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covariance. Instead, it simultaneously attempts to introduce sparsity in its

covariance approximation.

Thus, our aim is to arrive at a sparse yet accurate approximation of either

the covariance root or the precision root matrix, estimated from data. We can

distinguish three groups among the methods we consider to get these sparse

approximations (Ŝ or L̂). In the �rst group, a sparse approximation of the

covariance is estimated (e.g. using a tapering method), followed by Cholesky

decomposition to get the approximate covariance root Ŝ. Thus, Ŝ is estimated

indirectly. In the second group it is L̂ that is estimated indirectly: �rst one

estimates a sparse approximation of the precision matrix (e.g. using a variant

of the graphical lasso, see Section 1.3), and then one computes L̂ by Cholesky.

We note that only under speci�c conditions does sparsity in a matrix lead to

sparsity in its matrix root (a well-known case being a band-diagonal matrix: the

Cholesky decomposition of a banded matrix with bandwidth b is itself a banded

matrix with bandwidth b/2) [64]. Finally, in the third group, L̂ is estimated

directly: we consider a state-of-the-art method that uses many parallelized ap-

proximations of the columns of L based on likelihood penalization. More on

this in Section 4.1.

In what follows, we make use of two di�erent decompositions of the precision

matrix: the Cholesky decomposition Θ = LTL and the modi�ed Cholesky

decomposition Θ = MTD−1M . Here L is a lower triangular matrix, M

is a lower triangular matrix with unit diagonal, and D is a diagonal matrix

with positive diagonal. The values in Θ and M have related interpretations:

the entries in the ith row of Θ can be interpreted as regression coe�cients

of the ith variable on all other variables, whereas the non-zero entries in M

are the regression coe�cients of its corresponding variable on the preceding

variables. The entries in D are the residual variance of the regression �t. The

three matrices D,L,M are connected by the straightforward relationship Lij =

Mij/
√
Djj for every i ≤ j. This interpretation assumes some ordering of the

variables in Θ because the Cholesky decomposition is not invariant to variable

reordering.

One wonders how sparsity patterns in Θ and M are related. While in

general the sparsity patterns are di�erent between the two matrices, there are

two special cases. First, as mentioned above, if Θ is a banded matrix with
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bandwidth b, then M is itself a banded matrix with bandwidth b/2. Second,

we know that the sparsity pattern of Θ and M are equal if and only if the

corresponding graph of M is chordal and the vertices are ordered based on a

perfect vertex elimination scheme [112]. However, neither of these cases are

expected for ocean �ows: �nding a small bandwidth is unlikely for grids of

dimension greater than 1, and imposing a chordal structure on M is overly

restrictive.

1.3 Graphical lasso

Consider the problem of estimating theK×K precision matrixΘ of aK-variate

probability distribution from N independently and identically distributed sam-

ples y1, . . . ,yN . Particularly, we consider the estimation of a sparse precision

matrix in a memory-e�cient setup so that it is suitable for applications with

large K, potentially much larger than the number of available samples, i.e.

K ≫ N . A natural way [46, 60] to estimate the precision matrix Θ given

sample data Y for a Gaussian model is by maximizing the log-likelihood:

Θ̂MLE = argmax
Θ̂

log det(Θ̂)− tr(Θ̂Σ), (5.4)

whereΣ = Y TY /N is the sample covariance matrix. Θ̂MLE is the maximum

likelihood estimator of Θ. However, matrix elements that are zero in Θ will in

general not be exactly zero in Θ̂MLE. Moreover, if K > N , then the sample

covariance matrix may not be invertible [7, 33]. To ensure that the estimated

covariance is invertible, a common approach (e.g. Banerjee et al. [7], Dempster

[35], Friedman et al. [57], Rothman et al. [120], Yuan and Lin [159]) is to add

ℓ1-regularization that also explicitly imposes sparsity on Θ̂:

Θ̂GL = argmax
Θ̂≻0

log det(Θ̂)− tr(Θ̂Σ)− λ
∥∥∥Θ̂∥∥∥

1
. (5.5)

Here, the search for estimators considers only positive de�nite matrices Θ̂ ≻
0. The �rst term of (5.5) works toward positive de�niteness, because detΘ > 0

is a necessary (but not su�cient) condition for Θ to be positive de�nite. The

solution Θ̂GL is positive de�nite for all λ > 0, even if Σ is singular. The

second term penalizes Θ̂ moving away from Σ
−1
. Finally, the ℓ1-regularization
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term encourages sparsity in Θ̂. One of the main challenges of solving this

optimization problem is �nding the appropriate regularization strength λ. This

parameter controls the trade-o� between penalizing non-sparsity and minimizing

the cost-function. But this term guarantees that if λ is su�ciently large, then

the precision matrix estimator Θ̂GL is sparse due to the lasso-type penalty [141].

This approach is more commonly known as the graphical lasso (GL) [7, 57,

159]. The graphical lasso (5.5) is a convex problem for which there are solution

algorithms available that solve the problem in polynomial time with interior

point methods [22] or even faster with coordinate descent algorithms [34, 57].

Moreover, this estimator is known to give certain statistical guarantees, such

as consistency between Frobenius and spectral norms under the condition of

bounded minimum and maximum eigenvalues. The most important bene�cial

statistical properties for the study here are listed below:

� The ℓ1 based optimizer recovers the sparsity pattern of the precision ma-

trix Θ under loose restrictions on the number of edges in the adjacency

matrix of Θ and the number of observations N [120].

� The ℓ1 based optimizer is consistent between the Frobenius and spectral

norms [120].

� The ℓ1 based optimizer is suitable for data Y sampled from multivariate

distributions that can be either Gaussian or non-Gaussian. This is because

the graphical lasso corresponds to maximization of an ℓ1-penalized log-

determinant Bregman divergence [118].

From the �eld of sparse inverse covariance estimation (or, equivalently,

sparse precision matrix estimation) we know there are many algorithms that

solve (5.5). Some well-known methods include the block-coordinate descent

method COVSEL [8] and the greedy coordinate-descent method aimed at large

scale parallellization SINCO [127]. State-of-the-art solvers for (5.5) include

the graphical lasso (GLASSO [57]) and the quadratic approximate inverse co-

variance (QUIC [79]) method. Each of these methods solve (5.5) through

(block)-coordinate descent. GLASSO has been widely adopted by statisticians

through the GLASSO R-package. GLASSO, and other �rst-order methods like

it [34, 126, 128], can be implemented straightforwardly and perform fast com-
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putations because they mainly use gradient information at every step. How-

ever, these �rst-order methods are limited to linear convergence at best [17].

To achieve superlinear convergence, recent studies have looked at second-order

methods [94, 129] that use, at least in part, the Hessian of the cost function

[78]. QUIC is a popular second-order method that solves the ℓ1-objective di-

rectly. QUIC has been shown to achieve superlinear convergence [79].

However, the traditional graphical lasso is commonly considered to be in-

tractable for large datasets because of memory limitations [105, 161] (�tting

the K × K sample covariance matrix in memory can already be problematic)

and di�culties with convergence of the established solvers [78]. In recent years

several improvements have been proposed over both GLASSO (variants with

better convergence properties (P-GLASSO and DP-GLASSO [106])) and QUIC

(to support �big data� (BiqQUIC [80]) or to take advantage of sparsity in its

components in a massively parallellizable way (SQUIC [19])).

One of the methods we investigate in the current study is the max-det matrix

completion (MDMC) method as proposed by Zhang et al. [161]. This method-

ology is able to inform a �restricted graphical lasso� (RGL) formulation with

prior information on the precision sparsity pattern.

