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Separating confirmatory and exploratory analyses is vital for ensuring the credibility of 
research results. Here, we present a two-stage Bayesian sequential procedure that 
combines a maximum of exploratory freedom in the first stage with a strictly 
confirmatory regimen in the second stage. It allows for flexible sampling schemes and a 
statistically coherent carry-over of information from the exploratory to the confirmatory 
stage. We believe that this procedure will facilitate preregistration as well as the 
formulation of precise hypotheses in the field of psychology and can be integrated 
elegantly into the registered report publishing framework. We demonstrate the 
methodology with a simulated application example from the field of social neuroscience. 

A transparent distinction between exploratory and con-
firmatory analyses is vital for ensuring the credibility of re-
search results (Wagenmakers et al., 2012). New publication 
formats, such as Registered Reports and Exploratory Re-
ports, as well as the ascent of preregistration in the social 
sciences are founded on this premise (Chambers, 2013; 
McIntosh, 2017; Nosek & Lindsey, 2018). However, many 
researchers are still hesitant to commit to a single analysis 
pipeline in the form of a preregistration before seeing the 
data. This is particularly the case in disciplines such as neu-
roscience, where elaborate data preprocessing procedures 
and complex data structures make it challenging to decide 
on the most appropriate analysis method a priori (Poldrack 
et al., 2017). 

Here we present a two-stage Bayesian sequential proce-
dure that combines a maximum of exploratory freedom in 
the first stage with a strictly confirmatory regimen in the 
second stage, while allowing for flexible sampling schemes 
and a statistically coherent carry-over of information. This 
procedure may benefit researchers who are faced with the 
dilemma on whether (a) to shoot from the hip by running 
a confirmatory study with inadequate planning, risking se-
vere deviations from the preregistration plan (Sarafoglou 
et al., 2022), or (b) to sacrifice resources to an initial ex-
ploratory study that does not allow for hypothetico-deduc-
tive inference (Jebb et al., 2017). 

The Two-Stage Bayesian Sequential Procedure      

Figure 1 illustrates the two-stage sequential Bayesian 
process. At the first stage, researchers can explore a variety 
of different analysis plans, including alternative prepro-
cessing techniques, statistical models and hypotheses, out-
come variables, and participant inclusion criteria. Re-
searchers are able to do this as data roll in, sequentially 
updating the knowledge about competing models or hy-
potheses (Schönbrodt et al., 2017). In the exploratory stage, 
there is only a single rule: “anything goes”. For example, 
in neuroscience, researchers may test the same conceptual 
hypothesis using different voxel-based definitions of a 
brain region (Poldrack, 2007), or different methods to select 
electrode channels in EEG analyses (Alotaiby et al., 2015). 
The exploratory stage can be stopped as soon as the re-
searcher has identified a hypothesis and associated analysis 
method that is deemed sufficiently promising for a strictly 
confirmatory test. At this freely chosen point in time (i.e., 
T1 in Figure 1), the researcher enters the confirmatory part 
of the study. 

The second, confirmatory, stage starts by preregistering 
the exact analysis pipeline that was selected based on the 
exploratory analyses. Preregistration is now straightfor-
ward since the researcher already has analysis scripts de-
tailing the exact analysis procedure that are based on the 
acquired knowledge of data structures from the first stage. 
The goal of the confirmatory stage is to test the concrete 
hypothesis extracted from the exploratory stage. The hy-
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Figure 1. The two-stage sequential Bayesian procedure. In the exploratory phase, sampling continues until a              
promising analysis method has been selected (T      1). In the confirmatory phase the selected hypothesis is put to the             
test. Sampling stops once sufficient evidence has accrued for the alternative hypothesis (T            2a) or for the null      
hypothesis (T 2c), or until resources are depleted (T      2b).  

pothesis test can be conducted in a sequential manner 
again, where the researcher stops data collection as soon 
as sufficient evidence has been obtained for the null or al-
ternative hypothesis, or a maximum sample size has been 
reached (e.g., Stefan et al., 2019). Evidence is quantified by 
means of the Bayes factor, with Bayes factors larger than 
one indicating evidence for the alternative hypothesis and 
evidence smaller than one indicating evidence for the null 
hypothesis (Jeffreys, 1961; Rouder et al., 2018). 

