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Tutorial

Meta-analyses are a powerful tool for evidence synthesis. 
After a large body of literature has accumulated, research-
ers may want to conduct meta-analysis to assess the 
overall evidence for a claim. This might be because they 
wish to estimate the size of the effect more precisely  
or because they are interested in testing whether there 
is even an aggregate nonzero effect in this line of 
investigation.

However, these meta-analytic inferences can be frus-
trated by publication bias—the preferential publishing 
of statistically significant studies. This bias leads to an 
overestimation of effect sizes when evidence across a 
set of primary studies is accumulated (Kvarven et  al., 

2020; Rosenthal & Gaito, 1964). Some researchers have 
claimed that most research findings might never be pub-
lished but instead languish in researchers’ file drawers 
(e.g., Ioannidis, 2005; Rosenthal, 1979). Even if the true 
extent of publication bias were less severe than these 
researchers have suggested, it would remain a formi-
dable threat to the validity of meta-analyses (Borenstein 
et  al., 2009). Indeed, there have been cases in which 
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Abstract
Meta-analyses are essential for cumulative science, but their validity can be compromised by publication bias. To mitigate 
the impact of publication bias, one may apply publication-bias-adjustment techniques such as precision-effect test and 
precision-effect estimate with standard errors (PET-PEESE) and selection models. These methods, implemented in JASP 
and R, allow researchers without programming experience to conduct state-of-the-art publication-bias-adjusted meta-
analysis. In this tutorial, we demonstrate how to conduct a publication-bias-adjusted meta-analysis in JASP and R and 
interpret the results. First, we explain two frequentist bias-correction methods: PET-PEESE and selection models. Second, 
we introduce robust Bayesian meta-analysis, a Bayesian approach that simultaneously considers both PET-PEESE and 
selection models. We illustrate the methodology on an example data set, provide an instructional video (https://bit.ly/
pubbias) and an R-markdown script (https://osf.io/uhaew/), and discuss the interpretation of the results. Finally, we 
include concrete guidance on reporting the meta-analytic results in an academic article.
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entire paradigms were possibly based on spurious 
results, caused in part by publication bias (e.g., Bartoš 
et al., 2022; Carter & McCullough, 2014; Haaf et al., 2020; 
Klein et al., 2019; Maier et al., 2022).

In this tutorial, we first introduce two frequentist 
methods to adjust for publication bias in meta-analysis: 
precision-effect test and precision-effect estimate with 
standard errors (PET-PEESE) and selection models. First, 
PET-PEESE is a meta-analytic estimator that adjusts for 
the correlation between effect sizes and standard errors. 
Second, selection models form a set of meta-analytic 
estimators that correct for different publication probabili-
ties across different p-value intervals (for other methods 
and their implementation, see Table 1).

Extensive simulation studies have shown that each of 
these methods often come to different conclusions 
depending on the data-generating process (Carter et al., 
2019; Hong & Reed, 2020; McShane et al., 2016). A usual 
recommendation to accommodate the differences 
between methods is to apply multiple methods simulta-
neously (e.g., Carter et al., 2019; Hong & Reed, 2020; 
McShane et al., 2016). This can be done by fitting dif-
ferent methods and subjectively comparing their results. 
However, it is unclear how to combine the estimates 
across different methods or what to conclude if some 

methods find evidence for publication bias and others 
do not. The substantial differences between the esti-
mates of different methods (see e.g., Meta Explore app 
by Carter et  al., 2019; https://tellmi.psy.lmu.de/felix/
metaExplorer/) make it difficult to derive robust conclu-
sions from publication-bias-adjusted meta-analysis. In 
addition, researchers may unwittingly succumb to the 
temptation of “cherry-picking” a method that does not 
show publication bias in their specific setting. 

Here, we outline a more formal way to combine infer-
ences from different methods using Bayesian model aver-
aging (Bartoš, Gronau, et al., 2021; Carter & McCullough, 
2018; Gronau et  al., 2021; Hinne et  al., 2020; Hoeting 
et al., 1999). Bayesian model averaging is a technique 
that allows researchers to specify different models simul-
taneously and agnostically lets the data guide inferences 
using different models proportional to how well they 
predict the data. We combine PET-PEESE, selection mod-
els, and naive fixed- or random-effects meta-analysis in 
a model-averaging framework called robust Bayesian 
meta-analysis (RoBMA). We also implemented RoBMA 
in JASP ( JASP Team, 2021; Ly et al., 2021), which is a 
free and open-source statistical-software package that 
uses a graphical user interface. In this tutorial, we explain 
how to use RoBMA in R and JASP.

Table 1.  Summary of Publication-Bias-Adjustment Methods and Implementations

Method R package/function JASP implementation Descriptiona

Trim and fill metafor/trimfill() (Classical) Meta-analysis Iteratively imputes studies until 
achieving a symmetric funnel plot

WAAP-WLS base R/lm()b WAAP-WLS Iteratively removes studies with 
insufficient power to detect the 
meta-analytic effect size

PET-PEESE base R/lm() PET-PEESE See description in the text
Selection models weightr/weightfunct()

metafor/selmodel()
copas/copas()
RobustBayesianCopas
/RobustBayesianCopas()

Selection models See description in the text

RoBMA RoBMA/RoBMA() Robust Bayesian meta-
analysis

See description in the text

p-curvec Estimates a fixed-effect version of 
a selection model using only 
statistically significant studies

p-uniform puniform/puniform() Estimates a fixed-effect version of 
a selection model using only 
statistically significant studies

aFor an accessible overview and simulation studies, see Carter et al. (2019) and Hong and Reed (2020).
bThe WAAP-WLS (a hybrid of weighted average of the adequately powered studies and weighted least squares) can be 
implemented using the a sequence of two lm() functions. The first lm() function estimates the unadjusted meta-analytic effect-size 
estimate using a weighted least square regression and the second lm() function reestimates the weighted least squares regression 
only with studies that have sufficient power for finding the unadjusted effect-size estimate.
cAt the time of writing, CRAN did not feature an R package that implements p-curve. A web application from the original authors 
can be found at http://p-curve.com/.

https://tellmi.psy.lmu.de/felix/metaExplorer/
https://tellmi.psy.lmu.de/felix/metaExplorer/
http://p-curve.com/
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In the next sections, we first briefly introduce the 
example data set, a meta-analysis on acculturation mis-
match (Lui, 2015). Second, we provide an accessible 
explanation of PET-PEESE and selection models. Third, 
we introduce RoBMA, which combines selection models 
and PET-PEESE under one model-averaging umbrella. All 
of these methods have not previously been implemented 
in graphical-user-interface software, which has limited 
their accessibility to researchers without programming 
experience. Therefore, we provide guidance on using 
these methods in both R and JASP. We show how to apply 
these methods and interpret the results and provide an 
example report of a result section (Appendix A). We 
further accompany the tutorial with an R-markdown file 
(https://osf.io/uhaew/) and recorded tutorial videos 
(https://bit.ly/pubbias) to facilitate the application of the 
implemented methods. Detailed documentation describ-
ing options of the JASP analyses is accessible via the blue 
“i” icon in the analysis input headings.

