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αὐχένα τε στιβαρὸν καὶ στήθεα λαχνήεντα,
δῦ δὲ χιτῶν᾽, ἕλε δὲ σκῆπτρον παχύ, βῆ δὲ θύραζε
χωλεύων: ὑπὸ δ᾽ ἀμφίπολοι ῥώοντο ἄνακτι
χρύσειαι ζωῇσι νεήνισιν εἰοικυῖαι.
τῇς ἐν μὲν νόος ἐστὶ μετὰ φρεσίν, ἐν δὲ καὶ αὐδὴ
καὶ σθένος, ἀθανάτων δὲ θεῶν ἄπο ἔργα ἴσασιν.

[...] [Hephaistos] took up a heavy stick in his hand, and went to the doorway limping.
And in support of their master moved his attendants.
These are golden, and in appearance like living young women.
There is intelligence in their hearts, and there is speech in them and strength,
and from the immortal gods they have learned how to do things.

Golden attendants of Hephaistos
Homer, Iliad 18. 415 ff (trans. Lattimore)



Preface
Inventing ways to make ones life easier and more pleasant transcends modern times. The
idea of automata that aid humans in various tasks dates back to ancient Greek myths. On
more than one occasion the greek eposes described Hephaistos creating automata, either
to help him personally, to protect islands, or because Zeus told him to do so.

The ancient Greek lacked the imagination for a design such as R2-D2, automata were
therefore often beautiful women or 70 meter tall men. In modern times automata take
many forms and fulfill many tasks, from the simplest Excel macro to robot vacuums and
massive industrial machines.

In this thesis I take a peek into the pithos of Pandora and describe the automata I have
lovingly worked on. I sincerely hope that my work improves the lives of others.

Allard J. van Altena
Utrecht

March 2022

v





CHAPTER
1

Introduction
1.1 General introduction

In the current field of medical science, and I dare say almost any modern research field, it
is impossible to imagine a world without data. Many thousands of researchers contributed
and refined methods for the creation, use, and reuse of data. Here the phrase “standing
on the shoulders of giants” really comes into its right. The foundations for this type of
research were lain ages ago. There are some examples of famous early-day researchers
that first wandered onto the path of data science, one of which is John Graunt.

In 1662, Graunt was one of the first to document his observational research, a type of
research where data is gathered first and hypotheses and conclusion are derived from
that data [1]. What is interesting from the viewpoint of a data scientist is that Graunt
gathered data fromweekly published “Bills of Mortality”, containing data about the number
of burials in London. Using this data he discovered that more boys than girls are born;
made the first somewhat accurate estimate of the population of London; and made time
trends for many diseases. These are, possibly, the first examples of using available data
for research purposes.

Graunt’s method of observing the data and generating hypotheses is often frowned
upon in modern science [1]. Applying this style of research without the proper methods
can lead to incorrect conclusions that are ‘supported’ by data. In short, throwing every
known method at data will most likely yield some result, even when they do not hold any
water. However, modern science provides many tools that, when applied in good faith,
enable observing data and generating hypotheses from those observations.

Another noteworthy founder of research methodology is John Snow. In his publication
of “1854 Broad Street cholera outbreak” he combined cholera occurrence data with geo-
spatial data into a map [2]. From this map he derived the source of the cholera infection
and persuaded the authorities to remove it. The truthfulness of this story and specifics
of his methods have been questioned [3]. However, the outlines of mixing data types to
create evidence, a common practice in modern research, are clearly present.

The examples of Graunt and Snow show that data collection, aggregation, and pro-
cessing are connected to the medical research field since its inception. Since those early
years, science fields have grown into using data and advances in technologies are still
actively changing the culture of science. Communication and exchange of information
has never been easier, opening doors for collaborations unhindered by distance and time.
This is reflected in a shift from local science with small research teams to widely distributed
teams of researchers from many institutions working together. The terms ‘little’ science
and ‘big’ science have been coined in the 60’s to describe different research cultures [4].
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A field of science is described as ‘little’ when locally managed small communities use
heterogeneousmethods and data [5]. On the other hand, ‘big’ science concerns distributed
and often international teams that jointly collect, analyse, preserve, and share data using
shared facilities [4].

Using data in a ‘big’ manner brings challenges and opportunities. The commonly
accepted term to describe data to which these challenges apply is ‘Big Data’, a term
introduced by Gartner in 2011 [6]. Although the term Big Data is widely used, studies show
that its meaning is much debated and many different definitions exist [7, 8].

Big data is mostly understood as the manipulation of large data volumes [9–11]. How-
ever, it is well recognized that, apart from its volume, data may have other characteristics
that make it Big. Possibly the most famous definition of Big Data is captured in three “V’s”
introduced by Laney in 2001: volume, velocity, and variety [12]. But now a wide range of V’s
has been added to describe Big Data, such as: veracity, value, and variability [13]. Other
studies [14–16] ignore these labels and simply consider any data that calls for methods
beyond the conventional1 Big Data. In Chapters 2 and 3 of this thesis I will delve deeper
into the meaning and usage of the term Big Data.

Many research fields constantly push the boundaries of what is conventional to achieve
their purposes. One such field is that of (bio)medical systematic reviews. Systematic
reviews are a cornerstone of medical decisionmaking [17]. They bring together the findings
from multiple studies in a structured, reliable, and preferably unbiased way. As such,
reviews provide a good reflection of the current scientific understanding of a certain topic.

A systematic review consists of retrieval, appraisal, and synthesis of evidence. The
whole process ismostlymanual and time consuming. For a full-time researcher, depending
on expertise and review complexity, a review can take from 6months to several years. Most
of this time is spent on retrieving studies and determining their relevancy for the research
question at hand.

In many reviews the number of studies to appraise, also called screening, is very large.
Searches returning 10,000 items are not uncommon, and in some extreme cases 800,000
to 1 million items need to be screened [18]. With an ever-growing body of published
literature [19] and a multitude of questions that need to be answered, the current practice
is unsustainable [20].

One of the proposed solutions to this problem is computerised support of the screening
process. The resulting tools are often called ‘automation tools’. Automation tools come in
many forms and a well researched form is text mining. Text mining is a machine learning
method that attempts to find structure in text data. Using this structure the method can
then (partially) automate the appraisal of studies in a systematic review, by labelling the
studies yielded by the systematic search as relevant or irrelevant to the research question.
The degree of success depends on many factors, among which data quality and similarity
of the labelled and unlabelled studies are prime factors.

Automation tools bring many challenges. Adoption among reviewers is often low
becausemethods are unobtainable or difficult to use, a topic I explore further in Chapter 4.
Furthermore, the performance of relevancy prediction is often lacking, an issue to which I
contribute a possible solution in Chapters 5 and 6.

While the fields of Big Data and systematic review automation have both been studied
extensively, there are still many unanswered questions. In this thesis I aim to (1) uncover
a common understanding of Big Data in the (bio)medical field; (2) aid in improving the
adoption of automation tools among systematic reviewers; and (3) contribute to the
effectiveness of automation tools.

1Data whose characteristics call for methods beyond the tried-and-true; necessity of scalable systems for
storage, processing, manipulation, analysis, visualisation.

2



Introduction

C
h
ap
te
r
1

1.2 Outline

My research project started with an open aim of contributing to Big Data in the field of
(bio)medical science. This ledme to a specific Big Data challenge that systematic reviewers
face. This thesis follows this path by starting at exploring a common understanding of the
term Big Data in the scope of (bio)medical science. The focus then shifts to systematic
reviewers and their use of automation tools to deal with Big Data. Lastly, I developed a
method that improves the performance of existing automation tools.

1.2.1 Understanding Big Data

While Big Data is a key component of many (bio)medical studies, it has yet to receive a
formal definition. We have observed that different research fields have many different
interpretations for Big Data, some of which have a negative connotation. We believe this
wide spread of understanding hampers communication and results in missed opportunit-
ies. Chapter 2 pursues a better understanding of the topics covered by the term Big Data
through a data-driven systematic approach using text analysis of scientific (bio)medical
literature.

Skeptics argue that Big Data is just a hype term, representing nothing new or at best just
an extension of what has been done for decades [21]. Therefore, in Chapter 3 we assess
the value of the term Big Data when used by researchers in their publications.

1.2.2 Solutions to a data deluge

As stated above, systematic reviews are a cornerstone of evidence-informed decision
making, but the process is very time-consuming. With the rapid expansion of scientific
information produced and research questions to be addressed, there is a growingworkload
on reviewers, making the current practice unsustainable without the aid of automation
tools. In Chapter 4 we investigate why the adoption of automation tools among systematic
reviewers seems to be lagging and identify potential barriers and facilitators for adoption.

1.2.3 Applying solutions in practice

In Chapter 5 we introduce an approach to improve the performance of systematic review
automation tools. We focussed on a subset of automation tools that support the screening
process of a systematic review by using text mining to predict the relevancy of each study
that needs to be screened. Using the predictions the reading order can be adjusted so that
the reviewer sees the studies that are most likely to be relevant first.

To predict how relevant a study is a predictionmethod first needs to learn from previous
systematic reviews where the relevant studies were appraised by researchers, a process
called training. For this to work we assume that there were transferable characteristics
between the previous reviews and the current review. However, systematic reviews mostly
have very specific and unique research questions.

Prediction methods often use all available data to train on. However, in the case of
systematic reviews we hypothesise that this waters down the transferable characteristics
leading to less precision in prediction. Our proposed approach chooses which data to
use during training based on a metric that measures similarity between reviews. This
approach leads to less data to train, but the selection has a high similarity to the data
from the review that we are predicting, improving the performance of the automation tool.
Chapter 5 introduces our approach and Chapter 6 builds upon our first insights and applies
the proposed approach in an active learning setting.

Finally, in Chapter 7 all results presented in this thesis are discussed and ideas for future
research are proposed.

3
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Chapter 2

Nowadays, Big Data is a key component in (bio)medical research. However, the
meaning of the term is subject to a wide array of opinions, without a formal definition.
This hampers communication and leads to missed opportunities. For example, in the
(bio)medical field we have observed many different interpretations, some of which
have a negative connotation, impeding exploitation of Big Data approaches.
In this paper we pursue a better understanding of the term Big Data through a data-

driven systematic approach using text analysis of scientific (bio)medical literature.
We attempt to find how existing Big Data definitions are expressed within the chosen
application domain. We build upon findings of previous qualitative research by
De Mauro et al., which analysed fifteen definitions and identified four key Big Data
themes (i.e., information, methods, technology, and impact). We have revisited
these and other definitions of Big Data, and consolidated them into eight additional
themes, resulting in a total of twelve themes.
The corpus was composed of paper abstracts extracted from (bio)medical literature

databases, searching for ‘big data’. After text pre-processing and parameter selection,
topic modelling was applied with 25 topics. The resulting top-20 words per topic were
annotated with the twelve Big Data themes by seven observers. The analysis of these
annotations show that the themes proposed by DeMauro et al. are strongly expressed
in the corpus. Furthermore, several of the most popular Big Data V’s (i.e., Volume,
Velocity, and Value) also have a relatively high presence. Other V’s introduced more
recently (e.g. Variability) were however hardly found in the 25 topics. These findings
show that the current understanding of Big Data within the (bio)medical domain is in
agreement with more general definitions of the term.

Abstract

Journal of Big Data. 2016;3(1):1-21
DOI: 10.1186/s40537-016-0057-0
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2.1 Introduction

The usage of the term ‘Big Data’ has picked up since 2011. This was the year that Gartner
introduced “Big Data and Extreme Information Processing and Management” in its hype
cycle [6]. Furthermore, increased interest is visible in the ever growing search traffic shown
by Google Trends [22]. Scientific publications in (bio)medicine, which are our main interest
in this study, also show a massive increase in the number of papers published yearly that
mention Big Data [13].

Still, in spite of the popularity of this term, there is much debate about the definition
of Big Data. In 2001 Gartner (called “META Group” at the time [23]) published a report that
in hindsight is often referred to as the first description of Big Data. It defines the term
through Information Technology (IT) challenges described by three Big Data aspects (V’s):
volume, velocity, and variety [12].

Over the years this has evolved into many interpretations. Mostly, companies define Big
Data in the light of their prime business, meaning that Google will mention analysis (e.g.,
Google Flu), while Oracle emphasises volume and storage [24], and IBM or Microsoft focus
on computation and usability [25]. In a web-blog, posted on the data science sub-domain
of the Berkeley school of information, 43 ‘thought leaders’ from the industry were asked
for their definition of Big Data [26]. Not many of these leaders agreed with each other and
definitions range from “data that cannot fit easily into a standard relational database” to
“Big data is not all about volume, it is more about combining different data sets and to
analyze it in real-time to get insights for your organisation”. On a governmental level, the
US National Institute of Standards and Technology (NIST) defined Big Data in 2014 as the
need for scalable technology and four V’s: Volume, Velocity, Variety, and Variability. Finally,
in the scientific domain, Big Data is mostly understood as the challenges of working with
large volumes of data [9–11].

Possibly due to this great variety of definitions, in practice we have observed many
different interpretations of the term Big Data among (bio)medical scientists. Some
understand Big Data as a positive development, and actively pursue usage of newmethods
and technology associated with the term [13]. Others, however, view it as a harmful
influence on, for example, the strength of research evidence, preferring classical statistical
methods [27]. A better understanding of Big Data would facilitate communication and
clarify expectations regarding this overloaded term [28].

Some researchers have attempted to capture comprehensive definitions of Big Data,
such as De Mauro et al. [8], Ward and Barker [7], and Andreu-Perez et al. [13]. The first
two focus on no domain in particular, whereas Andreu-Perez et al. [13] focuses on health-
oriented applications. Of particular interest is the work by De Mauro et al., which analysed
various Big Data definitions and from these distil their own. Their proposed definition
is based on four themes found in the underlying definitions that were gathered, namely
Information, Methods, Technology, and Impact. Note that all the cases mentioned above
are based on qualitative literature studies. Hansmann and Niemeyer [29], however, used
text mining to understand the themes included in Big Data literature. They combined
automatic and manual approaches to identify three themes: IT infrastructure, methods,
and data. While these efforts have been valuable for a better understanding of the termBig
Data, they do not present systematic evidence of the actual themes used in the scientific
literature, in particular for the (bio)medical research domain.

In this paper we present our efforts to answer the following research question: Which
themes from various existing Big Data definitions are expressed in (bio)medical scientific
publications? For this purpose, we adopted a data-driven systematic approach. First, Big
Data definitions were revised and 12 themes were identified. Then, (bio)medical literature
was systematically gathered from two scientific databases (i.e., PubMed and PubMed
Central) and analysed automatically with textmining. While there aremany textmining and
clustering methods, we chose Topic Modelling (TM) [30, 31] because this method captures
two aspects that are important for this dataset: words may have multiple meanings or

9



Chapter 2

interpretations and documents may contain one or more topics. The topics identified
through TM were annotated with the 12 themes by a small group of observers. In the
following sections we detail the methods, present the results and discuss our findings.

2.2 Methods

In this section the construction of the corpus is described, followed by an explanation of
the concepts behind TM. Then the application of TM to the corpus is presented in three
steps: pre-processing, model fitting, and post-processing. Finally we present the gathering
and summary of existing Big Data definitions, and the process used to identify them in the
topics determined by TM.

2.2.1 Corpus

The corpus of documents was created by querying two literature databases focused on
(bio)medical publications: PubMed and PubMed Central (PMC). The search queries were as
follows:

• PubMed: “big data”[TIAB] OR (big[TIAB] AND “health data”[TIAB]) OR “large data”[TI];
• PMC: “big data”[TI] OR “big data”[AB] OR (big[TI] AND “health data”[TI]) OR (big[AB]
AND “health data”[AB]) OR “large data”[TI].

Each query was built to search for literal use of the term ‘big data’, therefore selecting
documents that were self-identified with Big Data. No word spacing was allowed to
minimise the amount of irrelevant results. The terms ‘big health data’ and ‘large data’ were
added because they also retrieved relevant literature, especially for publications before
2011, when the term Big Data was not popular yet.

Titles and abstracts were exported from the databases and merged into a local
repository for further processing. Based on the title (stripped of all special characters and
spaces) or the Digital Object Identifier (DOI), if available, duplicates were removed from
the corpus. Lastly, any record with an empty abstract (i.e., not provided in the database)
was also removed from the corpus.

2.2.2 Topic modelling concepts

A specific type of TM was chosen, namely Latent Dirichlet Allocation (LDA) [30]. Throughout
this paper the abbreviations TM and LDA are used interchangeably to indicate topic
modelling through the application of LDA. The concept of TM is captured in Figure 2.1
using the plate notation [30–32]. Plate D denotes the set of documents, while θ(d) is the
multinomial distribution over topics for document d. Plate N(d) denotes the set of words
w for a specific document d, while z is the topic to which word w is assigned. Lastly, plate
T denotes the set of topics where ϕ(z) is the multinomial distribution over words for topic
z.

In TM, θ, ϕ, and z are the latent variables that have to be estimated. Together with
the Dirichlet distributed hyperparameters α and β, the model is called Latent Dirichlet
Allocation [30, 32]. The hyperparameters α and β should be interpreted as smoothing
factors for respectively topic-to-document (θ) and word-to-topic (ϕ) assignments.

2.2.3 Topic modelling implementation

The statistical software R [33] was used to implement the pre-processing, TM fitting, model
selection, and post-processing steps.

10
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θ(d) z w

α ϕ(z)β

D
N(d)

T

Figure 2.1: Plate notation of topic modelling, plates are shown as rectangles and the
arrows indicate conditional dependencies. Shows the relations between known variables

(documents D, number of words N(d), and words w), latent variables (multinomial
distributions θ(d) and ϕ(z), and word to topic assignment z), and hyperparameters (α and

β).

Pre-processing We used the R tm and quanteda packages [34, 35] to execute the pre-
processing steps. Processing consisted of removing stop words taken from the SMART
list [36, 37] (e.g., about, the, which)1. Extra stop words were added, they were either
junk words resulting from processing steps, or terms that appeared very often and
diluted the TM outcome, such as ‘big data’, ‘introduction’ and ‘discussion’2. From the
remaining words, bi-grams were created with function dfm: two words that occur next
to each other at least fifteen times in the whole corpus are joined by an underscore
(e.g., health_care). Furthermore, words were stemmed with function stemDocument; e.g.,
‘develop’, ‘developed’, and ‘development’ were all stemmed to ‘develop’. Lastly, words
longer than 26 characters were removed.

Fitting We fitted the model by estimating the latent variables θ, ϕ and z, which was done
with the R topicmodels package [39]. Directly calculating θ and ϕ was shown to be
suboptimal [32], therefore we used a Bayesian approach from the topicmodels package
using Gibbs iterative sampling to approximate the distribution z. In this sampling process
the probability of a word occurring in a topic is estimated. This probability of a given word-
to-topic assignment is calculated from how often the word already occurs in the topic and
how dominant the topic is for the document from which the word was sampled. Once the
model fitting converges, θ and ϕ can be derived from the approximated distribution z with
the posterior function.

Multiple models were fitted to determine the best TM parameters. We first conducted
experiments to find adequate values for α and β. These influence the model as follows:
with a small α (i.e., with many topics α = 50/T becomes smaller) it is likely for documents
to contain only a few topics, whereas a bigger α (i.e., few topics) results in more topics per
document. A small β similarly makes it likely for a topic to contain amixture of a fewwords,
thereby pushing the model to select highly specific words per topic. A range of values was
fitted for both α and β and model outcomes were compared. Within a reasonable range
(i.e., 0.1 < α < 1) we observed only minor differences between topics. Ultimately, fixed
values were chosen for α and β, respectively 50/T and 0.01 as suggested in the literature
[32, 40].

1The full list can be found at [38]
2The complete list is: big, data, ieee, discussion, conclusion, introduction, methods, psycinfo database, rights

reserved, record apa, journal abstract, apa rights, psycinfo, reserved journal
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Model selection Modes were selected by analysing the likelihood for varying numbered
of topics in the range T ∈ {5, 10, 15, ..., 100, 150, 200, ..., 500}. However, likelihood alone
cannot be used to find the best model. A penalising factor has to be added for the model’s
complexity (i.e., the number of variables that have to be estimated). Two information
criteria were considered, namely the Bayesian Information Criterion (BIC) [41] and the
Akaike Information Criterion (AIC) [42]. When increasing the number of topics in a model,
each topic becomes more specific and, therefore, easier to interpret. BIC puts more
emphasis on the simplicity (in terms of the number of free parameters) of the model,
resulting in a smaller number of topics as compared to AIC. We therefore chose to perform
model selection using the AIC. In the case of TM, the variables to be estimated are the
latent variables ϕ and θ, which grow with the number of topics. The model where the AIC
reached its minimum was considered the optimal model. Equation (2.1) defines the AIC,
where T is the number of topics in model MT , L is the likelihood of model MT , and W is
the number of unique words in the corpus:

AIC(MT ) = −2 log(L) + 2
(
(T − 1) + T (W − 1)

)
(2.1)

Post-processing θ and ϕ were retrieved for the optimal model. We then calculated the
relevance of words within a topic according to the method described by Sievert et al. [43].
Equation (2.2) defines how relevance r was calculated for word w in topic t given λ:

r (t, w|λ) = λ log (ϕtw) + (1− λ) log
(
ϕtw

pw

)
(2.2)

The relevance is a convex combination of two measures: the topic-specific distribution
(ϕtw) and ‘lift’ (ϕtw/pw), that is a ratio between topic-specific and corpus-wide distribu-
tions. These measures can be balanced with 0 ≤ λ ≤ 1, by giving more weight to ϕ (λ = 1)
or to the lift (λ = 0). In our experiments a value of 0.6 was chosen for λ, as suggested in
Sievert et al. [43]. T × W relevancies were calculated (i.e., each word had one relevance
score per topic) and used to sort the most relevant words per topic.

2.2.4 Big Data definitions

The definition proposed by De Mauro et al. was used as a starting point for this study.
Furthermore, the underlying definitions gathered in De Mauro et al. were reassessed and
where necessary updated (e.g., updates in white papers published by industry). Lastly, a
publication by Andreu-Perez et al. [13] was added because it defined six Big Data V’s in the
context of (bio)medical research.

All the definitions were analysed. If the definition was given in free text, the major
themes were extracted. Themes were then grouped on similarity, for example, Volume and
Size were merged into one theme. For various reasons a few definitions were discarded,
as discussed in Section 2.3.3.

2.2.5 Topic analysis

Topic model results were analysed manually by inspecting the top relevant words (i.e., 20
per topic). The observers received a list of topics and a description of each theme. They
were instructed to read all the words in each topic, then consult the Big Data definition
themes, and finally provide their opinion about which themes are associated with that set
of words. Each of the topics was assigned zero, one, or more themes by each observer
individually. In total seven persons performed the analysis independently: each of the
authors and three external health data scientists.
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2.3 Results

This section reports the results of corpus extraction, TM model fitting and selection,
gathering and consolitation of Big Data definitions, and annotation of topics with the
themes.

2.3.1 Corpus

A total of 1,659 documents were extracted from Pubmed and 543 from PubMed Central
(see Section 2.2.1). After removing duplicates and records with an empty abstract, 1,308
documents were included in the corpus as shown in Figure 2.2.

After pre-processing (see Section 2.2.3) 136,339 words remained in the corpus, of which
7,849 were unique. A large portion (7,081 words) had a low frequency (< 40 occurrences).
Figures 2.3 and 2.4 give an impression of the corpus’s contents, showing a frequency plot
of the top 2000 words, that seems to be in accordance with Zipf’s law [44]. To create the
word cloud the top 100 most frequent words were extracted (as marked with the vertical
line in the frequency plot).

PubMed
n = 1,659

PubMed Central
n = 543

Duplicates
n = 518

After duplicates and empty abstracts removed
n = 1,308

Empty abstracts
n = 326

Figure 2.2: Corpus generation: documents extracted per literature database, documents
removed from the corpus, and total number of included documents.

2.3.2 Topic modelling and model selection

In total 49 models MT were fitted with T ranging between 5 and 500. The AIC curve for
all fitted models M is shown in Figure 2.5. The minimum of the AIC curve lies at T = 14,
however the differences are small until T = 25. We also calculated the distances between
topics from diverse models (T ∈ {14 − 25}), showing that topics are fairly stable (data
not shown). When increasing the number of topics, changes observed include one topic
splitting into two topics or a new topic appearing. We saw no major reorganisation of
topics or words within topics. We also observed that increasing the number of topics in
the model makes the terms in each individual topic more specific. For example, one topic
covering both application and Big Data themes might be split into two separate topics
in a larger model. We therefore selected M25 for annotation, as this model has a better
interpretability compared toM14 (more specific topics), with comparable quality of model
fit (similar AIC).

To assess the robustness of the model M25, the log-likelihood was tracked for each
iteration of Gibbs sampling. This model was fitted three times with fixed input, but
with different starting seeds for the sampling. The outcome of these fits is presented in
Figure 2.6. It shows that the log-likelihood reaches its approximate maximum after 100 to
150 iterations. Models run with a higher number of iterations (up to 4000, data not shown)
showed no major difference in log-likelihood convergence, therefore, final models such as
M14 and M25 were run for 500 iterations. The top-20 most relevant words per topic of the
M25 model are shown in Table 2.4.
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Figure 2.3: Frequency of the top 2000 unique words in the corpus. The vertical line is the
cut-off point (n = 100) used for the word cloud.

Figure 2.4: Word cloud of the top-100 unique words in the corpus.
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Figure 2.5: Left: AIC curve of the 49 fitted TM models (20 models between T = 5 and
T = 30 not plotted, see right). The minimum is marked by the dotted line (T = 14). Right:
Close-up of the AIC curve between T = 5 and T = 30, showing 26 fitted TM models. The

minimum is marked by the dotted line (T = 14).
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Figure 2.6: Convergence of the log-likelihood for the chosen model M25 for three runs
starting from different seeds.
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2.3.3 Big Data definitions

In total 17 definitions of Big Data were considered from the following sources [7, 8, 12–
16, 24, 45–53]. Table 2.1 presents the results of our analysis listing the found themes,
their description, and respective sources. Note that we have not attempted to consolidate
the names of the themes, leaving the complete description as found in the sources. The
definitions can be divided into three groups, with each group containing multiple themes.

The first group (I) correspond to the Big Data V’s that occur in various forms in many
of the analysed definitions. Some words were merged into one theme because they
are essentially pseudonyms of each other. For example: volume, size, voluminous, and
cardinality were found in ten of the definitions and, from their descriptions, refer to the
amount of data. Also note that velocity and continuity, and complexity and variety were
combined.

The second group (II) correspond to the aggregated themes proposed by De Mauro et
al. that represent concepts of a higher level of abstraction than the previous group.

The third group (III) includes a theme identified in three definitions, that describe Big
Data as data that is beyond conventional processing and analysis. The V’s describe data by
many different aspects, but none of those define a hard limit beyond which data becomes
big. The theme ‘beyond conventional’ therefore describes Big Data as something that
needs novel specialised and scalable solutions. This alsomeans that the types of problems
and applications that are assigned to the scope of Big Data change over time, as technology
and methods evolve and improve.

The fourth group (IV) was not found in the studied definitions, but was added to cope
with the reality of our data. Because the body of literature used in this study was obtained
from (bio)medical literature databases, we expected to see application-related themes
to be strongly represented in the resulting topics. We therefore included the Application
theme to classify those topics that do not fall under Big Data.

Note that some definitions considered by De Mauro et al. were not used here:

• the definition by Microsoft [50] was a web-blogpost from 2013, therefore possibly
outdated;

• Shneiderman et al. [51] does not specifically mention Big Data, as it was a publication
from 2008 when this term was not in use yet;

• the definition by Manyika et al. [53] was only described in the executive summary;
• Mayer-Schönberger et al. [52] propose an abstract definition that was considered too
difficult to convert into interpretable themes for topic analysis.

2.3.4 Topic analysis

The list of topics and words and Big Data themes were analysed by the seven observers.
The observers all worked at the local department of epidemiology, biostatistics and
bioinformatics, therefore they were extremely suitable for the annotation task. The Big
Data themes (Table 2.1) and topic words (Table 2.4) were well understood and the task
could be finished without further help in a reasonable amount of time (30 minutes to an
hour).

The raw annotation results are displayed per observer and per topic in Table 2.5.
Note that some observers did not assign any theme to some topics, and that in many
cases more than one theme was assigned to the topics. Table 2.3 presents the frequency
of themes assigned per topic, highlighting high or unanimous agreement among the
observers (shown underlined and bold). It also shows the overall themes, i.e., those that
were assigned to a topic by at least four observers.

In four topics less than four observers assigned the same theme to it (i.e., 3, 17, 19, and
25). Out of the remaining 21 topics, five had unanimous agreement between the observers
for some theme (i.e., 6, 7, 8, 20, and 21). The remaining 16 topics could be split into topics
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Table 2.1: Description of themes identified in Big Data definitions from literature.

Theme Name Theme Description Definition
Sources

I Volume, Size,
Voluminous,
Cardinality

Large quantities of data in number of bytes;
size of available data (e.g. all records instead
of a sample); beyond conventional storage
techniques; number of records at a particular
instance.

[7, 12, 13,
15, 16, 24,
45–47, 49]

Velocity, Continu-
ity

Flow rate at which data is created, stored,
analysed, and visualised; increased through
invention of new data streams such as so-
cial media; beyond conventional means of
processing, needing new techniques such as
streaming; growth of data over time.