1.4 Overview of work

The remainder of this study is structured as follows. In Section 2 we discuss the

prototype stochastic partial di�erential equation (SPDE) model used to assess

the various methodologies. We perform simulations with this model to generate

data sets with varying statistical properties. These data sets are used for test-

ing and comparing the di�erent estimation methods. In Section 3 we present

multiple state-of-the-art methodologies from the literature for estimating sparse

covariance, precision, or precision root matrices. These methodologies are then

tested for accuracy and sparsity in Section 4, using the data sets mentioned

above. Finally, in Section 5 we present the �nal takeaways of this comparison

study and what next steps could look like to bring the results into practice.
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2 Prototype model to generate data

To evaluate the capability of the methodologies that will be presented in Section

3 we generate datasets with a simple prototype model. The model is based on a

SPDE driven by spatially correlated white noise. We consider this SPDE both

on a 1D and on a 2D spatial domain, with periodic boundary conditions. The

1D and 2D versions are

yt(u, t) = b yuu(u, t)− a y(u, t) + w′(u, t), (5.6)

yt(u, v, t) = b (yuu(u, v, t) + yvv(u, v, t))− a y(u, v, t) + w′(u, v, t), (5.7)

where yt := ∂t y is the time derivative of y, u and v are the spatial coordinates

and yuu and yvv are the second spatial derivatives of y. The linear term ay

represents damping. The force w′ that drives the SPDE is Gaussian noise that

is white in time and correlated in space.

The SPDEs (5.6) and (5.7) are discretized in space on a uniform grid with

K gridpoints and spacing ∆u, using central �nite di�erences for the di�usion

terms (yuu and yvv), and integrated in time using an Euler scheme. The resulting

system can be written schematically as yn+1 =M yn +wn, with the matrix M

determined by the discretization and n the time index. We use two types of

noise:

wn = Iξn, (5.8)

wn = Sξn, (5.9)

where I is the identity matrix, ξn ∼ N (0, I), and S is the matrix root of

covariance matrix Σ de�ned through the distance function d(i, j):

Σi,j := exp
(
−0.5 d(i, j)2

)
. (5.10)

The main purpose of this SPDE-based model is that is enables us to eas-

ily generate datasets with di�erent spatial correlation properties and di�erent

principal component eigenspectra. Throughout this study we consider four sep-

arate use cases of the prototype model: either the 1D (5.6) or 2D SPDE (5.7)

with either of the noise realizations de�ned in (5.8) and (5.9). Thus, a partic-
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ular use case is identi�ed by concatenating these two choices, e.g. model (5.6)

with noise (5.8) refers to the 1D SPDE model with spatially uncorrelated white

noise. These models allow for nontrivial, but simple, ways to generate spatially

correlated noise that distort the temporal evolution of y. Table 5.2 shows the

parameter settings used throughout this study that are chosen to both resem-

ble interesting dynamics and to satisfy the model constraints a∆t < 1 and

2 b∆t∆u−2 < 1.

Table 5.2: Model con�gurations for prototype model in Section 2.

Parameter Value (5.6) K = 16 Value (5.6) K = 64 Value (5.7) K = 256
a 1 1 1
b 0.1 0.1 0.1
dim 1 1 2
d(i, j) |i− j| |i− j| ∥i− j∥2
∆t 0.005 0.005 0.005
N 104 104 104

∆u 0.1 0.1 0.1
K 16 64 (16× 16)

Figure 5.2 illustrates the dynamical behavior of the 1D SPDE model (5.6)

for the model parameter settings K = 64 in Table 5.2. Particularly, one sees

stronger spatial correlation in the model variable y when using the covariance

root S instead of I in the noise (di�erence between Figures 5.2a and 5.2b).

Additionally, Figures 5.2e and 5.2f show that, while more steep for the model

with spatially correlated noise, both models have gradual increase in fraction of

explained variance across the eigenspectrum, in line with Assumption 8. This

enables a clean test bed for the methodologies presented in Section 3.

We use three distinct con�gurations related to dimensionality of the proto-

type model in Section 2: two con�gurations of the 1D model (5.6) with di�erent

spatial resolutions and one con�guration of the 2D model (5.7). These model

con�gurations can be found in Table 5.2.
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Figure 5.2: Examples of the dynamics of the 1D SPDE model (5.6) with param-
eter con�gurations from Table 5.2. Figures (a), (c), and (e) illustrate spatio-
temporal dynamics of (5.6) with spatially uncorrelated noise (5.8). Analogously,
Figures (b), (d), and (f) for spatially correlated noise (5.9). Figures (a)-(b) il-
lustrate the spatio-temporal evolution of model variable y, Figures (c)-(d) illus-
trate the spatio-temporal evolution of the white noise w. Figures (e)-(f) show
the variance fraction explained by the �rst i eigenmodes.
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3 Sparse matrix estimation methodologies

3.1 Sparse covariance estimation

In this section we consider how to estimate a sparse covariance matrix from data.

The covariance root can be obtained in a next step by Cholesky decomposition

(as also summarized in section 1.2). Many approaches exist to estimate a sparse

covariance matrix based on a sample covariance matrix Σ. The latter can

be constructed directly from the data as Σ = Y TY /N . Here we present an

overview of the thresholding, banding, and tapering methods that do not require

to put Σ fully in memory, in line with Limitation 7 in section 1.1.

3.1.1 Thresholding methods

First, the thresholding methods aim to �nd a covariance matrix estimate Σ̂ω

that truncates small elements in the sample covariance to zero:

(Σ̂ω)i,j =

{
Σi,j , if i = j

Σi,j1{|Σi,j | ≥ ω}, if i ̸= j
, (5.11)

where 1 denotes the indicator function and ω denotes some scalar threshold-

ing value. Note that the thresholding covariance preserves symmetry and can

be easily obtained without storing the sample covariance fully in memory. In

fact, the thresholding operator can be calculated with a limited memory usage

of O(K) because Σ̂ω can be constructed element-wise and can fully parallelized.

However, the thresholding operator does not guarantee positive de�niteness

of Σ̂ω. Positive de�niteness is guaranteed if
∥∥∥Σ̂ω −Σ

∥∥∥ ≤ ϵ and λmin(Σ) > ϵ,

where λmin indicates the smallest eigenvalue and ϵ > 0 [18]. This condition

restricts the degree to which Σ can be truncated. Unfortunately, this condition

is quite restrictive.

3.1.2 Banding methods

Second, banding methods truncate elements Σi,j to 0 based on the distance

between grid points i and j:

(Σ̂k)i,j := Σi,j1(d(i, j) < k), (5.12)
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where d(i, j) is the distance function. This approximation method is ideal

when the indices of the spatial grid are ordered in such a way that d(i, j) > k ⇒
Σi,j ≈ 0. The banding operator preserves symmetry by de�nition of the distance

function. The banded matrix Σ̂k can also be obtained in a memory-e�cient

way because the sparsity pattern of Σ̂k can be identi�ed independently from

the sample covariance Σ. However, the banding operator does not guarantee

that Σ̂k is positive de�nite.

3.1.3 Tapering methods

Third, tapering methods are an extension of banding methods that additionally

preserves positive de�niteness of the approximated covariance [58]. A tapering

method `regularizes' the covariance matrix by calculating the (element-wise)

Hadamard product (denoted by ⊙):

Σ̂T = Σ⊙ T , (5.13)

for tapering matrix T that is chosen to be positive de�nite and compactly

supported:

Ti,j := c(d(i, j)), (5.14)

where c : R+ → R+ is a compactly supported covariance function that

decreases monotonically to 0 and has the property c(0) = 1, and d(i, j) is the

distance function.