Running Example: Acculturation Mismatch 
and Intergenerational Cultural Conflict

Lui (2015) studied how acculturation mismatch (i.e., the 
contrast between the collectivist cultures of Asian and 
Latin immigrant groups and the individualistic culture 
of the United States) correlates with intergenerational 
cultural conflict by meta-analyzing 18 independent stud-
ies that correlated acculturation mismatch with intergen-
erational cultural conflict. A standard random-effects 
reanalysis calculated with a restricted maximum likeli-
hood estimator and using Fisher z values transformed 
from correlation coefficients (for more information about 
effect-size transformations, see Appendix C) indicates a 
significant relationship between acculturation mismatch 
on increased intergenerational cultural conflict, ρ = 0 250. ,  
95% confidence interval (CI) = [0.172, 0.336], p < .001.1 
According to Cochran’s Q test for residual heterogeneity, 
the true outcomes appear to be heterogeneous, Q(17) = 
73.58, p < .001, τ2 = 0.02, I 2 = 77.8%. Lui visually inspec
ted a funnel plot and concluded that “the funnel plot  
. . . revealed a symmetrical ‘funnel’ shape, supporting 
that sample size bias [i.e., small study effects] was unlikely 
for this meta-analysis” (p. 430). Furthermore, Lui con-
ducted a moderator analysis using publication status and 
found no evidence for a systematic difference in means 
between published and unpublished studies.

The data set for the following analyses can be down-
loaded from the OSF repository at https://osf.io/mgu7v/. 
The first part of the R-markdown file explains how to 
set up the R environment and packages, load the data 
set, and perform the effect-size transformation required 
for meta-analysis (handled automatically in JASP).

PET-PEESE

Theoretical background

PET-PEESE is a publication-bias-adjustment method that 
corrects for the correlation between effect size and stan-
dard errors or effect sizes and standard errors squared 
(Stanley & Doucouliagos, 2014). It can be considered 
one type of a broader class of funnel-plot-based methods 
that correct according to the relationship between effect 
sizes and standard errors (e.g., Duval & Tweedie, 2000; 
Egger et al., 1997). Because the standard error of stan-
dardized effect sizes depends on the sample size, the 
term “small-study effects” is often used to refer to the 
overestimation of the meta-analytic mean effect size that 
is due to less precise studies.

The general idea behind PET-PEESE, and the other 
funnel-plot-based methods, is that the effect sizes and 
standard errors ought to be unrelated in the absence of 
publication bias—information about the standard error 
of any given study should not inform about the effect-size 
estimate of the study. Publication bias can introduce a 
relationship between the effect sizes and standard errors; 
studies with large sample sizes will usually get published, 
whereas small studies will be published only if they reach 
statistical significance. Therefore, the presence of publi-
cation bias often results in a relative increase of imprecise 
studies with inflated effect-size estimates.

However, there might be explanations for a relation-
ship between effect sizes and standard errors other than 
publication bias (Lau et al., 2006). For example, in the 
case of a heterogeneous population of effect sizes, 
researchers might conduct power analyses and target 
smaller effects with larger studies.

PET-PEESE corrects for the effect-size inflation by 
using a two-step procedure. In the first step, the PET 
model, specifying a weighted least square regression 
predicting the effect sizes with standard errors, is esti-
mated and used to test for the presence of the effect 
with α = .10 as recommended by Stanley and Doucoulia-
gos (2014), Stanley (2017), and Renkewitz and Keiner 
(2019). If the PET effect-size estimate is significant, the 
PEESE model, specifying a weighted least square regres-
sion predicting the effect sizes with standard errors 
squared, is used for publication-bias adjustment because 
it provides a better effect-size approximation in the pres-
ence of an effect. If the PET effect-size estimate is not 
significant, the PET model and its effect-size estimate is 
used (Stanley, 2017).2 PET-PEESE has been shown to 
provide appropriate corrections for publication bias in 
applied examples (Carter & McCullough, 2014; Kvarven 
et al., 2020). Moreover, simulation studies indicate low 
bias, although the variance can sometimes be consider-
able (Carter et al., 2019). In other words, the effect-size 

https://osf.io/uhaew/
https://bit.ly/pubbias
https://osf.io/mgu7v/
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estimates from PET-PEESE are close to the true effect 
size on average; however, in any particular case, the 
estimates can be imprecise (i.e., accompanied by large 
standard errors, e.g., when the number of studies is small 
or when all studies measure the effect with similar 
precision).

Application to the running example

The first part of the video (at the 5-min 30-s mark) shows 
how to perform the PET-PEESE analysis in JASP (Fig. 1). 
The corresponding analysis with R is outlined in the 
second part of the R-markdown file.

To interpret the results, we first focused on the test of 
effect size based on precision-effect test (PET) model 

Fig. 1.  Results from Lui (2015) using the precision-effect test and precision-effect estimate with standard errors (PET-PEESE) analysis in JASP. 
Screenshot from JASP graphical user interface when we analyzed the data of Lui (2015). The analysis settings are specified in the left panel 
(click the blue “i” icon for a description of the controls) and the associated output is shown in the right panel. The shown output concerns 
(1) a test of effect size based on precision-effect test (PET), (2) a test of publication bias based on PET, (3) effect-size estimates from PET 
and PEESE, and (4) estimated PET regression model visualizing the relationship between standard errors and effect sizes.

under the “Test of Effect” table in the upper right part of 
the Figure 1. We found that the test of effect size is not 
significant, so we proceeded to interpret the effect-size 
estimate on the basis of the PET model under the “Esti-
mates” table in the middle right part of Figure 1. We 
found that the adjusted mean-effect-size estimate is prac-
tically zero, r = 0.000, 95% CI = [ . , . ]-0 207 0 205 . Note that 
the estimate provided by PET-PEESE is substantially 
wider than that of the naive random-effects meta-analysis 
because the model incorporating publication bias is more 
complex.

We can further visualize the PET metaregression esti-
mate of the relationship between the effect sizes and 
standard errors displayed in the bottom right part of 
Figure 1. The figure illustrates the relationship between 
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standard errors (x-axis) and effect sizes (y-axis). The 
adjusted estimate then corresponds to the intercept with 
the y-axis. Figure 1 is similar to a funnel plot except that 
the funnel plot visualizes the effect sizes on the x-axis 
and the standard errors on the y-axis. Showing the stan-
dard errors on the x-axis, as here, highlights the PET-
PEESE signature of publication bias (i.e., that less precise 
studies show larger effect sizes).

Selection Models

Theoretical background

Selection models are publication-bias-adjustment meth-
ods that use weighted likelihood to account for studies 
that are missing because of publication bias. Selection 
models are well established among statisticians (e.g., 
Iyengar & Greenhouse, 1988; Larose & Dey, 1998; Vevea 
& Hedges, 1995) and can accommodate realistic assump-
tions regarding publication bias and heterogeneity (e.g., 
the chances of publication depend on reported p values; 
Citkowicz & Vevea, 2017).

Selection models offer multiple ways of defining the 
relationship between p values and the relative publication 
probabilities via the weight function. Parameters of the 
weight function are estimated simultaneously with the rest 
of the model, which allows selection models to correct for 
the missing studies. Here, we focus on the step-weight 
functions that specify distinct p-value intervals, each gov-
erned by a different relative publication probability (for 
information about other implementations of selection mod-
els, see Box 1). The step-weight-function selection models 
are the most popular, arguably because of their simplicity, 
accessibility, and good performance across multiple simula-
tion studies (e.g., Carter et al., 2019; Hong & Reed, 2020; 
Maier, Bartoš, & Wagenmakers, 2022; McShane et al., 2016).