Notably, the Bayesian approach allows the coherent 
carry-over of information from the exploratory to the con-
firmatory stage. Following the principle “today’s posterior 
is tomorrow’s prior” (Lindley, 1972, p. 2), information from 
the exploratory stage can be used to formulate prior distri-
butions on all model parameters in the confirmatory stage. 
This can be viewed as enriching the hypothesis based on 
prior knowledge, or putting probabilistic constraints on the 
parameter space to make the models more informative (Lee 
& Vanpaemel, 2017). The easiest way to do this is to use the 
posterior distributions from the exploratory stage as pri-
ors for the confirmatory stage (Ly et al., 2018; Verhagen & 
Wagenmakers, 2014). However, researchers who worry that 
their exploratory results may be overoptimistic may adopt 
a more cautionary approach and discount the information 
from the first stage to some degree – for instance by using 
power priors (Chen et al., 2000) or by incorporating knowl-
edge about the results from the alternative, less promising 
analyses; doing so will shrink the prior distribution for the 
confirmatory stage toward the null value. 

The confirmatory stage can result in three qualitatively 
distinct outcomes: The exploratory results from the first 
stage are supported, as indicated by compelling evidence 
in favor of the alternative hypothesis (e.g., T2a in Figure 

1); the exploratory results are disconfirmed, as indicated by 
compelling evidence in favor of the null hypothesis (e.g., 
T2c in Figure 1), or the data remain ambiguous with regard 
to the tested hypotheses (e.g., T2b in Figure 1). The latter 
outcome can occur when resource constraints prohibit the 
continuation of data collection and true parameter values 
fall somewhere in between the values postulated in the null 
and alternative model. 

Neural Correlates of Perspective Taking: A       
Simulated Application Example    

In the following, we briefly illustrate the practical use 
of the two-stage Bayesian sequential procedure with a sim-
ulated application example from the field of social neuro-
science. The simulation code and a detailed documentation 
can be found on https://osf.io/z3ckm/. 

A group of fictitious researchers conduct a functional 
MRI study in which participants complete a task measuring 
the neural correlates of perspective taking (Lamm et al., 
2019; Schurz et al., 2014). The participants complete this 
task under two different conditions. In one condition, they 
are subjected to some treatment that should increase their 
perspective taking abilities. In the other condition, this 
treatment is absent.1 The goal of the study is to determine 
whether the treatment causes a change in task-related acti-
vation in the right parietal cortex. 

Based on previous findings, researchers expect that the 
effect of interest should be localized in one of the ten sub-
areas of the right parietal cortex described in the brain at-
las by Mars et al. (2011), see Figure 2A. However, due to 
the novelty of the treatment, they are uncertain which ex-
act subarea might be affected. Moreover, they are not sure 
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Figure 2. The simulated application example.     
A: View of the right hemisphere of the brain. Marked in different colors are the ten subareas of the right parietal cortex as described by Mars et al. (2011). For each of these ten subar-
eas, there exist four different size definitions (not depicted here), resulting in a total of 40 different possible regions of interest for analysis. The black circle marks the position and 
size of the sphere of activation as used in the simulation study. B and C: Example trajectories of Bayes factors obtained in the simulated application example, with B) a true effect of 
the treatment present, and C) no effect present. In the exploratory phase (left part of each plot), researchers monitor the Bayes factors for each of the different ROIs. After a mini-
mum of ten participants, the researchers stop the exploratory phase as soon as one ROI has given a Bayes factor larger than 10 in favor of their hypothesis. In the confirmatory phase 
(right part of each plot), the researchers sequentially test their research hypothesis using the ROI definition identified in the exploratory phase. The researchers sample participants 
until they achieve a Bayes factor larger than 100 (as depicted in B), which they consider compelling evidence for their hypothesis; or until they achieve a Bayes factor smaller than 
1/10 (as depicted in C), which they consider enough evidence against their hypothesis; or until they run out of resources (not depicted here). 

of the size of the region of interest (ROI) they should use in 
their analysis. For each subarea, the brain atlas offers four 
different size definitions, but the researchers have no prior 
knowledge about which definition might be the best one. 
Thus, in total there are 40 different possible definitions of 
the ROI to choose from, and the researchers are struggling 
to preregister the specific ROI that they wish to use in their 
analysis. To overcome this difficulty, the researchers follow 
the Bayesian two-stage design, using the following decision 
strategies: 