The tapering operation (5.13) preserves positive de�niteness because the

Hadamard product between positive de�nite matrices is itself positive de�nite

[76, 130]. Additionally, the support of covariance function c is typically chosen

in such a way that Ti,j = 0 (and thus (Σ̂T )i,j = 0) when d(i, j) ≥ k for some

range parameter k. Therefore, the tapering approach promotes sparsity in the

covariance approximation.

While the tapering de�nition (5.13) might suggest that one needs to con-

struct the sample covariance Σ fully to calculate the tapered covariance, let us

remark that the Hadamard product operates element-wise and that the choice

(5.14) allows one to identify the sparsity pattern of T (and thus Σ̂T ) indepen-

dently from that of Σ.

Besides introducing sparsity due to so-called localization, tapering has also
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been shown to regulate the variance of the sample covariances [73, 77]. It can

also be shown that for tapering matrices with appropriate polynomial covariance

function c the mean squared error (MSE) of the tapered covariance predictions

converges asymptotically to the minimal error as available data approaches in-

�nity [59].

Di�erent tapering methods are identi�ed by their choice of covariance func-

tion c. Here, we consider the following covariance functions (with support

u := d(i,j)
dmax

≤ 1 with dmax > 0) as examples, where c(u) = 0 outside the support:

Epanechnikov covariance [45]: c(u) := 1− u2 (5.15)

Wendland covariances [149]: c(u) = ψ1,0 = 1− u (5.16)

c(u) = ψ2,1 = (1− u)3(3u+ 1) (5.17)

c(u) = ψ3,2 = (1− u)5(8u2 + 5u+ 1) (5.18)

3.2 Sparse precision estimation

Here we present an overview of sparse precision matrix estimation methods we

consider. Similar to the covariance estimation methods, these methods have to

be followed by a Cholesky decomposition step to obtain the matrix root L that

can be used during simulation of the VARX process, as discussed in section

1.2. They can be roughly subdivided in two categories: penalized likelihood

methods (discussed in Section 3.2.1) and column-by-column methods (discussed

in Section 3.2.2). The penalized likelihood methods provide various ways of

solving:

Θ̂ = argmax
Θ

log det(Θ)− tr(ΘΣ)−
∑
i ̸=j

P (|Θi,j |), (5.19)

where P (|Θi,j |) is a penalty function applied over the o�-diagonals of Θ

to promote sparsity. The various ways of de�ning P (|Θi,j |) and the di�erent

routines to solving (5.19) de�ne the di�erent penalized likelihood methods. Note

that the graphical lasso (5.5) is an example of penalized likelihood.

The column-by-column methods follow a di�erent approach, combining the

conditional distributions of multivariate Gaussians and linear regressions to ap-

proximate each column of Θ separately. Di�erent routines to solve such a cost

function constitute the di�erent column-by-column methods. All of the pre-

sented column-by-column methods use a speci�c variation of the lasso regression
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method to determine the columns of Θ.

3.2.1 Penalized likelihood methods

Most penalized likelihood methods are a variation of the generalized graphical

lasso (GL) (5.5) to �nd sparse Θ̂. As discussed in Section 1.3, the GL estima-

tor (5.5) is widely considered to be intractable for large datasets because of its

memory requirements. Recent research has focused on the usage of heuristics,

e.g. by using thresholding to simplify and parallelize matrix calculations. These

heuristics often come at the cost of convergence problems [51]. Currently, how-

ever, relaxations (e.g. heuristics) are the only viable way to solve the graphical

lasso once the number of variables becomes very large [34, 51, 80, 105].

Following the work in Fattahi and Sojoudi [49], Fattahi et al. [50], Mazumder

and Hastie [105], Sojoudi [135] an extension of the graphical lasso was derived

in Zhang et al. [161] that imposes an a priori sparsity pattern H and penalizes

only the o�-diagonals of Θ̂ with a weighted lasso penalty λi,j :

Θ̂ = argmax
Θ≻0

log det(Θ)− tr(ΘΣ)−
n∑

i=1

n∑
j=i+1

λi,j |Θi,j |

subject to Θi,j = 0 ∀(i, j) /∈ H,

(5.20)

This problem is called the restricted graphical lasso (RGL). Here, the spar-

sity pattern H represents a priori knowledge on the correlation structure. For

example, in our target application each variable represents the ocean �ow state

at a particular grid point and we can assume that variables that are geographi-

cally far apart are (approximately) pairwise conditionally independent, see As-

sumption 3 in section 1.1.

The GL estimator Θ̂ can be recovered in a more computationally e�cient

way by solving a variation of (5.5) that imposes the sparsity pattern G on Θ̂

Fattahi and Sojoudi [49], Fattahi et al. [50], Zhang et al. [161]:

Θ̂ = argmax
Θ≻0

log det(Θ)− tr(ΘΣλ)

subject to Θi,j = 0 ∀(i, j) /∈ G.

(5.21)
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where the soft-thresholded sample covariance matrix Σλ is given by:

(Σλ)i,j =


Σi,j , if i = j,

Σi,j − λ, if Σi,j > λ and i ̸= j,

0, if |Σi,j | ≤ λ, and i ̸= j,

Σi,j + λ, if Σi,j ≤ −λ and i ̸= j.

(5.22)

The problem in (5.21) is named maximum determinant matrix completion

(MDMC). The graph associated withG (that we also callG, unless the di�erence

becomes important) is an undirected graph with K nodes and edges between

vertices i and j if and only if (i, j) ∈ G.

The MDMC problem has a closed-form solution, that is extremely fast to

compute if G is chordal [50]. Some state-of-the-art iterative solutions embed

a nonchordal graph G in a chordal graph and solve the resulting problem as a

semide�nite program with an interior-point method [1, 2, 32]. Recently, Zhang

et al. [161] proposed an e�cient Newton-CG (conjugate gradient) method also

based on chordal embedding. They show that their method is highly e�cient

both from a computational and convergence perspective. They also demonstrate

that the MDMC solution to the RGL problem supports high-dimensional prob-

lems. Speci�cally, they show that their algorithm converges to an ϵ-accurate

solution in O(K log ϵ−1 log log ϵ−1) ≈ O(K) time and O(K) memory. The only

costly step in their suggested methodology is the soft-thresholding of the sample

covariance matrix which is O(K2) in time and memory. We do not see this as

a problem because this step is fully parallelizable.

The MDMC problem relies on the equivalence between the thresholding

techniques and the GL. There are certain conditions on the GL estimator that

guarantee this equivalency [135]. However, these conditions are impractical in

use because they can not be veri�ed without solving the GL. A follow-up study

[49] found more practical restrictions that can be veri�ed using only the sample

covariance matrix. While these restrictions are easier to verify, doing so is still

not trivial. Most practically, Fattahi and Sojoudi [49] additionally show that

the thresholding techniques (5.21) and RGL (5.20) are equivalent when the ℓ1-

regularization parameter λ in (5.5) is �large�. We consider this a very loose

restriction because sparsity is precisely what we strive for.

133



Chapter 5 3. Sparse matrix estimation methodologies

3.2.2 Column-by-column methods

The column-by-column precision matrix estimation methods [46] use the con-

nection between conditional multivariate Gaussian distributions and linear re-

gression to separately recover sparse estimates for each column of Θ. This

approach is restricted by the assumption that each column of Θ is sparse. In

exchange, column-by-column estimation methods have the bene�ts of compu-

tational simplicity and more evident avenues for theoretical analysis.