To apply selection models with step-weight func
tions, researchers specify p-value intervals with different  

Box 1.  Selection Models and Weight Functions

Throughout the article, we exclusively focus on selection models specified with a step-weight function that is 
estimated from data. This type of selection models allows researchers to adjust for publication bias operating 
on p-value thresholds, with the relative publication probabilities estimated simultaneously with the meta-
analytic model.

However, there exist many other types of selection models and different use-cases. First, selection models 
offer a wide variety of weight functions that can be associated with p values, standard errors, or additional 
variables (for more details. see Citkowicz & Vevea, 2017; Iyengar & Greenhouse, 1988; McShane et al., 2016; 
Patil & Taillie, 1989; Preston et al., 2004). Second, selection models can be used with prespecified weight 
functions to perform a sensitivity analysis under different assumptions about the degree of publication bias 
(e.g., Mathur & VanderWeele, 2020; Vevea & Woods, 2005).

In R, many of the approaches above are implemented via the selmodel() function in the metafor package 
(Viechtbauer, 2010). Use ?metafor::selmodel in R for detailed documentation and examples.

publication probabilities, for example, “statistically signifi-
cant” p values ( p < .05) versus nonsignificant p values 
( p > .05). Selection models typically use maximum likeli-
hood to obtain a publication-bias-adjusted pooled-effect-
size estimate by accounting for the relative publication 
probabilities in each interval (called “weights”) and using 
the weighted-likelihood function. Selection models can 
accommodate effect-size heterogeneity by extending ran-
dom-effects models (Maier et al., 2021; McShane et al., 
2016; Rothstein et al., 2005; Vevea & Hedges, 1995, pp. 
145–174).

Step-weight-function selection models can be speci-
fied flexibly in several ways. First, researchers can decide 
between one-sided and two-sided selection. One-sided 
selection means that only significant effects in the 
expected direction are more likely to be published. Com-
monly, significant positive effects are more likely to be 
published, although in some cases, significant negative 
effect sizes might be more likely to be published as well. 
Researchers can specify the direction of selection flex-
ibly. Two-sided selection means that the probability of 
publication does not depend on the direction of the 
effect; in other words, positive and negative effects have 
the same probability of being published given that they 
fall in the same p-value interval.

Second, researchers may also specify different intervals 
for different publication probabilities. For example, to 
account for the fact that marginally significant results 
(. .05 10< <p ) are potentially more likely to be published 
than nonsignificant results, researchers could specify this 
as a third interval. Note that when the observed effect is 
in the predicted direction, a marginally significant result 
using a two-sided test is significant using a one-sided test. 
Therefore, a two-sided selection process with different 
publication probabilities for significant versus “marginally 
significant” findings accommodates a one-sided selection 
process with publication probabilities depending on 
whether the p value is statistically significant.
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Application to the running example

The middle section of the video (at the 7-min mark) 
shows how to perform the selection-model analysis in 
JASP (Fig. 2), which uses the weightr R package (Coburn 
& Vevea, 2019). The corresponding analysis with R is 
then outlined in the third part of the R-markdown file.

To interpret the results, we first focused on the test of 
heterogeneity under the “Test of Heterogeneity” table in 
the upper right part of Figure 2.3 We found that the test 
of heterogeneity was significant, so we proceeded to 
interpret the test for publication bias assuming hetero-
geneity in the “Test of Publication Bias” table, the second 
table on the right side of Figure 2. We found that the test 
for publication bias assuming heterogeneity is significant 
only when using α = .10, as advocated by Renkewitz and 

Fig. 2.  Results from Lui (2015) using selection models analysis in JASP. Screenshot from the JASP graphical user interface when analyzing 
the data of Lui. The analysis settings are specified in the left panel (use the blue “i” icon for description of the controls), and the associated 
output is shown in the right panel. The shown output concerns (1) a test of heterogeneity, (2) a test of publication bias, and (3) adjusted 
and unadjusted effect-size estimates for the random-effects models.

Keiner (2019), χ2 1 3 11( ) .= , p = .078. That led us to inter-
pret the adjusted random-effects mean estimate under 
the “Random Effect Estimates” table, the third table on 
the right side of Figure 2. We found a nonsignificant 
adjusted mean effect-size estimate, r = 0.159, 95% CI = 
[-0 003 0 309. , . ], that is considerably larger than the effect-
size estimate obtained by PET-PEESE (r = 0.000, 95% CI = 
[-0 207 0 205. , . ]). Note again the wider CIs compared with 
naive random-effects meta-analysis.

The above procedure involved an initial test for het-
erogeneity and an initial test for publication bias; on 
the basis of the outcomes of these tests, we then applied 
the random-effects selection model. However, some 
researchers have argued that random-effects models 
are to be preferred over fixed-effects models under 
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almost all circumstances (Borenstein et al., 2010). Fur-
thermore, the test for publication bias is often under-
powered (Rothstein et al., 2005), and the presence of 
publication bias can greatly affect the heterogeneity 
estimate and its test (Augusteijn et al., 2019; Jackson, 
2006). Therefore, one may argue that it is prudent to use 
the adjusted effect-size estimate from the random-effects 
selection model regardless of the tests for heterogeneity 
and publication bias (which would not change the result 
in our case).

We can further visualize the estimated-weight function 
on the basis of the random-effects model displayed.4 
The bottom right part of Figure 2 shows the estimated 
publication probabilities (y-axis) for the different p-value 
intervals (x-axis). The x-axis is rescaled to show equal 
distance between p-value cut points. This rescaling facili-
tates readability when the p-value cut points are defined 
to be relatively close. The first p-value interval ( , . )0 0 025  
corresponds to statistically significant studies. Here, the 
weight function is fixed at the reference value of 1, 
which means that all these studies are being published. 
The second p-value interval ( . , )0 025 1  corresponds to 
statistically nonsignificant studies (with two-sided p val-
ues). The corresponding weight-function point estimate 
is ω0 025 1 0 305. , .=  (black solid line), 95% CI = [0.000, 0.733] 
(gray area). This means that the statistically nonsignifi-
cant studies are less than one third as likely to get pub-
lished than the statistically significant studies.

Limitations of PET-PEESE and Selection 
Models

Although the PET-PEESE and selection models provide 
powerful adjustment in several situations, the frequentist 
methods outlined above have several shortcomings.

The first limitation is that frequentist Neyman-Pearson 
point-null hypothesis significance tests (NHSTs) are based 
on binary accept/reject decisions.5 When the number of 
primary studies is small, the methods might have insuf-
ficient power, compromising the reliability of the accept/
reject decisions (cf. Robinson, 2019). Insufficient power 
is a considerable problem for the test of publication bias. 
From a frequentist point of view, the act of not rejecting 
the point-null hypothesis does not imply that there is 
evidence in its favor.6 A single frequentist significance test 
against a point-null hypothesis cannot distinguish between 
absence of evidence (i.e., the data are uninformative) or 
evidence of absence (i.e., the data support the null 
hypothesis; Keysers et  al., 2020; Wagenmakers et  al., 
2016). This problem was highlighted in the selection-
models example—it was unclear whether nonsignificance 
at the .05 level indicates evidence of absence or absence 
of evidence regarding publication bias. A closely related 
limitation is that selection models cannot be estimated 
when there are insufficient p values in the specified 

p-value intervals, which is highly likely when the number 
of primary studies is relatively small.