[12, 13, 16,
24, 45–47]

Variety, Complex-
ity

Many different types of data; not bound to a
traditional data format; format changes over
time; heterogeneous and unstructured data.

[7, 12, 13,
15, 16, 24,
45–47, 49]

Veracity Trustworthiness of data; reliability of data
quality and gathering environment.

[13, 45]

Value Worth/relevancy of data (e.g. economic, indi-
vidual/privacy, societal, humanity value).

[13, 24, 48]

Variability Consistency of data over time; influences which
systematically change datameasures over time.

[13, 47]

II Information Where signals are turned into data (e.g. book
digitalisation, or gathering from personal
device measurements).

[8]

Technology Tools, systems, and software (e.g. scalable
processing and transmission systems such as
Hadoop).

[7, 8, 14, 15,
47, 48]

Methods Procedures and their application (e.g. clus-
tering, natural language processing, machine
learning, neural networks, visualisation).

[8, 14, 48]

Impact Ethical, business, societal. [8]
III Beyond

conventional
Data whose size call for methods beyond the
tried-and-true; necessity of scalable systems
for storage, processing, manipulation, analysis,
visualisation.

[14–16]

IV Application About the application domain treated in the
papers.

-
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with a single overall theme (i.e., 2, 4, 9, 10, 11, 13, 14, 15, 16, 18, 22, 24) and topics with two
overall themes (i.e., 1, 5, 12, 23).

Note that the most frequently assigned theme was Application (66 times), followed by
the themes in the second group, proposed by de Mauro et al.. From the themes in the first
group, Volume and Velocity occurred more often than the others. Notably, Variability was
hardly identified among these topics.

Figure 2.7 presents the distribution of topics over documents based on the probability of
each topic to each document (i.e., θ). The large majority of topics (in black) have a strong
presence in only a few hundred documents. However, there are four topics (in red and
blue) that deviate from this pattern. The two red topics (topic 1 and 2, see Table 2.4) have
a stronger presence in more documents as compared to the topics pictured in black. The
blue topics (topic 3 and 5, see Table 2.4) have a stronger presence in nearly all documents.
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Figure 2.7: Distribution of topics over documents (i.e., θ, y-axis). The documents are
sorted on topic-to-document relevance within each topic. The x-axis represents the order
of the sorted documents. Each line represents one topic, in black. Exceptions are topics 1

and 2, plotted in red, and topic 3 and 5, plotted in blue.

2.4 Discussion

In this paper we attempted to identify themes related to Big Data definitions in a large
corpus of (bio)medical literature through topic modelling. We have followed a structured
and objective approach as much as possible. This process delivered novel and interesting
results, that however need to be carefully interpreted due to remaining limitations in our
study.

2.4.1 Identification of themes in Big Data definitions

Due to the lack of a consolidated and widely accepted definition of Big Data, it was
necessary to consult a large number of scientific papers. This work is limited to scientific
literature, but obviously there are many other definitions of Big Data that have not been
considered in our work, such as the Berkeley blog mentioned in the introduction [26].
Nevertheless, most of the definitions in [26] can be mapped to the themes identified in
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Table 2.3: Summed annotations per topic and theme, and overall theme per topic
(>= 4 counts).

Topic Themes Overall

Vo
lu
m
e

Ve
lo
ci
ty

Va
rie

ty

Ve
ra
ci
ty

Va
lu
e

Va
ria

bi
lit
y

In
fo
rm

at
io
n

Te
ch

no
lo
gy

M
et
ho

ds

Im
pa

ct

Be
yo

nd
co

n.

Ap
pl
ic
at
io
n

1 2 5 4 2 value, impact
2 1 1 3 1 1 1 4 application
3 1 3 -
4 1 1 2 6 methods
5 5 2 1 3 4 volume,

beyond conventional
6 1 7 2 technology
7 1 1 1 7 1 methods
8 1 2 7 application
9 1 4 2 impact
10 1 2 2 1 3 1 4 application
11 1 2 6 application
12 6 5 1 2 1 1 volume, velocity
13 1 1 1 5 1 methods
14 1 4 1 1 2 information
15 1 1 1 3 4 application
16 1 2 1 1 5 application
17 1 1 1 2 3 1 -
18 1 1 3 1 2 4 application
19 1 1 1 1 1 1 1 3 -
20 1 7 methods
21 1 1 1 1 7 application
22 2 1 6 3 information
23 1 1 6 1 4 application,

information
24 1 1 1 1 3 1 4 application
25 1 2 2 1 3 -

total 17 17 8 12 14 2 39 24 36 19 11 66
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this study. Interestingly, the word cloud in [26] highlights words such as size, complex,
and techniques, that are also found in the descriptions of the themes consolidated in
Table 2.1. Furthermore, there are qualitative approaches to describing the Big Data field in
publications such as Chen et al. [28] and Tsai et al. [54]. Note that, although these works do
not strive to deliver a formal definition, the description of the Big Data field in both these
publications include the same aspects found in the definition themes (see Section 2.3.3).

We have observed a large overlap among the Big Data definition literature considered in
this study, nevertheless with variations in the focus applied by each author. Furthermore,
certain themes occur more often than others in the definitions (Table 2.1). The original
three V’s (Volume, Velocity, Variety) occur in many definitions compared to the relatively
‘newer’ V’s (Veracity, Value, Variability), that are present in only a few. This is also the case
with Technology and Methods that are found in definitions more often than Information
and Impact.

Finally, as the corpus was gathered from (bio)medical literature databases, we expected
to find topics describing this domain. Therefore, the theme ‘Application’ has been
introduced, that is obviously not found in the published Big Data definitions. Indeed,
the annotation results presented in Table 2.3 show that 10 out of 25 topics have been
annotated with Application by the majority of the observers. Note that the large fraction
of application-related words might have overshadowed others that are related to Big Data
themes. Scrubbing the corpus of application-related words could be used to circumvent
this problem. This opens the possibility for fitting highly granular models that would be
more easily interpretable and better reflect Big Data instead of the research field topics.

2.4.2 Corpus gathering

By design, in this study we only considered papers that were self-annotated with Big Data,
whatever definition the authors might have used. This led to an interesting observation
by one observer who could not find his research domain in any of the topics. However, the
searched databases certainly included this domain andmany of the Big Data themes could
potentially be assigned to its papers. The domain could be missing due to various reasons,
such as a low frequency of this research domain in the corpus. However, this observer
acknowledged to consider his domain as ‘conventional’, therefore, papers published about
this research domain most likely do not mention Big Data and were therefore not captured
in the search performed in this study.

Note also that we only considered two databases, whereas many others could be in-
cluded as well (e.g., Scopus or Ovid). Nevertheless, PubMed and PMC are important sources
in medical research and therefore have been considered sufficiently representative for the
purposes of our study.

Finally, a potential limitation of our study is that only abstracts were included in the
corpus instead of full-text papers. Our assumption is that the abstracts contain the
essence of a paper and are therefore representative of the actual themes found in a
full paper. Moreover, it is currently still difficult to retrieve and parse full papers in an
automated fashion, which would have severely limited the number of papers considered
in our study.

2.4.3 Automatic identification of topics

In the progress of this research various text mining approaches were attempted to identify
relevant topics to characterise the publications. First, we attempted to use AlchemyAPI
[55], a natural language processing service that is accessible through the web. However, in
a pilot experiment of 100 documents we observed that the number of results produced
would be too big for effective analysis (i.e., 3,774 results, of which 3,006 were unique).
Moreover, AlchemyAPI’s method is implemented by proprietary code, so relations between
documents and results were difficult to interpret.
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We continued searching for a text mining method and considered document clustering
to find the definition themes in literature. In principle, document clustering could capture
themes but results are often limited to one theme per document. Furthermore, analysing
document clusters to find definition themes would be a non-trivial (if not impossible) task.

A seemingly more suitable method was topic modelling, a method that can discover
latent semantics in text. The main purpose of topic models is described as “discovering
main themes that pervade large unstructured collections of documents” [31]. Furthermore,
TM captures multiple meanings of words, but most importantly, it can identify multiple
topics for each observed document. The LDA approach is perhaps the most popular
and common topic model. The R package implementing the algorithm topicmodels
had 22,576 downloads in 20153. Moreover, the paper describing the underlying model by
Blei et al. [30] has been cited over 16,000 times4. We therefore chose to use the LDA
implementation of TM because of its appropriateness for our data, the relative ease of
use of this approach (i.e., ready to use implementations in R), and extensive use in the
literature by our peers.

Various TM approaches were tried to find a model with a manageable number of topics
that allowed for manual annotation. The largest challenges were encountered during
model selection. Two model evaluation methods (i.e., perplexity and harmonic mean)
are often used in TM literature [29, 32, 56, 57]. The harmonic mean method calculates an
approximation of the marginal likelihood of a fitted model, while perplexity measures how
well a fitted model can predict unseen data. These criteria were calculated for multiple
models with varying parameters expecting that the model decision boundary lay at some
optimum of the response curve. For both criteria we were looking for a sudden decrease
in marginal difference between two consecutive data points (i.e., models). Unfortunately,
in our case, even when fitting models with up to 1,500 topics (data not shown), the curves
did not show an optimum.

Finally we opted for TM with model selection through AIC, a method based on likelihood
and model complexity (see Section 2.2.3). The AIC curve shows an optimum at M14,
however M25 was chosen for further analysis. While experimenting with the parameter
T we noticed that quantitatively measuring model fit did not relate to the interpretability
of the topics, as also noted in [43, 58]. Comparison betweenmodels showed that there was
no major reorganisation of topics (data not shown), but increasing the number of topics
made them more specific and therefore more interpretable.

2.4.4 Manual annotation of topics

Subjectivity of themanual annotation is one of the limitations of this study. Some research
has been done in objectifying the analysis of TM results [40, 43, 59, 60]. However, so far,
the results of TM cannot be quantitatively evaluated [29, 58]. For the purpose of this study,
a group of seven observers was deemed enough for the topic analysis. We also present all
the data in the paper, such that the reader can assess the topics themselves to confirm or
dispute our results.

We took great effort to objectify the interpretation of TM results, but seven is a small
number of observers. Ideally more persons should be involved in the assessment of theme
assignment. For example, crowd sourcing services such as Mechanical Turk could be used
[61]. However, this particular annotation task requires sufficient background knowledge in
health data science, which significantly reduces the pool of suitable observers.

All the observers in this study were trained in health data science, therefore they are
familiar with the terms and concepts that appeared in the topics and the Big Data themes.
Nevertheless, no baseline assessment was performed to more precisely understand their
own interpretations, which might have introduced some noise in our results.

3http://cran-logs.rstudio.com/ on 9 June 2016
4https://scholar.google.com/ on 20 October 2016
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In general, the observers reported some difficulty to associate words with a theme. They
also noted that their annotation decisions were mostly based on words that stood out in
the topic, meaning that not all words were considered equally. This possibly led to the
discrepancy between annotators displayed by the results (Tables 2.3 and 2.5). For example,
when asked, annotator F noted that he chose Technology for topic 4 because of the specific
word ‘cluster’, while all others chose Methods. Note that cluster could be interpreted as
a computer cluster (i.e., Technology) or a cluster used in unsupervised machine learning
(i.e., Methods). Furthermore, note that Information is often co-annotated or interchanged
with Application. For example, neuroimaging, neuroscience, image, and signal are present
in topic 23. The first two words can be associated with Application, and the latter with
Information. Also, topics containing words referring to data (e.g., images and age) have
been annotated as Information and/or Application by some observers. For such reasons
some observers said that it was possible that their annotationmight change slightly if they
would analyse the topics again.

2.4.5 Big Data themes in biomedical literature

Despite annotation subjectivity we consider to have found sufficient agreement between
the observers to support our findings, which show how Big Data themes are identified in
biomedical literature (see Table 2.3).

Technology and Methods are found fairly often in topics. Note that the identification
of these themes is facilitated because they can be associated to concrete terms such as
device, cloud, and platform for Technology, or model, infer, and simulate for Methods.
From the V’s, Volume and Velocity were the most identified themes, which are also easily
associated with terms such as large scale, performance, and computability. These terms
are frequently used in practice, explaining why they have been so strongly identified in
topics 4, 5, 6, 7, 12, 13, and 20.

Impact, Variety, Veracity, Value, and Beyond Conventional were annotated less often.
Because these are more abstract concepts it is likely that they are more difficult to
discover within topics. For example, Value was annotated to topic 1, containing words
such as secure, challenged, and protect. Compared to concrete themes (e.g., Technology
and Volume), it was more difficult for the annotators to find a fitting theme. Variability
was annotated only twice, however we do believe that it is an integral part of Big Data.
Variability not being recognised could mean that the observers could not identify the
theme properly (due to poor theme description or understanding), or that the topics in
the selected model could not capture this theme (due to insufficient representation in the
corpus).

Each of the themes from the definition by De Mauro et al. (Information, Methods,
Technology, Impact) was annotated more often than any other (apart from Application).
Note that by design these themes are defined in a broader manner, meaning that they
include the others. For example, Methods includes a few V’s such as Volume and Velocity
as well as Beyond Conventional. Perhaps due to their broadness, the themes from
De Mauro et al. were chosen more easily, indicating that their definition covers the
understanding of Big Data in a better way. However, one might wonder whether these
themes are exclusively related to Big Data or whether they will also pop-out in other types
of papers. The set-up of our study is not able to answer this question.

2.5 Related work

Other studies have been performed to discern a definition of Big Data [7, 8, 13]. These have
provided an overview of Big Data research in different research fields [13]; a literature
analysis to discover Big Data themes and a proposal for their consolidation into one
definition [8]; and an analysis of industry statements on Big Data [7]. Each of these studies
used qualitative methods, whereas our work builds upon their findings with a quantitative
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method. In particular, our study provides evidence that supports the definition proposed
by De Mauro et al. [8] and an aggregation of its underlying definitions (see Table 2.1).

Many researchers have applied TM for text analysis in various fields [62]. Most similar
to our approach is a study by Hansmann and Niemeyer [29], that applied TM to a Big Data
corpus to discover its characteristics. Their research identified three themes, namely IT
infrastructure, methods, and data, and applied TM in two stages. The first stage separated
the corpus of 248 manually selected papers into the three themes mentioned above. Then,
in the second stage, TM was applied to the papers that had been grouped by theme. An
in-depth word-by-word analysis of Big Data characteristics was performed on the second
stage TM results. The meaning of each word was assessed, finding the important concepts
for each of the themes and where research focus lies in the corpus. Our work differs from
[29] in three ways. First, their analysis was based on only three Big Data themes, whereas
we used multiple definitions leading to twelve themes. Secondly, we collected a larger
corpus resulting from a systematic review of the literature. Lastly, the research goals differ:
instead of finding the defining concepts for each of the themes, our approach identifies
existing definitions in a biomedical Big Data corpus.

There are also more sophisticated (and complex) text analysis approaches such as the
method described by Hurtado et al. [63]. Whereas we applied a bag-of-words principle,
where each word is considered independently, the method by Hurtado et al. processes
whole sentences and preserves context information. In [63] text mining was applied to
find trends in topics over time and predict topic popularity in the future. While this is
not applicable in our current case it might be interesting for further research (e.g., finding
trends of Big Data over time within scientific literature). Lastly, their method to generate
topics also gives them a concise label built from the topic’s keywords. This would partially
remove subjectivity from annotation, however interpretation of the results is still bound
to human interpretation.

2.6 Conclusion

In this work we describe a systematic study that attempted to answer the question: ‘Which
themes from various existing Big Data definitions are expressed in (bio)medical scientific
publications?’. A large number of existing definitions were analysed and consolidated into
twelve themes. A large corpus of representative biomedical scientific publications was
collected and automatically analysed with text mining to identify the 25 most relevant
topics based on title and abstract. Manual annotation was performed by seven observers
to identify Big Data themes in the topics. In spite of the limitations of our study,
the results show that these themes can be identified in this corpus. Volume, Velocity
and Value are recognized frequently, but in particular results show strong presence of
the themes defined by De Mauro et al. (i.e., Information, Methods, Technology, and
Impact). This finding indicates that their definition of Big Data is supported by the
current understanding expressed by authors when they use the term Big Data in their own
(bio)medical publications in this corpus. To our knowledge this is the first time that this is
shown in a systematic manner for literature in an application field.
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Appendices
Table 2.4: Top 20 words for the 25-topic model identified with TM

Topics
1 2 3 4 5

health patient article algorithm challenged
research clinic review cluster analyte
healthcare hospital discuss learn tool
policies electron field method amount
health_care care recent feature technologic
privacies outcome issue efficiencies computability
nation medicaid aspect approximate analysing
ethic record focus tree require
protect ehr emerge represent advance
govern clinical_research future fast varieties
inform health_record highlight matrix solution
secure clinician current accuracies growth
challenged treatment context problem large_amount
share improve overview distance massive
concern assess paper hierarchical generate
access healthcare paradigm computability dataset
communities qualities confer faster vast
fund potential natural calculate process
health_informatics patient_care technologic graph handle
health_system routine literature outperform infrastructural

6 7 8 9 10
system model age change network
process predict risk nurse molecular
device infer influenza innovated structural
framework statistic indicating science biomarker
cloud regress exposure social complex
architectural simulate cohort question heterogeneities
hadoop predictor rate historian integral
applicability bayesian symptom influence systems_biology
service fit month practical mechanical
manage good yearbook insight omic
platform optimal variable cultural approach
design prior life turn character
mapreducable base death product dynameomics
computability variable diabetes food function
base machine_learning adjust societies biologic
support high_dimensional geographic understand transit
implement tradition condition drive edge
task rank factor evolution topological
deploy parameter demographic scientific protein
cloud_computing feature incidence principle organ

11 12 13 14 15
disease dataset effect search biomedical
prevent time group social_media informatic
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Table 2.4 Continued from previous page
epidemiologic sample measurable language science
vaccination large_scale testable google medicinal
progress computability estimate word medicaid
immune speed analysing public educate
leverage performance studied relate research
popular increased statistic psychological learn
initial approach bias trend personalized_medicine
develop thousand large emoticon era
heart step random twitter ontological
administration rate valuable message disciplinary
intervention implement power online translate
generate full method relationship student
blood memorial sample_size social scientist
advance scale marker visit train
public_health hundred find content impact
reported block large_set caseness workshop
consensus applicability import posit discoveries
earlier multiple error investigacin knowledge

16 17 18 19 20
genet web sequence mine classifiable
gene resource genome knowledge set
associating code bioinformatic extract object
phenotype file proteome inform large_set
pathway laboratories high_throughput chemical class
disease public dna specialised noise
genotype compress transcriptome plant general
factor semantic protein biologic pair
enrich software composite concept performance
trait retrievable ngs develop abilities
genome_wide access metagenome toxic neural_network
metabolic share virus construct similar
genome format analysing note train
mutated inform host curate dimension
number interface biologic rich machine
identifi source assemble gap categorical
polymorphism platform cell preservation appliance
individual metadata microbiome ecological formula
regular storage align diverse encounter
unification exchange human abstract coefficient

21 22 23 24 25
drug visual image cancer low
target activated brain studied reduce
cell human disorder tumor time
event behavior signal valid base
screen mobile subject research reduction
response environment resolution registries digital
experiment interact neuroimaging therapeutic node
detected exploration function database energies
analyse user neuron injuries deep
adversary collect segment oncologist small
multiple sensor psychiatric clinical_trials cost
compound tool connectome claim size
profile wearable neuroscience therapies numerator
miss quantifiable mode efficacies operability
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Table 2.4 Continued from previous page
type track mri diagnostic combina
potential movement scan heterogeneities peak
combina physical quantitation set spectral
meta display analysing specific structural
complete smartphone microscopic ongoing locate
point interest multi consortium qualities
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Chapter 3

In this study we attempt to assess the value of the term Big Data when used by
researchers in their publications. For this purpose, we systematically collected a
corpus of biomedical publications that use and do not use the term Big Data. These
documents were used as input to a machine learning classifier to determine how
well they can be separated into two groups and to determine the most distinguishing
classification features.
We generated 100 classifiers that could correctly distinguish between Big Data and

non-Big Data documents with an area under the Receiver Operating Characteristic
(ROC) curve of 0.96. The differences between the two groups were characterised by
terms specific to Big Data themes – such as ‘computational’, ‘mining’, and ‘challenges’
– and also by terms that indicate the research field, such as ‘genomics’. The ROC
curves when plotted for various time intervals showed no difference over time.
We conclude that there is a detectable and stable difference between publications

that use the term Big Data and those that do not. Furthermore, the use of the term
Big Data within a publication seems to indicate a distinct type of research in the
biomedical field. Therefore, we conclude that value can be attributed to the term Big
Data when used in a publication and this value has not changed over time.

Abstract

Big Data and Cognitive Computing. 2019;3(1),13
DOI: 10.3390/bdcc3010013
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3.1 Introduction

With approximately 3,700 documents mentioning Big Data in the PubMed library between
2011 and the time of writing, it can be said that the term Big Data is widely used in
biomedical research. This, however, does not mean that a clear-cut meaning of the term is
being applied, as can be attested from the many publications – both formal and informal
– written on the subject. This sentiment is underwritten in publications such as Tian et
al. [64] and Mayer-Schonberger et al. [65], which state that there is no rigorous definition
of Big Data and it still remains something of a work-in-progress. The reasons above, in
conjunction with a massive increase in use in the last few years [66], raises the question
of what value the term holds when used in a scientific document.

By comparing documents that use the term with those that do not, one can find out
what distinguishes these two groups of documents from each other and determine how
well they can be separated [67]. We further refer to these two groups respectively as Big
Data (BD) and non-Big Data (NBD) documents. The degree to which BD can be separated
from NBD documents gives insight in the value of the Big Data term, and inspecting the
distinctive features tells us something about its meaning. The influence of some hype
effect can be measured through the change of value of the term over time.

In our work we are particularly interested in discovering differences between BD and
NBD documents in the scope of biomedical research literature. Our hypothesis is that the
term Big Data describes research with common characteristics that are distinguishable
from those found in other biomedical research. Also, we hypothesise that, through overuse
or hype, the meaning of the term has become diluted over time. In this study we therefore
investigate the following questions:

1. Howwell can documents that use the termBig Data be distinguished fromdocuments
that do not use the term in a comparable corpus?

2. What are the distinguishing features between BD and NBD documents?
3. Does the distinguishability of BD and NBD documents change over time?

The large number of published literature makes it nigh impossible for a researcher
to keep up with the status quo [68]. Therefore, we seek answers to these questions
through text mining on a corpus of BD and NBD documents from two biomedical literature
databases. The label BD or NBD was given based on the presence or absence of the term
Big Data in the title or abstract. BD and NBD documents were cleaned and preprocessed to
be used as input to a machine learning classifier that trains a model to determine the most
distinguishing features. To assess the stability of the applied methods multiple datasets
were created and tested, each with a different random mix of documents. Features that
were selected consistently were used in further analysis.

This work builds on previous research published in a conference proceedings [69]. In
this previous work we also investigate whether BD and NBD documents are distinguishable
using text mining tools. There we concluded that Big Data biomedical research articles
can be reliably identified. Here we extend that work, the BD corpus in the current study
has nearly doubled in size and we analyse a larger portion of the available scientific
documents. Furthermore, the analysis methods were adapted and simplified.

3.2 Related work

The meaning of Big Data is being discussed at various levels. In 2001 Gartner published
a report which in hindsight is often referred to as the first description of Big Data. It
defines the term through information technology challenges described by three Big Data
aspects (V’s): volume, velocity, and variety [12]. This definition has had many additions
and adaptations over time and a relatively stable six V’s (volume, velocity, variety, veracity,
value, and variability) are in common use nowadays [13].
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At an informal level, various blogs have debated about the usage of the term Big Data,
and the hype that surrounds it. These blogs cover a wide spectrum of opinions expressed
by members of the scientific community and industry. At one end of the spectrum we have
‘The emperors cloths’, by Levi [27], which states that Big Data appears to be a fad with many
potential downfalls in the medical field. On the other end, some state that Big Data has
become the ‘new normal’ in information processing. Gartner describes that the aspects
of Big Data have evolved into various other areas such as data science [70]. IBM states
that Big Data techniques are no longer an option, but a necessity [71]. The large majority,
however, adopt definitions of Big Data that often focus on technological aspects such as
the storing and processing of data [72, 73].

While blogs are informal and subjective sources, there are also many researchers
investigating the meaning of Big Data more systematically. Some approached this in a
qualitative manner by analysing existing definitions, describing similarities and differ-
ences, and merging them into an overarching definition. For example, De Mauro et al. [8]
looked at fifteen existing definitions and derived four overarching aspects that define Big
Data: Information describes the aspects directly related to data such as its volume and
variety; Technology and Methods describe the techniques to make use of data; and lastly
Impact describes the value – either scientific or economic – that datamay generate. Others
are, for example, Ward et al. [7] and Gandomi et al. [74] which assess existing (industry)
definitions to find and describe common aspects between them. There is also research
focused on definitions within a specific research area, such as: Kudva et al. [75] for smart
cities, Wolfert et al. [76] for smart farming, and Hashem et al. [77] for cloud computing.
These studies are aimed at helping researchers identifying the intersections between the
research area that they know and Big Data.

Other researchers applied quantitative methods and extracted common features from
research publications. Hansmann et al. [29] identified topics in a corpus of Big Data
publications and described them in the light of existing definitions. They concluded that
Big Data is described by data, information technology infrastructure, and methods of data
analysis. Similarly, our previous work [78] mined the topics of Big Data publications and
matched them against the six Big Data V’s and the definition posed by [8]. We concluded
that, while some V’s are often identified (volume, velocity, value), the presence of aspects
from the definition of de Mauro et al. is especially strong.

More closely related to the research in this paper is the work of Hahn et al. [66] who
analysed the changes in popularity of specific areas in bioinformatics over time. They
gathered a set of scientific literature and applied a keyword and topic modelling based
analysis. Their results show that the term Big Data has a massive increase in popularity
over time and several research areas of bioinformatics are shifting to Big Data techniques.

The previously mentioned studies attempted to understand and define Big Data in
the broad scope of a research field, including methodological aspects. The meaning of
Big Data, however, has also been derived from the characteristics of datasets alone. By
applying a taxonomy [79] of potential Big Data aspects to 26 datasets, Kitchin et al. [80]
investigated which aspects are common in ‘Big’ datasets. They concluded that velocity and
exhaustivity (i.e., the dataset is a sample or n = all) are the most distinguishing aspects.
Moreover, they stated that volume and variety, which are traditionally related with Big
Data, do not qualify as meaningful aspects without velocity or exhaustivity.

As it can be seen from the above, the term Big Data may be used to describe different
aspects. Defining Big Data only through dataset characteristics, as proposed by Kitchin et
al., provides a narrow perspective, excluding aspects such as methods and technology that
are included by many others. Depending on the point of view, Big Data definitions may
overlap but are often not fully in agreement with each other. Therefore, when the term Big
Data is used in a scientific document, it is unclear what it really means and whether this is
a marker of unique characteristics.
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3.3 Data and methods

3.3.1 Corpus collection

The corpora were obtained through querying and cleaning of BD publications, and then
matching these to NBD publications through new querying and cleaning steps. Overviews
are shown in Figures 3.1a and 3.1b respectively. The implementation of the methods
described in this section can be found on GitHub [81].

3.3.1.1 Big Data corpus

BD documents were collected from PubMed and PubMed Central (PMC) using the Entrez
Programming Utilities API [82]. We searched for the literal use of the term “Big Data” in
either the title or abstract. The following search queries were used:

• PubMed (“big data”[TIAB] OR (big[TI] AND data’[TI]))
AND (“2011/01/01”[PDAT] : “3000/12/31”[PDAT]) AND english[Language]

• PMC (“big data”[TI] OR “big data”[AB]) AND (“2011/01/01”[PDAT] : “3000/12/31”[PDAT])

The query did not allow distance between the words ‘big’ and ‘data’ to minimise the
number of irrelevant results. For the same reason we limited the search to publications
after 2011. Note that 3000/12/31 is the default value that PubMed uses when no limit is
given for the end date. We noticed that documents containing the term “Big Data” between
single quotes were not returned by the PubMed search, therefore the sub-query (big[TI]
AND data’[TI]) was added and the gathering was repeated.

The search used the esearch function of the Entrez API, which yielded 3,679 Pubmed
and 1,387 PMC results. With the efetch function the following information was retrieved
and stored in a local database: titles, abstracts, and metadata (i.e., publication date,
publication type, DOI, journal, journal ISSN, and journal ISO).

An overview of the cleaning process is shown in Figure 3.1a, and the steps are described
in order below.

(1) Some documents had to be removed as they could not be retrieved by the efetch
function. (2) Documents with empty abstracts were removed as they did not contain
enough data to be useful in the classification. (3) In our previous study [69] we observed
that documents such as comments and letters to the editor have different structure and
content, therefore documents other than research papers were removed1. The document
type was determined with the PublicationTypeList field in the Entrez API output. (4)
We observed that not all journals in the corpus primarily covered biomedical research,
so these had to be removed manually. All journals with three or more documents in the
corpus were inspected by one of the authors (AA), as we assumed that journals with less
documents did not have a big impact on the corpus overall. The titles of the documents
were scanned to estimate the research field of the journal, and where the field did not
become clear the abstracts were analysed as well (see Dataset S1 for the complete list of
journals). (5) Lastly, any duplicates were removed based on title or DOI.