We simulated 100 runs of the described two-stage pro-
cedure for two different scenarios. The simulation code and 
figures depicting all of these runs can be found on 
https://osf.io/z3ckm/. In the first scenario, there was a 
sphere of increased activity due to the treatment in one of 
the specified ROIs (radius = 4mm, MNI coordinates: x = 56, 
y = -34, z = 38, cf. Figure 2A). In 79 of the simulated runs, 
the researchers ended up with substantial evidence in favor 
of the treatment effect in the confirmatory phase (cf. Figure 
2B). In 14 runs, the researchers identified a promising ROI 
in the exploratory phase, but then obtained strong evidence 
for a null effect in the confirmatory phase. Finally, seven 
runs yielded inconclusive evidence. In the second simula-
tion scenario, the treatment had no effect on brain activity 
in any of the ROIs. In 45 of the runs, the study was stopped 

• In the exploratory phase, the researchers monitor the 
Bayesian hypothesis test for each ROI. They decide to 
measure at least ten participants, and then stop the 
exploratory phase as soon as one of the ROIs results 
in a Bayes factor larger than 10. Then, they choose 
this ROI for their confirmatory study, and preregis-
ter it accordingly. If no ROI definition results in a BF 
larger than 10 after 30 participants, the researchers 
cancel the study without a confirmatory phase. 

• In the confirmatory phase, the researchers first mea-
sure ten participants, and then monitor the Bayes 
factors until one of three events occurs that cause the 

study to be discontinued: Either they observe a BF 
larger than 100, which they consider compelling evi-
dence for an effect of the treatment on brain activity; 
or they observe a BF smaller than 1/10, which they 
consider enough evidence that the treatment has no 
substantial effect on brain activity after all; or they 
run out of time and financial resources for the study. 

We remain deliberately vague about the exact nature of the task and the treatment to emphasize that this scenario is completely fic-
tional. 

1 
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after the exploratory phase, because no ROI reached a BF 
10. Of the remaining runs, 51 runs resulted in strong evi-
dence for the null hypothesis (cf. Figure 2C), only one run 
resulted in strong evidence for the alternative hypothesis, 
and 3 runs resulted in inconclusive evidence in the confir-
matory phase. 

In summary, the two-stage procedure appears to be a 
practical research method in this fictitious application ex-
ample. In most cases where there really is a treatment ef-
fect, the exploratory stage allows the researchers to quickly 
specify the most appropriate ROI, and then find convincing 
evidence for the effect in the confirmatory stage, using no 
more resources than necessary. Despite its high degree of 
flexibility, the procedure also nearly never leads the re-
searchers to erroneously claim the existence of an effect if 
a true effect is absent. Although it can happen by random 
chance that the researchers identify an apparently promis-
ing ROI in the exploratory phase, this spurious result would 
rarely achieve a convincing level of evidence in the con-
firmatory phase. It is illustrative to contrast this with the 
situation that would arise if the researchers would forego 
the confirmatory phase, and base their conclusions solely 
on the results of their exploratory analyses. Then, the large 
number of researcher degrees of freedom would surely lead 
to a high false-positive rate (54% of cases in our example, 
if BF > 10 is used as a threshold). We would like to empha-
size, though, that the error rates we report here are specific 
to the simulation scenario we used. Additional research will 
be needed to discern how often the two-stage procedure 
leads to the correct decision in different situations. 

Discussion  

The two-stage Bayesian sequential procedure offers 
multiple advantages: (1) The proposed procedure facilitates 
the specification of precise hypotheses and their transla-
tion to statistical models; (2) Analyses in the confirmatory 
stage can be fixed to the precise setup that was piloted in 
the exploratory stage, making preregistration straightfor-
ward and potentially reducing the risk of unplanned devia-
tions; (3) The Bayesian framework allows for a seamless in-
tegration of knowledge obtained from exploratory analyses 
into the confirmatory trial; (4) The sampling plan is flexible 
and efficient. Sequential testing has repeatedly been shown 
to be about 50% more efficient than conducting fixed-N 
trials with the same power (Schnuerch & Erdfelder, 2020; 
Schönbrodt et al., 2017), and the Bayesian approach allows 
for ad-hoc adjustments of the sampling plan, for example 
to react to changes in available resources (Rouder, 2014); 
(5) Overconfidence based on exploratory results leads to 
decreased predictive accuracy of the alternative hypothesis 
in the confirmatory stage and is naturally penalized in the 
Bayes factor. This means that researchers are motivated 
to formulate realistic expectations and be conscious about 
their modeling choices. 