The second limitation is accumulation bias (ter Schure 
& Grünwald, 2019). Consider meta-analyzing k primary 
studies with a frequentist method. At a later point in 
time, an additional study k + 1 becomes available, and 
researchers would want to add this study to the set and 
update the analysis. For frequentist hypothesis testing, 
this introduces the problem of multiple testing. To avoid 
accumulation bias, the sampling plan would need to be 
known in advance. However, because researchers usu-
ally conduct meta-analyses on available data collected 
by others, accumulation bias is all but inevitable.

A third limitation is that one needs to decide between 
different methods. PET-PEESE and selection models will 
sometimes arrive at different results. Although it is advised 
to fit multiple adjustment methods that are suitable under 
the given conditions for sensitivity analysis (Carter et al., 
2019; McShane et al., 2016), it is less clear what to con-
clude if the different methods disagree. Ideally, one would 
want to combine different models into a single method 
that bases the inference on multiple models simultane-
ously depending on how well they account for the data.

To overcome these limitations, we developed robust 
Bayesian meta-analysis (RoBMA; Bartoš, Maier, et  al., 
2021; Maier, Bartoš, & Wagenmakers, 2022), which com-
bines selection models and PET-PEESE using Bayesian 
model averaging. In the next sections, we explain 
RoBMA conceptually and show how it alleviates the 
shortcomings of frequentist selection models. In addi-
tion, we illustrate the workings of the JASP and R imple-
mentation in practice.

RoBMA

Theoretical background

RoBMA is a meta-analytic framework that uses Bayesian 
model averaging to adjust for publication bias (Bartoš, 
Maier, et al., 2021; Maier, Bartoš, & Wagenmakers, 2022). 
RoBMA allows researchers to simultaneously estimate 
different models and base the results on a weighted 
combination of their estimates. The models can be gen-
erally divided into three different pairs:

1.	 models assuming the null hypothesis to be true 
versus models assuming the alternative hypoth-
esis to be true (i.e., 0 vs. 1),

2.	 models assuming fixed effects versus models 
assuming random effects (i.e.,  f  vs. r ),

3.	 models assuming publication bias and models 
assuming no publication bias (i.e.,  pb vs.  pb).

The models assuming publication bias encompass the 
different publication-bias adjustments. We specify both 
the PET-PEESE publication-bias adjustment (however, 
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Box 2.  Prior Distributions (Part I)

A core part of every Bayesian analysis is the specification of appropriate prior distributions. This Box 
outlines the default and alternative prior distributions. The R package internally transforms the specified 
prior distributions to the Fisher z scale that is used for estimating the models. Users can change the scale for 
setting the priors in both R and JASP. The suggested alternative prior distributions can be used for a robust 
Bayesian meta-analysis (RoBMA) sensitivity analysis, that is, an assessment of the degree to which the 
reported conclusions are robust to alternative specification of the prior distributions.

Prior Distributions on Effect Size

By default, we use a standard normal distribution on the effect size, Normal( , )M SD= =0 1 , that corresponds 
to a wide range of effect sizes expected in psychology. On the basis of the literature, we suggest the 
following plausible alternative priors on “Cohen’s d” effect size δ µ σ= / :

d ~ Cauchy(location = 0, scale = 0.707)—a default prior distribution in Bayes factor testing, appropriate 
when large effects cannot be ruled out (Morey & Rouder, 2015).

d ~ Student−t[0, ∞](location = 0.35, scale = 0.102, df = 3)—an informed prior distribution for small- to 
medium-sized effects, called the “Oosterwijk prior distribution” after the expert from whom the distribution 
was elicited (Gronau et al., 2020).

δ ~ ( . , . )[ , ]Normal 0 0 30 0 15∞ M SD= = —another informed prior distribution for small- to medium-sized effects, 
called the “Vohs prior distribution” after the preregistered prior distribution used in a multiteam replication 
effort on the ego-depletion effect (Vohs et al., 2021).

Prior Distributions on Heterogeneity

We suggest the Inverse Gamma shape scale− = =( , . )1 0 15  empirical prior distribution for the heterogeneity 
parameter τ  of the Cohen’s d effect size based on heterogeneity estimates recorded from meta-analyses 
published in Psychological Bulletin (van Erp et al., 2017).

instead of selecting either PET or PEESE, we model aver-
aged across both models) and selection-model adjust-
ment. For the selection models, we specify the following 
weight functions:

1.	 Two-sided

(a)	 p-value cutoffs = .05
(b)	 p-value cutoffs = .05 and .10

2.	 One-sided

(a) 	 p-value cutoffs = .05
(b) 	 p-value cutoffs = .025 and .05
(c) 	 p-value cutoffs = .05 and .50
(d) 	 p-value cutoffs = .025, .05, and 0.50

Overall, RoBMA contains eight distinct ways of adjust-
ing for publication bias (PET, PEESE, and six weight 
functions). The complete model ensemble is then con-
structed as a combination of all possible components, 2 
(Effect vs. No Effect) × 2 (Heterogeneity vs. no Hetero-
geneity) × 9 (Publication Bias [8] vs. No Publication 
Bias), resulting in 36 different models. For further details 
see “Appendix A: Model Specifications” in Bartoš, Maier, 
et al. (2021).

Prior distributions

To complete the specification of RoBMA, we need to 
specify prior parameter distributions (see Boxes 2 and 
3) and set the prior model probabilities. We use the 
default settings outlined and tested in a simulation study 
by Bartoš, Maier, et al. (2021). The simulation study veri-
fied that the prior specification performs well in terms 
of mean square error and bias of the estimates as well 
as the evidence in favor of the null and alternative 
hypotheses across a range of scenarios considered typi-
cal for psychology. Furthermore, the prior specification 
outperformed a variety of other publication-bias-adjust-
ment methods on real data examples (Bartoš, Maier, 
et al., 2021).

We split the prior model probabilities equally across 
the different model pairs. In other words, we assign 50% 
prior model probability to models that assume the pres-
ence of an effect, 50% prior model probability to models 
that assume the presence of heterogeneity, and 50% 
prior model probability to models that assume the pres-
ence of publication bias. This division of prior model 
probabilities reflects a position of equipoise and puts 
the models on an equal footing before the arrival of the 
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data (e.g., Gronau et al., 2021; Hinne et al., 2020; Jeffreys, 
1939; Madigan et  al., 1994; Madigan & Raftery, 1994; 
Raftery, 1995; for alternatives, see Castillo et al., 2015; 
Scott & Berger, 2006, 2010; Wilson et al., 2010).