The search was performed on 2018/05/13 and yielded 5,066 documents, and through
cleaning 2,554 were removed, resulting in a BD corpus of 2,512 documents.

3.3.1.2 Non-Big Data corpus

NBD documents were collected through the Entrez API similarly to the BD corpus. To make
the NBD documents comparable with BD documents, the PubMed and PMC databases were

1Full list of removed document types: Addresses, Bibliography, Biography, Book, Clinical Conference, Comment,
Congresses, Consensus Development Conference, Consensus Development Conference, NIH, Dataset, Directory,
Editorial, Guideline, Interview, Lectures, Letter, News, Published Erratum.
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queried for each journal in the BD corpus. Furthermore, the publication date range was
set to the minimum and maximum publication year of the BD documents in each journal.
For example, the following query would match BD publications between 2012 and 2016 in
the journal Nature Communications: “Nature Communications”[Journal] AND (“2015”[PDAT]
: “2018”[PDAT]).

An overview of the cleaning process is shown in Figure 3.1b. The process was similar
to the BD corpus cleaning described above, with two differences: (1) no journals had to
be removed; (2) some documents were pre-published and had a publication date in the
future, so these were removed.

The match was performed on 2018/05/13 and yielded 841,667 documents. Through
cleaning 315,423 were removed, resulting in a NBD corpus of 526,244 documents.

3.3.2 Dataset preparation

In this section we describe the preprocessing of the individual documents from the BD
and NBD corpora and their characteristics. Furthermore, we describe the sampling of the
datasets used as input to the classification method as described in Section 3.3.3. The
implementation of the methods described in this section can be found on GitHub [81].

We cleaned all documents so that they contained only unaccented alphabetical letters.
The following items were removed: HTML tags2, special characters (e.g., &, %), and
numbers. Stopwords were removed using the english list from the NLTK python library
[84] in addition to ‘big data’ and ‘big’. Lastly, the documents were tokenised and any too
short (< 2 characters) or too long (> 34 characters) tokens were removed, as they were
unlikely to be real words.

The characteristics of the corpora after document cleaning are shown in Table 3.1. Word
clouds of the top-100 most frequent terms in both the BD and NBD corpora are shown in
respectively Figures 3.2a and 3.2b. When normalised, the corpora showed a similar trend in
documents per year and tokens per document (shown respectively in Table S2 and Figure
S3). Note that the minimum number of tokens in the NBD corpus was zero for both the title
and abstract, indicating empty fields. Later inspection showed that this was due to three
malformed documents in PubMed (PubMed IDs: 27529366, 27529367, and 27529368).

We sampled datasets so that they consisted of an equal number of BD and NBD
documents. The sampling process is shown in Figure 3.3. For each dataset the whole
BD corpus was included and paired with a random sample of the NBD corpus, resulting
in sets of 5,024 documents. Datasets were split into 90% training and 10% validation
data. To cover a larger part of the NBD corpus and test the stability of the classifier, 100
datasets were created. We did not apply a cross validation, as each dataset was randomly
sampled from the NBD corpus. While this approach does not guarantee coverage of all
NBD documents we assume that the random sampling ensures a fair spread of the variety
in the NBD documents.

2PubMed data may contain the following tags: <i>, <u>, <b>, <sup>, and <sub>
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Figure 3.2: Word cloud of the: (a) Big Data corpus and (b) non-Big Data corpus. The
top-100 words are shown, their size is proportional to their frequency in the respective

corpus.
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Table 3.1: Characteristics of the corpora after cleaning. *: mean [minimum - maximum].
Docs: Documents. Note that 2018 only covers 2018/01/01 to 2018/05/13.

Big Data non-Big Data
# docs 2,512 526,244
# journals 1,189 1,144
# docs per journal* 2 [1-73] 460 [1-10,298]
# docs per year

2011 5 839
2012 18 5668
2013 100 23825
2014 271 53307
2015 411 87220
2016 631 134876
2017 728 175590
2018 348 44919

# tokens
all* 133 [13-516] 139 [0-1,1,210]
title* 9 [1-28] 10 [0-57]
abstract* 125 [10-511] 129 [0-1,205]

# unique tokens
all* 94 [12-287] 91 [0-425]
title* 9 [1-24] 10 [0-48]
abstract* 92 [10-287] 89 [0-424]

repeated 100x

Big Data

Validate

10%

Train

90%

Train Lasso 
classifier

Measure 
performance

non
Big Data

Sampling
1:1 (BD:NBD)

ROCs
AUCs
Coefficients

Figure 3.3: Pipeline from sampling the data to training the models and retrieving
performance metrics.
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3.3.3 Classification

In this sectionwe describe how the classifiers were trained and howperformancemeasures
were calculated. The input to the classifiers were the 100 datasets constructed as described
in Section 3.3.2. Furthermore, we describe how the influence of time (i.e., publication date)
was evaluated. The implementation of the methods described in this subsection can be
found on GitHub [85].

The process of classification is shown in Figure 3.3. We implemented a logistic regression
with LASSO penalty using the glmnet R package [33, 86]. This method was used because
of its ability to discard features and limit the size of the final model, thereby identifying
the most relevant features.

For each dataset the training data was used to fit a model with cv.glmnet. A
range of lambda values was tested using 10 folds. Predictions and coefficients were
extracted using lambda.1se on the validation data. Lambda.1se was chosen instead
of lambda.min because it gives the simplest model within one standard error of the
minimal misclassification rate, limiting the number of selected features. We extracted the
Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) to assess
the performance of the classification models. Furthermore, the coefficient values of the
selected features were retrieved.

Trend analysis To answer research question 3 a stratified analysis by year of publication
was performed. We used the BD and NBD corpora, but split them into the following bins:
2011-2014, 2015, 2016, 2017, 2018. Note that documents from 2011 to 2014 were combined
because each year included a relatively small number of documents, which could result in
unreliable results. For each bin we sampled twenty datasets with the same approach as
described in Section 3.3.2.

Each dataset was classified using the same process as described in Section 3.3.3, and
additionally a confusion matrix was retrieved. The matrix was used to calculate the False
Omission Rate (FOR). This metric was chosen because it reflects the chance of a negatively
classified document to be false negative. We hypothesized that over time thismetric would
increase caused by a dilution of the value of the term Big Data. When the value of ‘Big Data’
becomes diluted, documents without Big Data characteristics might carry the BD label,
and be included in our BD corpus. If no Big data characteristics are present, the classifier
should label them as NBD, resulting in a false negative. This situation is captured by the
FOR.

3.4 Results

The mean AUC over all 100 datasets was 0.96 with a standard deviation of 0.009. ROC
curves are shown in Figure 3.4a and were relatively stable over the 100 datasets. Lastly, we
retrieved the frequency of each unique feature. Logistic regression with LASSO penalty
creates a model with a subset of the input features, therefore the features may differ
between each model. As described above a model was trained for every dataset, we
counted the frequency of each unique feature. Then, all features that occurred at least
fifty times were used to create a word cloud, which is shown in Figure 3.5. The results were
used to answer research questions 1 and 2.

The outcomes of the analysis are shown in Figures 3.4b and 3.6. Note that the ROC curves
and FOR curve do not show trends along time.
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Figure 3.4: (a): ROC curves for all 100 datasets with average curve highlighted (blue). (b):
ROC curve for each period of time. Each period of time consists of twenty datasets, the

mean curve is plotted.
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Figure 3.5: Word cloud of the selected features for all 100 datasets. Their size is
proportional to the number of times they were selected.
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Figure 3.6: False Omission Rate over time, each year consists of twenty datasets, the
mean and standard deviation are plotted.
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3.5 Discussion

In this study we set out to answer the question whether and how a corpus of Big Data
documents can be separated from non-Big Data documents published in the biomedical
literature. Furthermore, we looked into the distinguishing features and whether the date
of publication of a document has an effect on its distinguishability. Below we analyse and
discuss the results and limitations concerning the creation of the datasets and classifiers,
distinguishing features and trends over time.

Corpus, datasets, and classification We created two corpora – BD and NBD – and
randomly sampled 100 datasets from them, each with a one-to-one ratio of BD and NBD
documents. For each dataset a classifier was trained and the classification performance
was tested. The generated models have a high performance with an average AUC of 0.96.
Analysis of the ROC curves showed that the model performance remains stable over the
100 datasets. These results answer research question 1: a classifier based on bag-of-words
approach can reliably and with a high performance separate BD and NBD documents.

Distinguishing features To give an impression of the BD and NBD corpora two word
clouds were created, respectively Figures 3.2a and 3.2b. While the most frequent word
(respectively data and patients) differs between the corpora, there is much overlap
between the word clouds. Most of the differences may be found in the research fields
that are covered. For example, the BD word cloud contains genetic and genome, most
likely stemming from the genomics field, which has a high interest in Big Data applications.
These insights, however, do not give a complete story about the differences between
the BD and NBD corpora. Therefore, research question 2 was answered by extracting the
words that were selected as most distinguishing features between the two sets of BD and
NBD documents – see Figure 3.5. We apply below the Big Data definition proposed by de
Mauro et al. [8] to interpret these words.

Under the Information aspect, words such as massive and large are the most no-
ticeable. More interestingly, many words can be associated with Technology and Methods,
for example: computational, mining, and machine (possibly from “machine learning”).
Value aspects can be identified in words such as future, era, and challenges. Note that
a word like era, as in “the era of big data”, can also be associated to hype. Lastly, there are
words that do not fit in the definition as proposed by de Mauro et al., but instead identify
a specific research fields such as omics and genomics. These words are related to the
areas that tend to handle large datasets.

Note that other Big Data word clouds have been published, for example at the Gartner
blog [73] and the United Kingdom parliament website [72]. Note that these word clouds
include more words that are associated with the size of data – petabytes, volume, size –
as compared to our word cloud in Figure 3.5. However, many words are similar, therefore
supporting our findings.

Trends over time There is a clear increase in the usage of the term Big Data in biomedical
literature along time. Here however our focus is in changes over time regarding distin-
guishability between papers that use the term and that do not.

In our previous work [69] we found a trend over time in the False Discovery Rate (FDR).
This indicated that more papers were incorrectly classified as BD in more recent years.
From this we concluded that, whilst Big Data concepts are still being discussed, researchers
used the term Big Data less often in later years, although their content includes Big Data
aspects. In the current study we found no trend for the FDR (data not shown) neither for
the FOR. While the current work does not differ in methodology from the previous one, it
uses better data. In the study presented here we improved the document searching and
sampling approach by restricting the types of included BD documents while increasing the
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number of matched NBD documents. We believe that the current datasets better represent
the published works in biomedical literature that are relevant for this study.

The ROC curves for various time intervals (Figure 3.4b) show no trends in distinguishab-
ility. The same conclusion can be drawn for the FOR (Figure 3.6). These results answer
research question 3, rejecting our hypothesis that the term Big Data became diluted over
time.

Value of the term Big Data In Section 3.2 we showed that there is a wide spectrum of
opinions on the value and the definition of the term Big Data. Concerning the definition,
our findings show that the term is consistently used to identify a distinct field of research
within a biomedical scope. Moreover, the characteristics of this field align with existing
formal and informal definitions of the term.

With respect to the value of the term, our findings do not support the opinions that Big
Data is a fad or the ‘new normal’. A fad would die out over time, and a ‘new normal’ would
permeate the literature. In both cases one would expect to see less distinguishability as
time progresses. However, we did not find such a trend over time, which suggests that
these opinions are not valid in the context of biomedical scientific literature.

3.5.1 Limitations

There were several limitations to our approach. Firstly, we restricted the corpus to
biomedical documents, therefore the BD and NBD corpora were collected from two
biomedical online libraries, PubMed and PMC. There are other libraries available such as
Scopus and Ovid, however they do not provide a public API, which would make this study
impractical.

Another limitation is the use of only titles and abstracts in the analysis, because the
full-text is not directly available in the used libraries. We assume that the main message
of each document is represented in their title and abstract, but it is possible that more
complex concepts are only expressed in the full text. PMC contains open-access articles
and therefore often, but not always, includes full-text in the API results. These would
represent only a small portion of the BD corpus and were therefore not used in this study.

To ensure a certain quality in our corpora we had to remove documents, for example
because they lacked an abstract. Note that, while some documents had to be discarded
due to quality criteria, all eligible BD documents were included in our analysis. The
corpus was also restricted on represented journals because we noticed that some journals
included in the PubMed or PMC are not specific to biomedical research. We manually
curated a list of journals to be removed from the corpus, however this was non-exhaustive
and partly subjective. Therefore, some of the documents included in the corpus might be
from other research fields.

Finally, we used all BD documents in each set and matched them with an equal amount
of NBD documents. Because there were 2,512 BD documents, a theoretical maximum of
251,200 unique NBD could be included. While this is about half of the total amount of NBD
documents, we assume that (even considering repeats) the random sampling ensures a fair
spread of the variety in the NBD documents. The ROC curves show little variation between
the models, supporting this assumption.

3.6 Conclusion

In this research we investigated the question whether Big Data literature in the biomedical
field can be distinguished from literature that does not use the term. To our best
knowledge, this is the first study to analyse this question using quantitative methods in
this research field. From out results, we conclude that there is indeed a detectable and
stable distinction between BD and NBD documents in the biomedical field. Furthermore,
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we found no trends over time that indicate a change in the distinguishability between BD
and NBD documents. This suggests that the value of the term remains the same, in spite
of its increased usage in the biomedical literature.

The differences between the BD and NBD documents are mostly captured in terms that
are associated with Big Data themes previously described by others. Furthermore, the
distinguishing features seem to be sensitive to words that indicate data types belonging
to certain research fields, such as ‘omics’. These words suggest that certain research fields
tend to use the term Big Data in their publications more often. This is probably due to
the affinity of some areas of biomedical research with large datasets and computational
methods, such as bioinformatics. Therefore, even when taking possible hype into account,
the use of the term Big Data within a publication seems to indicate a distinct type
of scientific publication in the biomedical field. Recognising this may help biomedical
researchers to identify themselves with this new field, increasing participation in this
growing community and taking more benefit from it.
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Chapter 4

Systematic reviews are a cornerstone of today’s evidence-informed decision making.
With the rapid expansion of questions to be addressed and scientific information
produced, there is a growing workload on reviewers, making the current practice
unsustainable without the aid of automation tools. While many automation tools
have been developed and are available, uptake seems to be lagging. For this reason,
we set out to investigate the current level of uptake and what the potential barriers
and facilitators are for the adoption of automation tools in systematic reviews.
We deployed surveys among systematic reviewers that gathered information on

tool uptake, demographics, systematic review characteristics, and barriers and
facilitators for uptake. Systematic reviewers from multiple domains were targeted
during recruitment, however, responders were predominantly from the biomedical
sciences.
We found that automation tools are currently not widely used among the

participants. When tools are used, participants mostly learn about them from their
environment, for example through colleagues, peers, or organisation. Tools are often
chosen on the basis of user experience, either by own experience or from colleagues
or peers. Lastly, licensing, steep learning curve, lack of support, and mismatch to
workflow are often reported by participants as relevant barriers.
While conclusions can only be drawn for the biomedical field, our work provides

evidence and confirms the conclusions and recommendations of previous work,
which was based on expert opinions. Furthermore, our study highlights the
importance that organisations and best practices in a field can have for the uptake
of automation tools for systematic reviews.

Abstract

Research Synthesis Methods. 2019;10(1):72-82
DOI: 10.1002/jrsm.1335
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4.1 Introduction

Systematic reviews are a cornerstone of today’s evidence-informed decision making [17,
87]. These can be decisions around medical tests or treatment, food safety, environmental
questions, or avoidable research waste [88], just to name a few. By synthesising all relevant
evidence regarding a certain topic, systematic reviews provide a good reflection of the
current scientific knowledge.

A systematic review, as its name suggests, is a highly structured process which can be
divided into 15 tasks [20] concerning the retrieval, appraisal, and synthesis of evidence. The
whole process ismostlymanual and time consuming. For a full-time researcher, depending
on expertise and complexity, a review can take from 6 months to several years. With the
ever-growing body of literature being produced [19], and the multitude of questions that
need to be answered, the current practice is unsustainable [20].

Looking more closely at the various tasks within a systematic review, it becomes clear
that some areas could benefit from automation to speed-up the process whilst maintaining
the high standards associated with a systematic review. While there are many definitions
of automation, here we understand automation as a repeatable computerisedmethod that
performs a task normally executed by the researchers or that aids in their decision making
process.

An example of a task eligible for automation is the identification and selection of
studies. A systematic review sets out to identify a comprehensive set of relevant studies
across multiple sources in order to obtain a reliable sample of studies andminimising bias
[17]. This is done by executing highly sensitive searches in multiple literature databases
and other resources and retrieving between a thousand and tens of thousands studies,
with some examples reaching up to one million studies [89]. Each study needs to be
assessed manually by two independent researchers based on title and abstract, which
is a very time-consuming process.

An analysis by Tsafnat et al. [20] showed that several automation tools have been
developed to assist the screening of titles and abstracts based on machine learning
methods. A comprehensive list can be found in the Systematic Review Toolbox [90] and an
overview of their performance can be found in O’Mara et al. [18] and Shemilt et al. [89].

Although automation tools have been around for several years, their adoption seems to
be low, as reported in the summary of the 2016 meeting by the International Collaboration
for Automation of Systematic Reviews (ICASR) [91]. While experts from the field (e.g., ICASR,
O’Mara et al. [18]) indicate that uptake is lagging, no studies have been carried out to
investigate whether this is indeed the case and what might be causing it. Understanding
the level of, and condition for, uptake would help to device bespoke implementation
strategies for the introduction of automation in the systematic review process. For this
reason, we set out to investigate the following research questions:

• What is the uptake of automation tools that support the execution of systematic
reviews?

• What are the barriers and facilitators that lead to the use of these tool?

We deploy two surveys among a population of systematic reviewers. The first survey
is geared towards finding the uptake of automation tools, population demographics, and
characteristics of systematic reviews. This survey is designed to be accessible and short
so as to reach a high response rate. The second survey is a follow-up that goes in-depth
on the specifics of automation tools. To capture all possible barriers and facilitators that
lead to, or hamper, their use we applied an existing conceptual model for assessing the
acceptance and usability of new technologies.

49



Chapter 4

Technology Acceptance Model
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Figure 4.1: Technology Acceptance Model 2, adapted for this study. This model structured
the questions for S2, see also Tables 4.4 to 4.6. The original model (orange) was

established in 1985 [92]. The model was extended twice in 2000 [93, 94] (blue, red) which
added more detailed concepts. Because we hypothesised that a barrier might be that
reviewers do not know about the existence of automated tools, we added the concept
Awareness to the model. From the concepts describing Perceived Ease of Use,

only Computer Self-efficacy, Perception of External Control, and
Objective Usability were used.

4.2 Methods

Our study collected data through two surveys among systematic review practitioners. In
this section we describe how the surveys were designed, participants were recruited, and
the data was analysed.

For the remainder of this paper the systematic review practitioners are referred to as
reviewers or participants. Furthermore, the first survey is referred to as S1 and the second
survey as S2. Similarly, to refer to a specific question – for example question 1 in survey 1
– we use the following notation: S1.1.

4.2.1 Survey design

In this section we describe the process that led to the formulation of the questions
presented to the participants in S1 and S2.

4.2.1.1 First Survey

S1 covered three areas of interest, namely: demographics of the participants, characterist-
ics of the systematic reviews they performed, and the automation tools they were using or
considering to use. These areas were captured in ten questions summarised in Table 4.3
and detailed in Section 1 of the supplemental material [95]. The survey was implemented
using SurveyMonkey [96]. Below, the rationale for each question is described.
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S1.1-3 obtained information about the workload of the participant to assess whether a
higher workload had an influence on the usage of tools. S1.4 covered the tools a participant
might use - more details about tool selection are described below. S1.5-9 considered
the following demographics: age, country, professional position (i.e., seniority), field of
research, and computer proficiency. S1.10 was optional and collected an email address for
participation in S2.

Tool selection for S1.4 Candidate tools were gathered from the ‘Systematic Review
Toolbox’ website [90], which is a highly comprehensive list of tools compiled by researchers
in the field. Based on publicly available information and personal experience, tools that
automated any part of the systematic review process were selected1. The tools were
analysed by two researchers (AA and ML). Disagreements between their decisions were
resolved by RS.

The Systematic Review Toolbox website listed 111 tools. Of these, 54 were selected by
AA and ML, and, after disagreements were resolved, 31 tools remained. Finally, three well
known tools (i.e., EndNote, RevMan, and Covidence) were added to the list as controls,
although they do not fulfil the inclusion criteria for S1.4. See the complete list of tools
in Section 1.4 of the supplemental materials [95]. Note that, to avoid missing out on
tools, participants were encouraged to indicate tools that they felt were missing in the
Other option of S1.4. Answers to this option were analysed by AA to identify additional
automation tools.

4.2.1.2 Second Survey

S2 was structured using the Technology Acceptance Model 2 (TAM) [93, 94] illustrated in
Figure 4.1. TAM defines the aspects that lead to Intention to Use, which may be used
to predict Usage Behaviour of a certain (new) technology. The model was chosen to
structure the questions in S2 because it describes the underlying motives, barriers, and
facilitators (intention to use) for the uptake of tools (usage behaviour).

Below we describe each concept as used in our study (adapted from Chuttur et al. [97]):

• Image: in which way tool usage reflects upon the status of an individual among peers;
• Experience: the degree to which an individual has used the tool;
• Voluntariness: the degree to which an individual uses the tool out of own free will,
as opposed to being obliged to use by, e.g., an organisation;

• Job Relevance: the degree to which a tool fits the task and workflow of an individual;
• Output Quality: the degree to which the output of the tool matches the individual’s
job goals;

• Result Demonstrability: the degree to which the usage of the tool can be linked with
beneficial results (e.g., decreased job completion time);

• Perception of External Control: the degree to which an individual can control re-
sources (time, money) that lead to usage of the tool;

• Computer Self-efficacy: covered in S1.9;
• Objective Usability: measured with the System Usability Scale (see below);
• Awareness: the degree to which an individual knows about the existence of the tool.

Note that some of the concepts were not used because they did not fit the goals of the
survey. These were: computer anxiety, computer playfulness, and perceived enjoyment.

1The used definition of ‘automation’ is stated in Section 4.1
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Questions There were three categories of questions, which are summarised below – see
Tables 4.4 to 4.6 for the questions that belong to each category.

• The generic questions (S2.1-13): obtained information about how the participant
learns about the existence of an automation tool, how they determine whether the
tool fits their requirements, and how much effort that takes.

• The specific questions (S2.14-24): obtained similar information as the generic ques-
tions, however posed in the context of an individual tool. This enabled assessment
of barriers and facilitators comparatively among tools.

• The usability questions (S2.25-34): were covered using the System Usability Scale
(more details below).

S2 was implemented through a custom web-based system developed using PHP and
MySQL to accommodate for the flexibility and control required for this survey [98]. Firstly,
as control, the participants were presented with their previous answers to three questions
from S1. They were asked to update the number of systematic reviews they were involved
in (S2.0.2), the average number of search results (S2.0.3), and which tools they were using
(S2.0.4). Based on their answers to S2.0.4, the participants were then assigned to one of
two versions of the S2 survey.

One version included generic questions (S2.1-13), and was shown to participants that did
not use, or considered to use, any tool. We refer to this as the ‘non-user’ group. The other
version was presented to participants that indicated to be using some tool – the ‘user’
group – and included all questions (S2.1-34). The specific and usability questions (S2.14-
34) were posed in the context of a single tool that the participant had indicated to be using
in S2.0.4. To limit the burden of the participant, at first, specific information was asked for
a single tool determined by the survey system. From all tools that the participant listed
(S2.0.4), the tool with the smallest number of responses in the survey so far was selected
to maximise the spread of responses. At the end of the survey, participants could choose
to answer the specific and usability questions for additional tools of their own preference.
The survey could be completed for as many tools as desired.

System Usability Scale TAM describes objective usability as a determining aspect for
technology adoption. Furthermore, we hypothesised that usability would have a major
influence on the use of tools.

The System Usability Scale (SUS) was chosen for its longevity, being proposed during
the mid-eighties and formally published in 1996 [99]. The popularity of SUS has grown
since then and, in spite of its pros and cons, the overall layout of the scale has remained
stable [100]. The scale consists of ten questions (see Table 4.6), rated with a 1 to 7 Likert
scale from Strongly Disagree to Strongly Agree.

For the usability analysis, answers to the ten questions were added together and
interpreted as proposed by Bangor et al. [101]. A tool with score larger than 68 is considered
to have good usability.

4.2.2 Participants

A variety of approaches were used to recruit participants for S1. Our aim was to get a mix
of participants regarding workload, seniority, research field, country of residence, and tool
usage.

Network Emails were sent to the professional network of RS, which includes the follow-
ing organisations: Cochrane Information Retrieval Methods Group (IRMG) list, Cochrane
editorial and methods digest readers, ICASR members and its contact list, and attendees
of a meeting on automation tools in systematic reviews at Bristol University (UK).
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Cochrane library Cochrane authors were contacted directly through the publicly available
email addresses in the Cochrane library [102]. Articles from issues 1, 2, and 3 of the year
2017 were retrieved. The email of contact authors found in the articles was extracted and
an invitation was sent.

Own Organisation To contact the reviewers in our organisation (Amsterdam UMC, Univer-
sity of Amsterdam) the library archives of 2015 and 2016 were used. These archives contain
a fairly comprehensive list of all publications by AMC authors. The articles were filtered
for systematic reviews using PubMed, retrieved, and an invitation was sent.

Own Department The survey was distributed in our department (Clinical Epidemiology,
Biostatistics, and Bioinformatics) using an internal mailing list.

A single invitation was sent to all potential participants in S1. Responses were collected
between October 2016 and April 2017.

Invitations for S2 were sent to all participants that provided their email address in S1.10.
Up to two reminders were sent over the course of the subsequent four weeks. Responses
for S2 were collected in the period between October and November 2017.

We also compared characteristics of the groups that answered S1 and the subgroup that
answered S2 after the updates in S2.0.2-4, with the goal of identifying possible bias. This
was done using the Pearson correlation coefficient implemented with the rcorr function
from the Hmisc R-package [103, 104].

4.2.3 Data analysis

Data was cleaned by removing incomplete responses (i.e., participants that started, but
did not answer all questions). Furthermore, some of the questions in S1 and S2 included
an option Other, where the participant could enter any free text. These answers were
inspected by AA and, where possible, mapped to the closest existing option. Answers that
could not be mapped to an existing option were used to clarify our observations. Below
we describe further processing for each survey.

First Survey The number of selected stages for S1.1 were counted per participant. The
number of considered, incidentally used, and regularly used tools selected in S1.4 were
counted per participant, as well as the total number of tools selected for each of these
categories together. Finally, correlations between questions were analysed using the
hetcor function from the polycor R-package [104, 105]. Question S1.6 was not included
as the data was not suitable to test for correlation.

Second Survey There were three types of questions: multiple choice, single choice,
and scales. For all question types the answer count and frequencies (fraction of total
responses) statistics were determined. For multiple choice questions, in addition to the
fraction of total responses, the fraction of participants that had chosen an option was
determined. Lastly, for scales, the mean and median of the answers was calculated.

The questions S2.14-34 were posed in the context of a specific tool that the participant
had indicated to be using, so the answers were grouped by tool. Tools with less than five
completed surveys were pooled together to enable more meaningful statistical analysis.

Each question type was visualised as a table and a bar chart showing total frequency.
The tool-specific multiple choice questions (S2.14-34) were grouped by tool and visualised
as a grouped bar chart. Scale questions were visualised with box plots.
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4.3 Results

In this section we describe the participants reached for both S1 and S2, the number of
responses, and a summary of the responses.

4.3.1 Participants

First Survey Participants were recruited through four different approaches. The number
of responses and contacts (where possible) for each of these is listed in Table 4.2. Note
that the number of emails sent for the network and department are an approximation,
as these were sent out to mailing lists. In total 172 responses were given to S1. Three of
the responses were incomplete, so 168 responses were analysed.

Second Survey A total of 109 participants (65%) filled out their email address in S1.10 and
were contacted for S2. For the initial invitation, two emails bounced and 7 returned an out-
of-office, therefore the invitation reached 100 potential participants. S2 had 62 complete
and three incomplete responses, therefore a response rate of 62% was obtained.

Six participants belonged to the ‘non-user group’, and filled out only the generic part
of S2. The remaining 56 belonged to the ‘user group’ and filled out the complete survey.

Characteristics Participant characteristics measured in S1 resembled normal distribu-
tions with good spread for research stages (S1.1), age (S1.5), and position (S1.7). Computer
proficiency was spread over the scale of 0 to 10 (S1.9). Nevertheless, more participants
report their proficiency as ‘basic’ as opposed to ‘advanced’, showing a slight trend towards
less proficient participants (median of 4, mean of 3.71).

Participants were spread over 22 countries (S1.5). The major countries of residence are
the Netherlands with 33% of participants and the United Kingdom with 20%, followed by
Australia (8%), Canada (7%), the United States (6%), and Denmark (6%).

Lastly, 95% of all participants (S1.6) performed reviews in the medical sciences field.
Note that multiple fields could be chosen, the medical sciences field made up 78% of all
answers given to S1.6. The complete distributions of the characteristic are shown in Section
1 of the supplemental materials [95].