If we let yn ∼ N (0,Σ), σ2j = Σj,j − Σj,\j(Σ\j,\j)
−1Σ\j,j , and

αj =
(
Σ\j,\j

)−1
Σ\j,j where Σ\j,j is the (K−1)×K matrix equal to Σ exclud-

ing the jth row, then after some algebra on conditional distributions one can

show:

ynj |yn
\j ∼ N (αT

j y
n
\j , σ

2
j ),

where yn
\j is the vector of length K − 1 equal to yn excluding ynj . Equiva-

lently, one can regress ynj on yn
\j through the linear regression model

ynj = αT
j y

n
\j + ϵj ,

where ϵ ∼ N (0, σ2j ) is independent of y\j . This results in a column-by-

column approximation of Θ through the block matrix inversion formula:

Θj,j = σ−2
j , Θ\j,j = −σ−2

j αj , (5.23)

Therefore, one can recover column j of Θ by estimating regression coe�-

cients αj and residual variance σ2j .

Two examples of column-by-column methods are the CLIME and Tiger

methods, as discussed in Sections 3.2.2 and 3.2.2, respectively.

CLIME The Constrained ℓ1-Minimization for Inverse Matrix Estimation

(CLIME) [23] directly estimates the jth columns of Θ by solving:

Θ̂:,j = argmin
Θ:,j

∥Θ:,j∥1

subject to
∥∥ΣΘ:,j − ej

∥∥
∞ ≤ δj , for j = 1, . . . ,K,

(5.24)

whereΘ:,j is the jth column ofΘ, ej is the jth unit vector and δj is a tuning
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parameter. The CLIME estimator is symmetric by its de�nition [23]. It is also

shown in Cai et al. [23] that (5.24) can be separated into K vector minimization

problems. This allows for better parallelization in case of high-dimensional

problems, but each of the K vector minimization problems still depends on the

full sample covariance matrix Σ. This requires the sample covariance matrix

Σ to be in memory. However, the solver CLIME-ADMM [148] parallelizes the

CLIME estimator in column-blocks, scaling well to high-dimensional problems.

Cai et al. [23] also shows that the estimator Θ̂ (5.24) is positive de�nite with

high probability.

One downside of the CLIME estimator (5.24) is the need to tune the reg-

ularization parameter δj . Typically, this is done with k-fold cross-validation

tests.

TIGER The Tuning-Insensitive Graph Estimation and Regression (TIGER)

method [98] provides a tuning-insensitive approach for estimating the precision

matrix that achieves minimax optimal rates of convergence in precision matrix

estimation.

Let us use the σ and α variables (see Section 3.2.2) to introduce some

useful notation: the K ×K diagonal matrix Γ̂ := diag(Σ̂), the normalized data

matrix Z = (z1, . . . ,zK)T := XΓ̂−1/2, βj := Σ̂
−1/2
j,j Γ̂

1/2
\j,\jαj , τ

2
j = σ̂2j Σ̂

−1
j,j , and

the sample correlation matrix R̂ := Γ̂−1/2ΣΓ̂−1/2. Then, the TIGER method

uses the following estimator for each precision matrix column:

β̂j := argmin
βj∈RK−1

[
1√
N

∥∥Z:,j −Z:,\jβj

∥∥
2
+ λ∥βj∥1

]
,

τ̂j :=
1√
N

∥∥∥Z:,j −Z:,\jβ̂j

∥∥∥
2
,

Θ̂j,j = τ̂−2
j Σ̂−1

j,j and Θ̂\j,j = −τ̂−2
j Σ̂

−1/2
j,j Γ̂

−1/2
\j,\j β̂j , (5.25)

where λ is a tuning parameter that can be chosen such that it gives opti-

mal convergence, as shown in Liu et al. [98]. Speci�cally, Liu et al. [98] shows

that the estimators achieves minimax optimal rates of convergence when the

tuning parameter λ = π
√

log(K)/2N is chosen. For �nite samples they rec-

ommend to select optimal λ = ζπ
√

log(K)/2N where ζ sweeps the interval

[
√
2/π, 1]. Because ζ is completely independent of any unknowns, one calls
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TIGER a tuning-insensitive approach.

The only non-diagonal matrix involved in obtaining the TIGER estimator

(5.25) is the N×K normalized data matrix Z. Therefore, the TIGER estimator

scales well to high-dimensional problems (see Limitation 6 in section 1.1).

3.3 Sparse precision root estimation

Instead of �rst estimating a sparse covariance or precision matrix and then

applying Cholesky decomposition to get the root matrix, one can aim to estimate

a sparse covariance or precision root directly. Various works have proposed

methods to achieve this. These works can be split into two categories, those

that impose a speci�c sparsity pattern [121, 156, 158] and those that promote

general sparsity in the root [82, 88, 132, 134]. The di�culties associated with

ordering two-dimensional grid variables to get speci�c sparsity patterns motivate

a general sparsity approach.

Speci�cally, we present in this section the methodology proposed by Khare

et al. [88] because, unlike the other approaches mentioned, it supports high-

dimensional problems. Additionally, the objective function considered in Khare

et al. [88] is jointly convex in the nonredundant entries of L and the objective

function is bounded away from −∞ even when N < K. Lack of a lower bound

is an issue with the estimator proposed in Shojaie and Michailidis [132], wherein

the global minimum of the objective function is at −∞ when N < K.

3.3.1 CSCS

Khare et al. [88] consider the following Convex Sparse Cholesky Selection

(CSCS) objective function:

QCSCS(L) = 2 log |L| − tr(LTLΣ)− λ
∑

1≤j<i≤K

|Lij |, (5.26)

where the �rst two terms correspond to the Gaussian log-likelihood terms

and the third term induces sparsity in the o�-diagonals of L. Note that we

added a minus sign to the objective to be consistent with other GL based ob-

jectives described in previous chapters. To demonstrate attractive theoretical

and computational properties Khare et al. [88] shows that optimizing (5.26) is
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equivalent to separately optimizing for every 1 ≤ i ≤ K:

QCSCS,i(η
i) = 2 log ηii − (ηi)T (Σ

i
)ηi − λ

i−1∑
j=1

|ηij |, (5.27)

where, for each 1 ≤ i ≤ K, ηi := Li,1:i denotes the vector of lower triangular

and diagonal entries in the ith row of L and Σ
i
:= Σ1:i,1:i is the i× i submatrix

of the �rst i rows and columns of Σ. This separated form is very suitable for

parallelization.

Finally, Khare et al. [88] propose a cyclic coordinatewise maximization algo-

rithm that maximizes (5.27) for each 1 ≤ i ≤ K by circulating a single varying

element of ηi in order to iteratively move to a maximum for (5.27). Speci�-

cally, they show that the supremum for a single varying element ηia of η
i can be

expressed in closed form as Ma for 1 ≤ a ≤ i:

Ma(η
i) = −

fλ(−2
∑

b ̸=aΣ
i
baη

i
b)

2Σ
i
aa

, (5.28)

for 1 ≤ a ≤ i− 1, and

Mi(η
i) =

∑
b̸=iΣ

i
biη

i
b −

√
(
∑

b ̸=iΣ
i
biη

i
b)

2 + 4Σ
i
ii

2Σ
i
ii

, (5.29)

where fλ(x) = sign(x)(|x| − λ)+ is a soft-thresholding operator. While the

cyclic coordinatewise maximization algorithm solves a convex objective func-

tion that is not strictly convex, it does converge to a global maximum [88].

Moreover, this maximum leads to a positive de�nite estimate of the covariance

matrix. Under standard regularity assumptions, Khare et al. [88] establish high-

dimensional asymptotic consistency as N approaches in�nity (both in terms of

model selection and estimation).