However, we point out that these are only the default 
settings, and researchers can specify different priors if 
they so desire. For instance, the prior distribution on the 
effect-size parameter of the null hypothesis can be modi-
fied to specify a test against a perinull hypothesis (i.e., 
the spike can be changed to a narrow “slab”; e.g., Berger 
& Delampady, 1987; Cornfield, 1966; George & McCulloch, 
1993), and the prior distribution on the alternative 
hypothesis can be changed to be more informed or direc-
tional (Bartoš, Gronau, et al., 2021; Gronau et al., 2017, 
2020; see Boxes 2 and 3). Prior knowledge can be also 
incorporated into the prior model probabilities. Research-
ers interested in effect-size estimation (e.g., McElreath, 
2020) may remove models that assume the effect is 
absent (i.e., assign these models zero prior probability; 
but see van den Bergh et al., 2021). Other researchers 
may for theoretical reasons include only random-effects 
models and assign zero prior probability to fixed-effects 

Box 3.  Prior Distributions (Part II)

Prior Distributions for Precision-Effect Test and Precision-Effect Estimate With Standard Errors

By default, we suggest half-Cauchy distributions on the PET, Cauchy location scale+ = =( , )0 1 , and PEESE, 
Cauchy location scale+ = =( , )0 5 , metaregression coefficients that ensure a positive correlation between the 
effect sizes and standard errors. We suggest the following alternative priors on the regression coefficient b, 
obtained from simulations (Bartoš, Maier, et al., 2021, Appendix B):

bPET ~ Gamma(shape = 2.84, rate = 2.19)
bPEESE ~ Gamma(shape = 2.32, rate = 0.86)

Prior Distributions for Publication Bias Weights

The default prior distribution for publication bias weights is unit cumulative Dirichlet prior distributions. This 
encodes the intuitive assumption that studies with statistically significant p values have higher relative 
publication probability than studies with marginally significant p values, and studies with marginally 
significant p values have a higher relative publication probability than studies with statistically nonsignificant 
p values (for an illustration supporting the assumption with a collection of over 1 million test statistics 
collected from Medline, see van Zwet & Cator, 2021, Fig. 1). This assumption allows a more efficient use of 
information about the publication process, which is especially relevant when the number of studies is small 
such that some p-value intervals contain only a few or no studies. We suggest the following alternative priors 
on the publication weight w, obtained from simulations (Bartoš, Maier, et al., 2021, Appendix B):

wTwo-sided(. )05  ~ CumDirichlet(2.49,0.83)

ωTwo-sided . ,.1 05( ) ~ CumDirichlet(2.88,0.98,0.99)

ωOne-sided .05( ) ~ CumDirichlet(2.61,0.89)

ωOne-sided . ,.05 025( ) ~ CumDirichlet(2.92,0.95,0.75)

wOne-sided(. ,. )5 05  ~ CumDirichlet(3.17,0.80,0.83)

wOne-sided(. ,. ,. )5 05 025  ~ CumDirichlet(3.24,1.02,0.68,0.66)

models (e.g., Rothstein et  al., 2005; but for empirical 
evidence from medicine showing that fixed-effects mod-
els show relatively good predictive performance, see 
Bartoš, Gronau, et al., 2021). In addition, it is sometimes 
argued that models based on the correlation between 
effect sizes and standard errors might find spurious evi-
dence for publication bias, for example, when research-
ers take into account heterogeneity by studying small 
effects with larger samples (Lau et al., 2006). To test this 
possibility, one may omit the PET-PEESE models (i.e., 
assigning them zero prior probability) and assess the 
extent to which this affects the overall conclusions. 
Another reason for omitting some of the models from 
the ensemble is when they are clearly inappropriate (e.g., 
PET-PEESE publication-bias-adjustment models require 
variability in the standard errors/sample sizes of the origi-
nal studies; Stanley, 2017)—if all conducted studies had 
the same standard error, the relationship between the 
standard errors and sample sizes cannot be estimated. 
Appendix B shows how RoBMA can be adjusted to com-
pare a perinull hypothesis with an informed alternative 
hypothesis.
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Bayesian model averaging

After we specified the prior distributions and estimated 
the individual models, we updated the individual mod-
els’ posterior model probabilities using Bayes’s rule. In 
other words, models that predict the data well receive 
a boost in posterior probability, whereas models that 
predict the data poorly suffer a decline (Wagenmakers, 
2020; Wagenmakers et al., 2016). Comparing only two 
models, we can describe their relative predictive perfor-
mance using Bayes’s factors (BFs; Etz & Wagenmakers, 
2017; Jeffreys, 1961; Kass & Raftery, 1995; Rouder & 
Morey, 2019; Wrinch & Jeffreys, 1921). The BF equals 
the change from prior to posterior odds. If both hypoth-
eses are equally likely a priori, the posterior odds equal 
the BF. This relationship is illustrated in Equation 1 for 
two models that both assume the presence of heteroge-
neity and the absence of publication bias; however, one 
model assumes the presence of the effect, whereas the 
other assumes its absence:
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where 1
r pb denotes the random-effects model (super-

script “r”) assuming presence of the effect (subscript “1”) 
and absence of publication bias (superscript “pb”), 
whereas 0

r pb denotes the random-effects model assum-
ing absence of the effect and absence of publication bias.

More than two models can be compared using the 
“inclusion Bayes factor.” This BF allows researchers to 
quantify the evidence for a meta-analytical effect, the 
evidence for heterogeneity, and the evidence for publi-
cation bias. When we compare the class of models 
assuming publication bias with the class of models 
assuming no publication bias, the inclusion BF can be 
calculated as in Equation 2:
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In other words, the inclusion BF for publication bias 
is obtained by contrasting the prediction accuracy of all 
models that assume publication bias to all models that 

assume no publication bias. The inclusion BF for effect 
size and heterogeneity can be calculated analogously. 
One advantage of BFs is that they can distinguish 
between absence of evidence and evidence of absence. 
In addition, they can quantify evidence on a continuous 
scale and can be updated sequentially as studies accu-
mulate, which is not advisable when using a conven-
tional NHST approach. The following rule of thumb can 
aid the interpretation of BFs: 1 3< <BF  corresponds to 
weak evidence, 3 10< <BF  corresponds to moderate 
evidence, and BF > 10 corresponds to strong evidence 
(e.g., Jeffreys, 1939; Lee & Wagenmakers, 2013).

After updating the models according to their posterior 
probability, the final effect-size estimate is obtained  
by Bayesian model averaging (e.g., Hinne et al., 2020; 
Hoeting et al., 1999). In Bayesian model averaging, the 
effect size from each individual model is weighted by 
its posterior probability. Because those models that pre-
dicted the data best have the highest posterior probabil-
ity, the final estimate is based most strongly on the most 
appropriate models.

Bayesian model averaging is especially relevant in the  
context of publication-bias adjustment in meta-analyses. 
Carter et al. (2019) and Hong and Reed (2020) identified 
the conditions under which particular publication-bias 
methods perform best (e.g., when heterogeneity is  
high, selection models generally outperform most other 
methods); in practical application, however, it usually 
remains unclear what condition holds for the data set 
at hand. A similar logic applies to other assumptions—
for instance, the degree of variability in the standard 
errors of the individual studies warranting the use of 
PET-PEESE publication-bias adjustment is hard to define 
(i.e., it is unclear what is the degree of variability below 
which PET-PEESE should no longer be used). Bayesian 
model averaging applies PET, PEESE, and selection 
models to the data simultaneously, weighting their rela-
tive impact with the extent to which the rival publica-
tion-bias methods predicted the observed data. If the 
variability of standard errors is too low, the PET-PEESE 
models will predict the data poorly and thus contribute 
little to inference. In other words, an assumption viola-
tion is often equivalent to a poor description of the 
data by a model, therefore, Bayesian model averaging 
makes models more robust to misspecification. Finally, 
whereas a large number of studies will often yield clear 
evidence for a single model, a low number of studies 
usually yields evidence that is less conclusive. In such 
cases, Bayesian model averaging allows the uncertainty 
about the most appropriate model to be incorporated 
in a coherent manner, providing optimal estimates  
that do not suffer from overconfidence (Hoeting et al., 
1999).
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RoBMA’s benefits

RoBMA overcomes the limitations of frequentist selection 
models and PET-PEESE in several ways. First, the BF 
allows researchers to quantify relative evidence for the 
null hypothesis and thus distinguish between absence 
of evidence and evidence of absence.