To assess the participant bias considering the research domain a subgroup analysis was
performed. For privacy reasons, questionnaire results were analysed on an aggregated
level. The questionnaire design, therefore, limits the possibilities for an exhaustive
analysis. We restricted the subgroup to the 81 participants recruited through the network
method. This subgroup contains researchers with a mix of research environments. When
comparing this group against the whole population of 168 participants little variance was
shown in the research domain distribution. The full analysis is shown in Section 1.8 of the
supplemental materials [95].

Correlations between the group of S1 participants and subgroup of S2 participants were
calculated for: number of stages, number of reviews, number of papers, number of used
tools, age, position, and proficiency. Number of reviews and number of papers show a
relatively low correlation, respectively 0.71 and 0.61 (data shown in Section 2 in [95]). The
differences indicate no clear increasing or decreasing trend. All other characteristics were
highly correlated between the S1 and S2 groups, indicating that there is no difference
between the participants. Therefore, the conclusions drawn for any analysis on the S1
group can be applied to the S2 group.

4.3.2 Survey responses

The complete results of both surveys are included as supplemental materials [95]. Below
we summarise and highlight the most relevant findings.
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4.3.2.1 First Survey

Approximately 36% of the participants are involved in four or more systematic reviews per
year (S1.2). Furthermore, approximately 60% of the participants work with reviews with
more than 3000 search results (S1.3).

Reported tool usage (S1.4) is summarised in Figure 4.2. Note that in the results presented
belowwe did not include the three validation tools. From the 168 participants, 54 answered
that they were incidentally or regularly using one or more of the listed tools. Fourteen
participants consider many tools, out of which six consider all and use none. In total
92 participants indicated to not be using nor considering any tool. The three control
tools (EndNote, RevMan, and Covidence – leftmost bars in Figure 4.2) are either used or
considered by many, respectively 78%, 71%, and 49%. Automation tools regularly used
by at least one participant were: Epistemonikos, EPPI-reviewer, GATE, NLM Medical Text
Indexer, Rayyan, RevMan HAL, SWIFT-Review, and Systematic Review Assistant.

The option Other of S1.4 resulted in 33 unique tool suggestions. Fifteen of them were
listed on the Systematic Review Toolbox website, but were not included during our tool
selection process because they did not fulfil our criteria. The remaining 18 tools were
found to be in one of the following cases: not an automation tool, not available (no public
information, or discontinued), or very specific to a research field. Therefore, no additional
tools were listed in S2.
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Figure 4.2: Reported tool usage, outcome of S1.4. Red: considering the tool; green:
incidentally using the tool; yellow: regularly using the tool. See Section 1.4 in the
supplemental materials [95] for the names of the tools included in this figure.

4.3.2.2 Second Survey

The first step of S2 provided information about changes in tool usage between S1 and
S2. In total 108 changes were made by 32 participants (see Table 4 in the supplementary
materials). We observed two major categories of changes: 1) a tool was not used in S1 but
became used in S2 (15 cases); and 2) a tool was used in S1 but was no longer used in S2
(4 cases). These changes did not influence the correlation in participant characteristics
between the S1 group and S2 subgroup as shown in Section 4.3.1.

Below we highlight the most relevant results for S2. Note that all mentioned percent-
ages are the fraction of participants that have chosen a given option. The survey was
completed for fourteen distinct tools - see counts in Table 4.1. Nine tools fell below the
cut-off of five responses and were grouped together for the result analysis.
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Table 4.1: Number of responses per tool for S2. The responses contained fourteen distinct
tools. Nine tools fell below the cut-off of five responses and were grouped together for

the result analysis.

ID Count Tool
1 33 EndNote
2 23 Review Manager (RevMan)
3 16 Covidence
21 13 Rayyan
8 6 EPPI-Reviewer

Grouped tools
99 4 Abstrackr
99 3 Epistemonikos method of searching
99 3 SWIFT-Review
99 2 RevMan HAL
99 2 RobotReviewer
99 1 DoctorEvidence (DOC Data)
99 1 GATE
99 1 NLM Medical Text Indexer (MTI)
99 1 Spá

The responses to questions S2.1, S2.3, S2.5, S2.14, and S2.20 indicate that the participant’s
environment has impact on the tools that they know and might use. In S2.1 the majority of
participants indicated to hear about tools through their colleagues (77%), peers (71%), or
organisation (40%). The same pattern is found in S2.14, which asked the same question for
a specific tool and obtained the answers: colleagues (57%), peers (39%), and organisation
(42%). Determining a tool’s task, and whether it fits in the workflow of the participant
(S2.3), is often based on experience, either personal (84%) or from peers (77%). Moreover,
participants indicated personal experience (69%) and peer experience (61%) as the most
contributing aspects for the effort during this process (S2.5). The responses to S2.20 also
show that experience is often the basis to assess the quality of results that a tool produces:
own (24%) and colleagues (28%).

In questions S2.8-11 we collected the aspects and reasons for starting and stopping
to use tools. Responses to S2.8 show that about half (48%) of the participants had used
another tool which they stopped using. The most important reasons for participants to
stop using a tool (S2.9) were poor usability (43%), lacking functionality (37%), and not fitting
their workflow (37%). In S2.10, 35% of the participants indicated that they would like to use
a tool but do not. The responses to S2.11 show that the most important factors are: cost
of licensing (32%), missing the support of colleagues (27%), and the effort to learn a new
tool, such as learning curve (23%) and lack of time (9%)

Responses to S2.21 and S2.22 are expressed on a scale of 1 to 7, and indicate that
automation tools help to reduce the time a participant’s job takes (median = 3) and
improve the quality of their work (median = 5). Lastly, the usability (S2.24-34) is similar
for all tools (Figure 4.3), being overall rated as good (i.e., usability score > 68).

4.4 Discussion and conclusions

In this research two surveys were conducted to investigate the uptake of automation tools
that support in the conduct of systematic reviews, as well as the barriers and facilitators
that lead to their use.
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Figure 4.3: Summary of the System Usability Scale (SUS) questions, S2 question 25 to 34.
The SUS scores are summed for all participants, the maximum score a tool can achieve is
100 (i.e., 10 questions, 10 points for each question). SUS scores are shown grouped by

tool (see Table 4.1) as boxplot.

Our assumption was that researchers with a high interest in automation solutions would
respond to our survey. For example, reviewers with a high workload or those that already
use a large number of tools. However this has not occurred. Although the number of
participants is small relative to the total population of systematic reviewers, a good spread
of characteristics was obtained for S1, and similarly for S2. This was true except for two
characteristics, namely country and research domain, discussed below.

Firstly, the geographic spread of participants is somewhat limited. Although we
collected responses from 22 countries, 53% of those came from the Netherlands or the
United Kingdom alone. This can be attributed to our recruitment methods, and it is likely
not representative of actual interest in systematic review automation worldwide.

Regarding the research field, note that we attempted to reach out to participants from
various backgrounds, but our population, however, mostly covers reviewers in the medical
domain. This bias could be explained by our recruiting methods, which reached more
researchers from the medical sciences (Cochrane, organisation, and department
methods) than from mixed research fields (network method) – see Table 4.2. A subgroup
analysis was performed to assess whether the participants recruited through the network
method differ from the whole population regarding research field. When comparing this
group against the whole participant population the distribution had only slight differences
- see full analysis in Section 1.8 of the supplemental materials [95]. The bias, however,
could also be present in the field of systematic reviews. It is a fact that the medical
research domain has conducted more systematic reviews, and for far longer, compared to
the other domains. When looking at an analysis of research domains for systematic review
articles in the literature database Web of Science2, a large portion of this research is in the
biomedical sciences. We therefore consider that our population reflects the dominance
of medical research in carrying out systematic reviews, but our results should be carefully
interpreted in the context of other fields.

2Searching for the terms ‘systematic review’ in the title and then using the ‘analyze results’ function.
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Table 4.2: Number of emails sent for S1, failed to deliver emails (i.e., bounced or
out-of-office), and survey responses per group. *: estimate.

Total Failed Responses
Network 2500* 81
Cochrane 327 22 48
Organisation 261 27 37
Department 50* 6
Total 3138* 49 172

The results of our survey show no specific trends regarding workload and participant
characteristics. Below we summarise our results categorised by the TAM concepts:

• Image: The standing of a researcher among their peers was found to not have an
effect on tool usage behaviour, although a full assessment of this could not be
performed based on our results.

• Experience: Either personal experience or the experience of peers with a tool is used
to choose, learn, assess and validate tools.

• Voluntariness: Tools are often used voluntarily, however in some cases tools are
enforced by institutions or organisations. For example, researchers from the medical
domain, and especially those working in Cochrane, need to follow relatively strict
protocols regarding the execution of reviews, which could favour or inhibit the use
of particular tools.

• Job Relevance: The fit of a tool in the participant’s tasks and workflow are equally
important.

• Output Quality: Whether the output of a tool matches with the goals of a participant
is often not formally assessed, but understood through own experience or the
experience of others. Tool documentation and scientific publications are used less
often.

• Result Demonstrability: Beneficial effects of tools are time reduction and quality
improvement. Mostly measured through personal experience or the experience of
others.

• Perception of External Control: Resources that lie outside of the control of parti-
cipants are, for example, cost of licensing and lack of time. These resources are often
controlled on an institutional level. Therefore, perception of external control seems
to be a relevant factor for choosing and using tools.

• Objective Usability: Even though some of the tools are more used than others, no
difference in usability (measured with the SUS) was found between these tools.

• Awareness: Participants mostly learn about the existence of new tools through their
environment.

Regarding tool uptake, from S1.4 we can conclude that automation tools are not widely
used by the participants (32% use automation tools, discounting the three control tools).
Tool uptake was also confirmed with S2.0.4 for a subset of the population – see Section
2 introduction in [95]. When comparing answers between S1 and S2, we noticed that
in more cases participants started to use tools, than stopped using tools, which may
indicate increase in tool uptake over time. This can be explained by the participants of
S2 having larger interest in automation tools, and therefore being more likely to invest
time in completing the survey. However, no bias could be detected through correlation
of the number of used tools per participant between S1 and S2 groups. Therefore, our
observations could also indicate that these participants went through a exploration phase
during S1 and stopped before S2.

In spite of low uptake, we observed that all the tools are considered effective because
they reduce time (S2.21). Moreover, participants indicated to perform many (and large)
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systematic reviews (S1.2-3). Therefore our results indicate that the uptake of automation
tools is not directly linked to a large workload or potential benefits.

We also observed that ‘good’ usability was reported for all tools that are in use by
the participants of this study (S2.24-34). Although our results show no direct influence of
usability in tool uptake, poor usability and a steep learning curve have been reported as
barriers to start using – or continue to use – a tool (S2.8-11). It might be that the other tools,
not in use, have lower usability (S2.9), which would confirm our hypothesis that usability
is a relevant factor in tool uptake.

Regarding barriers, licensing, steep learning curve, lack of support, and mismatch to
workflow are often and equally reported as relevant factors (S2.8-11). Lack of time was
also indicated by some as a barrier to assess the applicability and to evaluate the quality
of a new tool (S2.11).

Regarding facilitators, we observed that the reviewer’s environment (i.e., colleagues,
organisation, peers) plays a major role in getting acquainted with, and using, tools (S2.1,
S2.3, S2.5, S2.14, and S2.20).

Our results mostly confirm and support many of the conclusions and recommendations
of the 2016 ICASR meeting [91]. A barrier mentioned is the shortage of studies showing
the benefits of these tools. We indeed observed that the quality of tools results is
often not formally validated, and, when it is, this is mostly done by trying the tool or
through experience of colleagues (S2.20), demanding additional effort (S2.4, S2.5). Lack
of transparency in automation tools was another blocking factor mentioned, however in
S2.18 the option ‘the tool does not explain to me how it generates the results’ was chosen
only once (1/74) as a reason for not using a tool.

As facilitators, ICASR suggests integration with other tools along the complete workflow,
which was also identified as an important factor for tool usage (S2.6). Another facilitator
put forward is the joint development of validation of tools and quality criteria that can
be used to assess output of automation tools. This necessity is confirmed by our results,
which point towards a strong influence of the environment and community for improving
awareness, evaluation, and support for tools.

A review by Thomas et al. [106] mostly names the same barriers and facilitators as the
ICASR meeting. The two main conclusions from this work are that automation solutions
should “have a demonstrative relative advantage and are clearly compatiblewith the needs
of systematic reviewers”. These conclusions are supported by the results of this study, as
described above.

Our findings highlight the importance that organisations and best practices in a field
can have for the uptake of automation tools for systematic reviews. We argue that
organisations and communities should play a leading role in validating the quality of
results generated by the tools, raising awareness about them, and supporting their use.
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Chapter 5

When performing a systematic review, researchers screen the articles retrieved after
a broad search strategy one by one, which is time-consuming. Computerised support
of this screening process has been applied with varying success. This is partly due to
the dependency on large amounts of data to develop models that predict inclusion.
In this paper, we present an approach to choose which data to use in model

training and compare it with established approaches. We used a dataset of fifty
Cochrane diagnostic test accuracy reviews, and each was used as a target review.
From the remaining 49 reviews, we selected those that most closely resembled the
target review’s clinical topic using the cosine similaritymetric. Included and excluded
studies from these selected reviewswere then used to develop our predictionmodels.
The performance of models trained on the selected reviews were compared against
models trained on studies from all available reviews.
The prediction models performed best with a larger number of reviews in the

training set and on target reviews that had a research subject similar to other reviews
in the dataset. Our approach using cosine similarity may reduce computational costs
for model training and the duration of the screening process.

Abstract

Research Synthesis Methods. 2021;12(6):831-841
DOI: 10.1002/jrsm.1518
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5.1 Introduction

Even for an experienced review team a single systematic review can take between 6months
and several years [20, 107]. Approximately half of this time is spent on developing the
research protocol, performing the search, and assessing the results [108]. Therefore,
reducing the time spent on these tasks has a big impact on the efficiency of the review
process [20].

Within the medical field, Diagnostic Test Accuracy (DTA) studies often do not follow
a standard design and are generally poorly reported [109]. Therefore, search strategies
cannot depend on design descriptors or commonly reported terminology. Complex and
broad literature searches are needed, resulting in a high number of documents needing
screening to find relevant studies. This leads to a relatively large part of the review-time
being spent on screening and selection [110, 111].

Machine learning methods can aid the screening process through ranking or classi-
fication of relevant documents [18]. Generally, there are two types of machine learning;
supervised and unsupervised. Supervised methods use data that have been manually
labelled as being relevant or not. Unsupervised methods learn from trends in unlabelled
data. Both types have been applied before in systematic reviews with varying levels
of success (see for example [112–114]). In this study we focus on a supervised method
that needs a training set of labelled data. This method can only be applied under
the assumption that the labelled training data share ‘transferable knowledge’ with the
unlabelled data on which it is tested [115]. In the case of systematic reviews, transferable
knowledge may refer to, for example, the clinical topic or patient population being similar
in the relevant studies in the training set and in the relevant studies that the model aims
to select.

Typically, as much data as possible is used when building machine learning models,
because more examples used during training will usually yield a more robust model.
However, because systematic reviews focus on a specific research question, the question
arises whether using all available training data indeed results in optimal model robust-
ness. After all, when considering which data to use for a review about Alzheimer, another
review about Alzheimer might provide a better training set than a review about cancer.
Therefore, excluding the review about cancer from the training data might improve the
model’s robustness because the remaining training data is less diluted.

In this study, we use a set of fifty DTA reviews and simulated the screening process for
each of those reviews as a target review (i.e., the review for which a model is built). The
remaining 49 reviews were used to build the model using three different approaches to
select the training data. The first and novel approach used a similarity metric to select a
subset of reviews similar to the target review. The second approach used all 49 reviews as a
training set. The third approach randomly selected a training set. The models trained with
these three approaches were tested on each target review and the resulting performance
was compared. We hypothesise that creating a training set specifically for the target review
will yield a better prediction performance, because the transferable knowledge is not
diluted by non-relevant training data.

5.2 Data preparation

In this study we used the dataset provided by the 2017 CLEF eHealth Lab “Technologically
Assisted Reviews in Empirical Medicine Overview” [116]. This dataset consisted of fifty DTA
reviews published in the Cochrane Library and contained the following information about
each review: its unique identifier (in the form of CD0XXXXX), review title, the search query,
and the search results (PubMed IDs of all found documents). Also, for each search result
there were two labels indicating whether: 1.) it was included in the systematic review after
screening the title and abstract of the document, and 2.) it was included after reading the
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full text of the document. We used the latter because they represent the inclusions that
need to be found after the review process is completed.

Data gathering The dataset was cleaned by the organisers of the lab, and limited to
search results available through the PubMed search engine. The Entrez Programming
Utilities API [82] was used to retrieve data about the search results based on their PubMed
ID. In total we retrieved 266,966 documents using the efetch function of the Entrez API. We
used all documents regardless of whether they were inclusions or not. For each document,
if available, we stored the following data in a local database: review identifier, document
title, document abstract, publication date, publication type, DOI, journal, journal ISSN,
journal ISO, inclusion label, and PubMed ID.

Text preprocessing The title and abstract of all in- and excluded studies were used to
build the prediction models. We cleaned the text so that it contained only unaccented
alphabetical letters. We removed: HTML tags1, special characters (e.g., &, %), and numbers.
Stopwords (e.g., the, what, was) were removed using the english list from the NLTK Python
library [117]. Lastly, the documents were split into separate words and any short (< 2
characters) or long (> 34 characters) words were removed, as they were unlikely to be real
words, or words that distinguish the topic of a review. The Python code implementation is
available at [118].

The characteristics of our dataset after preprocessing are shown in Table 5.1. Reviews
had an average of 5,339 documents with on average 93 inclusions. The smallest review
had 64 documents and the largest 43,363. The review with the fewest inclusions contained
2 inclusions, while the largest number of inclusions was 619. This resulted in a mean
inclusion rate of 4% with a minimum of 0.015% (2 on a total of 12,705) and a maximum
of 20% (23 on a total of 114). For an overview of all the metadata collected per review see
[119].

Abstracts were missing for 45,033 documents (17%). Table 5.2 shows the characteristics
of these documents. Three major characteristics were found: 1.) the document was written
in a foreign language and not available in English, 2.) the document was published before
(approximately) 1975 and was not digitally available, and 3.) the document was not a
primary research publication (e.g., comment, case report, etc.). They were kept in the
dataset nevertheless, because 359 of them were inclusions.

Reviewmetadata enrichment DTA review questions are usually constructed according to
three elements, describing the people suspected of the disease (Patients, P); the diagnostic
tests that were evaluated in the review (Index test(s), I); and a definition of the disease
(Target condition, T) [120]. Of these elements, the target condition (T) can be mapped to a
standardized system and was therefore added to the review dataset. In preparation, one
of the authors (AA) read the abstracts of the 50 reviews and identified the International
Classification of Diseases, 10th revision (ICD-10) code for the target condition using the
ICD-10 browser [121]. Each review was assigned the best fitting code suggested by the auto-
complete function of the ICD-10 browser. If more than one code was available, both codes
were assigned. Together with another author (ML) the codes were reviewed. Codes were
adjusted if both authors agreed that the resulting code would better reflect the research
topic of the review at hand.

We categorised diseases into disease groups using the first letter of the ICD-10 code.
Twelve reviews could not be grouped based on disease codes, so we created a catch-
all group coined ‘other’. A total of eight groups were identified, with Alzheimer (G) and
dementia (F) combined as one group (see Table 5.3). Table 5.4 shows the metadata
collected for each review, including the disease group of the review question.

1PubMed data may contain the following tags: <i>, <u>, <b>, <sup>, and <sub>
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Table 5.1: Document characteristics after cleaning.
*: mean [minimum - maximum]

number of DTA reviews 50
total number of documents 266,966
included documents 4,661
# words per document* 922 [0 - 9,795]
# unique words per document* 70 [9 - 529]
per review

# documents* 5,339 [64 - 43,363]
# included documents* 93 [2 - 619]
% included documents* 4% [< 1% - 20%]

missing abstracts
# all documents 45,033 (17%)
# included documents 359 (7%)

Table 5.2: Reasons for missing abstract. Note that there was overlap between the
characteristics, as an document might both be written in a foreign language and be

published before 1975.

All Inclusions
Foreign language 16075 81
Before 1975 14721 24
Not journal article 23368 142

Table 5.3: Review groups according to disease (target condition).

Group # reviews ICD-10 Disease
1 2 A Tuberculosis
2 4 B Parasitic
3 8 C Cancer
4 12 G and F Dementia & Alzheimer
5 4 K Liver
6 5 M Musculoskeletal system
7 3 Q Down syndrome

8 (other) 12 - Various
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Table 5.4: Metadata collected for each review.

Identifier # docs. # incl. ICD-10 Secondary ICD-10 Disease group
CD007394 2545 95 B44.0 2
CD007427 1521 123 M75.4 6
CD007431 2074 24 M54.3 M54.5 6
CD008054 3217 274 N87.9 Other
CD008081 970 26 H35.81 E14.3 Other
CD008643 15083 11 S32.001A M54.5 6
CD008686 3966 7 M53.9 M54.5 6
CD008691 1316 73 I25.10 Z94 Other
CD008760 64 12 I85 Other
CD008782 10507 45 G30 F06.7 4
CD008803 5220 99 H44.51 Other
CD009020 1584 162 M75.101 M25.5 6
CD009135 791 77 B55.0 2
CD009185 1615 92 N10 Other
CD009323 3881 122 C25.9 C24.1 3
CD009372 2248 25 I61.9 Other
CD009519 5971 104 C34.90 C80 3
CD009551 1911 46 B44.0 2
CD009579 6455 138 B65 2
CD009591 7991 144 N80 Other
CD009593 14922 78 A15.3 U84.9 1
CD009647 2785 56 E86 Other
CD009786 2065 10 C56 C80 3
CD009925 6531 460 Q90.2 7
CD009944 1181 117 C16.9 C80 3
CD010023 981 52 S92.2 Other
CD010173 5495 23 C06.9 C80 3
CD010276 5495 54 C06.9 C80 3
CD010339 12807 114 K80 5
CD010386 625 2 F03 F06.7 4
CD010409 43363 76 C51 C77.4 3
CD010438 3250 39 D68.9 T14.9 Other
CD010542 348 20 K70 5
CD010632 1504 32 F03 F06.7 4
CD010633 1573 4 G31.8 F02.8 4
CD010653 8002 45 F20 4
CD010705 114 23 A15.3 U84.9 1
CD010771 322 48 F03 4
CD010772 316 47 F03 4
CD010775 241 11 G30 F03 4
CD010783 10905 30 G30 F03 4
CD010860 94 7 G30 F03 4
CD010896 169 6 G31.0 F03 4
CD011134 1953 215 C18 C80 3
CD011145 10872 202 F03 4
CD011548 12708 113 K80 5
CD011549 12705 2 K80 5
CD011975 8201 619 Q90.2 7
CD011984 8192 454 Q90.2 7
CD012019 10317 3 N80 Other
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5.3 Methods

5.3.1 Prediction models

A plethora of feature extraction and classification methods were available. We selected
representatives of approaches often used in related literature [18, 116].

Feature extraction The input that a predictionmodel is trained on are called the features.
To extract these features from the gathered data we chose the Term Frequency (TF) because
of its simplicity. Document frequency weighting was added to the term frequency matrix
(TF-IDF) to adjust for words that generally occur more frequently in texts.

Classifiers We chose a RandomForest classifier because it is relatively simple and ismuch
used in systematic review prediction applications [116]. The classifier was implemented
using the RandomForestClassifier method from the scikit-learn library [122].

Each classifier method has a set of parameters that need to be determined before
training on a dataset. The Random Forest classifier has parameters for the shape of the
trees that will be generated, for example, the maximum depth of one branch on the tree.
Parameters have a different optimum for each dataset. To find these optimal values we
used grid search, a technique where a range of values is tested with a small portion of the
training set. Performance of the resulting models is measured and the parameter settings
of the best model are retained to train the model on the complete training set.

First, only a subset of all possible value combinations is tried in a random search.
The ranges for the parameters are very wide to find the specific value range where
the prediction model approaches its optimal state. Results of the random search were
inspected and a smaller set of parameter values was chosen for the full grid search.
In the full search all parameter values are tested and only the model with the highest
performance is retained. Final prediction models were trained using a full grid search for
each systematic review. A detailed description of the selection process can be found in
Appendix A.

5.3.2 Model performance metric

Using the predict_proba function from the sklearn library, the predicted probability
of being an inclusion was retrieved for each document in the target review. The reading
order of documents was determined by sorting the predicted probability from highest to
lowest. Models were judged on their ability of ordering the documents such that inclusions
would be encountered earlier during the screening process. This reduced the number of
documents needed to be read during the screening process, thus saving work and time.

This concept of performance is captured in the metric Work Saved over Sampling (WSS),
introduced by Cohen et al. [113]. For a specified level of recall2, WSS measures the fraction
of documents that a review author does not need to read as a result of the ranking, as
compared to a random ordering. WSS is calculated as follows:

WSS =
TN + FN

n
− (1−R) (5.1)

where TN and FN are the number of true and false negatives respectively, n is the total
number of documents, and R is the level of recall. Recall is defined as:

R =
TP

TP + FN
(5.2)

2i.e., the fraction of correctly identified inclusions, in statistics the term ‘sensitivity’ is used.

75



Chapter 5

where TP is the number of true positives.
We adopted the commonly used WSS at a recall level of 95% (Work Saved over Sampling

@ 95% (WSS@95)), which is defined as follows by [113, 116]:

WSS@95 =
TN + FN

n
− 0.05 (5.3)

WSS@95 ranges between 0.95 and -0.05. Respectively, indicating a perfect classification or
a poor classification where all documents have been labelled as inclusion and TN+FN =
0.

5.3.3 Similarity metric

The similarity between the potential training data and the target review was measured
using titles and abstracts. In our study the documents were mathematically represented
as a vector from the Term Frequency Inverse Document Frequency (TF-IDF) matrix, so we
adopted the cosine similarity metric [123], which is designed for vectorial representations
of documents.

Cosine similarity measures the cosine of the angle between two vectors of an inner
product space [124], being defined as follows by Huang et al. [123]:

SIM(d⃗a, d⃗b) =
d⃗a · d⃗b∥∥∥d⃗a∥∥∥∥∥∥d⃗b∥∥∥ (5.4)

where d⃗ is a vector representation of a text document (i.e., a single row of the TF-IDFmatrix).
The inner product space is calculated as:

d⃗a · d⃗b =
n∑
1

aibi = a1b1 + a2b2 + · · ·+ anbn (5.5)

where n is the length of the document vectors. Similarity ranges from 0 (not similar, vectors
are at an angle of 90◦) to 1 (perfectly similar, vectors are at an angle of 0◦). Because the
word counts of the TF-IDF matrix cannot be negative, similarity cannot be negative either.
Note that Equation (5.4) may look similar to bivariate correlations such as the Pearson
correlation.

We were interested in the similarity between reviews, and not between individual
documents in these reviews. We therefore calculated the similarity based on the mean
feature vector for all documents in each review r⃗i:

r⃗i =

∑ni
j=1 d⃗ij

ni
(5.6)

where d⃗ij is the feature vector for document j from review i, and ni is the number of
documents in review i. The similarity between all pairs of reviews is then defined as:

Sik = SIM(r⃗i, r⃗k)

i ∈ {1 . . . 50}, k

{
k ∈ {1 . . . 50}
k ̸= i

(5.7)

where r⃗i and r⃗k are the mean review vectors for respectively reviews i and k. Cosine
similarity was calculated between all pairs of reviews (50× 49 = 2, 450 in total).
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5.3.4 Workflow

We refer to the approaches used in this study as selected data (SIMILAR), all data (ALL),
and random data (RANDOM). The SIMILAR approach used a similarity metric to select
documents for the training set. Training sets were constructed by using the documents
from the n ∈ {1, 2, 5, 10} reviews most similar to the target review3. The ALL approach
used all of the remaining 49 reviews as the training set. And lastly, the RANDOM approach
selected n ∈ {1, 2, 5, 10} random reviews.

The SIMILAR approach was compared with the ALL and RANDOM approaches. ALL was
chosen because it is the standard in machine learning, following the rule of thumb that
more data equals better models. RANDOM was added as a control.

As described above, prediction models were trained using a Random Forest classifier
and the features from the TF-IDF matrix. The models were used to rank the test set (i.e.,
the documents from the target review) and the WSS@95 was calculated. We repeated this
process five times to account for model training variability. For all three approaches each
of the fifty DTA reviews were used as test set once. This would train 1,000 models each for
the SIMILAR and RANDOM approaches (i.e., 50 reviews× 4 training set sizes× 5 repeats =
1, 000), and 250 models for the ALL approach (i.e., 50 reviews × 5 repeats = 250). The
workflow is shown in Figure 5.1.

Analysis Performance of the SIMILAR, ALL, and RANDOM approaches were analysed using
boxplots. Statistical significance of the results was analysed using a Wilcoxon rank sum
test. The Wilcoxon test was executed for each pair of training set sizes. Resulting p-values
were adjusted for multiple testing using the Bonferroni method. The significance tests
were implemented using the stats.ranksums function from the SciPy package [125] and
the stats.multitest.multipletests function from the statsmodels package [126]
respectively. Additionally, the same analysis was applied to the performance results after
stratification into disease groups: 1-7 and ‘other’.

Lastly, we analysed the correlation between model performance and cosine similarity.
To determine the correlation we first retrieved the mean WSS@95 and mean cosine
similarity per review for each training set size used in the SIMILAR approach (n ∈
{1, 2, 5, 10}). Then, the corr function of the Pandas package was used to calculate the
correlation [127].