Because each of the ηi need to be maximized (for 1 ≤ i ≤ K) and each max-

imization problem is separate, this step can be completely parallelized. While

not explicitly discussed or noted in Khare et al. [88], an additional bene�t of

this optimization method is that memory usage scales well to high-dimensional

application because each evaluation ofMa for 1 ≤ a ≤ i Equations (5.28)�(5.29)

needs only a vector of length i in memory, i.e. the �rst i entries of the ath row
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of Σ. This means that the full sample covariance matrix does not need to be

fully in memory at any point.

Computational complexity of the CSCS algorithm, as presented in this sec-

tion, is dependent on whether the K separate maximizations in (5.27) are paral-

lelized [88]. When fully parallelized the computational complexity is

min(O(KN), O(K2)). When fully sequential the computational complexity is

min(O(NK2), O(K3)).

4 Numerical results

Here we compare the performance of each of the methodologies presented in

Section 3. We generate time series data Y with the prototype models described

in section 2 and apply the di�erent estimation methods to these data. We

choose grid sizes for the prototype models that are not very large so that we

can explicitly calculate the sample covariance matrix Σ and invert it to get

the precision matrix. It enables us to compare the results of the estimation

methods with the sample covariance. This comparison can be seen as a so-

called oracle test, with the sample covariance matrix acting as oracle reference or

benchmark (in practical situations with high-dimensional data, such a reference

is not available because it is too large to calculate due to memory constraints).

Besides comparing to the sample covariance, we also assess the sparsity of

the matrices resulting from the estimation methods. Below we list the criteria

by which we compare the performance of the di�erent methods:

Sparsity ratio: r( ·̂ ) = 1

K2

∑
i,j∈{1,...,K}

1( ·̂i,j = 0). Applied either to (5.30)

L̂ or to Ŝ, depending on the methodology.

Eigenvalue spectrum: (λi)i∈{1,...,K} compared to (λ̂i)i∈{1,...,K}, where (5.31)

Σv = λv and Σ̂v̂ = λ̂v̂, respectively.

Normalized absolute error: ϵ(Σ̂) :=
∥∥∥Σ̂−Σ

∥∥∥
F
/
∥∥Σ∥∥

F
, (5.32)

where the sparsity ratio 0 ≤ r(A) ≤ 1, such that a fully dense matrix A and

a zero matrix A correspond to r(A) = 0 and r(A) = 1, respectively. Criteria

(5.31)-(5.32) are concerned with the accuracy of the estimates.
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4.1 Practical matters

Consistency in comparing di�erent methods The di�erent method-

ologies discussed in Section 3 have di�erent output matrices. Therefore, we

post-process the results to a common output appropriate to criteria in Equa-

tions (5.30)�(5.32). For example, the CSCS method in Section 3.3.1 estimates a

sparse root precision matrix approximation L̂. In order to compare the normal-

ized absolute error (5.32), we compute the matrix square Θ̂ = L̂T L̂ and invert

it explicitly to �nd the associated covariance approximation Σ̂.

Each of the estimation methods has a parameter that in�uences the sparsity

of the resulting matrix. We apply the methods over a range of parameter values,

to get insight on the balance between sparsity (5.30) and accuracy (as assessed

by criteria (5.31)-(5.32)). The thresholding methods (see (5.11)) are sampled

along the ω-dimension to vary sparsity of Σ̂ω. The banding methods (see 5.12)

and tapering methods (see (5.13)) are varied similarly by varying k and dmax

between 1 and K or K
√
2, for (5.6) and (5.7), respectively. The MDMC method

(5.21) is sampled by varying λ and equating the sparsity pattern G to the spar-

sity pattern of soft-thresholded matrix Σλ (5.22). The CLIME estimator (5.24)

is tested by varying the δj := δ (the prototype model is spatially homogeneous).

Similarly, for the TIGER estimator (5.25) we vary λ. The CSCS method (5.27)

is tested by varying the λ parameter as well.

Assessing methodologies that do not guarantee positive de�nite-

ness In quite a few of the methodologies, a sparse Σ̂ (or Θ̂) is estimated that

then is used to explicitly calculate matrix root Ŝ (or L̂) by Cholesky decompo-

sition, such that Σ̂ = ŜŜT (or Θ̂ = L̂T L̂). However, two problems can arise in

practice.

First, not all of the methodologies guarantee positive de�niteness in the es-

timated covariance or precision matrices. This is a serious shortcoming because

a covariance matrix should be positive de�nite by de�nition. Additionally, it

makes it impossible to do Cholesky decomposition. While some of these meth-

ods do not guarantee positive de�niteness, they do strive for it (via a penalty

term in the objective function). In practical tests, this frequently results in

the situation that one or a few eigenvalues of the resulting estimators happen

to be negative and very small in magnitude. In that case, we truncate such
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small negative eigenvalues ui to zero to make the estimator non-negative de�-

nite. This allows one to get an impression of the accuracy and sparsity of the

matrix root approximation. Then, using this truncated matrix we construct

RT = U1/2V T , where U is the diagonal matrix of truncated eigenvalues and

V is the eigenvector matrix. The resulting RT matrix approximates the lower

triangular matrix root of the covariance or precision matrix. One can consider

other ways to resolve this issue but we do not explore them here.

Second, if the matrix root can be calculated, e.g. with the Cholesky decom-

position or a QR decomposition, this matrix root does not necessarily inherit the

sparsity of the covariance or precision matrix (as also discussed in section 1.2).

The CSCS method as presented in Section 3.3.1 explicitly encourages sparsity

in the matrix root, however the other methods do not.

Estimator values close to zero A secondary issue that arises from se-

quentially combining several numerical approximation methods (e.g. a sparse

estimation of the precision matrix, followed by either numerical inversion or

Cholesky decomposition) is the introduction of very small nonzero elements.

Figure 5.3 illustrates that, while this approximated precision matrix is relatively

sparse (Figure 5.3a), the associated matrix root is a fully dense lower triangular

matrix (Figure 5.3b). However, many of the elements in this associated matrix

root are very small nonzero elements. Their impact is relatively negligible as

illustrated by Figures 5.3c and 5.3d, wherein a variety of options are shown that

truncate L̂ elements at values relative to the mean absolute diagonal. Figure

5.3c shows that even slight truncation L̂ elements can result in signi�cantly

increased sparsity. Furthermore, Figure 5.3d shows that these di�erent options

have negligible e�ects on the precision matrix eigenspectra (that result from

squaring the truncated matrix roots).

In this overview of results we truncate matrix root estimator values at 1%

of its mean absolute diagonal, if and only if this does not signi�cantly impact

the eigenspectrum of the estimated matrix.
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Figure 5.3: Example of handling very small nonzero values in estimators. Figure
(a) shows the sparsity plot (26%) for an approximated precision matrix Θ̂ that
is not positive de�nite, (b) shows the fully dense sparsity plot (52%) for the
lower triangular matrix root L̂ following from a QR decomposition, (c) shows
the sparsity of several truncated versions of L̂ at cuto�s proportional to its
mean absolute diagonal, (d) shows the eigenspectra associated with the di�erent
truncated versions of L̂.
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4.2 Sparse covariance results

In this section we compare the methods presented in Section 3.1. To observe the

performance of each of these methodologies, we �sweep� their parameter space

as speci�ed in Section 4.1 in the K = 16 and K = 256 model con�gurations (see

Table 5.2). To prevent redundancy in the presentation we focus exclusively on

the thresholding and the Wendland tapering methods, at the end of this section

we brie�y summarize the omitted redundancies with regard to other tapering

methods.