Second, the model averaging obviates the need to 
select a single model in an all-or-none fashion. There-
fore, if there is uncertainty regarding the presence of 
publication bias, RoBMA can base the inference on both 
the “normal” models and the publication-bias-adjusted 
models instead of needing to commit fully to a single 
model.

Third, the prior distributions allow the selection mod-
els to be estimated even in cases with few p values in 
some of the p-value intervals, which is a limitation of 
frequentist selection models. The method will not fail to 
converge under these conditions. However, especially 

in this context, it is important to specify the prior distri-
butions carefully and check the robustness of the results 
to different specifications of the prior distributions. Con-
cretely, we recommend using the distributions in Boxes 
2 and 3 in addition to the default priors to check whether 
the conclusions are robust to the prior choice.

Fourth, BFs allow for sequential updating (Rouder, 
2014; Rouder & Morey, 2011; Wagenmakers et al., 2016), 
meaning that new studies can be added to the set and 
the analysis can be updated without having to worry 
about accumulation bias. At every point in time, RoBMA 
quantifies evidence using the relative predictive perfor-
mance of the rival models for the observed data.

Application to the running example

The last part of the video (at the 15-min 40-s mark) 
shows how to perform the robust Bayesian meta-analysis 
in JASP (Fig. 3), which uses the RoBMA R package 

Fig. 3.  Results from Lui (2015) using the robust Bayesian meta-analysis (RoBMA) in JASP. Screenshot from the JASP graphical user interface 
when we analyzed the data of Lui (2015). The analysis settings are specified in the left panel (use the blue “i” icon for description of the 
controls), and the associated output is shown in the right panel. The shown output displays (1) summary of the model components, (2) 
model-averaged estimates of the effect size and heterogeneity, and (3) prior (gray) and posterior (black) model-averaged distribution for 
the effect size estimate. The arrows centered at zero correspond to the point probability mass allocated to the null hypothesis (secondary 
y-axis), and the smooth densities correspond to the distributions under the alternative hypothesis.
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(Bartoš & Maier, 2020). The corresponding analysis with 
R is outlined in the fourth part of the R-markdown file. 
In contrast to the previous methods, RoBMA is estimated 
via Markov chain Monte Carlo (MCMC), the convergence 
of which ought to be checked. Both JASP and R return 
automatic convergence warnings (further diagnostics can 
be obtained in the “MCMC Diagnostics” menu in JASP; 
the R-markdown file contains more details regarding the 
R version) that prompt the user to adjust the MCMC fit-
ting process (for details, see the JASP or R help files).

To interpret the results, we first focused on model 
components summary under the “Model Summary” table 
in the upper right part of the Figure 3. We found absence 
of evidence for the presence of the effect, BF10 1 23= . ; 
extreme evidence for presence of the heterogeneity, 
BFrf = 19 168, ; and a moderate evidence for the presence 
of publication bias, BFpb = 5 44. . The posterior model-
averaged estimates are summarized under the “Model 
Averaged Estimates” table in the middle right part of 
Figure 3. We found that the model-averaged mean effect-
size estimate is between the PET-PEESE and selection 
models estimates from the previous sections, ρ = 0 095. , 
95% CI = [ -0 004 0 286. , . ]. See Table 2 for a comparison 
of effect-size estimates and tests against no effect based 
on the different methods.

Furthermore, the bottom right part of Figure 3 visual-
izes the model-averaged prior (gray lines) and posterior 
(black lines) distributions of the effect-size estimate (on 
the Cohen’s d scale). The black vertical arrow is slightly 
lower than the gray vertical arrow, reflecting a slight 
decrease in probability for models that assume the effect 
is absent—note that the secondary y-axis indexes the 
prior and posterior probability mass allocated to the null 
hypothesis. The continuous prior and posterior distribu-
tions are associated with models that assume the effect 
is present.

This example highlights the Bayesian benefit of taking 
all uncertainty into account. In the frequentist frame-
work, it was unclear whether to adjust for publication 
bias and how to adjust for publication bias. In contrast, 
RoBMA does not require an all-or-none decision on the 

presence of publication bias. Instead, all models are 
taken into account simultaneously, and the effect-size 
estimate is based on a weighted average across the vari-
ous models. The weights are determined according to 
the support that each model receives from the data. 
Taking all models into account, we still found the 
absence of evidence for an effect. In other words, more 
primary studies are needed to learn about the relation-
ship between intergenerational cultural conflict and 
acculturation mismatch. When the new studies are con-
ducted, RoBMA allows researchers to continuously 
update the evidence.

Concluding Comments

In this article, we introduced three approaches to adjust 
for publication bias in meta-analysis, all implemented in 
JASP and R. First, we discussed PET-PEESE, a regression-
based estimator with low bias that has been shown to 
perform well on empirical examples. Second, we dis-
cussed frequentist selection models, which have been 
demonstrated to work well even under high heterogene-
ity. Third, we discussed RoBMA, a Bayesian approach for 
combining complementary publication-bias-adjustment 
methods according to how well they describe the data 
at hand. RoBMA allows researchers to move beyond 
single-model inference and incorporate model-selection 
uncertainty into the meta-analytic estimates; in addition, 
RoBMA allows researchers to conduct multimodel tests 
for the presence of the effect, for heterogeneity, and for 
publication bias.

The RoBMA ensemble is highly modifiable; prior 
parameter distributions may be adjusted to reflect dif-
ferent background knowledge, prior model probabilities 
can be set to reflect theoretical preferences or expecta-
tions (e.g., entire classes of models can be excluded 
when deemed inappropriate on theoretical grounds), 
and more generally, researchers who do not wish to 
engage in model averaging may inspect the parameter 
estimates and posterior model probabilities for each 
individual model separately.

Table 2.  Summary of Meta-Analytic Estimates for Lui (2015) Based on Different 
Models

Method Effect size estimate r and 95% CI Test against no effect

Random effects 0.249 [0.170,0.324] z p= <6 06 001. , .
PET-PEESE (PET) -0.001 [-0.210,0.208] t p( ) . , .16 0 01 994= − =
Selection model 0.159 [-0.003,0.309] z p= =1 92 055. , .
RoBMA-PSMA 0.095 [-0.004,0.286] BF10 1 23= .

Note: PET = precision-effect test; PEESE = precision-effect estimate with standard errors; 
RoBMA-PSMA = robust Bayesian meta-analysis specified as in Bartoš, Maier et al. (in press).
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In cases in which the data-generating process and 
type of publication bias are known, the Meta Explorer 
app (https://tellmi.psy.lmu.de/felix/metaExplorer/) by 
Carter et al. (2019) can be used to select the most appro-
priate method in a given situation. In cases in which 
uncertainty about the data-generating process and  
the presence or type of publication bias exists,  
RoBMA allows researchers to combine the adjustment 
approaches according to their predictive performance 
for the observed data.