3A maximum of 10 similar reviews was chosen after analysing preliminary data on cosine similarity scores. We
observed that reviews are mostly similar to just a few other reviews. Similarity rapidly drops and at the 10th review
similarity is mostly equal. Data are shown in Appendix B.
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50x target review

Training set size ∈ {1, 2, 5, 10}

Repeat 5x

50 DTA reviews Feature 
extraction

Prediction 
model

1000 models

(a)

50x target review
Repeat 5x

50 DTA reviews Feature 
extraction

Prediction 
model

250 models

(b)

Figure 5.1: Overview of workflow for the approaches using different training data: (a)
selected data (SIMILAR) and random data (RANDOM), and (b) all data (ALL). Feature

extraction was implemented using TF-IDF. The prediction model was implemented using
the Random Forest classifier.
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5.4 Results

Approach comparison The overall prediction performance results obtained in the SIMILAR,
ALL and RANDOM approaches are shown in Figure 5.2. The SIMILAR and ALL results indicate
that on average the best performance is obtained when all training data is used. The
ALL significantly outperforms SIMILAR for all training set sizes. Furthermore, the median
performance in the SIMILAR approach is higher for larger training sets (Table 5.5).

With smaller training sets (n ∈ {1, 2, 5, 10}) the models from the SIMILAR approach
outperform those from the RANDOM approach. However, the difference in performance
for the training sets with size 5 and 10 is not statistically significant, see Table 5.5.

Influence of the ‘other’ disease group on performance Figure 5.3 presents the overall
performance results obtained for all training set sizes (n ∈ {1, 2, 5, 10, 49}) stratified by
disease group. The stratified results show that in general the prediction performance is
higher for reviews that belong to a disease group, as opposed to those that do not. The
difference in performance is significant over all training set sizes as seen in Table 5.6.

Correlation between cosine similarity and performance Results for the correlation ana-
lysis are shown in Table 5.7. The values in the diagonal show that a moderate correlation
(0.32 - 0.47) exists between the performance of a review and its similarity to the training
set.
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Table 5.5: P-values for SIMILAR versus ALL performance and SIMILAR versus RANDOM
performance. SIMILAR is stratified by the training set size. M is the median WSS@95

performance over all models. *: p-value is significant.

SIMILAR ALL RANDOM
49 (M = 0.49) 1 (M = 0.25) 2 (M = 0.25) 5 (M = 0.33) 10 (M = 0.39)

1 (M = 0.36) < 0.001* 0.03*
2 (M = 0.40) < 0.001* < 0.01*
5 (M = 0.39) < 0.001* 0.66
10 (M = 0.43) 0.05* 1.00

Table 5.6: P-values for other versus disease groups 1-7 performance, both are stratified by
the training set size. All p-values are significant. M is the median WSS@95 performance

over all models.

Groups 1-7 Other
1 (M = 0.26) 2 (M = 0.28) 5 (M = 0.29) 10 (M = 0.33) 49 (M = 0.42)

1 (M = 0.40) 0.009
2 (M = 0.44) < 0.001
5 (M = 0.43) 0.005
10 (M = 0.47) 0.002
49 (M = 0.51) 0.038

Table 5.7: Pearson correlation between the performance and cosine similarity for each
training set size in the SIMILAR approach.

Performance Similarity
1 2 5 10

1 0.40
2 0.47
5 0.36
10 0.32
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Figure 5.2: Boxplot of model performance stratified by the training set size. Performance
is shown separately for the RANDOM, SIMILAR, and ALL approaches.

Figure 5.3: Boxplot of SIMILAR performance stratified by the training set size. The results
are shown for groups 1-7 and other.
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5.5 Discussion

In this study we investigated whether computerised support of the systematic review
screening process could be improved. Our hypothesis was that a smaller, but more focused
training set would improve performance. We assessed the use of cosine similarity for
selecting data for the training set and compared the classification performance of this
approach to approaches using all available data and randomly selected data.

Approach comparison Analysis of the SIMILAR and ALL approaches shows that, when
considering all fifty reviews in our dataset, the best performance is obtained when all
training data are used. This rejects our hypothesis that a more targeted training set
is beneficial for prediction. However, when reviews in the ‘other’ group are considered
separately from those in disease groups 1-7, we observe that they perform significantly
worse at any training set size or approach. This indicates that a training set with topically
similar reviews is crucial for prediction model performance.

When review authors start a new systematic review, they may not have a large training
set with many previously undertaken systematic reviews at hand. Our findings indicate
that, in these situations, it may be worthwhile to gather a training set based on a few
systematic reviews on a similar topic. Reviewers who develop many systematic reviews,
for example within a guideline committee or a review-developing enterprise, may want
to invest into creating a repository of past reviews to use as a training set. The extra
investment to select related reviews for a training set can thus be prevented.

The size of the training set is a major factor in the computational cost of a machine
learning method (see Appendix D for a comparison between two training set sizes). Build-
ing a prediction model is much faster for smaller training sets. However, a comparison
of the SIMILAR and RANDOM approaches shows that careful selection is important for
classification performance. Note that the median performance of the SIMILAR approach
is higher than the RANDOM performance, especially when smaller training sets were
used. Furthermore, a moderate correlation was found between performance and cosine
similarity. A greater correlation between performance and similarity means that similarity
is selecting useful samples from the dataset for training. From this we conclude that,
given a target review, cosine similarity can indeed identify transferable knowledge in the
available data. For computerised support developers the proposed SIMILAR approach may
be useful to reduce the training set size in settings where plenty of data is available and
training on all data is infeasible.

The models always performed well for some reviews, regardless of the size of the
training set, while for other reviews the models always performed poorly. Note that this is
the reason that the performance boxplots (shown in Figure 5.3) cover nearly the whole
possible range for the WSS@95 metric. Although other researchers hypothesized that
this may be due to the number of included studies in a review, our additional analysis
(Appendix C) did not reveal a clear explanation for this effect.

Reproducibility Reproducibility of methods is often problematic in systematic review
automation literature because the proposed methods are difficult to reproduce and com-
pare [18, 128]. We attempted to mitigate this problem by using relatively simple methods
and a publicly available dataset. The dataset was provided in the 2017 CLEF eHealth
Lab [116] and is curated such that it was available through PubMed using automated
methods. We also provide the complete repository of code that was used to train the
models and analyse the results in [118].

Limitations Because the dataset has a relatively small number of inclusions, a missing
abstract on an inclusion has a relatively large influence on the model’s performance (data
shown in Appendix C). Most are not available at all and cannot be added manually. On
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the other hand, using the dataset ‘as is’ enabled us to consider all fifty reviews in the CLEF
dataset.

Another limitation of our study is that we only had titles and abstracts available for
the similarity metric. We assume that most of the relevant information of each document
is represented in their title and abstract, but it is possible that complex concepts were
only expressed in the full text. Unfortunately, full-text data for all documents in the
CLEF dataset is not available through PubMed in an automated way. The techniques that
would enable collection of full-text documents and analysis of the influence of full-text
documents on prediction performance are issues for further research.

The disease group is not the only potentially transferable knowledge among DTA
reviews, as it refers only to the ‘Target condition’ aspect. The ‘Patients’ and ‘Index test’
aspects remain unexplored in this study. Further analysis of these aspects might therefore
identify a different set of reviews in the ‘other’ group. Nevertheless, because cosine
similarity takes all words in the documents into account, we hypothesise that it also
captures the P and I aspects. Further research is needed to test this hypothesis and to
adapt or extend the similarity metric to further increase its ability to detect transferable
knowledge.

5.5.1 Other approaches

Although our approach for selecting training samples is novel, training sample selection
itself is not a new idea in machine learning. There are numerous examples that attempt
to enrich, balance, or create datasets in other domains. The techniques proposed in these
papers often stem from the same type of problems: there is little to no data to train or
the available data is noisy or unbalanced. Below we compare our approach with some of
these other training sample selection approaches.

Cohen et al. [129] conclude that a topically similar training set almost always outper-
forms a set that is not. However, they also note that finding topically similar data for
training is impractical. Our work, however, offers a practical approach to identify relevant
training data through cosine similarity.

An example of enriching a training set for natural languagemodels is shown by Moore et
al. [130]. They showed that curating the data and selecting only those samples that improve
the classifier increases the performance of the final language model. This approach is
similar to ours, as we used cosine similarity to select only those reviews that are similar to
the target review. In both approaches less training data is used to improve the classifier
performance.

Imbalanced datasets, where the negative examples in the dataset massively outweigh
the positive examples or vice versa, are often challenging in machine learning. Unlike, for
example, the Random Forest classifier used in this study, there are many classifiers that
cannot handle unbalanced datasets and yield a bad prediction. Nowadays there are many
techniques that address unbalanced datasets. An example is shown in Kubat et al. [131].
They present a simple technique that only removes negative examples while preserving all
the positive examples in the dataset. This preservation is important for systematic reviews
because generally they have very few positive documents (i.e., inclusions). In this paper
we did not apply such a sample selection technique, however for further research it might
be interesting to combine the proposed training set selection based on cosine similarity
with a technique that tackles dataset imbalance.

Lastly, instead of selection of samples we could also choose to make a sub-selection of
the features that are extracted. The data used as input to the machine learning method is
represented as a matrix with one sample per row and one column per feature. In the case
of systematic reviews we have documents with words. The feature matrix therefore has
one row per document and one word per column, and each cell contains the occurrence of
a word in a document. The sample selection techniques discussed above will remove rows
from this matrix whereas feature selection removes columns. As discussed in Adeva et
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al. [132] feature selection reduces the training set size and condenses the important
features which has a beneficial effect on the prediction model. Even though feature
selectionmight have increased the overall performance of the predictionmodels, we chose
not to apply it, which made it possible to focus on training set selection.

5.6 Conclusion

We have shown that cosine similarity can be used to select a training set that is relatively
similar to the articles one aims to screen for. We have also shown that using all available
data outperforms a dataset containing data selected using cosine similarity. Nevertheless,
in cases where reviews on a similar topic are available, good prediction performance can
be achieved with significantly smaller training sets.

For systematic reviewers it might be worthwhile to gather a few previously undertaken
systematic reviews on a similar topic when applying computerised support to the screening
of a new systematic review. However, when a large set of systematic reviews is available
the extra investment to make a selection can be avoided.

The approach proposed in this work is meant to improve future tools that provide
computerised support for systematic reviewers. Further research may investigate the
benefits of our approach in a practical setting.
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Appendices
A Parameter selection

Each classifier method has parameters that need to be set before training on a dataset.
To build the model with the highest performance the optimal value of each parameter
needs to be found. For the Random Forest classifier we tested values for: bootstrap,
max_depth, max_features, min_samples_leaf, min_samples_split, and
n_estimators [133]. Because the number of possible parameter value combinations
quickly increases a random search is done first. In the random search a random set of
parameter values is tested to get a general sense of the optimal parameter settings.

For the random search we chose parameter values as follows. Parameters with numeric
values were mostly chosen with equal steps between two extremes. For example, the
max_depth test range was [10, 20, 30, . . . , 90, 100, 110]. For parameters without clear
boundaries online resources such as [134] were used to determine a suitable range.
Parameters for which a choice had to be made (boolean or from a list of options) included
most, if not all, options. For example, the bootstrap range contained the complete set
of options: True, False. If options were dropped it was because they were similar to
another option in the set. For example, the max_features may contain: auto, sqrt,
and log2. We chose to forgo the auto option because it is equal to sqrt. Because this
resulted in a search grid with less options the search time was reduced.

The random search was performed on ten of the fifty systematic reviews in the dataset.
The combination of parameters that yielded the best result was kept for each review tested.
Using these results the values that would be tested in the full grid search was determined
by one of the researchers (AA):

1. if one value gave the best result for all tested reviews it was chosen as a definitive
value;

2. if a value had a small range of values the range was used in the full search;
3. if a value had a large range, the extremes of the range were kept but most of the

intermediate values were removed.

These choices were made to size the full grid in such a way that training the models on the
complete dataset could be run in an acceptable amount of time.

Final prediction models were trained using a full grid search for each systematic review.
The difference with random grid searches is that the complete set of parameter value
combinations is tested. The model with the best performance is returned from the full
grid search. The parameters used for both the random and full searches are described in
the code found in [118].

B Cosine similarity analysis

We calculated the cosine similarity between each review and the remaining 49 reviews. The
similarity scores were then sorted from highest to lowest and plotted in Figure 5.4. Each
line in Figure 5.4 depicts the cosine similarity score of a target review to the remaining 49
reviews. Overall, after ordering, the similarity starts high and drops down rapidly in the
first couple of reviews. Reviews tend to be most similar to less than ten other reviews. For
this reason, a maximum of ten reviews was chosen for construction of the training sets for
the SIMILAR approach as described in Section 5.3.4.
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Figure 5.4: Cosine similarities between all pairs of reviews in our dataset (2,450 pairs).
Each line in the figure represents a review and its similarity against the other 49 reviews,

ranked from most to less similar.
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Table 5.8: Pearson correlations between review metadata and WSS@95 performance.

Metadata type Performance
% empty abstracts 0.08
% empty abstracts in inclusions -0.28
% inclusions -0.24
# words in abstracts 0.22
# words in titles 0.05
# of documents 0.05
is update -0.04
publication year 0.11

C Performance trends

To get insight in the overall trends in the performance results we plotted the WSS@95 of
the SIMILAR and ALL approaches. The results for both approaches were split into the fifty
reviews and sorted from lowest to highest median WSS@95, the plot is shown in Figure 5.5.

On visual inspection of the plot a couple of observationsweremade. There is a relatively
large spread in the performance of the SIMILAR approach. Often the smaller training sets
(n ∈ {1, 2}) have a lower performance compared to the larger sets (n ∈ {5, 10}). However,
there is no clear trend in performance gain or loss.

Some of the reviews perform better on a smaller training set (e.g., CD010772), others
have approximately the same performance (e.g., CD011549), and the remaining reviews
clearly perform better on more data (e.g., CD009323). A clear trend is found in the overall
performance of reviews when put next to each other. For some reviews, performance is
always high (e.g., CD0111549), or low (e.g., CD009020), irrespectively of training set size. In
their work Cohen et al. [129] noted that one of their reviews had a divergent prediction
performance (i.e., lower than all others), which they figured was likely due to the low
number of inclusions.

To test this observation we investigated the characteristics of the reviews. For each
review we collected the following:

• percentage of empty abstracts in the review as a whole;
• percentage of empty abstracts only in the included documents;
• percentage of included documents;
• average number of words in the abstracts and titles;
• number of documents;
• whether the review was an update;
• and, the review’s publication year.

A Pearson correlation was calculated between each of the metadata columns and the
performance of the ALL approach.

The correlation results are shown in Table 5.8. No strong correlations were found.
The percentage of empty abstracts in the included documents was moderately negatively
correlated with performance (-0.28). As was the percentage of included documents (-
0.24). The number of words in the abstracts was moderately positively correlated with
performance (0.22).

Base on these results we hypothesise that the differences in performance are likely due
to a combination of review metadata. Or perhaps there are some unobserved influences
such as the availability of reviews in the dataset written by the same authors. These
reviewswill often have similar research topics and search strategies and are thereforemore
valuable in the training set. However, an in-depth analysis of these effects is outside of
the scope of this paper and remains for further research.
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D Computational effort

To illustrate the difference in computational effort we tracked the training time for two
training set sizes: 1 and 49. The results are plotted in Figure 5.6. The training set with
one review is significantly (p < 0.001) faster. The results show that computational effort is
much lower for smaller training sets.
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Figure 5.6: Training time, measured in seconds, for training set sizes 1 and 49.
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Chapter 6

Finding relevant papers for systematic reviews is a time-consuming process.
Computerised support methods may aid researchers and has been applied with
varying success. These methods rely on large amounts of data to train a model and
predict paper inclusion. In a previous study we introduced a approach that selects
training data on relevancy to the review at hand and ultimately improve prediction
performance. In this paper we test our approach when applied with an active learning
model.
We used a dataset of 38 Cochrane diagnostic test accuracy reviews. Every review

was used as a target and the remaining 37 reviews were used to train the model.
Multiple models were created with a varying number of selected reviews in the
training set and performance was compared.
The performance of a model trained using five reviews was significantly higher

compared to a model using all 37 reviews.
We found that, give our dataset, five is the optimal number of reviews to use

in model training. Our proposed approach is agnostic to the subject of the data,
therefore it is likely that the optimal number changes depending on the overall
similarity of the dataset used.
Our approach improves the prediction performance of active learning models

by selecting smaller datasets. These results may benefit systematic reviewers by
reducing the time needed to determine the relevancy of papers.

Abstract
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6.1 Introduction

6.1.1 Background and significance

Systematic reviews are the cornerstone of today’s evidence-based decision making in
medicine [17, 87]. By synthesising all relevant evidence regarding a certain topic, systematic
reviews provide a good reflection of the current scientific knowledge. However, they
require a considerable amount of effort. A single review can take from 6 months to
several years, depending on expertise of the research team and review size and complexity
[20, 107]. Approximately half of this time is spent on developing the research protocol,
performing the search, and assessing (i.e., screening) the results [108]. Therefore, reducing
the time spent on these tasks will have a substantial impact on the review process [20].

Machine learning methods can aid the screening process of systematic reviews through
ranking or classification of relevant articles. Many studies have been performed invest-
igating both supervised and unsupervised methods with varying levels of success [18].
In this study we focus on a supervised learning method that needs a labelled dataset.
Our approach uses the assumption that data from previous reviews shares transferable
knowledge with the current systematic review [115] and thus can be used as training data
for the supervised learning method. However, because systematic reviews focus on a
specific research question, reusing data likely has limitations. Cohen et al. [129] state that
this leaves only one opportunity for training: when a systematic review is updated after
a few years, the data collected for the previous review can be used as a training set for
the updated review. However, another solution is to use active learning, which has been
shown to work with systematic reviews in various cases, for example [135–138].

Active learning is an interactive and iterative process where the reviewer provides
information to the machine learning method while reviewing documents. The active
learning loop can be started without any external training data. This would essentially
yield randomly queried documents at first. However, an initial pool of documents may
be provided to train the prediction model for the first time. When the initial pool has
data with plenty transferable knowledge the relevant documents are found earlier, saving
work for the reviewer. Note, however, that a large initial pool may dilute the transferable
knowledge. This means that adding a reviewer-labelled document during the active
learning loop has a small influence on the model as a whole because, by default, each
document is equally important during model training.

6.1.2 Objective

In this study we focus on the question whether it is sensible to use a small number of
initial documents to train the supervised learning method while keeping transferable
knowledge intact. In a previous study we introduced an approach to select a subset of
similar documents into the training set [139]. We found that the performance of models
trained on all data slightly outperformed those trained on a selected subset of data.
However, because of the characteristics of active learning, we hypothesise that selecting
documents and creating a smaller initial pool outperforms a larger initial pool.

In this study we test this hypothesis by performing active learning on a curated set of
Diagnostic Test Accuracy (DTA) systematic reviews. To this end, we create predictionmodels
using our approach, of a similarity selected initial pool, andmeasure the performance. This
approach is then compared with two others. The first approach uses all available data in
the initial pool and the second uses no data in the initial pool. To our knowledge, our work
is the first to use a similarity metric to select a subset of all available data as an initial pool
for active learning with the aim of improving prediction performance.
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6.2 Materials and methods

6.2.1 Data preparation

The data used in our experiments were taken from a previous study [139]. Below, we
summarise the data gathering and enrichment steps which were taken in the previous
study (for the full description refer to [139]).

Data gathering and cleaning In the experiments we used a dataset that was prepared
for the 2017 CLEF eHealth Lab “Technologically Assisted Reviews in Empirical Medicine
Overview” [116]. The dataset provided by the CLEF eHealth Lab consisted of PubMed IDs
for all the documents that were found during the search phase of 50 systematic reviews.
Each PubMed ID had a label indicating whether the PubMed document was included in the
systematic review after screening the title, abstract, and full-text by the reviewers. This
label is the outcome variable that is to be predicted by the prediction models.

The dataset contained a total of 266,966 documents. Reviews had an average of 5,339
documents of which, on average, 93 were included. The smallest review had 64 documents
and the largest 43,363. The review with the fewest inclusions contained 2 inclusions, while
the largest number of inclusions was 619. Overall this resulted in an inclusion rate of 4%
with a minimum of 0.015% (2 on a total of 12,705) and a maximum of 20% (23 on a total of
114). For an overview of all the metadata collected per review see [119].

Titles and abstracts were retrieved for all documents. These were then preprocessed
to remove any unwanted characters (e.g., numbers, accented letters) and stopwords (e.g.,
the, what, was). The words in the cleaned documents were counted and stored in a Term
Frequency (TF) matrix. The Python code implementation is available at [118].

In our previous study [139] we noted that twelve reviews had low performance, inde-
pendently from the approach used to build the prediction model. This is probably because
these reviews all had a unique research topic. We therefore considered that these reviews
would not be good candidates for similarity selection (see Appendix A). Therefore, in the
current study, we excluded these twelve reviews from our experiments, leaving 38 reviews
in the dataset.

6.2.2 Active learning

In this study we used an active learning method. The active learning process consisted of
various components:

• Labelled pool: documents that have been assigned a label by the reviewer. Usually
this is done after reading the title and abstract of the document. The label denotes
whether the document was included or excluded from the review.

• Unlabelled pool: documents that have yet to be assigned a label.
• Query: a sample of documents pulled from the unlabelled pool.
• Oracle: the reviewer who labels the queried documents.
• Active learning model: the prediction model trained with labelled data to predict the
certainty of inclusion for unlabelled data.

• Initial pool: an optional starting set of labelled documents.

These components together formed the active learning loop (see Figure 6.1). Documents
were queried from the unlabelled pool and presented to the oracle. The oracle then
assigned an include or exclude label to the document, and the document was then added
to the labelled pool. A model was trained using the labelled pool. The model predicted
the relevancy of the remaining unlabelled documents and assigned each a relevancy score
(between 0 and 1). The documents were then prioritised by the score and the process was
repeated. This continued until all documents were labelled by the oracle.
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Figure 6.1: Representation of the active learning cycle. The oracle assigns labels to one or
more documents from the pool of unlabelled documents. The labelled documents are

then used to train or update the active learning model. The model prioritises the
unlabelled pool and the cycle starts anew.

6.2.3 Prediction models

For each of the 38 reviews in the dataset we trained a prediction model using active
learning. For every model the unlabelled pool was filled with the documents from a single
review (i.e., the test set). The labels of the unlabelled pool (i.e., ground truth) were hidden
from themodel. A training set was compiled from the documents of the remaining reviews,
with their corresponding labels, and put into the initial pool. Using the initial pool, a
prediction model was trained. The model then predicted the relevancy for each document
in the unlabelled pool. We prioritised the documents such that the document with the
highest relevancy score was at the top of the list to be presented to the oracle [140].

In the real world, a reviewer would then read the title and abstract for one (or a couple)
of documents from the top of the list and assign the inclusion label. For our experiments
we used a simulated reviewer as oracle. The oracle took the ground truth labels that
were hidden from the model and assigned them to the documents that were at the top
of the relevancy list. The labelled documents were then added to the labelled pool and
another cycle of the active learning process was started. The process was executed until
all included documents from the test set were found by the oracle. The Python code
implementation of the process described above is available at [118].

Machine learning methods We chose the Support Vector Machine (SVM) classifier to
construct the prediction models. SVMs were reported to work well with high-dimensional
text data, as we had in our dataset [136]. Also, this classifier lended itself well to active
learning because the prediction model could be updated with one sample instead of
having to train a completely new model. Lastly, this method was chosen because it was
often used in related literature, for example [116, 136], facilitating reuse and comparison.
We implemented SVM using the SGDClassifier method from the sklearn library [122].

The TF matrix representing the documents in our dataset was used as input to the
SVM classifier. We chose to randomly undersample the dataset because it had heavily
unbalanced classes (i.e., very few ‘inclusions’ and many ‘exclusions’). Undersampling
was implemented using the RandomUnderSampler method from the sklearn library.
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This method undersamples only the majority class, in our case the exclusions, un-
til it resembles the minority class in size. Using a cross-validating grid search, we
optimised the tolerance and alpha parameters of the SVM classifier. The values
{10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001} were used for both parameters. The best
performing classifier was selected from the search and used to execute the active learning
loop.

6.2.4 Cosine similarity metric

In our previous paper [139] we introduced an approach using cosine similarity to select
data into the training set. Cosine similarity measures the cosine of the angle between two
vectors of an inner product space [124], defined by Huang et al. [123] as follows:

SIM(r⃗a, r⃗b) =
r⃗a · r⃗b

∥r⃗a∥∥r⃗b∥
(6.1)

where r⃗ is a vector representation of a review. Similarity ranges from 0 (not similar, vectors
are at an angle of 90◦) to 1 (perfectly similar, vectors are at an angle of 0◦). Because the
word counts of the TF matrix cannot be negative, similarity cannot be negative either.

We were interested in the similarity between complete reviews, and not between
individual documents in these reviews. We therefore calculated the similarity based on
the mean word count vector for all documents in each review r⃗i:

r⃗i =

∑n
j=1 d⃗ij

ni
(6.2)

where d⃗ij is the word count vector for document j from review i, and ni is the number of
documents in review i. The similarity between all pairs of reviews is then defined as:

Sik = SIM(r⃗i, r⃗k)

i ∈ {1 . . . 38}, k

{
k ∈ {1 . . . 38}
k ̸= i

(6.3)

where r⃗i and r⃗k are the mean vectors for respectively reviews i and k. Similarity was
calculated between all pairs of reviews (38× 37 = 1, 406 in total).

6.2.5 Performance metrics

Models were judged on their ability of ordering the documents in such a way that the
reviewer (or the oracle in our simulations) encounters the inclusions as early as possible
in the screening process. To assess the models performance, we used yield and burden,
two metrics for evaluation of active learning models introduced by Wallace et al. [136].
Yield is the fraction of relevant documents that the model correctly identified, defined as:

Y ield =
TPL + TPU

TPL + TPU + FNU
(6.4)

where TP and FN are, respectively, the number of true positives and false negatives, and
the superscript L and U denote manually labelled documents and unlabelled documents.
Note that yield is the adaptation of recall for an active learning setting. Burden measures
the number of documents that had to be screened manually, being defined as:

Burden =
NL + TPU + FPU

N
(6.5)
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where FP is the number of false positives and N the total number of documents.
During the active learning process the yield and burden were measured for each loop.

A yield level of 95% is commonly chosen to compare models [113, 116]. Therefore, when
the model first reached a yield of 95%, the burden was retained for analysis. To get a more
intuitive outcome, we took one minus burden (referred to as: Inverse Burden (IB) or IB
at 95% [138]). It measures the fraction of documents that did not have to be read by the
reviewer during the screening:

1−Burden =
TNU + FNU

N
(6.6)

where TN is the number of true negatives. The IB value ranges from 0 to 1. A higher value
is better because it means less burden and therefore less work for the reviewer.

6.2.6 Experiments

We tested prediction model performance using three approaches to create the initial pool:

• Selecting a subset of the dataset using the similarity metric to create the initial pool
(coined similar-pool);

• Using all the available data in the initial pool (coined all-in-pool);
• and using no initial pool (coined no-pool).
The process for each approach is shown in Figure 6.2. For the 38 reviews in our dataset

predictionmodels were trained using a SVM and the features from the TFmatrix. The active
learning loop was repeated until all documents were labelled. Because we applied random
undersampling, we repeated this process 50 times, each time with a new random draw to
account for variability in the randomly sampled exclusions.

To create the initial pool for the similar-pool approach we used the similarity metric
to create sets containing the top s ∈ {1, 2, 3, 4, 5, 7, 9, 10, 15, 30} most similar reviews. For
the all-in-pool approach all 37 reviews were used as the initial pool. Lastly, for the
no-pool approach we simulated the oracle having to find the first inclusion from which
we could start training a model. The oracle labelled documents using the original order,
i.e., as returned by the PubMed search, until it encountered a relevant document. The
model was then trained for the first time and the active learning loop was started.

Similar pool
Training size ∈ {1, 2, 3, 4, 5, 7, 

9, 10, 15, 30}

Repeat 50x

50 DTA 
reviews TF SVM

10 x 1,900 = 19,000 models

No pool
Training size 0

All in pool
Leave-one-out

1,900 models1,900 models

12 excluded

38 included

Figure 6.2: Overview of the process for the experiments using different approaches: no
data in initial pool (no-pool); using all remaining data in initial pool (all-in-pool);

selecting similar reviews into the initial pool (similar-pool).
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Analysis Yield was monitored for each loop in the active learning process. For each
model, when the yield reached 95%, the IB was collected. A boxplot from the IB was
created for each initial pool size (i.e., 0, 1, 2, 3, 4, 5, 7, 9, 10, 15, 30, and 37). To underscore
the difference in performance a polynomial regression line was fitted to the median
performance values.

6.3 Results

The overall IB at 95% yield performance of all experiments is shown in Figure 6.3. Each
boxplot shows the results of the 1,900 models trained and tested for the no-pool,
similar-pool, and all-in-pool experiments. The polynomial line was fitted with a
residual sum of squares of 0.0059.

A comparison of classifier performance against the all-in-pool baseline is shown
in Table 6.1. The highest difference in performance is found at initial pool size five. The
median IB for pool size five is 0.15 higher than the all-in-pool performance, a 60%
increase. The results indicate that on average the best performance was obtained with
smaller initial pool sizes such as those from the similar-pool experiments. Especially
the pool sizes of four and five have a higher performance.