Figure 5.4 shows that neither the thresholding nor the Wendland tapering

achieves simultaneously good sparsity and accuracy. By de�nition, minimal

thresholding results in zero errors as well as zero sparsity. Also, by de�nition,

maximal thresholding results in diagonal estimators with very high errors. It

is evident from Figures 5.4a and 5.4b that the thresholding is more success-

ful than the Wendland tapering in achieving high sparsity when comparing at

similar error levels in Σ̂ for both K = 16 and K = 256. On top of that, the

tapering estimators have substantial errors even as sparsity reaches 0. Clearly,

this is highly undesirable. The thresholding method is successful in introducing

sparsity indirectly in Σ̂, however the sparsity in Ŝ increases non-monotonically

across a large range of thresholding strength ω. Additionally, high sparsity in Ŝ

as introduced by the thresholding consistently comes at the cost of large errors.

The banding methods (5.12) perform roughly equivalently to the threshold-

ing in the case of the K = 16 model. However, the banding estimators struggle

more to introduce sparsity in the covariance root for the K = 256 model. This

is because enforcing sparsity on the covariance by the banding method does not

generate a matrix with small bandwidth in case of a 2D grid. The Cholesky

decomposition can therefore give signi�cant �ll-in, reducing the sparsity. As for

the tapering methods, each of the Wendland covariances performs similarly as

the ψ3,2 covariance function illustrated in Figure 5.4. On the other hand, the

Epanechnikov covariance (5.15) gives reduced errors in Σ̂ signi�cantly, but fails

to introduce sparsity in the covariance root.

Because none of the tested sparse covariance matrix estimation methods

achieve both high accuracy and sparsity in the associated covariance root, we

consider these methods to be unsuitable.
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Figure 5.4: Highlighted results for thresholding (5.11) and Wendland (ψ3,2,
5.18) covariances for the K = 16 (5.6) and K = 256 (5.7) prototype models as
speci�ed in Table 5.2. Figure (a) shows the normalized absolute error (5.32) of
the approximated covariance Σ̂. Figure (b) shows the sparsity ratio (5.30) of
both the approximated covariance Σ̂ and the approximated covariance root Ŝ.
The evaluation of the di�erent con�gurations in Figures (a) and (b) is matched
to the minimum and maximum sparsity ratios obtained with each method.

4.3 Sparse precision results

Here we compare the methods presented in Section 3.2 for sparse precision

matrix estimation. As in the previous section, for the comparison we �sweep�

their parameter space as speci�ed in Section 4.1 for the K = 16 and K = 256

model con�gurations (see Table 5.2). Let us start with the MDMC method as

presented in Section 3.2.1. Figure 5.5a illustrates that the MDMC is unable to

introduce sparsity while achieving low errors for the K = 16 use cases. However,

for the K = 256 the MDMC estimators achieve both high sparsity and low

errors for values λ ≈ 0.06. This is presumably because the 2D grid contains

a higher proportion of conditionally independent grid points. Despite this mix

of positive and negative results, the MDMC solver shows desirable behavior

in that the error term converges mostly linearly to 0 as λ approaches 0. This

desirable behavior is exhibited for both the K = 16 and K = 256 models, but

more e�ectively for the K = 256 use case.

In contrast to the desirable accuracy convergence, Figure 5.5c shows that
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only the leading part of the reference covariance eigenspectrum (approximately

33% of all eigenvalues) is adequately reproduced by the K = 256 model (5.7)

with Sξ noise term (5.9) for λ = 0.06, i.e. the best performing regularization

setting. While the eigenspectrum of theK = 256model (5.7) with Iξ noise term

(5.8) is well reproduced by the MDMC estimator with λ = 0.01, the eigenspectra

of the K = 256,Sξ case are unsatisfactory.
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Figure 5.5: Results for MDMC (5.21) precision matrices for the K = 16 (5.6)
and K = 256 (5.7) prototype models as speci�ed in Table 5.2. Figure (a) shows
the normalized absolute errors and sparsity ratios of the approximated precision
matrices Θ̂. Figures (b) and (c) show the eigenspectra of the corresponding
covariance matrices Σ̂ for a representative range of λ values for both the K =
256 case with an Iξ (b) and Sξ (c) noise terms.

Note that the MDMC algorithm can not be properly initialized because it

fails to �nd a chordal embedding for λ < 0.06 for the K = 256 model with Sξ

noise term (5.9). This is a practical limitation of the code used in Khare et al.

[88]. Because of this limitation and the unsatisfactory results discussed above

we reject the MDMC approach for our purposes.

The results for the column-by-column estimation methodologies (see Section

3.2.2) prove to be generally unsatisfactory for achieving simultaneous sparsity

and accuracy. Figure 5.6 illustrates the normalized absolute errors and sparsity

ratios for the K = 16 and K = 256 (see Table 5.2). Despite the sparsity of

the approximated L̂ varying between fully dense lower triangular and diagonal

over the sampled range of λ, the errors of the estimators only approach 0 in a
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few cases: the TIGER estimators at 10−4 ≤ λ ≤ 10−3 for both K = 16 and

K = 256 with Iξ noise, but the CLIME estimators at 10−2 ≤ λ ≤ 10−4 only

for the K = 16 model with Iξ noise. None of these con�gurations, however,

manage to introduce sparsity in L̂. Both Figures 5.6a and 5.6b clearly show that

signi�cant errors are introduced when λ is increased in order to increase sparsity.

Worst of these use cases are all CLIME and TIGER estimators for the Sξ noise

terms. Most of these estimators show O(1) errors over the sampled range of

λ. Moreover, these high error levels are also accompanied by very low sparsity

ratios. Both CLIME and TIGER estimators for the Sξ noise model correspond

to almost fully dense lower triangular sparsity pattern for all λ ≤ 10−1.
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Figure 5.6: Accuracy and sparsity results for the CLIME (5.24) and TIGER
(5.25) estimators. Figures (a) and (b) show the normalized absolute errors and
sparsity ratios of the covariance matrices Σ̂ resulting from the estimators for a
range of regularization parameters for both the K = 16 (a) and K = 256 (b)
models.

4.4 CSCS results

4.4.1 AR(1) test

Before we discuss the �oracle tests� like in previous sections, let us start with a

test case where the sparse precision matrix is known analytically. We do this to

assess unambiguously whether the CSCS method is able to recover the precision

root with correct properties in a case where it is known that the true precision

matrix root is sparse. This can be considered a sanity test of the methodology.

To this end let us consider a scalar zero-mean autoregressive process of order p
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(AR(p)):

yn = a1y
n−1 + . . .+ apy

n−p + ξn, where ξn ∼ N (0, σ2), i.i.d. (5.33)

Here we consider a zero-mean process for simplicity. The extension to a

non-zero mean process is straightforward and can be found by adding a constant

o�set to (5.33). Let us begin with some analytical observations to connect the

precision matrix to several properties of an AR(p) process.

In general, if the covariance matrix Σ is positive de�nite and, therefore,

invertible, then the partial autocorrelation between pairs x and z can be de�ned

through the precision matrix Θ ([26]). For the purposes of analysis of the scalar

AR(p) we consider here the covariance (and thus precision) matrix to be de�ned

temporally: Σmn = Cov(ym, yn). Then the partial autocorrelation function

between ym and yn, i.e. PACF(ym, yn) is given by:

PACF(ym, yn) = Θmn/
√
ΘmmΘnn, (5.34)

Simultaneously, the partial correlations PACF(yn, yn−i) of an AR(p) process

are given by the AR coe�cient ai ([31]). Therefore, combining the above two

observations, we know that Θij = 0 if |i − j| > p for an AR(p) process. Thus,

the precision matrix of an AR(p) process is a banded matrix with bandwidth

p. This banded precision pattern translates directly to sparse precision matrix

roots (as discussed in Section 1.2).