However, we note that RoBMA also has several limita-
tions. First, whereas averaging over a set of models alle-
viates problems because of model misspecification, the 
meta-analytic estimate might still suffer from over- or 
underestimation if none of the models approximate the 
data-generating process well. Second, whereas the  
RoBMA’s performance was demonstrated across multiple 
simulation environments and empirical examples, it can 
lead to overcorrection of the effect-size estimates under 
moderate and strong questionable research practices, as 
simulated by Carter et al. (2019). Third, RoBMA has 
considerably longer fitting time compared with frequen-
tist approaches. However, for educational purposes or 
when distributing results with colleagues, one can share 
a .JASP file with models that have already been fitted to 
illustrate interpretation of the results.

To conclude, the publication-bias-adjusted meta- 
analyses in JASP allows researchers without programming 
experience to conduct state-of-the-art, publication-bias-
corrected meta-analysis in an intuitive and user-friendly 
way. We hope that this methodology will improve the 
inferences researchers make when conducting meta- 
analysis.

Appendix A

Example report

In the previous sections, we illustrated the various pub-
lication-bias-adjustment methods implemented in the 
JASP “Meta-Analysis” module. Here, we briefly demon-
strate how to report the results of PET-PEESE, selection 
models, and RoBMA using the example of acculturation 
mismatch and intergenerational cultural conflict (Lui, 
2015) that we followed throughout the article. For more 
general reporting guidelines, see van Doorn et al. (2021). 
We also emphasize that reporting results is the last step 
of conducting a meta-analysis; for guides for planning, 
selecting articles, describing methods, and so on, see, 
for instance, Borenstein et al. (2009), Higgins et al. 
(2019), and Quintana (2015). Please also see the Meta-
Analysis Reporting Standards and Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses guide-
lines for how the results of a meta-analysis need to be 
reported (Cooper, 2016, p. 287; Moher et al., 2009). We 

conducted the analysis with the JASP statistical software 
( JASP Team, 2021; Ly et al., 2021) that relies on metafor, 
weightr, and RoBMA R packages (Bartoš & Maier, 2020; 
Coburn & Vevea, 2019; Viechtbauer, 2010).

A random-effects meta-analysis was performed using 
Fisher r-to-z transformed correlation coefficients; hetero-
geneity (i.e., τ2) was calculated using restricted maximum 
likelihood estimator. Cochran’s Q test for heterogeneity 
was also be performed, and I 2 was calculated. Fisher’s z 
was back-transformed to r  for reporting the results. 
Reanalysis confirmed a significant relationship between 
acculturation mismatch on increased intergenerational 
cultural conflict, ρ = 0 250. , 95% CI = [0.172, 0.336], 
p < .001. According to Cochran’s Q test for residual het-

erogeneity, the true outcomes appear to be heteroge-
neous, Q(17) = 73.58, p < .001, τ2 = 0.02, I 2 = 77.8%.

We first adjusted for publication bias using PET-
PEESE. The PET model did not find a significant effect 
on the α = .10 level, p = .994. Consequently, we interpreted 
the effect-size estimate using the PET model, r = 0.000, 
95% CI = [-0 207 0 205. , . ].

Then we proceeded to using selection models. Before 
data analysis, we decided to use significance level α = .10 
for publication bias (Renkewitz & Keiner, 2019) and 
α = .05 for heterogeneity and effect sizes. We estimated 
the two-sided selection models with p-value cutoffs set 
to (. , . )05 10  and automatically joined p-value intervals.  
The models were estimated using correlations and sam-
ple sizes with Cohen’s d effect-size transformation. The 
p-value intervals were automatically reduced to two 
intervals separated by a .025 cutoff corresponding to a 
one-sided p value. The test for heterogeneity was sig-
nificant, Q( ) .17 75 5= , p < .001. Therefore, we applied the 
test for publication bias assuming heterogeneity, which 
was significant as well, χ2 1 3 11( ) .= , p = .078. Conse-
quently, we interpreted the bias-adjusted effect-size  
estimate from a random-effects model. The effect size 
was not statistically significant, r  = 0.159, 95% CI = 
[-0 003 0 309. , . ], p = .055 ; heterogeneity estimate, τ  (on 
Cohen’s d scale) = 0.339, 95% CI = [0.042, 0.477]. Alto-
gether, both PET-PEESE and selection models did not 
find a statistically significant effect, however, they pro-
vided notably different adjusted mean effect-size 
estimates.

Third, we reanalyzed the same data set using robust 
Bayesian meta-analysis. Before the analysis, we decided 
to use the default prior settings (i.e., standard normal 
distribution on effect sizes, inverse gamma distribution 
with α = 1 and β = 0 15.  on heterogeneity, six weight func-
tions and PET-PEESE publication-bias adjustment as 
specified in Bartoš, Maier, et al., 2021). We set the prior 
hypothesis probability to 0.50 for the effect size, hetero-
geneity, and publication bias. The results showed absence 
of evidence for the presence of the effect, BF10 1 23= . ; 
extreme evidence for heterogeneity, BFrf = 19 168, ; and 

https://tellmi.psy.lmu.de/felix/metaExplorer/
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moderate evidence for the presence of publication bias, 
BFpb = 5 44. . The resulting model-averaged effect-size esti-
mate was ρ = 0 095. , 95% CI = [-0 004 0 286. , . ]; heterogene-
ity estimate, τ = 0.165, 95% CI = [ . , . ]0 083 0 299 . The MCMC 
diagnostics were good; all R-hat values were below 1.01, 
and all effective sample size (ESS) were above 500; the 
commonly used rule of thumb for a good R-hat is < 1 05. , 
and for ESS, it is > 500 (Gelman & Rubin, 1992; McElreath, 
2020). RoBMA extends the findings of PET-PEESE and 
selection models by finding moderate evidence against the 
presence of the effect and by providing a model-averaged 
effect-size estimate that incorporates the uncertainty about 
the best publication-bias-adjustment model. The resulting 
JASP file can be found at https://osf.io/rpkhw/.

Finally, we assessed the sensitivity of our conclusions 
with respect to prior distributions for the publication-bias-
adjustment part of RoBMA. We changed prior distribu-
tions for the PET-PEESE publication-bias adjustment and 
the weight functions from the default prior distributions 
to the specification outlined in Boxes 2 and 3. The model-
averaged effect-size estimate, ρ = 0 079. , 95% CI = 
[ . , . ]-0 013 0 280 , and the heterogeneity estimate, τ = 0.173, 
95% CI = [0.084, 0.310], stayed essentially the same, as 
did the absence of evidence for the presence of the 
effect, BF10 0 980= . . Furthermore, there was a slight, albeit 
inconsequential, increase in the evidence in favor of the 
heterogeneity, BFrf = 22 467, , and increase in the evidence 
in favor of publication bias, BFpb = 7 08. .

Appendix B

Specifying different priors

In the previous example, RoBMA revealed compelling 
evidence against the point-null hypothesis. However, it 
has been repeatedly argued that point-null hypotheses 
are not realistic and therefore not meaningful to test (e.g., 
Gelman & Carlin, 2014; Good, 1967; Meehl, 1978; Orben 
& Lakens, 2020). RoBMA overcomes this objection by 
allowing the specification of “perinull” hypotheses, that 
is, hypotheses with prior distributions tightly centered 
around an effect size of zero (e.g., Berger & Delampady, 
1987; Cornfield, 1966; George & McCulloch, 1993). 
Adjustments may also be desired for the prior distribution 
on effect size that is postulated under the alternative 
hypothesis. By default, the most plausible value for this 
prior distribution is zero (i.e., under 1, the prior distri-
bution is centered on zero), and this may not reflect the 
information at hand (e.g., Gronau et al., 2020). A more 
diagnostic test requires an “informed prior,” one that is 
centered around a nonzero value for the effect size.