6.4 Discussion

In this study we investigated whether it is possible to improve classification performance
of a supervised active learning method by using less data in the training set. Using a
performance metric specific for active learning methods, we compared results obtained
with training sets that were composed using different strategies: a similarity metric
(similar-pool); all data (all-in-pool); and no training data (no-pool).

Prediction performance The similar-pool approach performed better compared to
the all-in-pool and no-pool approaches. The box plots in Figure 6.3 show that the

0 1 2 3 4 5 7 9 10 15 30 37
Initial pool size

0.0

0.2

0.4

0.6

0.8
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5%
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Figure 6.3: Boxplots of the IB at 95% yield for each initial pool size. Each boxplot consists
of 1,900 measurements (i.e., 38× 50 models). The polynomial line was fitted to the

median values of the boxplots with a residual sum of squares of 0.0059.
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Table 6.1: Inverse burden results for each of the initial pool sizes.

Inverse burden at 95% Yield

Initial pool size Minimum Median Maximum Difference median
versus all-in-pool

0 < 0.01 0.24 0.81 -0.01
1 < 0.01 0.26 0.89 0.01
2 < 0.01 0.32 0.89 0.07
3 < 0.01 0.35 0.87 0.10
4 < 0.01 0.38 0.90 0.13
5 < 0.01 0.40 0.89 0.15
7 < 0.01 0.34 0.87 0.09
9 < 0.01 0.34 0.89 0.09
10 < 0.01 0.34 0.87 0.09
15 < 0.01 0.28 0.89 0.03
30 < 0.01 0.22 0.86 -0.03

37 (all-in-pool) < 0.01 0.25 0.93

best overall performance is reached using five reviews in the initial training set. Therefore,
training an active learning method with just five selected reviews out of all 37 available
reviews saves the most time and effort for the systematic reviewer.

For the largest (30 and 37) and the smallest (0 and 1) training set sizes, performance is
nearly equal. In the situation where a choice between a set size of 30 and 37 has to be
made, the smaller size should be preferred from a computational point of view, since the
size of the training set decreases and therefore processing time as well.

It is surprising that the median performance of active learning without any initial
training pool is almost equal to using the single most similar review that is available.
However, the upper quadrant of the box plot (see initial pool size 0 and 1 in Figure 6.3)
reaches a marginally higher performance. These results show that, in a few select cases,
including only one review is better than using no reviews in the initial pool. We hypothesise
that these performance results stem from the (few) highly similar reviews in our dataset.
Further analysis of this observation, however, is outside the scope of the this paper.

Real life application We found that five is the optimal number of reviews in the training
set. This number, however, is likely to change given the dataset of available reviews. For
example, if the dataset would contain only cancer research, performance might increase
when using more than five reviews. We used a metric that is agnostic to the research
subject and chose to not manually select reviews into the initial pool. Therefore, the
question whether a research specific intial pool improves the performance of classification
remains open to further research.

In our experiments no stopping criterion was applied for the active learning. Therefore,
the screening continued until all documents were assessed. Ideally, the active learning
loop can be stopped when the prediction method is certain it has found some percentage
of all the relevant documents (usually 95% or 100%). Because the number of relevant
documents is often very small compared to the number of irrelevant documents, this
certainty may only occur very late in the reviewing process. Thus, because prediction
models have the ability of ordering the documents in a way that those most likely to be
relevant are placed at the beginning of the reading order, they are often viewed as a tool
to reduce the difficulty of reviewing [135]. Reviewers that know that a given document
has a low chance of relevancy may be able to exclude it by only reading a few key pieces
of information in the title or abstract. Inversely, a high chance of relevancy will invoke a
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more in-depth screening of the document. Prediction methods that quickly give confident
relevancy scores save more time in this process.

6.4.1 Other approaches

While technically not an active learning method, we found that Jonnalagadda et al. [141]
take an interesting approach to predict the relevance of systematic review documents us-
ing cosine similarity. First, they extract semantic vector representations of the documents
from the data, using a combination of random indexing and a directional model. These
vectors are then used to compare the documents labelled relevant by the reviewer to the
remaining documents in the dataset. The most similar documents are then presented to
the reviewer for labelling. The process is then repeated until all relevant documents have
been identified.

Other research often investigates other ways of optimising the active learning method.
For example, Wallace et al. has introduced two novel feature extraction techniques: in
[136] they combine multiple feature spaces (e.g., words from the abstract combined with
PubMed MeSH terms) into a multi-view active learning strategy and [135] describes a
strategy where experts provide domain knowledge to themodel before the prediction loop
is started. Hashimoto et al. [138] introduces topic detection, which extracts features using
knowledge of the words in a document together with knowledge about phrases, sentences,
and paragraphs.

AlsoMiwa et al. [137] researched other approaches to enhance the active learningmodel.
They looked at various methods for: data imbalance (solving the issues with having many
more irrelevant than relevant documents); ensemble classifiers (training multiple models
and combining them into a single prediction model); covariate shift (a problem where the
distribution of the test data differs from the training data); and clustering (creating new
features by clustering the data unsupervised before training the active learning model).

Our proposed approach reduces the size of the training data but does not change its
form. Therefore, it can be applied together with any of the enhancements listed above and
potentially improve the classification performance as shown in this paper.

6.5 Conclusion

We have shown that cosine similarity is a relatively simple and effective tool for selecting
relevant reviews into an initial training set for active learning purposes. Performance of
active learning methods using a selected dataset was significantly higher when compared
against using all the available data or when starting without any data in the training
set. We found that five reviews in the training set reached the highest performance.
However, it is likely that this number may change when the composition of the dataset
changes. Nevertheless, results indicate that smaller training set used as initial pool for
active learning methods may greatly reduce the reading time for systematic reviewers.
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Appendices
A Research Subject Group Performance

In previous research [139] we grouped the reviews in the dataset based on their research
subject. The subject was assigned using the International Classification of Diseases, 10th
revision (ICD-10). Reviews with the same ICD-10 code were grouped together. Those that
were found to have an unique ICD-10 code in the dataset were assigned to the ‘other’ group.

Our previous results showed that classification performance was lower for the reviews
in the ‘other’ group. We tested for statistical significance, which showed that the difference
in performance is significant over all training set sizes.
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Discussion
7.1 General discussion

In this thesis we showed that Big Data is a term that sees plenty of use in (bio)medical
research. Because Big Data covers many different subjects its definition can only be
captured in broad terms. Nevertheless, a quantifiable difference exists between literature
that used the term Big Data and those that did not, showing that the label Big Data
indicates a separate field of research.

Also, we found that systematic reviewers are a group of researchers who encounter Big
Data challenges in many phases of their work. They stand to benefit greatly from applying
solutions to these challenges. However, due to a number of barriers, adoption of existing
solutions is lacking.

Lastly, we propose and assess a new approach to computerised support of literature
appraisal in systematic reviews. Our new approach showed a significant increase in
performancewhen compared to existing approaches, an outcome that could aid systematic
reviewers by reducing the time spent on appraising literature.

In this final chapter we will discuss the findings above in the light of current literature.

7.2 Understanding Big Data

In Chapter 2 we described how existing Big Data definitions are expressed within (bio)med-
ical research literature. This study built upon findings of previous qualitative research by
De Mauro et al. that was published in 2016. De Mauro et al. analysed fifteen definitions
and identified four key Big Data themes [8]. We have revisited these and other definitions
of Big Data, and consolidated them into eight additional themes, resulting in a total of
twelve themes. Manual annotation of the (bio)medical literature we collected showed a
strong presence of the themes proposed by De Mauro et al.. We noted that these themes
are defined broadly, thereby capturing many of the other eight themes in them. These
results indicate that, at that time, the understanding of Big Data was mostly captured in
broad terms.

Since our study, others have researched the definition of Big Data. For example,
Sestino et al. proposed a model with three themes: implications, applications, and
methods [142]. This model captures the same concepts as the four themes by De Mauro et
al. and therefore each theme by Sestino et al. has a broader definition. Also, De Mauro et
al. further refined their definition a few years later by assigning subtopics to the four
major themes [143]. Note that while these subtopics give a clearer description of the major
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themes, they do not narrow them down. Favaretto et al. have studied the understanding
of Big Data by interviewing researchers [144]. They note that out of 39 participants only
one could pinpoint a formal definition of Big Data. The others rather opted to indirectly
describe the term. For example, by telling about the research that they thought was Big
Data.

The studies described above all gravitate to more or less the same conclusion: it
remains difficult to draw a well-defined boundary around the concepts of Big Data.
Nevertheless, I will argue that the term still holds value for researchers. Favaretto et al.
found a commonality in the responses of participants, even though they worked in a range
of different research fields. This indicates that a presumed gap in understanding does not
necessarily exist in practice. Take, for example, a dataset consisting of three small sources,
each with their own data types (such as: measurements, text, timestamps). It is not
unlikely that a researcher working with this dataset will run into issues due to the variety
of data and needs techniques to solve them. The necessary techniques may be labelled
as Big Data, either because they are developed for voluminous datasets or because the
developer of the technique applied a different definition. Regardless, the technique will
be very useful to the researcher trying to solve their data challenge. Therefore, maybe the
definition of Big Data is less important than applying it to whatever a researcher thinks is
appropriate.

In Chapter 3 we described that there was a detectable difference between publications
that use the term Big Data and those that did not. This was achieved by feeding a large
number of (bio)medical research papers into a machine learning method. These research
papers belonged to two groups: those that contained the term Big Data and those that did
not. We found that the machine learning method had a high performance in distinguishing
characteristics of papers in each of the groups, thereby differentiating Big Data research
from ‘other’ research. Moreover, analysing the most commonly used words in the Big
Data papers, we found that the use of the term Big Data within a publication seemed to
indicate a distinct type of research in the biomedical field. We concluded that value can be
attributed to the term Big Data when used in a publication. This conclusion strengthened
our belief that it is useful to attach the term wherever a researcher thinks it is applicable,
thereby making the work findable for others.

Others also applied similar techniques to understand Big Data. Hahn et al. used a
scope similar to our research while Parlina et al. and Mohammadi et al. looked at all
literature published within a specific literature database [66, 145, 146]. All conclude that
interest increases for some Big Data topics, such as data mining and parallel computing,
while it decreases for others. Mohammadi et al. also state that methodology seems to
have caught up with the availability of data and we are now in the implementation stage
[146]. This indicates that Big Data has reached the “plateau of productivity” on the Gartner
hype cycle1 and has, or will, become a regular tool.

Thus, understanding Big Data from the published literature seems like a fulfilled field
of research. However, Big Data research focus changes over time, which may be of interest
to new researchers or businesses. They can get up to speed with the latest trends in Big
Data quickly, using the results of studies like those named above.

7.3 Adoption of automation tools

In Chapter 4we investigated the adoption of automation tools among systematic reviewers.
To this end we deployed surveys and found that automation tools were not widely used
among the participants. When tools are used, participants mostly learn about them from

1The Gartner hype cycle places emerging technologies on a course that describes five levels of expectations:
technology trigger, peak of inflated expectations, trough of disillusionment, slope of enlightenment, and plateau of
productivity. If the technology reaches the end of the hype cycle it has become part of the regular toolkit a user
might use.
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their environment, for example through colleagues, peers, or organisation. Tools are often
chosen on the basis of user experience, either by own experience or from colleagues or
peers. Lastly, licensing, steep learning curve, lack of support, and mismatch to workflow
are often reported by participants as relevant barriers. These results provide evidence
and confirmed the conclusions and recommendations of previous work from others such
as O’Connor et al. [91], which was based on expert opinions. Gates et al. performed similar
research into tool adoption [147]. They focussed on the users of three specific tools and
reached similar conclusions as we did in our work.

Even though adoption is low, automation toolsmay greatly benefit systematic reviewers.
Clark et al. showed this in their work [148]. By applying tools to many of the phases of the
review process and optimising the workflow, a team of systematic reviewers completed a
review in two weeks 2. This is an impressive improvement over the median completion
time of 41 weeks reported in Borah et al. [149]. In a follow-up study Clark et al. perform
another systematic review with two teams: a manual team and an automation team [150].
The time spent on tasks, where automation was possible, was reduced from 42 hours to 12
hours, while the methodological quality of the review was maintained.

All the results above imply that adoption is not hindered by the performance of
automation tools, but rather by the users’ sentiment towards the tool. Clark et al. state that
an increase in associating efficiency with using tools increases the adoption of those tools
[148]. The same is implied in the works of Gates et al. and Scott et al. [147, 151]. Both papers
indicate that tool developers need to actively process user feedback to improve their
product, which will ultimately lead to higher adoption. Specifically, Gates et al. discuss
that important contributors to the adoption of automation tools are: (1) usability: from
three tools investigated only one was deemed usable according to a standardised usability
score; (2) reliability: trust in tools may be boosted by allowing the user to customise
the level of risk they are willing to take (e.g., manually setting relevancy thresholds,
thereby reducing/increasing the number of ‘hits’ with a trade-off of missing relevant
publications); (3) fit with systematic review workflows: multiple experienced researchers
could not retrieve the results they intended to get from the tools.

A great example of development that takes the recommendations above into account is
the Dextr tool [152]. Dextr is an automation tool for identifying, extracting, and connecting
data entities from environmental health animal studies. During its development end-users
were kept in the loop to adjust the usability and interoperability. Meanwhile, reliability
was built into the design by making it possible for users to query the tool on its reasoning
behind the outcomes. Quality of the work slightly decreased while time spent on the tasks
was halved, similar to Clark et al. [150]. It would be interesting to validate whether this
approach to development actually overcomes barriers in adoption. The Dextr tool, or any
other newly developed tool that uses the same approach, should be compared with similar
automation tools that did not follow the given recommendations.

Lastly, the results described in Chapter 4 highlight the importance that organisations
and best practices in a field can have for the adoption of automation tools for systematic
reviews. A 2021 research by Arno et al. focussed on the opinions of systematic review
guideline developers [153]. They found that guideline developers are mostly concerned
with the fit of tools with current practices and values, and are less concerned by usability or
validation of the tools. This is a valuable insight because guideline developers decide the
rules that systematic reviewers should adhere to for scientifically solid work. Not following
these guidelines makes it difficult to get published. Therefore, the sentiment of this group
directs most of the decisions made in the systematic reviews field. Because guideline
developers are crucial in adoption of tools, I argue that this should be the first group to
be convinced of the reliability of automation tools.

2Note that the setup was somewhat artificial because the team consisted of experienced reviewers that had
blocked off time for the whole duration of the project. In reality it is likely that less experienced members of the
team and various other tasks slow down a review.

109



Chapter 7

7.4 Improving automation tools

In Chapter 5 we introduced and assessed a new approach to improve the performance
of automation tools. We focussed on automation tools that could be applied in the
appraisal stage of systematic reviews to automatically identify the relevant studies from
the literature search. To predict relevancy, a prediction algorithm needs to be trained
on systematic reviews for which the appraisal of studies was manually completed by a
researcher. The algorithm learns how to make correct predictions from each given sample.
A rule of thumb in machine learning is to use all available data, because more examples
used during training will usually yield better predictions. However, systematic reviews
investigate unique research questions. The question arises whether using all available
data actually results in the best performing algorithm. After all, when considering which
data to use for a review about Alzheimer, another review about Alzheimer might provide
a better training set than a review about cancer. Therefore, excluding the review about
cancer from the training data might improve the algorithm’s performance because the
remaining training data is less diluted.

Our approach attempted to select training data by measuring similarity between
the available data of completed systematic reviews and the systematic review we were
automating. We selected only the most similar data and then trained and tested our
prediction algorithm. In contrast to our hypothesis, we found that algorithms trained on
more data performed better. However, algorithms trained for reviews that had a research
subject similar to other reviews in the dataset got better results. We concluded that our
proposed approach had the potential to improve prediction performance in those cases.

To test our conclusion, in Chapter 6 we applied our approach in an active learning
setting. In this setting the tool made a few predictions and presented them to the user.
The user appraised these predictions and gave feedback to the tool. The tool assessed the
feedback and made new predictions. This process was repeated until a stopping criteria
was reached (e.g., all relevant items were found). Because the information provided by the
user was the most relevant to the review at hand it should weigh heavily in the prediction
process. Reducing the number of samples in the initial training data should therefore
affect the machine learning performance. In Chapter 6 we found that the performance of
an active learning tool trained using less data was significantly higher compared to a tool
using all available data. Therefore, we concluded that our approach improved prediction
performance when using active learning. Moreover, another benefit of this approach was
that the reduction in data also reduced the computational effort of training the machine
learning method. This meant that training was faster, leading to less downtime for users
and a potential cost reduction for IT infrastructure.

As noted in Chapters 5 and 6, there are many studies that investigate optimisation of
training data. To our knowledge, none of these focussed on reducing the size of the training
set based on the similarity of the available training data. However, data selection using
a similarity metric was applied in at least one other research field. Unnikrishnan et al.
describes a method of applying cosine similarity (i.e., the same metric we applied) for
selecting training data in amobile health dataset [154]. Their dataset consists of users, with
some agents having little data and others having lots. They solved this data imbalance by
selecting similar data for the small agents instead of using all available data. Overall, they
concluded that better performance is reached when using less data. This outcome shows
that the benefits of similarity selection are applicable inmore settings than just systematic
review automation and the general rule-of-thumb that ‘more data equals better outcomes’
does not always apply.

We did not compare our approach to approaches specific to the systematic review
automation field. We had two main reasons for this: (1) our approach is a building block to
a complete automation tool; and (2) the lack of consistency in reporting of automation
tool development, described in 2015 by O’Mara et al., is still present in 2021 [18, 155]
making it extremely difficult to compare automation tools. In Chapters 5 and 6 we strive for
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open science by providing the accompanying (code) implementations and data. However,
whether this is enough for our approach to be dissected and implemented by others is
difficult to tell. There are no guidelines for developers on how to present their methods.
In this perspective, the automation tool community could learn a lot from the systematic
review guideline developers. In my opinion the community would benefit greatly from
a specification of the research field, guidelines to releasing underlying methods, and
standardised performance metrics.

7.5 Concluding remarks

In this thesis we found a definition for the term Big Data and that it holds value in
(bio)medical science literature. We then described barriers and facilitators for the
adoption of automation tools among systematic reviewers. We also introduced a new
method that boosts the performance of systematic review automation tools while reducing
the computational cost. Furthermore, I strongly argue for developing guidelines and
recommendations for automation tool developers because they will benefit all parties
involved. Developers could build better tools by learning from their users and by
comparing them with competing tools. Authoritative instances, such as guideline de-
velopers, would be able to assure that the quality of scientific work will not be affected.
Systematic reviewers would have to spend less time on repetitive tasks. And, ultimately,
the consumers of systematic reviews will get the latest scientific insights earlier with more
frequent updates.

111





Appendices



References
[1] K. J. Rothman. ‘Lessons from John Graunt’. In: The Lancet 347.8993 (1996), pp. 37–39.

DOI: 10.1016/s0140-6736(96)91562-7.
[2] R. Frerichs. ‘John Snow’. In: Encyclopædia Britannica. 2012. URL: https://www.britan

nica.com/biography/John-Snow-British-physician (visited on 29/12/2021).
[3] K. S. McLeod. ‘Our sense of Snow: the myth of John Snow in medical geography’. In:

Social science & medicine 50.7-8 (2000), pp. 923–935. DOI: 10.1016/S0277-9536(99)00
345-7.

[4] A. M. Weinberg. ‘Impact of large-scale science on the United States’. In: Science 134
(1961), pp. 161–164. DOI: 10.1126/science.134.3473.161.

[5] D. J. de Solla Price. Little science, big science... and beyond. Columbia University
Press New York, 1986. DOI: 10.7312/pric91844.

[6] J. Fenn and H. LeHong.Hype cycle for emerging technologies, 2011. Tech. rep. Gartner,
2011.

[7] J. S. Ward and A. Barker. ‘Undefined By Data: A Survey of Big Data Definitions’. In:
CoRR abs/1309.5821 (2013). URL: http://arxiv.org/abs/1309.5821.

[8] A. De Mauro, M. Greco and M. Grimaldi. ‘A formal definition of Big Data based on its
essential features’. In: Library Review 65.3 (2016), pp. 122–135. DOI: 10.1108/LR-06-2
015-0061.

[9] A. Jacobs. ‘The Pathologies of Big Data’. In: Commun. ACM 52.8 (Aug. 2009), pp. 36–44.
ISSN: 0001-0782. DOI: 10.1145/1536616.1536632.

[10] T. DeRouen. ‘Promises and pitfalls in the use of “Big Data” for clinical research’. In:
Journal of Dental Research 94.9 (Sept. 2015), 107S–109S. DOI: 10.1177/0022034515587
863.

[11] P. Zikopoulos and C. Eaton. Understanding Big Data: Analytics for Enterprise Class
Hadoop and Streaming Data. 1st ed. Vol. 1. New York, NY, USA: McGraw-Hill Osborne
Media, 2011. ISBN: 0071790535.

[12] D. Laney. ‘3D data management: Controlling data volume, velocity and variety’. In:
META Group Research Note 6 (Feb. 2001), p. 70.

[13] J. Andreu-Perez et al. ‘Big Data for Health’. In: IEEE Journal of Biomedical and Health
Informatics 19.4 (July 2015), pp. 1193–1208. ISSN: 2168-2194. DOI: 10.1109/JBHI.2015.24
50362.

[14] D. Fisher et al. ‘Interactions with Big Data Analytics’. In: interactions 19.3 (May 2012),
pp. 50–59. ISSN: 1072-5520. DOI: 10.1145/2168931.2168943.

[15] H. Chen, R. H. Chiang and V. C. Storey. ‘Business Intelligence and Analytics: From Big
Data to Big Impact’. In: MIS Q. 36.4 (Dec. 2012), pp. 1165–1188. ISSN: 0276-7783. DOI:
10.2307/41703503.

[16] E. Dumbill. ‘Making sense of big data’. In: Big Data 1.1 (2013), pp. 1–2. DOI: 10.1089/bi
g.2012.1503.

[17] D. Gough, S. Oliver and J. Thomas. An introduction to systematic reviews. 1st ed. 1
Oliver’s Yard, 55 City Road, London, EC1Y 1SP UK: Sage Publications Ltd, 2012. ISBN:
1473929431.

https://doi.org/10.1016/s0140-6736(96)91562-7
https://www.britannica.com/biography/John-Snow-British-physician
https://www.britannica.com/biography/John-Snow-British-physician
https://doi.org/10.1016/S0277-9536(99)00345-7
https://doi.org/10.1016/S0277-9536(99)00345-7
https://doi.org/10.1126/science.134.3473.161
https://doi.org/10.7312/pric91844
http://arxiv.org/abs/1309.5821
https://doi.org/10.1108/LR-06-2015-0061
https://doi.org/10.1108/LR-06-2015-0061
https://doi.org/10.1145/1536616.1536632
https://doi.org/10.1177/0022034515587863
https://doi.org/10.1177/0022034515587863
https://doi.org/10.1109/JBHI.2015.2450362
https://doi.org/10.1109/JBHI.2015.2450362
https://doi.org/10.1145/2168931.2168943
https://doi.org/10.2307/41703503
https://doi.org/10.1089/big.2012.1503
https://doi.org/10.1089/big.2012.1503


References

[18] A. O’Mara-Eves et al. ‘Using textmining for study identification in systematic reviews:
a systematic review of current approaches’. In: Systematic reviews 4.1 (2015), p. 5. DOI:
10.1186/2046-4053-4-5.

[19] H. Bastian, P. Glasziou and I. Chalmers. ‘Seventy-Five Trials and Eleven Systematic
Reviews a Day: HowWill We Ever Keep Up?’ In: PLOSMedicine 7.9 (Sept. 2010), pp. 1–6.
DOI: 10.1371/journal.pmed.1000326.

[20] G. Tsafnat et al. ‘Systematic review automation technologies.’ In: Systematic reviews
3.1 (2014), p. 74. ISSN: 2046-4053. DOI: 10.1186/2046-4053-3-74. PMID: 25005128.

[21] F. X. Diebold. ‘On the Origin(s) and Development of the Term ’Big Data’’. In: PIER
Working Paper (2012). DOI: 10.2139/ssrn.2152421.

[22] Google. Google Trends. URL: https://www.google.com/trends/explore#q=big+data
(visited on 28/03/2016).

[23] Gartner. Gartner Acquisitions. URL: http://www.gartner.com/technology/about/ac
quisition_history.jsp (visited on 27/03/2016).

[24] J. P. Dijcks. Oracle: Big data for the enterprise. Tech. rep. Oracle, Oct. 2012. URL: http
s://www.oracle.com/technetwork/database/bi-datawarehousing/wp-big-data-w
ith-oracle-521209.pdf (visited on 12/09/2016).

[25] IBM. IBM - What is Big Data? Accessed through Google cache. URL: https://www.ibm
.com/software/data/bigdata/what-is-big-data.html (visited on 17/12/2015).

[26] J. Dutcher. What Is Big Data? 2014. URL: https://datascience.berkeley.edu/what-is-
big-data/ (visited on 12/09/2016).

[27] M. Levi. Kleren van de keizer [The emperor’s clothes]. Column, Medisch Contact. Oct.
2015.

[28] M. Chen, S. Mao and Y. Liu. ‘Big Data: A Survey’. In:Mobile Networks and Applications
19.2 (2014), pp. 171–209. ISSN: 1572-8153. DOI: 10.1007/s11036-013-0489-0.

[29] T. Hansmann and P. Niemeyer. ‘Big Data - Characterizing an Emerging Research
Field Using Topic Models’. In: Proceedings of the 2014 IEEE/WIC/ACM International
Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) -
Volume 01. WI-IAT ’14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 43–51.
ISBN: 978-1-4799-4143-8. DOI: 10.1109/WI-IAT.2014.15.

[30] D. M. Blei, A. Y. Ng and M. I. Jordan. ‘Latent Dirichlet Allocation’. In: J. Mach. Learn.
Res. 3 (Mar. 2003), pp. 993–1022. ISSN: 1532-4435. DOI: 10.5555/944919.944937.

[31] D. M. Blei. ‘Probabilistic Topic Models’. In: Commun. ACM 55.4 (Apr. 2012), pp. 77–84.
ISSN: 0001-0782. DOI: 10.1145/2133806.2133826.

[32] M. Steyvers and T. Griffiths. ‘Probabilistic topic models’. In: Handbook of Latent
Semantic Analysis 427.7 (2007), pp. 424–440. DOI: 10.4324/9780203936399.

[33] R Core Team. R: A language and environment for statistical computing. R Foundation
for Statistical Computing. Vienna, Austria, 2015. URL: https://www.R-project.org/.

[34] I. Feinerer, K. Hornik and D. Meyer. ‘Text mining infrastructure in R’. In: Journal of
Statistical Software 25.5 (2008). R package version 0.6-2, pp. 1–54. URL: http://www
.jstatsoft.org/v25/i05/.

[35] K. Benoit and P. Nulty. quanteda: Quantitative analysis of textual data. R package
version 0.8.5-10. 2015. URL: http://github.com/kbenoit/quanteda.

[36] D. D. Lewis et al. ‘RCV1: A New Benchmark Collection for Text Categorization
Research’. In: J. Mach. Learn. Res. 5 (Dec. 2004), pp. 361–397. ISSN: 1532-4435. DOI:
10.5555/1005332.1005345.

[37] G. Salton. The SMART Retrieval System-Experiments in Automatic Document Pro-
cessing. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1971. ISBN: 0138145253. DOI:
10.5555/1102022.

115

https://doi.org/10.1186/2046-4053-4-5
https://doi.org/10.1371/journal.pmed.1000326
https://doi.org/10.1186/2046-4053-3-74
http://www.ncbi.nlm.nih.gov/pubmed/25005128
https://doi.org/10.2139/ssrn.2152421
https://www.google.com/trends/explore#q=big+data
http://www.gartner.com/technology/about/acquisition_history.jsp
http://www.gartner.com/technology/about/acquisition_history.jsp
https://www.oracle.com/technetwork/database/bi-datawarehousing/wp-big-data-with-oracle-521209.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/wp-big-data-with-oracle-521209.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/wp-big-data-with-oracle-521209.pdf
https://www.ibm.com/software/data/bigdata/what-is-big-data.html
https://www.ibm.com/software/data/bigdata/what-is-big-data.html
https://datascience.berkeley.edu/what-is-big-data/
https://datascience.berkeley.edu/what-is-big-data/
https://doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.1109/WI-IAT.2014.15
https://doi.org/10.5555/944919.944937
https://doi.org/10.1145/2133806.2133826
https://doi.org/10.4324/9780203936399
https://www.R-project.org/
http://www.jstatsoft.org/v25/i05/
http://www.jstatsoft.org/v25/i05/
http://github.com/kbenoit/quanteda
https://doi.org/10.5555/1005332.1005345
https://doi.org/10.5555/1102022


Appendices

[38] D. D. Lewis et al. -. URL: http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-s
mart-stop-list/english.stop (visited on 20/11/2015).

[39] B. Grün and K. Hornik. ‘topicmodels: An R package for fitting topicmodels’. In: Journal
of Statistical Software 40.13 (2011). R package version 0.2-2, pp. 1–30. URL: http://w
ww.jstatsoft.org/v40/i13/.