In order for an AR(p) process to be stationary, the model coe�cients in

(5.33) need to satisfy the AR(p) stability constraint [100]:

∀w : wp − a1w
p−1 − . . .− ap = 0, ⇒ |w| < 1, (5.35)

where the notation wp means the root w to the power p.

Additionally, in order for an AR(p) time series to be stationary, the marginal

distributions of the p initial states must equal the asymptotic distribution of the

process.

To �nd an analytic formula for the precision matrix of an AR(p) process, let

us de�ne the joint distribution P (y) in two equivalent ways. First, using Bayes
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theorem, and secondly, using the de�nition of a multivariate Gaussian:

P (y1, . . . , yN ) = P (y1) P (y2 | y1) · · · P (yN | yN−1, . . . , y1)

∝ exp

(
−1

2
yTΘy

) (5.36)

Concluding, one can show that an AR(1) with the following properties re-

sults in a stationary time series:

� |a1| < 1,

� y1 ∼ N
(
0, σ2

1−a21

)
,

and one can show that the covariance matrix Σ for an AR(1) is given by

[97]:

Σ =
σ2

1− a21



1 a1 . . . aN−2
1 aN−1

1

a1 1 . . . aN−3
1 aN−2

1
...

...
. . .

...
...

aN−2
1 aN−3

1 . . . 1 a1

aN−1
1 aN−2

1 . . . a1 1


. (5.37)

Whereas the covariance matrix is fully dense, one can easily verify that the

precision matrix Θ for an AR(1) process is very sparse (tridiagonal). It is given

by:

Θ =
1

σ2



1 −a1 0 . . . 0 0

−a1 1 + a21 −a1 . . . 0 0

0 −a1 1 + a21 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 + a21 −a1
0 0 0 . . . −a1 1


(5.38)

The experimental test setup is now to use the Cholesky decomposition

SST = Σ to iterate 10.000 independent AR(1) processes with N = 100 and

N = 1000 iteration steps. We then then use the CSCS methodology to directly

calculate the sparse precision matrix root L̂, and thereby to �nd indirectly the

approximation Σ̂.

Figure 5.7 shows a curated overview of the results obtained with the AR(1)

test case as described above. Figure 5.7a shows that the CSCS solver has an
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optimum around λ = 10−1 where the normalized absolute errors are around

0.06 and the sparsity is 98% or 99.8%, for K = 100 and K = 1000, respectively.

This corresponds to lower triangular L̂ with bandwidth 1, which is exactly

the sparsity ratio of the Cholesky decomposition of (5.38) [122]. Thus, we see

precisely the sparsity pattern we expect from theory for λ = 10−1. Generally,

all results with 10−2 ≤ λ ≤ 10−1 are very good in this test, with errors below

10% and sparsity ratio above 90%. Figure 5.7b shows that also the entire

eigenspectrum is very closely reconstructed for λ ≤ 10−1, further emphasizing

the strong performance of the CSCS method in this test.
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Figure 5.7: Results for CSCS (5.27) precision matrix root estimators for theK =
100 AR(1) process (5.33) test model for a variety of regularization parameters λ.
Figure (a) shows the accuracy (5.32) and sparsity ratio (5.30) of the precision
root estimator. Figure (b) shows the eigenspectra of the covariance matrices
resulting from the estimators. Figure (c) shows the fraction of the variance in
the independent coordinate system explained by the eigenvalues.

While these results are encouraging, we note that the AR(1) test case shows

a steep gradient in fraction of explained variance, see Figure 5.7c. It makes

the tested AR(p) process less suitable as a prototype model, because it is not

consistent with the assumption that the fraction of explained variance increases

gradually (Assumption 8 in section 1.1). Models with such steep increase in

eigenvalues motivate a lower-dimensional representation of the covariance, like in

Berlo� et al. [12]. By contrast, models that show gradual increases in explained

fraction of variance are much less amenable to such methods due to the large

number of modes required to achieve low truncation errors, see for example the

SPDE models (5.6)-(5.7) in Section 2 as illustrated in Figures 5.2e and 5.2f.

Therefore, let us return to the oracle tests for the SPDE models to assess the
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CSCS method in the next section.

4.4.2 Oracle test

As before, we assess the CSCS methodology with the SPDE prototype model

tests by sweeping its parameter space for the K = 16, K = 64, and K =

256 model con�gurations (see Table 5.2) for both the Iξ (5.8) and Sξ (5.9)

noise terms. As this section will show, the CSCS estimators are a signi�cant

improvement compared to the previously discussed methodologies. Therefore,

let us discuss each of the performance criteria listed in Section 4 as illustrated

in Figure 5.8.

Figures 5.8a and 5.8d show that the normalized absolute errors and sparsity

ratios of Σ̂ and L̂ converge monotonically to their extremes for each model. This

is desirable behavior because this makes it straightforward to �nd an optimal

balance between accuracy and sparsity, with e.g, golden section search [90], the

optimal [6] minimization method for monotonic functions. How to weigh accu-

racy versus sparsity is user-dependent; notwithstanding, the optimal balance is

likely to lie in the range 10−2 ≤ λ ≤ 10−1, e.g. for the K = 64 model with Sξ

noise (in Figure 5.8d) one exchanges sparsity ratios between 70% and 90% for

normalized absolute errors between 3% and 20% in this range. Figures 5.8a and

5.8d show that at λ ≈ 6 · 10−2 the normalized absolute errors of the K = 16

estimators are relatively low (about 10%) and the sparsity ratio is reasonable,

around 75% (lower triangular matrix with bandwidth of approximately 4). This

trade-o� is less favorable for K = 64 and K = 256 for Iξ noise (Figure 5.8a),

where 10% error is achieved when the sparsity is around 72% (at λ ≈ 2 · 10−2)

and 68% (at λ ≈ 10−2), respectively. Results are stronger for the K = 64 and

K = 256 models with Sξ noise (Figure 5.8d), where sparsity ratios are reached

of 76% at λ ≈ 2 · 10−2 and 78% at λ ≈ 10−2, respectively, while errors are at

10%.

Unlike previous methodologies, Figures 5.8b, 5.8e, 5.8c, and 5.8f show that

the CSCS estimators converge steadily to the reference eigenspectrum as the

regularization λ decreases for all tested use cases. This is highly favorable as it

allows the user to decide the balance between sparsity and accuracy as needed.

Each of the eigenspectra shows that around λ ∈ [10−2, 10−1] the approximated

eigenspectra are already very close to the reference. For example, for the K =

149



Chapter 5 4. Numerical results

256 with Iξ noise (in Figure 5.8c) there is a large di�erence in sparsity ratios

for the λ = 10−2 and λ = 10−1 estimators, i.e. 61% and 94%. Clearly, this also

means that the λ = 10−2 estimator is closer to the reference eigenspectrum.

How to weigh the importance of a higher sparsity ratio against being closer to

the reference spectrum can be left to the user.
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Figure 5.8: Results for CSCS (5.27) precision matrix root estimators for the
K = 16 (5.6), K = 64 (5.6), and K = 256 (5.7) prototype models with Iξ
(5.8) and Sξ (5.9) noise terms. Figure (a) shows the normalized absolute errors
(5.32) and sparsity ratios (5.30) of the SPDE model with Iξ noise. Figures (b)
and (c) show the eigenspectra of the covariance matrices resulting from the L̂
estimators for the Iξ noise for the K = 16 and K = 256 models, respectively.
Figures (d)-(f) are analog to Figures (a)-(c) for the Sξ noise term.