Here, we use the example of acculturation mismatch 
and intergenerational cultural conflict from the main  
text (Lui, 2015) and demonstrate how RoBMA allows 
researchers to specify both a perinull hypothesis and  
an informed hypothesis and compare their predictive 
performance for the observed data. First, we specified 
a perinull hypothesis by assigning effect size a zero-
centered normal distribution with a standard deviation 
.10 on the Cohen’s d scale; propagated to the correlation 
scale, this yields a prior distribution with approximately 
95% probability mass in the interval r ∈ −[ . , . ]0 10 0 10 . For 
a perinull hypothesis, this range may be considered rela-
tively wide. If the goal of the perinull distribution is 
primarily to counter the objection that “the null hypoth-
esis is never true exactly,” a much narrower 95% interval 
could be specified, such as one ranging from -.01 to .01, 
for instance. Second, we specified the informed alterna-
tive hypothesis by assigning the effect size a normal 
distribution centered at .60 with standard deviation .20 
on the Cohen’s d scale. Translated to the correlation 
scale, this results in a prior distribution with most prob-
ability on correlations higher than .10, with the prior 
median at a correlation slightly lower than .30.

The model specification implemented in JASP allows 
researchers to specify any desired combination of 
hypotheses using different prior distributions7 (see the 
JASP help file accessible under the “i” icon). The speci-
fied prior distribution under each hypothesis is then 
used to generate a combination of all possible models. 
These models are automatically used to draw inference 
using the inclusion BF and model averaged to obtain 
model estimates.

In contrast to the default analysis, we found weak 
evidence for the presence of the effect, BF10 = 3.15; even 
stronger evidence for presence of the heterogeneity, BFrf = 
50,690; and considerably weaker evidence for the pres-
ence of publication bias, BFpb = 1.96. The posterior 
model-averaged estimates then reflect the higher inclina-
tion toward the informed alternative hypothesis with the 
model-averaged mean effect-size estimate, r = 0.179, 
95% CI = [–0.032, 0.306].

We can, again, visualize the model-averaged prior 
(gray line) and posterior (black line) distributions of 
the effect-size estimate (on Cohen’s d scale) displayed 
in the bottom right part of Figure B1. The figure now 
shows a single continuous prior and posterior distribu-
tion that model averages across all models. Most of  
the posterior distribution mass is concentrated at  
the effect sizes specified under the informed alternative 
hypothesis.

https://osf.io/rpkhw/
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Appendix C

Effect-size transformations

There are two main reasons for transforming effect sizes 
before performing a meta-analysis:

1.	 Studies with different designs often report different 
standardized effect-size measures. For example, an 
experiment comparing mean differences between 
two groups will report a Cohen’s d, whereas an 
observational study assessing the relationship 
between two continuous variables will report a 
correlation coefficient. If researchers believe that 
the different designs are comparable and measure 
the same underlying effect, they can, under certain 
assumptions, transform the different effect sizes 
into a common scale to combine them with a meta-
analysis (for more detail, see Borenstein et  al., 
2009).

2.	 Certain effect-size measures are better suited for 
a meta-analysis than others. For example, correla-
tion coefficients are bounded to (–1, 1) range, 
and standard errors of correlation coefficients, 
used for weighting in the meta-analysis, are heav-
ily influenced by the effect size itself, 
SE r r N( ) ( )/ ( )≈ − −1 12 . This is problematic 
because the likelihood of most meta-analytic 
models assumes (unbounded) normally distrib-
uted standard errors. Furthermore, the inherent 
relationship between effect sizes and standard 
errors in many standardized effect-size measures 
(e.g., correlation coefficients, Cohen’s d, Hedges’s 
g, log odds ratios) might conflict with regression-
based publication-bias-adjustment methods (e.g., 
PET-PEESE) that assume the effect sizes and stan-
dard errors are unrelated under the absence of 
publication bias. Performing the meta-analysis on 
effect sizes transformed to a different effect-size 
scale can then mitigate these issues.

Fig. B1.  Comparison between a perinull hypothesis and an informed alternative hypothesis as applied to the data from Lui (2015) using 
the robust Bayesian meta-analysis (RoBMA) in JASP. Screenshot from the JASP graphical user interface from when we analyzed the data of 
Lui. The analysis settings are specified in the left panel (use the blue “i” icon for description of the controls), and the associated output is 
shown in the right panel. The shown output concerns (1) summary of the model components, (2) model-averaged estimates of the effect 
size and heterogeneity, and (3) prior and posterior model-averaged distribution for the effect size estimate.
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When the standard errors ought to be independent 
of the effect sizes by design (e.g., PET-PEESE), the Fish-
er’s z transformation is an ideal solution because stan-
dard errors are dependent only on the sample sizes, 
SE z N( ) /≈ −1 3 . Otherwise, Cohen’s d is another suit-
able option because researchers are often familiar with 
the scale and it has unrestricted range. After the meta-
analytic model is estimated, the effect-size estimates can 
be transformed and interpreted on any of the standard-
ized effect-size scales.
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Notes

1. This result is close to that reported by Lui (2015): ρ = 0 23. .  
For the reanalysis, we used the data set as recoded by Stanley 
et al. (2018), obtained from https://osf.io/2vfyj/files/. The cor-
relation coefficient was calculated by back-transforming the 
Fisher z summary effect-size estimate of 0.254, 95% CI = [0.170, 

0.324]. The Fisher z transformation “unwinds” the correlation 
coefficients to an unrestricted range and makes the standard 
errors of the effect-size estimates independent of the effect sizes. 
Effect sizes measured as correlation coefficients can be trans-
formed into Fisher z as z r r= + −0 5 1 1. (( ) / ( ))log  with stan-
dard error SE z N( ) /= −1 3 , and the meta-analytic effect-size 
estimate can be transformed back into correlation coefficient as 
r z z= − +( ( ) )/ ( ( ))exp exp2 1 1 2 .
2. In the PET model, the regression coefficient of the standard 
error corresponds to the Egger’s test (Egger et al., 1997).
3. Under the output tables, the note “Only the following one-
sided p-value cutoffs were used: 0.025” informs readers that 
some of the specified p-value intervals did not contain enough 
p values for estimation and were therefore collapsed.
4. Note that the relative publication probabilities might be esti-
mated imprecisely (Hedges & Vevea, 1996).
5. This is not the case for the NHST framework developed by Sir 
Ronald Fisher, who proposed the p value as a continuous mea-
sure of evidence against the point-null hypothesis (e.g., Hubbard 
& Bayarri, 2003).
6. Frequentist equivalence tests (e.g., Hodges & Lehmann, 1954; 
Lakens et al., 2018; Schuirmann, 1987) to interval null hypothe-
ses instead of to point-null hypotheses and generally suffer from 
low power (Linde et al., 2021).
7. For specifying more complex models, see the RoBMA R pack-
age manual (Bartoš & Maier, 2020) and the “Fitting Custom 
Meta-Analytic Eensembles Vignette” (https://fbartos.github.io/
RoBMA/articles/CustomEnsembles.html).
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