[40] J. Chuang et al. ‘Topic model diagnostics: Assessing domain relevance via topical
alignment’. In: Proceedings of the 30th International Conference on Machine Learn-
ing (ICML-13). 2013, pp. 612–620. DOI: 10.5555/3042817.3043005.

[41] G. Schwarz. ‘Estimating the Dimension of a Model’. In: Ann. Statist. 6.2 (Mar. 1978),
pp. 461–464. DOI: 10.1214/aos/1176344136.

[42] H. Akaike. ‘Information Theory and an Extension of the Maximum Likelihood Prin-
ciple’. In: Selected Papers of Hirotugu Akaike. Ed. by E. Parzen, K. Tanabe and G.
Kitagawa. New York, NY, USA: Springer New York, 1998, pp. 199–213. ISBN: 978-1-4612-
1694-0. DOI: doi:10.1007/978-1-4612-1694-0\_15.

[43] C. Sievert and K. E. Shirley. ‘LDAvis: A method for visualizing and interpreting topics’.
In: Proceedings of the Workshop on Interactive Language Learning, Visualization,
and Interfaces. 2014, pp. 63–70. DOI: 10.13140/2.1.1394.3043.

[44] G. K. Zipf.HumanBehavior and the Principle of Least Effort: An Introduction toHuman
Ecology. Indianapolis, IN, USA: Addison-Wesley press, 1949. ISBN: 161427312X.

[45] M. Schroeck et al. ‘Analytics: The real-world use of big data’. In: IBM Global Business
Services (Jan. 2012), pp. 1–20. URL: https://www.bdvc.nl/images/Rapporten/GBE03
519USEN.PDF (visited on 12/09/2016).

[46] S. Suthaharan. ‘Big Data Classification: Problems and Challenges in Network Intru-
sion Prediction with Machine Learning’. In: SIGMETRICS Perform. Eval. Rev. 41.4 (Apr.
2014), pp. 70–73. ISSN: 0163-5999. DOI: 10.1145/2627534.2627557.

[47] L. Chang. NIST Big Data Interoperability Framework: Volume 1, Definitions. NIST, Sept.
2015, p. 32. DOI: 10.6028/NIST.SP.1500-1.

[48] D. Boyd and K. Crawford. ‘Critical questions for big data: Provocations for a cultural,
technological, and scholarly phenomenon’. In: Information, Communication & Soci-
ety 15.5 (2012), pp. 662–679. DOI: 10.1080/1369118X.2012.678878.

[49] I. Center. Big Data Analytics. Tech. rep. Intel IT Center, 2012. URL: https://www.intel
.com/content/dam/www/public/us/en/documents/reports/intel-corp-big-data-
policy-position-paper.pdf (visited on 12/09/2016).

[50] Microsoft. The Big Bang: How the Big Data Explosion Is Changing the World. URL:
https://news.microsoft.com/2013/02/11/the-big-bang-how-the-big-data-explosi
on-is-changing-the-world/ (visited on 11/02/2013).

[51] B. Shneiderman. ‘Extreme Visualization: Squeezing a Billion Records into a Million
Pixels’. In: Proceedings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’08. Vancouver, Canada: ACM, 2008, pp. 3–12. ISBN: 978-1-
60558-102-6. DOI: 10.1145/1376616.1376618.

[52] V. Mayer-Schönberger and K. Cukier. Big Data: A Revolution That Will Transform
How We Live, Work and Think. UK: John Murray Publishers, 2013. ISBN: 1848547927,
9781848547926.

[53] J. Manyika et al. ‘Big data: The next frontier for innovation, competition, and
productivity’. In: (June 2011). URL: https ://www.mckinsey.com/business- functio
ns/mckinsey-digital/our- insights/big- data- the-next- frontier- for- innovation
(visited on 12/09/2016).

[54] C.-W. Tsai et al. ‘Big data analytics: a survey’. In: Journal of Big Data 2.1 (2015), p. 21.
ISSN: 2196-1115. DOI: 10.1186/s40537-015-0030-3.

116

http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://www.jstatsoft.org/v40/i13/
http://www.jstatsoft.org/v40/i13/
https://doi.org/10.5555/3042817.3043005
https://doi.org/10.1214/aos/1176344136
https://doi.org/doi:10.1007/978-1-4612-1694-0\_15
https://doi.org/10.13140/2.1.1394.3043
https://www.bdvc.nl/images/Rapporten/GBE03519USEN.PDF
https://www.bdvc.nl/images/Rapporten/GBE03519USEN.PDF
https://doi.org/10.1145/2627534.2627557
https://doi.org/10.6028/NIST.SP.1500-1
https://doi.org/10.1080/1369118X.2012.678878
https://www.intel.com/content/dam/www/public/us/en/documents/reports/intel-corp-big-data-policy-position-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/reports/intel-corp-big-data-policy-position-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/reports/intel-corp-big-data-policy-position-paper.pdf
https://news.microsoft.com/2013/02/11/the-big-bang-how-the-big-data-explosion-is-changing-the-world/
https://news.microsoft.com/2013/02/11/the-big-bang-how-the-big-data-explosion-is-changing-the-world/
https://doi.org/10.1145/1376616.1376618
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation
https://doi.org/10.1186/s40537-015-0030-3


References

[55] AlchemyAPI. Alchemy. URL: http://www.alchemyapi.com (visited on 15/12/2015).
[56] H. M. Wallach et al. ‘EvaluationMethods for Topic Models’. In: Proceedings of the 26th

Annual International Conference on Machine Learning. ICML ’09. Montreal, Quebec,
Canada: ACM, 2009, pp. 1105–1112. ISBN: 978-1-60558-516-1. DOI: 10.1145/1553374.155
3515.

[57] C. Sievert. Finding structure in xkcd comics with Latent Dirichlet Allocation. URL: htt
ps://cpsievert.github.io/xkcd/ (visited on 20/11/2015).

[58] J. Chang et al. ‘Reading Tea Leaves: How Humans Interpret Topic Models’. In:
Advances in Neural Information Processing Systems 22. Ed. by Y. Bengio et al. Red
Hook, NY, USA: Curran Associates, Inc., 2009, pp. 288–296. DOI: 10.5555/2984093.298
4126.

[59] J. H. Lau et al. ‘Automatic Labelling of Topic Models’. In: Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies - Volume 1. HLT ’11. Portland, Oregon: Association for Computational
Linguistics, 2011, pp. 1536–1545. ISBN: 978-1-932432-87-9. DOI: 10.5555/2002472.2002
658.

[60] Q. Mei, X. Shen and C. Zhai. ‘Automatic Labeling of Multinomial Topic Models’.
In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’07. San Jose, California, USA: ACM, 2007, pp. 490–
499. ISBN: 978-1-59593-609-7. DOI: 10.1145/1281192.1281246.

[61] Amazon. Amazon Mechanical Turk. URL: https : / / www . mturk . com (visited on
27/02/2016).

[62] W. X. Zhao et al. ‘Comparing Twitter and Traditional Media Using Topic Models’. In:
Proceedings of the 33rd European Conference on Advances in Information Retrieval.
ECIR’11. Dublin, Ireland: Springer-Verlag, 2011, pp. 338–349. ISBN: 978-3-642-20160-8.
DOI: 10.1007/978-3-642-20161-5_34.

[63] J. L. Hurtado, A. Agarwal and X. Zhu. ‘Topic discovery and future trend forecasting for
texts’. In: Journal of Big Data 3.1 (2016), pp. 1–21. ISSN: 2196-1115. DOI: 10.1186/s40537
-016-0039-2.

[64] X. Tian. ‘Big data and knowledge management: a case of déjà vu or back to the
future?’ In: Journal of Knowledge Management 21.1 (2017), pp. 113–131. DOI: 10.1108
/JKM-07-2015-0277.

[65] V. Mayer-Schönberger and K. Cukier. Big Data: A Revolution that Will Transform how
We Live, Work, and Think. Mariner Books, Jan. 2013, p. 257. ISBN: 9780544227750.

[66] A. Hahn, S. D. Mohanty and P. Manda. ‘What’s Hot and What’s Not? - Exploring
Trends in Bioinformatics Literature Using Topic Modeling and Keyword Analysis’.
In: Bioinformatics Research and Applications: 13th International Symposium, ISBRA
2017, Honolulu, HI, USA, May 29 – June 2, 2017, Proceedings. Ed. by Z. Cai, O. Daescu
and M. Li. Springer International Publishing, 2017, pp. 279–290. DOI: 10.1007/978-3-3
19-59575-7_25.

[67] S. Weiss et al. Text Mining: Predictive Methods for Analyzing Unstructured Informa-
tion. Jan. 2004. DOI: 10.1007/978-0-387-34555-0.

[68] H.-k. Zhou, H.-m. Yu and R. Hu. ‘Topic discovery and evolution in scientific literature
based on content and citations’. In: Frontiers of Information Technology & Electronic
Engineering 18.10 (Oct. 2017), pp. 1511–1524. ISSN: 2095-9230. DOI: 10.1631/FITEE.1601
125.

[69] A. J. van Altena et al. ‘Analysis of the term ‘big data’: Usage in biomedical pub-
lications’. In: 2017 IEEE International Conference on Big Data (Big Data). Dec. 2017,
pp. 1253–1258. DOI: 10.1109/BigData.2017.8258051.

117

http://www.alchemyapi.com
https://doi.org/10.1145/1553374.1553515
https://doi.org/10.1145/1553374.1553515
https://cpsievert.github.io/xkcd/
https://cpsievert.github.io/xkcd/
https://doi.org/10.5555/2984093.2984126
https://doi.org/10.5555/2984093.2984126
https://doi.org/10.5555/2002472.2002658
https://doi.org/10.5555/2002472.2002658
https://doi.org/10.1145/1281192.1281246
https://www.mturk.com
https://doi.org/10.1007/978-3-642-20161-5_34
https://doi.org/10.1186/s40537-016-0039-2
https://doi.org/10.1186/s40537-016-0039-2
https://doi.org/10.1108/JKM-07-2015-0277
https://doi.org/10.1108/JKM-07-2015-0277
https://doi.org/10.1007/978-3-319-59575-7_25
https://doi.org/10.1007/978-3-319-59575-7_25
https://doi.org/10.1007/978-0-387-34555-0
https://doi.org/10.1631/FITEE.1601125
https://doi.org/10.1631/FITEE.1601125
https://doi.org/10.1109/BigData.2017.8258051


Appendices

[70] N. Heudecker. Big Data Isn’t Obsolete. It’s Normal. 2015. URL: http://blogs.gartner.c
om/nick-heudecker/big-data-is-now-normal/ (visited on 18/05/2018).

[71] A. Foo. Face It, Big Data Is the New Normal. 2013. URL: http://www.ibmbigdatahub.c
om/blog/face-it-big-data-new-normal (visited on 18/05/2018).

[72] Anon. Big Data Series. 2014. URL: https://www.parliament.uk/mps-lords-and-offic
es/offices/bicameral/post/work-programme/big-data/ (visited on 18/05/2018).

[73] D. Laney. Big Data’s 10 Biggest Vision and Strategy Questions. 2015. URL: http://blog
s.gartner.com/doug-laney/big-datas-10-biggest-vision-and-strategy-questions/
(visited on 18/05/2018).

[74] A. Gandomi and M. Haider. ‘Beyond the hype: Big data concepts, methods, and
analytics’. In: International Journal of Information Management 35.2 (2015), pp. 137–
144. ISSN: 0268-4012. DOI: 10.1016/j.ijinfomgt.2014.10.007.

[75] S. Kudva and X. Ye. ‘Smart Cities, Big Data, and Sustainability Union’. In: Big Data and
Cognitive Computing 1.1 (2017). ISSN: 2504-2289. DOI: 10.3390/bdcc1010004.

[76] S. Wolfert et al. ‘Big Data in Smart Farming – A review’. In: Agricultural Systems 153
(2017), pp. 69–80. ISSN: 0308-521X. DOI: 10.1016/j.agsy.2017.01.023.

[77] I. A. T. Hashem et al. ‘The rise of “big data” on cloud computing: Review and open
research issues’. In: Information Systems 47 (2015), pp. 98–115. ISSN: 0306-4379. DOI:
10.1016/j.is.2014.07.006.

[78] A. J. van Altena et al. ‘Understanding big data themes from scientific biomedical
literature through topic modeling’. In: Journal of Big Data 3.1 (2016), p. 23.

[79] R. Kitchin. ‘Big data and human geography: Opportunities, challenges and risks’. In:
Dialogues in Human Geography 3.3 (2013), pp. 262–267. DOI: 10.1177/20438206135133
88.

[80] R. Kitchin and G. McArdle. ‘What makes Big Data, Big Data? Exploring the ontological
characteristics of 26 datasets’. In: Big Data & Society 3.1 (2016), p. 2053951716631130.
DOI: 10.1177/2053951716631130.

[81] A. J. van Altena. AMCeScience/python-miner-pub. 2018. URL: https : / / github . com
/AMCeScience/python-miner-pub/.

[82] Bethesda (MD): National Center for Biotechnology Information (US). Entrez Program-
ming Utilities Help. 2010. URL: https://www.ncbi.nlm.nih.gov/books/NBK25501/
(visited on 18/05/2018).

[83] D. Moher et al. ‘Preferred Reporting Items for Systematic Reviews and Meta-
Analyses: The PRISMA Statement’. In: Journal of Clinical Epidemiology 62.10 (2009),
pp. 1006–1012. ISSN: 0895-4356. DOI: 10.1016/j.jclinepi.2009.06.005.

[84] E. Loper and S. Bird. NLTK: The Natural Language Toolkit. 2002.
[85] A. J. van Altena. AMCeScience/R-contrast-pub. 2018. URL: https://github.com/AMCe

Science/R-contrast-pub/.
[86] J. Friedman, T. Hastie and R. Tibshirani. ‘Regularization Paths for Generalized Linear

Models via Coordinate Descent’. In: Journal of Statistical Software 33.1 (2010), pp. 1–
22. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/.

[87] D. Gough and D. Elbourne. ‘Systematic Research Synthesis to Inform Policy, Practice
and Democratic Debate’. In: Social Policy and Society 1.3 (2002), pp. 225–236. DOI:
10.1017/S147474640200307X.

[88] I. Chalmers and P. Glasziou. ‘Avoidable waste in the production and reporting of
research evidence’. In: Lancet 374 (2009), pp. 86–89. DOI: 10.1016/S0140-6736(09)603
29-9.

118

http://blogs.gartner.com/nick-heudecker/big-data-is-now-normal/
http://blogs.gartner.com/nick-heudecker/big-data-is-now-normal/
http://www.ibmbigdatahub.com/blog/face-it-big-data-new-normal
http://www.ibmbigdatahub.com/blog/face-it-big-data-new-normal
https://www.parliament.uk/mps-lords-and-offices/offices/bicameral/post/work-programme/big-data/
https://www.parliament.uk/mps-lords-and-offices/offices/bicameral/post/work-programme/big-data/
http://blogs.gartner.com/doug-laney/big-datas-10-biggest-vision-and-strategy-questions/
http://blogs.gartner.com/doug-laney/big-datas-10-biggest-vision-and-strategy-questions/
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.3390/bdcc1010004
https://doi.org/10.1016/j.agsy.2017.01.023
https://doi.org/10.1016/j.is.2014.07.006
https://doi.org/10.1177/2043820613513388
https://doi.org/10.1177/2043820613513388
https://doi.org/10.1177/2053951716631130
https://github.com/AMCeScience/python-miner-pub/
https://github.com/AMCeScience/python-miner-pub/
https://www.ncbi.nlm.nih.gov/books/NBK25501/
https://doi.org/10.1016/j.jclinepi.2009.06.005
https://github.com/AMCeScience/R-contrast-pub/
https://github.com/AMCeScience/R-contrast-pub/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/
https://doi.org/10.1017/S147474640200307X
https://doi.org/10.1016/S0140-6736(09)60329-9
https://doi.org/10.1016/S0140-6736(09)60329-9


References

[89] I. Shemilt et al. ‘Pinpointing needles in giant haystacks: use of text mining to reduce
impractical screening workload in extremely large scoping reviews’. In: Research
Synthesis Methods 5.1 (2013), pp. 31–49. DOI: 10.1002/jrsm.1093.

[90] C. Marshall. Systematic Review Toolbox. 2017. URL: http://www.systematicreviewtoo
ls.com/ (visited on 14/10/2016).

[91] A. M. O’Connor et al. ‘Moving toward the automation of the systematic review
process: a summary of discussions at the second meeting of International Collab-
oration for the Automation of Systematic Reviews (ICASR)’. In: Systematic Reviews
7.1 (Jan. 2018), p. 3. ISSN: 2046-4053. DOI: 10.1186/s13643-017-0667-4.

[92] F. D. Davis. ‘A technology acceptance model for empirically testing new end-user
information systems: Theory and results’. PhD thesis. Massachusetts Institute of
Technology, 1986. DOI: 1721.1/15192.

[93] V. Venkatesh. ‘Determinants of Perceived Ease of Use : Integrating Control , Intrinsic
Motivation , and Emotion into the Technology Acceptance Model’. In: Information
System Research 11.4 (2000), pp. 342–365. ISSN: 10477047,15265536. DOI: 10.1287/isre
.11.4.342.11872. PMID: 3961358.

[94] V. Venkatesh et al. ‘A Theoretical Extension of the Technology Acceptance Model :
Four Longitudinal Field Studies’. In: Management science 46.2 (Feb. 2000), pp. 186–
204. DOI: 10.1287/mnsc.46.2.186.11926.

[95] A. J. van Altena, R. Spijker and S. D. Olabarriaga. Supplementary Material For Paper:
Usage of Automation Tools in Systematic Reviews. 2018. URL: https://onlinelibrary
.wiley.com/action/downloadSupplement?doi=10.1002%2Fjrsm.1335&file=supplem
entary-revision-version-21-09-18.pdf.

[96] SurveyMonkey Inc. SurveyMonkey. 2018. URL: http://www.surveymonkey.com.
[97] M. Y. Chuttur. ‘Overview of the technology acceptancemodel: Origins, developments

and future directions’. In:Working Papers on Information Systems 9.37 (2009), pp. 9–
37. ISSN: 1535-6078. DOI: 10.1021/jf001443p. PMID: 11453748.

[98] A. J. van Altena. Release Submission - AMCeScience/survey-system. 2018. URL: https:
//github.com/AMCeScience/survey-system/releases/tag/Submission.

[99] J. Brooke. ‘SUS-A quick and dirty usability scale’. In: ed. by P. W. Jordan et al. Vol. 189.
194. London: Taylor and Francis, 1996, pp. 4–7. ISBN: 9780429157011.

[100] J. Brooke. ‘SUS: A Retrospective’. In: J. Usability Studies 8.2 (Feb. 2013), pp. 29–40. ISSN:
1931-3357. DOI: 10.5555/2817912.2817913.

[101] A. Bangor, P. Kortum and J. Miller. ‘Determining what individual SUS scores mean:
Adding an adjective rating scale’. In: Journal of usability studies 4.3 (2009), pp. 114–
123. DOI: 10.5555/2835587.2835589.

[102] 2017 Issue 1 | Cochrane Library. 2017. URL: http://www.cochranelibrary.com/cochra
ne-database-of-systematic-reviews/table-of-contents/2017/issue1/ (visited on
24/03/2017).

[103] F. E. Harrell Jr, with contributions from Charles Dupont and many others. Hmisc:
Harrell Miscellaneous. R package version 4.0-3. 2017. URL: https://CRAN.R-project.o
rg/package=Hmisc.

[104] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing. Vienna, Austria, 2013. URL: http://www.R-project.org
/.

[105] J. Fox. polycor: Polychoric and Polyserial Correlations. R package version 0.7-9. 2016.
URL: https://CRAN.R-project.org/package=polycor.

[106] J. Thomas. ‘Diffusion of innovation in systematic review methodology: Why is study
selection not yet assisted by automation?’ In: OA Evidence-Based Medicine 1.2 (Oct.
2013), pp. 1–6. DOI: 10.13172/2053-2636-1-2-1109.

119

https://doi.org/10.1002/jrsm.1093
http://www.systematicreviewtools.com/
http://www.systematicreviewtools.com/
https://doi.org/10.1186/s13643-017-0667-4
https://doi.org/1721.1/15192
https://doi.org/10.1287/isre.11.4.342.11872
https://doi.org/10.1287/isre.11.4.342.11872
http://www.ncbi.nlm.nih.gov/pubmed/3961358
https://doi.org/10.1287/mnsc.46.2.186.11926
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fjrsm.1335&file=supplementary-revision-version-21-09-18.pdf
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fjrsm.1335&file=supplementary-revision-version-21-09-18.pdf
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fjrsm.1335&file=supplementary-revision-version-21-09-18.pdf
http://www.surveymonkey.com
https://doi.org/10.1021/jf001443p
http://www.ncbi.nlm.nih.gov/pubmed/11453748
https://github.com/AMCeScience/survey-system/releases/tag/Submission
https://github.com/AMCeScience/survey-system/releases/tag/Submission
https://doi.org/10.5555/2817912.2817913
https://doi.org/10.5555/2835587.2835589
http://www.cochranelibrary.com/cochrane-database-of-systematic-reviews/table-of-contents/2017/issue1/
http://www.cochranelibrary.com/cochrane-database-of-systematic-reviews/table-of-contents/2017/issue1/
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=Hmisc
http://www.R-project.org/
http://www.R-project.org/
https://CRAN.R-project.org/package=polycor
https://doi.org/10.13172/2053-2636-1-2-1109


Appendices

[107] The Cochrane Collaboration: Cochrane Handbook for Systematic Reviews of Inter-
ventions. 51st edition. 2011. URL: http://www.cochrane.org/training/cochrane-han
dbook.

[108] I. E. Allen and I. Olkin. ‘Estimating Time to Conduct a Meta-analysis From Number
of Citations Retrieved’. In: JAMA 282.7 (Aug. 1999), pp. 634–635. ISSN: 0098-7484. DOI:
10.1001/jama.282.7.634.

[109] D. A. Korevaar et al. ‘Reporting quality of diagnostic accuracy studies: a system-
atic review and meta-analysis of investigations on adherence to STARD’. In: BMJ
Evidence-Based Medicine 19.2 (2014), pp. 47–54. ISSN: 1356-5524. DOI: 10 . 1136/eb-
2013-101637.

[110] Diagnostic Test Accuracy Working Group Handbook for DTA reviews. 2013. URL: http:
//srdta.cochrane.org/handbook-dta-reviews (visited on 03/11/2019).

[111] H. Petersen et al. ‘Increased workload for systematic review literature searches of
diagnostic tests compared with treatments: Challenges and opportunities’. In: JMIR
medical informatics 2.1 (2014), e11. DOI: 10.2196/medinform.3037.

[112] J. Liu, P. Timsina and O. El-Gayar. ‘A comparative analysis of semi-supervised learn-
ing: the case of article selection for medical systematic reviews’. In: Information
Systems Frontiers 20.2 (2018), pp. 195–207. DOI: 10.1007/s10796-016-9724-0.

[113] A. M. Cohen et al. ‘Reducing workload in systematic review preparation using
automated citation classification’. In: Journal of the American Medical Informatics
Association 13.2 (2006), pp. 206–219. DOI: 10.1197/jamia.M1929.

[114] M. Miwa et al. ‘Reducing systematic review workload through certainty-based
screening’. In: Journal of biomedical informatics 51 (2014), pp. 242–253. DOI: 10.101
6/j.jbi.2014.06.005.

[115] K. Weiss, T. M. Khoshgoftaar and D. Wang. ‘A survey on transfer learning’. In: Journal
of Big Data 3.9 (2016). DOI: 10.1186/s40537-016-0043-6.

[116] E. Kanoulas et al. ‘CLEF 2017 technologically assisted reviews in empirical medicine
overview’. In: CEUR Workshop Proceedings. Vol. 1866. 2017, pp. 1–29.

[117] S. Bird, E. Klein and E. Loper. Natural language processing with Python: analyzing
text with the natural language toolkit. ”O’Reilly Media, Inc.”, 2009.

[118] A. J. van Altena. AMCeScience/feature-miner. 2020. URL: https://github.com/AMCe
Science/feature-miner-pub/.

[119] A. J. van Altena. Review metadata. Mar. 2019. DOI: 10.6084/m9.figshare.7804094.
[120] M. D. F. McInnes et al. ‘Preferred Reporting Items for a Systematic Review and Meta-

analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement’. In: JAMA
319.4 (Jan. 2018), pp. 388–396. ISSN: 0098-7484. DOI: 10.1001/jama.2017.19163.

[121] ICD-10 Version:2010. URL: https : / / icd . who . int / browse10 / 2010 / en (visited on
03/12/2018).

[122] F. Pedregosa et al. ‘Scikit-learn: Machine Learning in Python’. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[123] A. Huang. ‘Similarity measures for text document clustering’. In: Proceedings of the
sixth new zealand computer science research student conference (NZCSRSC2008),
Christchurch, New Zealand. 2008, pp. 49–56.

[124] W. H. Gomaa and A. A. Fahmy. ‘A survey of text similarity approaches’. In: Interna-
tional Journal of Computer Applications 68.13 (2013), pp. 13–18. DOI: 10.5120/11638-7
118.

[125] P. Virtanen et al. ‘SciPy 1.0–Fundamental Algorithms for Scientific Computing in
Python’. In: arXiv e-prints, arXiv:1907.10121 (July 2019), arXiv:1907.10121. arXiv: 1907.10
121 [cs.MS].

120

http://www.cochrane.org/training/cochrane-handbook
http://www.cochrane.org/training/cochrane-handbook
https://doi.org/10.1001/jama.282.7.634
https://doi.org/10.1136/eb-2013-101637
https://doi.org/10.1136/eb-2013-101637
http://srdta.cochrane.org/handbook-dta-reviews
http://srdta.cochrane.org/handbook-dta-reviews
https://doi.org/10.2196/medinform.3037
https://doi.org/10.1007/s10796-016-9724-0
https://doi.org/10.1197/jamia.M1929
https://doi.org/10.1016/j.jbi.2014.06.005
https://doi.org/10.1016/j.jbi.2014.06.005
https://doi.org/10.1186/s40537-016-0043-6
https://github.com/AMCeScience/feature-miner-pub/
https://github.com/AMCeScience/feature-miner-pub/
https://doi.org/10.6084/m9.figshare.7804094
https://doi.org/10.1001/jama.2017.19163
https://icd.who.int/browse10/2010/en
https://doi.org/10.5120/11638-7118
https://doi.org/10.5120/11638-7118
https://arxiv.org/abs/1907.10121
https://arxiv.org/abs/1907.10121


References

[126] S. Seabold and J. Perktold. ‘statsmodels: Econometric and statistical modeling with
python’. In: 9th Python in Science Conference. 2010. DOI: 10.25080/Majora-92bf1922-
011.

[127] T. pandas development team. pandas-dev/pandas: Pandas. Version 1.0.3. Feb. 2020.
DOI: 10.5281/zenodo.3509134.

[128] B. K. Olorisade, P. Brereton and P. Andras. ‘Reproducibility of studies on text mining
for citation screening in systematic reviews: Evaluation and checklist’. In: Journal of
Biomedical Informatics 73 (2017), pp. 1–13. ISSN: 1532-0464. DOI: 10.1016/j.jbi.2017.07
.010.

[129] A. M. Cohen. ‘Optimizing feature representation for automated systematic review
work prioritization’. In: AMIA annual symposium proceedings. Vol. 2008. American
Medical Informatics Association. 2008, p. 121. PMID: 18998798.

[130] R. C. Moore and W. Lewis. ‘Intelligent Selection of Language Model Training Data’. In:
Proceedings of the ACL 2010 Conference Short Papers. ACLShort ’10. Uppsala, Sweden:
Association for Computational Linguistics, 2010, pp. 220–224. DOI: 10.5555/1858842
.1858883.

[131] M. Kubat, S. Matwin et al. ‘Addressing the curse of imbalanced training sets: one-
sided selection’. In: Icml. Vol. 97. Nashville, USA. 1997, pp. 179–186.

[132] J. G. Adeva et al. ‘Automatic text classification to support systematic reviews in
medicine’. In: Expert Systemswith Applications 41.4, Part 1 (2014), pp. 1498–1508. ISSN:
0957-4174. DOI: 10.1016/j.eswa.2013.08.047.

[133] F. Pedregosa et al. sklearn.ensemble.RandomForestClassifier. 2019. URL: https://sci
kit-learn.org/0.20/modules/generated/sklearn.ensemble.RandomForestClassifier
.html.

[134] W. Koehrsen. Hyperparameter Tuning the Random Forest in Python. 2018. URL: https
://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-pyth
on-using-scikit-learn-28d2aa77dd74 (visited on 03/11/2019).

[135] B. C. Wallace et al. ‘Active Learning for Biomedical Citation Screening’. In: Proceed-
ings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’10. Washington, DC, USA: ACM, 2010, pp. 173–182. ISBN: 978-1-4503-
0055-1. DOI: 10.1145/1835804.1835829.

[136] B. C. Wallace et al. ‘Semi-automated screening of biomedical citations for systematic
reviews’. In: BMC Bioinformatics 11.1 (Jan. 2010), p. 55. ISSN: 1471-2105. DOI: 10.1186/1
471-2105-11-55.

[137] M. Miwa et al. ‘Reducing systematic review workload through certainty-based
screening’. In: Journal of Biomedical Informatics 51 (2014), pp. 242–253. ISSN: 1532-
0464. DOI: 10.1016/j.jbi.2014.06.005.