Conceptually, the Bayesian two-stage design is similar 
to a classic pilot-study design where an exploratory pilot 
phase can be used to gain experience with the materials, 
procedure, and data environment, for the purpose of subse-
quently conducting a confirmatory trial (Leon et al., 2011). 

However, the proposed two-stage design possesses two im-
portant features that distinguish it from classic pilot study 
designs. First, data collection in both stages is conducted in 
a sequential manner, leading to substantial efficiency bene-
fits compared to traditional pilot study designs where sam-
ple sizes (at least in the confirmatory stage) are typically 
fixed in advance (Schönbrodt et al., 2017). Second, data are 
not discarded after the pilot study, but instead used to en-
rich the tested hypotheses in the confirmatory phase in a 
mathematically coherent manner that takes the uncertainty 
about population parameters into account. This does not 
only make the confirmatory tests more specific, but can 
also increase their efficiency with regard to expected sam-
ple sizes (Stefan et al., 2019). 

In our view, the two-stage sequential Bayesian proce-
dure is particularly well-suited for publication in the Reg-
istered Report format (Chambers, 2013). The first stage of 
the Registered Report can serve as a platform to trans-
parently report the analysis results conducted in the ex-
ploratory phase and to determine the exact analysis path 
for the confirmatory phase in consultation with the review-
ers. In the second stage of the Registered Report, the confir-
matory phase can be executed and reported. Thus, the pro-
cedure of Registered Reports closely mirrors the two-stage 
Bayesian sequential design. However, may also be benefi-
cial to publish the two stages of the design separately, par-
ticularly if exploratory analyses or the derived experimen-
tal design are sufficiently complex to make an independent 
contribution to the literature. In this case, the first stage 
can, for example, follow the format of an exploratory report 
(McIntosh, 2017) or of a study protocol submission, as it is 
common for clinical trials (Li et al., 2016). 

It is important to note that the Bayesian sequential two-
stage procedure does not relieve researchers of their due 
diligence. Although “anything goes” in the exploratory 
stage, it is still important to distinguish exploratory from 
confirmatory results. If analyses are optimized for unam-
biguous hypothesis testing results in the exploratory stage, 
parameter estimates resulting from these analyses might 
be inflated (Simonsohn, 2014). Moreover, researchers need 
to be careful to avoid the double-use of data: The prior 
distribution formulated based on exploratory data should 
not be re-used to analyze the same exploratory data (or a 
combined data set). Lastly, the prior distribution under the 
alternative hypothesis should not be adjusted if the evi-
dence in the first stage pointed towards the null hypothe-
sis (Jeffreys, 1961). This is due to the fact that under a true 
null effect the posterior under the alternative model will 
mimic the null model, which makes the models virtually in-
distinguishable in the confirmatory stage. Additionally, re-
searchers need to be aware in this case that if their infer-
ential goals changed to confirming a null result based on 
initial evidence for the null model, the criteria for selecting 
an analysis pathway based on the exploratory results may 
change as well. For example, while they might find it worth-
while to focus on a subgroup of participants in which an ef-
fect seems to be strongest to demonstrate the existence of a 
phenomenon, they might find that confirming the absence 
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of said effect in the whole population might be more inter-
esting. 

In general, researchers need to carefully consider their 
analysis choices and reflect on their theoretical implica-
tions. For example, simply choosing the analysis pathway 
yielding the strongest evidence in the exploratory phase 
may not yield the most severe test of a substantive theory. 
Additionally, every specific analysis pathway may limit the 
external validity of the study by restricting the generaliz-
ability to a specific context and procedure (Lin et al., 2021). 
It also needs to be considered that if the posterior from ex-
ploratory analyses is used as a prior, the tested alternative 
hypothesis in the confirmatory stage is an informed ver-
sion of the alternative hypothesis tested in the exploratory 
stage, so the hypothesis tests in the two stages answer 
slightly different research questions (Etz et al., 2018). 

Overall, we believe that the two-stage Bayesian sequen-
tial assessment of exploratory hypotheses addresses several 
methodological concerns. It facilitates preregistration, 
takes resource constraints seriously, elegantly connects ex-
ploratory and confirmatory aspects of research, motivates 
researchers to carefully consider their analytic choices, and 
allows researchers to quantify evidence in favor and against 
their focal hypothesis. We hope that the procedure will be 
a valuable addition to the methodological toolbox of many 
social science researchers. 
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