The results for the CSCS algorithm are both accurate and consistent both on

the analytically known reference AR(1) model (5.33) and on the SPDE models

(5.6)-(5.7). Additionally, the results show desirable convergence behavior that

enables straightforward optimization of the regularization parameter. This al-

lows the user transparent choices in terms of deciding on the trade-o� between

accuracy and sparsity as the use case demands. This is an important bene�t of
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the CSCS method over the previously discussed methodologies.

One practical drawback is that, while the code used in Khare et al. [88]

allowed for the execution of these tests and some basic benchmarking, the code

is, at this point, unsuitable for testing of large models (K > 1000). This is

because the current implementation is fully sequential. The algorithm is fully

parallellizable (see Section 3.3.1), but this work is yet to be done. Therefore,

we leave the performance analysis of the CSCS algorithm on large use cases for

future study.

5 Discussion

In this study we considered several methods to estimate sparse covariance and

precision matrix roots from data. It was motivated by our aim to be able to

sample from a high-dimensional correlated Gaussian distribution without plac-

ing a fully dense covariance matrix (root) in memory. The goal of this sparse

representation was to conclude our previous work on stochastic parameteri-

zations with a vector autoregressive model with exogenous variables (VARX)

using only sparse coe�cient matrices, see [144]. The target application for

this study, numerical ocean modelling, gives rise to some constraints that were

important for selecting appropriate estimation methodologies. We considered

several state-of-the-art methodologies for sparse covariance and precision (i.e.,

inverse covariance) matrix estimation compatible with these constraints.

We tested the performance of each of the presented methodologies with

so-called �oracle tests�. In these tests we used data generated by prototype

stochastic partial di�erential equation (SPDE) models. The dimensions of the

data were such that we were still able to compute the full sample covariance

matrix. Having the full sample covariance matrix available can be unrealistic

for practical applications, but this allowed us to evaluate and compare the per-

formance of the di�erent methodologies. We chose six di�erent SPDE models

varied along three axes: we varied the size of the model discretization grid,

the space dimensionality, and the noise process. By varying the grid size we

varied the di�erent correlation scales between model terms. By varying the

space dimensionality of the SPDE we tested the dependency between grid in-

dexing and sparsity patterns. Finally, by varying the noise terms, one with i.i.d.
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samples from a standard normal distribution and the other with i.i.d. samples

from a spatially correlated Gaussian distribution with exponentially decaying

covariance, we tested robustness to di�erent covariances.

We considered two equivalent, but subtly di�erent, methods to simulate

a VARX model: one expressed in terms of the covariance root S, and another

expressed in terms of the precision matrix root L. We considered the alternative

to the typical covariance root formulation because of di�erent interpretations of

sparsity in each. In particular, an element i, j of the covariance matrix of model

variable y is zero if and only if yi and yj are mutually independent. On the

other hand, an element i, j of the precision matrix of model variable y is zero if

and only if yi and yj are conditionally independent given all other elements in y.

Hence, depending on the properties of the underlying distributions generating

y, the covariance matrix might be fully dense, but the precision matrix might

still be sparse, see the example in section 1.2.

For those methodologies that obtain a sparse approximation of a covariance

or a precision matrix, there is an extra matrix decomposition step involved

in obtaining the matrix root to evaluate the VARX model. We considered a

total of three categories of methodologies to obtain a sparse matrix root: sparse

covariance estimation (followed by matrix decomposition to obtain a covariance

root), sparse precision matrix estimation (followed by matrix decomposition to

obtain a precision matrix root), and sparse precision matrix root estimation.

The latter is the only method that directly promotes sparsity in the required

matrix root.

First, from the �eld of sparse covariance estimation we compared threshold-

ing methods (truncating the covariance based on absolute values of its entries),

banding methods (truncating the covariance based on distance between grid

points), and tapering methods (truncating the covariance based on covariance

functions that operate like kernel functions with �nite support, determined by

distance between grid points). Second, from the �eld of sparse precision ma-

trix estimation we compared several variations of the graphical lasso (GL), i.e.

a standard formulation that adds an ℓ1-penalty term to the maximum likeli-

hood equation of a Gaussian model to promote sparsity in the precision matrix.

The maximum determinant matrix completion (MDMC) estimator promotes

sparsity on the o�-diagonal of the precision matrix and optionally imposes an
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a priori chosen sparsity pattern. The constrained ℓ1-minimization for inverse

matrix estimation (CLIME) and tuning-insensitive graph estimation and regres-

sion (TIGER) estimators estimate the columns of the sparse precision matrix

separately. Third, from the �eld of sparse precision matrix root estimation we

considered the convex sparse Cholesky selection (CSCS) estimator. The CSCS

method decomposes an ℓ1-penalized cost function intoK separate cost functions

that directly impose sparsity in the precision matrix root estimate.

We compared the above methodologies by inspecting (i) normalized absolute

errors of the approximated covariance with respect to the reference covariance,

(ii) sparsity ratio of the approximated matrix root, and (iii) errors in the eigen-

spectra of the approximated covariance compared to the reference covariance.

The thresholding and banding methods proved to be most successful in in-

troducing sparsity in the approximated covariance, but not successful in intro-

ducing sparsity in the covariance root. While the tapering methods were more

successful in introducing sparsity in the covariance root, they still showed sub-

stantial errors even with small tapering strength. None of the tested sparse

covariance matrix estimation methods achieved both accuracy and sparsity in

their estimators.

The MDMC estimators all showed proper convergence toward the sample

precision matrix in terms of accuracy. Also, the MDMC estimators showed

monotonic behavior in terms of sparsity. Moreover, the eigenspectra of the

estimators converged smoothly to the reference eigenspectrum for the models

with i.i.d. noise terms. However, the eigenspectra in case of the exponentially

decaying noise covariance failed to converge to their reference. Additionally,

the range of sampled regularization values could not be extended due to prac-

tical limitations of the original MDMC code implementation. The CLIME and

TIGER estimators are generally unsatisfactory on the tested use cases. Both

CLIME and TIGER methods fail on the use case with exponentially decaying

noise covariance, showing errors larger than 100% for most of the tested values of

their tuning parameters. Both methods are also unable to introduce signi�cant

sparsity in the precision matrix root for most tuning parameter values.

The CSCS estimators proved to be most successful across all tested crite-

ria. The CSCS estimators showed monotonic convergence in both accuracy and

eigenvalues for all use cases, allowing the user to choose the balance between
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accuracy and sparsity of the resulting estimators. Furthermore, the optimal tun-

ing parameter value (depending on user preference) can be e�ciently located

due to the monotonic convergence. In all use cases parameter values were found

that gave satisfactory results in terms of both sparsity ratio and errors. Fur-

thermore, additional tests on data from a scalar AR(1) process, for which the

sparse precision matrix is known analytically, showed that the CSCS solutions

converge to the reference, both in terms of accuracy and sparsity.

The current version of the CSCS code is fully sequential in its implemen-

tation. This precludes testing and evaluation the performance of the CSCS

method on truly high-dimensional cases. Therefore, an obvious step for a follow-

up study would be to extend the CSCS implementation to take advantage of

its suitability for e�cient parallelization. Another natural step is to combine

the VARX model as proposed by Verheul and Crommelin [144] together with

the CSCS method. This will enable us to construct a data-driven stochastic

parameterization using a VARX model with sparse coe�cient matrices. Such a

VARX model can used to parameterize the mesoscale eddy forcing (or baroclinic

feedback) in a dynamic ocean model, extending the line of our previous work in

[143, 145].
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