[138] K. Hashimoto et al. ‘Topic detection using paragraph vectors to support active
learning in systematic reviews’. In: Journal of Biomedical Informatics 62 (2016),
pp. 59–65. ISSN: 1532-0464. DOI: 10.1016/j.jbi.2016.06.001.

[139] A. van Altena et al. ‘Training sample selection: impact on screening automation in
diagnostic test accuracy reviews’. In: Research Synthesis Methods (2021). DOI: 10.100
2/jrsm.1518.

[140] J. Thomas, J. McNaught and S. Ananiadou. ‘Applications of text mining within
systematic reviews’. In: Research Synthesis Methods 2.1 (2011), pp. 1–14. DOI: 10 .10
02/jrsm.27.

[141] S. Jonnalagadda and D. Petitti. ‘A new iterative method to reduce workload in the
systematic review process’. In: International journal of computational biology and
drug design 6 (2013), p. 5. DOI: 10.1504/IJCBDD.2013.052198. PMID: 23428470.

121

https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1016/j.jbi.2017.07.010
https://doi.org/10.1016/j.jbi.2017.07.010
http://www.ncbi.nlm.nih.gov/pubmed/18998798
https://doi.org/10.5555/1858842.1858883
https://doi.org/10.5555/1858842.1858883
https://doi.org/10.1016/j.eswa.2013.08.047
https://scikit-learn.org/0.20/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/0.20/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/0.20/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://doi.org/10.1145/1835804.1835829
https://doi.org/10.1186/1471-2105-11-55
https://doi.org/10.1186/1471-2105-11-55
https://doi.org/10.1016/j.jbi.2014.06.005
https://doi.org/10.1016/j.jbi.2016.06.001
https://doi.org/10.1002/jrsm.1518
https://doi.org/10.1002/jrsm.1518
https://doi.org/10.1002/jrsm.27
https://doi.org/10.1002/jrsm.27
https://doi.org/10.1504/IJCBDD.2013.052198
http://www.ncbi.nlm.nih.gov/pubmed/23428470


Appendices

[142] A. Sestino and A. De Mauro. ‘Leveraging Artificial Intelligence in Business: Implica-
tions, Applications and Methods’. In: Technology Analysis & Strategic Management
(2021), pp. 1–14. DOI: 10.1080/09537325.2021.1883583.

[143] A. DeMauro, M. Greco andM. Grimaldi. ‘Understanding Big Data through a systematic
literature review: The ITMI model’. In: International Journal of Information Techno-
logy & Decision Making 18.04 (2019), pp. 1433–1461. DOI: 10.1142/S0219622019300040.

[144] M. Favaretto et al. ‘What is your definition of Big Data? Researchers’ understanding
of the phenomenon of the decade’. In: PloS one 15 (Feb. 2020), pp. 1–20. DOI: 10.1371
/journal.pone.0228987.

[145] A. Parlina, K. Ramli and H. Murfi. ‘Theme mapping and bibliometrics analysis of one
decade of big data research in the scopus database’. In: Information 11.2 (2020), p. 69.
DOI: 10.3390/info11020069.

[146] E. Mohammadi and A. Karami. ‘Exploring research trends in big data across discip-
lines: A text mining analysis’. In: Journal of Information Science (2020). DOI: 10.1177
/0165551520932855.

[147] A. Gates et al. ‘Performance and usability of machine learning for screening in
systematic reviews: a comparative evaluation of three tools’. In: Systematic reviews
8.1 (2019), pp. 1–11. DOI: 10.1186/s13643-019-1222-2.

[148] J. Clark et al. ‘A full systematic review was completed in 2 weeks using automation
tools: a case study’. In: Journal of Clinical Epidemiology 121 (2020), pp. 81–90. ISSN:
0895-4356. DOI: 10.1016/j.jclinepi.2020.01.008.

[149] R. Borah et al. ‘Analysis of the time and workers needed to conduct systematic
reviews of medical interventions using data from the PROSPERO registry’. In: BMJ
open 7.2 (2017). DOI: 10.1136/bmjopen-2016-012545.

[150] J. Clark et al. ‘The Impact of Systematic Review Automation Tools on Methodological
Quality and Time Taken to Complete Systematic Review Tasks: Case Study’. In: JMIR
Medical Education 7.2 (2021), e24418. DOI: 10.2196/24418.

[151] A. M. Scott et al. ‘Systematic review automation tools improve efficiency but lack of
knowledge impedes their adoption: a survey’. In: Journal of Clinical Epidemiology
138 (2021), pp. 80–94. ISSN: 0895-4356. DOI: 10.1016/j.jclinepi.2021.06.030.

[152] V. R. Walker et al. ‘Evaluation of a semi-automated data extraction tool for public
health literature-based reviews: Dextr’. In: Environment International 159 (2022),
p. 107025. ISSN: 0160-4120. DOI: 10.1016/j.envint.2021.107025.

[153] A. Arno et al. ‘The views of health guideline developers on the use of automation in
health evidence synthesis’. In: Systematic Reviews 10.1 (2021), pp. 1–10. DOI: 10.1186
/s13643-020-01569-2.

[154] V. Unnikrishnan et al. ‘Love thy Neighbours: A Framework for Error-Driven Discovery
of Useful Neighbourhoods for One-Step Forecasts on EMA data’. In: 2021 IEEE
34th International Symposium on Computer-Based Medical Systems (CBMS). 2021,
pp. 295–300. DOI: 10.1109/CBMS52027.2021.00080.

[155] W. Abdelkader et al. ‘Machine Learning Approaches to Retrieve High-Quality, Clinic-
ally Relevant Evidence From the Biomedical Literature: Systematic Review’. In: JMIR
medical informatics 9.9 (2021), e30401. DOI: 10.2196/30401.

122

https://doi.org/10.1080/09537325.2021.1883583
https://doi.org/10.1142/S0219622019300040
https://doi.org/10.1371/journal.pone.0228987
https://doi.org/10.1371/journal.pone.0228987
https://doi.org/10.3390/info11020069
https://doi.org/10.1177/0165551520932855
https://doi.org/10.1177/0165551520932855
https://doi.org/10.1186/s13643-019-1222-2
https://doi.org/10.1016/j.jclinepi.2020.01.008
https://doi.org/10.1136/bmjopen-2016-012545
https://doi.org/10.2196/24418
https://doi.org/10.1016/j.jclinepi.2021.06.030
https://doi.org/10.1016/j.envint.2021.107025
https://doi.org/10.1186/s13643-020-01569-2
https://doi.org/10.1186/s13643-020-01569-2
https://doi.org/10.1109/CBMS52027.2021.00080
https://doi.org/10.2196/30401




Summary
Big Data is a term that has been around formany years and it is often understood as the use
and manipulation of large volumes of data. Over the years more aspects of Big Data have
been recognised by researchers and institutions, such as its velocity, variety, and value.
Nowadays, many definitions exist and researchers have wildly different understandings
of Big Data. We believe that, without an unambiguous definition, communication is
hampered, resulting in missed opportunities for both the developers as well as users of
Big Data technologies.

A group of researchers that may benefit greatly from applying Big Data technologies to
partially automate their work are systematic reviewers. The nature of their work involves
reading, dissecting, and selecting considerable numbers of scientific papers. Over the
years many tools have been developed to support reviewers. However, it is unclear how
often these are used and how well they work.

In this thesis we start with an exploration of a common understanding of the term Big
Data. The focus then shifts to systematic reviewers and their use of tools to deal with Big
Data. Lasty, we propose a new method that may improve these tools. In this thesis we aim
to: uncover a common understanding of Big Data in the (bio)medical research field; aid in
improving the adoption of automation tools among systematic reviewers; and, contribute
to the effectiveness of automation tools. Our work is divided into three parts, each of
which has been summarised below.

Understanding Big Data

While Big Data is a key component of many (bio)medical studies, it has yet to receive a
formal definition. Chapter 2 pursued a better understanding of the topics covered by the
term Big Data through a data-driven systematic approach using text analysis of scientific
(bio)medical literature.

Our study built upon findings of previous qualitative research that analysed fifteen
definitions and identified four key Big Data themes. We have revisited these and other
definitions of Big Data, and consolidated them into eight additional themes, resulting
in a total of twelve themes. We collected manual annotations of Big Data themes in
(bio)medical literature and showed a strong presence of the original four themes. We
noted that these themes are defined broadly, thereby capturing many of the other eight
themes in them. These results indicated that, at that time, the understanding of Big Data
was mostly captured in broad terms.

Since our study, others have researched the definition of Big Data. All of them gravitated
to more or less the same conclusion: it remains difficult to draw a well-defined boundary
around the concepts of Big Data. One study did a series of interviews with researchers.
They noted that out of 39 participants only one could pinpoint a formal definition of Big
Data. Nevertheless, they found a commonality in the responses of participants. In our
opinion the definition of Big Data is less important than attaching the term to whatever a
researcher thinks is appropriate. This follows from our belief that, to improve the spread
and uptake of Big Data solutions, the solutions should be findable. Even if two researchers
were to use the term Big Data in a, often subtly, different way they might be interested in
the same thing.
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Skeptics argue that Big Data is just a hype term, representing nothing new or at best
just an extension of what has been done for decades. This was also the case in our
surroundings, which motivated us to asses the value of the term Big Data when used by
researchers in their publications, this research is described in Chapter 3. We measured the
value of the term Big Data by feeding a large number of (bio)medical research papers into
a machine learning method. These research papers belonged to two groups: those that
contained the term Big Data and those that did not. We found that the machine learning
method had a high performance in distinguishing characteristics of papers in each of the
groups. Moreover, analysing the most commonly used words in the Big Data papers, we
found that the use of the term Big Data within a publication seemed to indicate a distinct
type of research in the biomedical field. We concluded that value can be attributed to the
term Big Data when used in a publication. This conclusion strengthened our belief that it
is useful to attach the term wherever a researcher thinks it is applicable, thereby making
the work findable for others.

Solutions to a data deluge

Systematic reviews are a cornerstone of evidence-informed decision making, they bring
together the findings from multiple studies in a structured, reliable, and preferably
unbiased way. However, the process is mostly performed manually and very time-
consuming. With the rapid expansion of scientific information produced and research
questions to be addressed, there is a growing workload on reviewers, making the current
practice unsustainable without the aid of automation tools.

In Chapter 4 we investigated why the adoption of automation tools among systematic
reviewers seemed to be lagging and we identified potential barriers and facilitators for
their adoption. To this end we deployed surveys and found that automation tools were
not widely used among the participants. The results provided evidence and confirmed the
conclusions and recommendations of previous work, which was based on expert opinion.
When tools were used, participants mostly learn about them through their colleagues,
peers, or organisation. Tools were often chosen on the basis of user experience, either
by own experience or from colleagues or peers. Lastly, licensing, steep learning curve,
lack of support, and mismatch to workflow were often reported by participants as relevant
barriers.

After our study others have investigated the adoption of automation tools. One study
executed a systematic review which heavily relied on automation tools in every step of
the process. They found that a review may be significantly sped up by the use of tools.
Furthermore, many concluded that the perceived efficiency of a tool was very important
for its adoption. In other words, if the user believes that a tool will benefit them they will
start using it.

The results above imply that the main blocking factor for adoption is not the actual
performance of automation tools, but rather by the users’ sentiment towards the tool.
Sentiment is influenced by many factors, opinion of peers and the ease of access were
most often indicated by systematic reviewers to be important in their choice of tools.
This highlights the importance that organisations and best practices in a field can have
for the adoption of automation tools for systematic reviews. In the field of systematic
reviews guideline developers decide the rules that systematic reviewers should adhere to
for scientifically solid work. Therefore, we argue that this should be the first group to be
convinced of the reliability of automation tools.

Applying solutions in practice

In Chapter 5 we introduced an approach to improve the performance of systematic review
automation tools. A systematic review consists of retrieval, appraisal, and synthesis of
evidence. During the appraisal phase, the relevancy of scientific papers found during the
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retrieval step is determined. In many reviews the number of studies to appraise is very
large. Therefore, in our study we focussed on a subset of automation tools that support
the appraisal process of a systematic review by using text mining to predict the relevancy
of each study that needs to be appraised. Using the predictions, the reading order could
be adjusted so that the reviewer sees the studies that are most likely to be relevant first.

To predict how relevant a study is a prediction method first needed to learn from
previous systematic reviews where the relevant studies were appraised by researchers, a
process called training. The algorithm learned how to make correct predictions from each
given sample. A rule of thumb in machine learning is to use all available data, because
more examples used during training will usually yield better predictions. However, each
systematic review investigated a unique research question. The question arose whether
using all available data actually results in the best performing algorithm. After all, when
considering which data to use for a review about Alzheimer’s disease, another review
about Alzheimer might provide a better training set than a review about cancer. Therefore,
excluding the review about cancer from the training data might improve the algorithm’s
performance because the remaining training data is less diluted. Our proposed approach
chose which data to use during training based on a metric that quantifies the similarity
between reviews based on text features. This approach led to less data for training, but
the selection had a high similarity to the data from the review that we were predicting,
potentially improving the performance of the automation tool.

In Chapter 5 we introduced our approach. We selected only the most similar data and
then trained and tested our prediction algorithm. In contrast to our hypothesis, we found
that algorithms trained on more data performed better. However, algorithms trained for
reviews that had a research subject similar to other reviews in the dataset got better
results. We concluded that our proposed approach had the potential to improve prediction
performance in those cases.

To test our conclusion, in Chapter 6 we applied our approach in an active learning
setting. In this setting the tool made a few predictions and presented them to the user.
The user appraised these predictions and gave feedback to the tool. The tool assessed the
feedback and made new predictions. This process was repeated until a stopping criterion
was reached (e.g., all relevant items were found). Because the information provided by the
user was the most relevant to the review at hand it should weigh heavily in the prediction
process. Reducing the number of samples in the initial training data should therefore
affect the machine learning performance. In Chapter 6 we found that the performance of
an active learning tool trained using less data was significantly higher compared to a tool
using all available data. Therefore, we concluded that our approach improved prediction
performance when using active learning. Moreover, another benefit of this approach was
that the reduction in data also reduced the computational effort of training the machine
learning method. This meant that training was faster, leading to less downtime for users
and a potential cost reduction for IT infrastructure.

Conclusion

In this thesis we found a definition for the termBig Data and that the termholds valuewhen
used in (bio)medical science literature. We then described barriers and facilitators for the
adoption of automation tools among systematic reviewers, who face Big Data challenges.
Lastly, we introduced a new method that boosts the performance of systematic review
automation tools while reducing the computational cost.
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Samenvatting
Big Data is een term die al vele jaren bestaat en die vaak begrepen wordt als het gebruik en
de manipulatie van grote hoeveelheden data. In de loop der jaren zijn er meer aspecten
van Big Data erkend door onderzoekers en instellingen, zoals de snelheid, variëteit en
waarde ervan. Tegenwoordig zijn er veel definities en onderzoekers hebben verschillende
opvattingen over Big Data. Wij zijn van mening dat, zonder eenduidige definitie, de
communicatie belemmerd wordt, met als gevolg dat er kansen blijven liggen voor zowel
de ontwikkelaars als gebruikers van Big Data-technologieën.

Een groep onderzoekers die veel baat kan hebben bij het toepassen van Big Data-
technologieën om hun werk gedeeltelijk te automatiseren, zijn systematic reviewers. De
aard van hun werk omvat het lezen, begrijpen en selecteren van behoorlijke aantallen
wetenschappelijke artikelen. In de loop der jaren zijn er veel tools ontwikkeld om
reviewers te ondersteunen. Het is echter onduidelijk hoe vaak deze worden gebruikt en
hoe goed ze werken.

In dit proefschrift beginnen we met een verkenning van een gemeenschappelijke
definitie van de term Big Data. Daarna verschuift de focus verschuift naar systematic
reviewers en hun gebruik van tools om met Big Data om te gaan. Ten slotte stellen we
een nieuwe methode voor die deze tools kan verbeteren. In dit proefschrift willen we: een
gemeenschappelijke definitie van Big Data in het (bio)medische onderzoeksveld blootleg-
gen; bijdragen aan het gebruik van automatiseringstools onder systematic reviewers en
aan de effectiviteit van deze tools. Ons werk is opgedeeld in drie delen, die hieronder zijn
samengevat.

Begrijpen van Big Data

Hoewel Big Data een belangrijk onderdeel is van veel (bio)medische onderzoeken, heeft
het nog geen formele definitie. Hoofdstuk 2 streefde naar een beter begrip van de
onderwerpen die onder de term Big Data vallen. Dit deden we met een datagedreven
systematische aanpak die werkte door tekstanalyse toe te passen op wetenschappelijke
(bio)medische literatuur.

Ons onderzoek bouwde voort op bevindingen van eerder kwalitatief onderzoek dat
vijftien definities analyseerde en vier belangrijke Big Data-thema’s identificeerde. Deze
en andere definities van Big Data hebben we onder de loep genomen en samengevoegd
tot acht extra thema’s, wat in totaal twaalf thema’s opleverde. Ook verzamelden we
handmatige annotaties van Big Data-thema’s in (bio)medische literatuur en toonden
een sterke aanwezigheid van de oorspronkelijke vier thema’s. We merkten op dat deze
thema’s breed worden gedefinieerd, waardoor veel van de andere acht thema’s erin zijn
opgenomen. Deze resultaten gaven aan dat het begrip van Big Data in die tijd vooral in
brede bewoordingen was vastgelegd.

Sinds ons onderzoek hebben anderen onderzoek gedaan naar de definitie van Big Data.
Allemaal kwamen ze tot min of meer dezelfde conclusie: het blijft moeilijk om een goed
gedefinieerde grens te trekken rond de concepten van Big Data. Eén studie deed een reeks
interviews met onderzoekers. Ze merkten op dat van de 39 deelnemers er maar één een
formele definitie van Big Data kon geven. Maar toch vonden ze overeenkomsten in de
antwoorden van de deelnemers. Naar onze mening blijkt hier uit dat de definitie van Big
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Data minder belangrijk is dan de term toe te passen op alles waar een onderzoeker het
van toepassing acht. Dit vloeit voort uit ons geloof dat, om de verspreiding en acceptatie
van Big Data-oplossingen te verbeteren, de oplossingen vindbaar moeten zijn. Zelfs als
twee onderzoekers de term Big Data op een, vaak subtiel, verschillende manier zouden
gebruiken, zouden ze in hetzelfde geïnteresseerd kunnen zijn.

Sceptici beweren dat Big Data slechts een hype-term is, niets nieuws of in het beste
geval slechts een uitbreiding van wat al tientallen jaren wordt gedaan. Dit was ook het
geval in onze omgeving, wat ons motiveerde om de waarde van de term Big Data aan te
tonen. In dit onderzoek, beschreven in Hoofdstuk 3, keken we naar het gebruik van de
term Big Data in wetenschappelijke publicaties. We hebben de waarde van de term Big
Data gemeten door een groot aantal (bio)medische publicaties aan een machine learning-
methode te geven. De publicaties behoorden tot twee groepen: degenen die de term Big
Data bevatten en degenen die dat niet deden. We ontdekten dat de machine learning-
methode goed presteerde bij het onderscheiden van kenmerken van de publicaties in de
groepen. Bovendien ontdekten we bij het analyseren van de meest gebruikte woorden in
de Big Data-papers dat het gebruik van de term Big Data in een publicatie leek te wijzen
op een ander type onderzoek op biomedisch gebied. We concludeerden dat waarde kan
worden toegekend aan de term Big Data bij gebruik in een publicatie. Deze conclusie
versterkte onze overtuiging dat het nuttig is om de term toe te passen op alles waar een
onderzoeker het van toepassing acht, waardoor het werk voor anderen vindbaar wordt.

Oplossingen voor een stortvloed aan data

Systematic reviews zijn een hoeksteen van door onderzoek gedreven besluitvorming
(evidence-informed decision making). Reviewers brengen de bevindingen van meerdere
onderzoeken op een gestructureerde, betrouwbare en onpartijdige manier samen. Het
proces wordt echter meestal handmatig uitgevoerd en kost veel tijd. Door de snelle
groei van wetenschappelijke informatie die wordt geproduceerd en onderzoeksvragen die
moeten worden beantwoord, is er een groeiende werkdruk voor reviewers. Hierdoor is de
huidige manier van werken onhoudbaar zonder de hulp van automatiseringstools.

In Hoofdstuk 4 onderzochten we waarom het gebruik van automatiseringstools onder
systematic reviewers achterbleef en we identificeerden mogelijke barrières en ondersteu-
nende factoren. We hebben enquêtes ingezet en ontdekten dat automatiseringstools
niet veel werden gebruikt onder de deelnemers. De resultaten leverden bewijs voor
de conclusies en aanbevelingen van eerder werk dat was gebaseerd op de mening van
deskundigen. Wanneer tools werden gebruikt, leren deelnemers deze meestal kennen
via hun collega’s, collega’s of de organisatie. Tools werden vaak gekozen op basis van
gebruikerservaring, hetzij door eigen ervaring, hetzij van collega’s. Ten slotte werden
licenties, een steile leercurve, gebrek aan ondersteuning en het niet kunnen inpassen in
de gebruikelijke werkwijze vaak door deelnemers als relevante belemmeringen gemeld.

Na ons onderzoek hebben anderen het gebruik van automatiseringstools onderzocht.
Eén studie voerde een systematic review uit die in zo veel mogelijk stappen van het proces
een automatiseringstool inzette. Ze ontdekten dat een review aanzienlijk kan worden
versneld door het gebruik van tools. Bovendien concludeerden veel onderzoeken dat het
idee dat een tool helpt om een review efficiënter te laten verlopen erg belangrijk was voor
de acceptatie ervan. Met andere woorden, als de gebruiker denkt dat een tool hem zal
helpen, dan zal hij deze gaan gebruiken.

De bovenstaande resultaten impliceren dat de belangrijkste barrières niet de daad-
werkelijke prestatie van een automatiseringstools is, maar eerder het sentiment van de
gebruikers ten opzichte van de tool. Sentiment wordt beïnvloed door vele factoren. De
mening van de omgeving en een gemakkelijke toegang tot de tool werden door systematic
reviewers het vaakst genoemd. Dit benadrukt het belang dat organisaties en best practices
in een veld kunnen hebben voor de adoptie van automatiseringstools. Op het gebied van
systematic reviews bepalen richtlijnontwikkelaars de regels waaraan systematic reviewers
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zich moeten houden. Daarom stellen we dat dit de eerste groep moet zijn die overtuigd is
van de betrouwbaarheid van automatiseringstools.

Toepassen van oplossingen in de praktijk

In Hoofdstuk 5 hebben we een aanpak geïntroduceerd om prestaties te verbeteren van
automatiseringstools die gebruikt kunnen worden voor systematic review. Een systematic
review bestaat uit het zoeken, beoordelen en samenvoegen van bewijs. Tijdens de
beoordelingsfase wordt de relevantie van wetenschappelijke artikelen bepaald die tijdens
de zoek-stap zijn gevonden. In veel reviews is het aantal te beoordelen artikelen
erg groot. Daarom hebben we ons gericht op een groep van automatiseringstools die
het beoordelingsproces van een systematic review ondersteunen. Dit doen we door
tekstanalyse te gebruiken om de relevantie te voorspellen van elk onderzoek dat moet
worden beoordeeld. Met behulp van de voorspellingen kan de leesvolgorde worden
aangepast, zodat de reviewer de artikelen die waarschijnlijk relevant zijn als eerste ziet.

Om te voorspellen hoe relevant een onderzoek is leert een algoritme van eerdere
systematic reviews waarin de relevante artikelen door onderzoekers zijn aangeduid, een
proces wat trainen genoemd wordt. Een vuistregel bij machine learning is om alle
beschikbare data te gebruiken, omdat meer voorbeelden tijdens de training meestal
betere voorspellingen opleveren. Elk systematic review onderzocht echter een unieke
onderzoeksvraag. Hierdoor vroegen we ons af of het gebruik van alle beschikbare data
ook daadwerkelijk resulteert in het best presterende algoritme. Immers, bij het kiezen
welke data gebruikt moeten worden om een review over de ziekte van Alzheimer te
voorspellen, zou een andere review over Alzheimer een betere trainingsset kunnen bieden
dan een review over kanker. Daarom zou het uitsluiten van de review over kanker uit
de trainingsset de prestaties van het algoritme kunnen verbeteren, omdat de resterende
data niet ‘verdund’ worden. Onze voorgestelde aanpak koos de trainingsset op basis van
een statistiek die de gelijkenis tussen reviews kwantificeert op basis van tekstkenmerken.
Deze aanpak leidde tot kleinere trainingssets, waarbij de selectie een hoge gelijkenis had
met de gegevens uit de reviews die we voorspelden, wat mogelijk de prestaties van de
automatiseringstool verbeterde.

In Hoofdstuk 5 hebben we onze aanpak geïntroduceerd. We hebben alleen de meest
vergelijkbare gegevens geselecteerd en vervolgens ons voorspellingsalgoritme getraind en
getest. In tegenstelling tot onze hypothese, vonden we dat algoritmen die waren getraind
op meer data beter presteerden. Echter, algoritmen die waren getraind voor reviews met
een onderzoeksvraag die vergelijkbaarwasmet andere reviews in de dataset, kregen betere
resultaten. We concludeerden dat onze voorgestelde aanpak het potentieel had om de
voorspellingsprestaties in die gevallen te verbeteren.

Om onze conclusie te testen, hebben we in Hoofdstuk 6 onze aanpak toegepast met
een active learning algoritme. Hierbij deed de tool enkele voorspellingen en presenteerde
deze aan de gebruiker. De gebruiker beoordeelde deze voorspellingen en gaf feedback
aan de tool. De tool beoordeelde de feedback en deed nieuwe voorspellingen. Dit proces
werd herhaald totdat een stopcriterium was bereikt (bijvoorbeeld: alle relevante items
werden gevonden). Omdat de door de gebruiker verstrekte informatie het meest relevant
was voor de betreffende review, moet deze zwaar wegen in het voorspellingsproces. Het
verminderen van het aantal voorbeelden in de initiële trainingsgegevens zou daarom van
invloed moeten zijn op de prestaties van het algoritme. In Hoofdstuk 6 vonden we dat de
prestatie van een active learning tool die met minder gegevens was getraind, significant
hoger was in vergelijking met een tool die alle beschikbare gegevens gebruikte. Daarom
concludeerden we dat onze aanpak de prestaties verbeterde bij het gebruik van active
learning. Bovendien was een aanvullend voordeel van deze aanpak dat de vermindering
van gegevens ook de computerkracht die nodig was voor het trainen van de machine
learning-methode verminderde. Dit betekende dat de training sneller klaar was, wat kan
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leiden tot een snellere doorlooptijd voor de gebruikers van de tool en dat er mogelijk
bespaard kon worden op de IT-infrastructuur.

Conclusie

In dit proefschrift hebben we een definitie gevonden voor de term Big Data en zagen
we dat de term waarde heeft bij gebruik in (bio)medische wetenschappelijke literatuur.
Vervolgens hebben we barrières en ondersteunende factoren beschreven voor het gebruik
van automatiseringstools onder systematic reviewers, die worden geconfronteerd met
Big Data-uitdagingen. Ten slotte hebben we een nieuwe methode geïntroduceerd die
de prestaties van tools voor automatisering van systematische reviews verbetert en
tegelijkertijd de benodigde computerkracht verlaagt.
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UvA University of Amsterdam

IT Information Technology

NIST National Institute of Standards and Technology

TM Topic Modelling

DOI Digital Object Identifier

LDA Latent Dirichlet Allocation

V’s Big Data aspects
For example: Volume, Velocity, Variety, Veracity, Value, and Variability.

BD Big Data

NBD non-Big Data

PMC PubMed Central

ROC Receiver Operating Characteristic

AUC Area Under the Curve

FOR False Omission Rate

FDR False Discovery Rate

TAM Technology Acceptance Model 2

DTA Diagnostic Test Accuracy

TF Term Frequency

WSS Work Saved over Sampling

WSS@95 Work Saved over Sampling @ 95%

TF-IDF Term Frequency Inverse Document Frequency

SIMILAR selected data
Name for approach used in data selection studies. This approach used data selected
with a similarity metric.

ALL all data



List of acronyms

Name for approach used in data selection studies. This approach used all the data
available.

RANDOM random data
Name for approach used in data selection studies. This approach used a random
selection of the available data.

IB Inverse Burden

BIC Bayesian Information Criterion

AIC Akaike Information Criterion

HTML Hypertext Markup Language
A standardised system for describing layout and styling in (web)documents.

SUS System Usability Scale

ICD-10 International Classification of Diseases, 10th revision

SVM Support Vector Machine
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te vinden van ondersteunen en vrij laten. Zelfs als we meerdere maanden op elkaars lip
in een bus leven. De aankondig dat ik een PhD ging doen ving je op met 10% uitlachen en
90% support. Je kent al mijn sterke punten en accepteert al mijn zwaktes en weet deze ook
vaak aan te vullen. Daar heb ik dankbaar gebruik van gemaakt tijdens het schrijfproces van
enkele papers. Zonder jouw herschrijfacties was ik nu waarschijnlijk nog steeds op zoek
naar de perfecte bewoording. Ik hoop dat we de komende jaren al onze plannen waar
kunnen maken, of niet, als we er tegen die tijd toch anders over blijken te denken. We
zien wel wat er gebeurt en ik zal altijd van je blijven genieten, in de woorden van Freddie:
“you’re my best friend”.
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