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Martin Keller-Ressel
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Abstract

Hyperbolic space has become a popular choice of manifold for representation learn-
ing of various datatypes from tree-like structures and text to graphs. Building on the
success of deep learning with prototypes in Euclidean and hyperspherical spaces,
a few recent works have proposed hyperbolic prototypes for classification. Such
approaches enable effective learning in low-dimensional output spaces and can
exploit hierarchical relations amongst classes, but require privileged information
about class labels to position the hyperbolic prototypes. In this work, we propose
Hyperbolic Busemann Learning. The main idea behind our approach is to position
prototypes on the ideal boundary of the Poincaré ball, which does not require
prior label knowledge. To be able to compute proximities to ideal prototypes, we
introduce the penalised Busemann loss. We provide theory supporting the use
of ideal prototypes and the proposed loss by proving its equivalence to logistic
regression in the one-dimensional case. Empirically, we show that our approach
provides a natural interpretation of classification confidence, while outperforming
recent hyperspherical and hyperbolic prototype approaches.

1 Introduction

Classification by prototypes has a long tradition in machine learning. Foundational solutions such as
the Nearest Mean Classifier [46] represent classes as the mean prototypes in a fixed feature space.
Following approaches that learning a metric space for class prototypes [28], deep learning with
prototypes as points in network output spaces has gained traction [14, 17, 26, 32, 36, 41, 49, 51]. In
line with foundational approaches, the prototypes are positioned by computing the mean over all
training examples for each class. Deep learning by mean prototypes has shown to be effective for
tasks such as few-shot learning [14, 32, 36, 41] and zero-shot recognition [41, 49, 51].

To avoid the need to re-learn prototypes or to enable the use of prior label knowledge, several recent
works have proposed deep networks with prototypes in non-Euclidean output spaces. Hyperspherical
prototype approaches initialize prototypes on the sphere or its higher-dimensional generalization,
based on pair-wise angular separation [29, 39] or with the help of word embeddings [4, 43] using
a cosine similarity loss between example outputs and class prototypes. Hyperspherical prototypes
alleviate the need to re-position prototypes continuously and allow to optionally include prior semantic
knowledge about the classes. Recently, a few works have extended prototype-based learning to the
hyperbolic domain, where prototypes are obtained by embedding label hierarchies [23, 24]. While
hyperbolic prototype approaches provide more hierarchically coherent classification results, prior
hierarchical knowledge is required to embed prototypes. This paper strives to combine the best of both
non-Euclidean worlds, namely efficient low-dimensional embeddings from hyperbolic prototypes
and the knowledge-free positioning from hyperspherical prototypes.

We make three contributions in this work. First, we introduce a hyperbolic prototype network with
class prototypes given as points on the ideal boundary of the Poincaré ball model of hyperbolic
geometry. Second, we propose the penalized Busemann loss, which enables us to compute proximities
between example outputs in hyperbolic space and prototypes at the ideal boundary, an impossible
task for existing distance metrics, which put the ideal boundary at infinite distance from all other
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Figure 1: Visualization of the output space for Hyperbolic Busemann Learning in two dimen-
sions on CIFAR-10. The penalized Busemann loss optimizes images to be close to their corresponding
ideal prototypes while forcing all examples towards the origin to avoid over-confidence, e.g., for the
deer, top plane, and ship examples. Ambiguous cases, such as the horse and bottom plane examples
are projected closer to the origin, providing a natural interpretation of classification confidence.

points in hyperbolic space. Third, we provide a theoretical link between our hyperbolic prototype
approach and logistic regression. We show that our choices for output manifold, for prototypes on the
ideal boundary, and for the proposed loss provide a direct generalization of the logistic regression
model. Experiments on three datasets show that our approach outperforms both hyperspherical
and hyperbolic prototype approaches. Moreover, our hyperbolic output space provides a natural
interpretation of closeness to the ideal boundary as classification confidence, see Figure 1. The code
is available at https://github.com/MinaGhadimiAtigh/Hyperbolic-Busemann-Learning.

2 Related work

As an early adaptation of prototypes in deep networks, the center loss [47] served as an additional
loss for softmax cross-entropy optimization, where all outputs of a class were pulled to one point
to help minimize intra-class variation. Closer to the original Nearest Mean Classifier objective,
Prototypical Networks introduce a prototype-only approach where each class is represented as the
mean output of its corresponding training examples [41]. Learning with prototypes from class means
has shown to be effective for few-shot learning [14, 32, 36, 41], zero-shot recognition [41, 49, 51],
and domain adaptation [33]. Defining prototypes as class means is feasible in few-shot learning by
sampling all samples of a class in a mini-batch. For general supervised learning, DeepNCM [17]
and DeepNNO [26] propose alternating optimization schemes, where the prototypes are fixed to
update the network backbone and vice versa. To avoid the need for constant prototype updating,
several works have proposed to use the hypersphere as output space instead of the Euclidean space.
On the hypersphere, prototypes can be positioned a priori based on angular separation [29, 39],
using an orthonormal basis [4], or using prior knowledge from word embeddings [4, 29, 43]. Similar
to hyperspherical prototype approaches, we seek to position prototypes at unit distance from the
origin. In contrast, we operate on a hyperbolic manifold, which provides a theoretical link to logistic
regression and obtains better empirical results than a hypershperical manifold and loss.

In this work, we strive for a prototype-based network on hyperbolic manifolds, which have become a
popular choice for embedding data and deep network layers. Hyperbolic embeddings have shown
to represent tree-like structures [38, 37], text [1, 44, 55], cells [20], networks [18], multi-relational
knowledge graphs [3], and general taxonomies [16, 21, 30, 31, 50] with minimal distortion. In
deep networks, hyperbolic alternatives have been proposed for fully-connected layers [15, 40],
convolutional layers [40], recurrent layers [15], classification layers [13, 15, 40], and optimizers [5, 6,
52]. Hyperbolic generalizations have also been introduced for graph networks [2, 12, 22, 25, 53, 54]
and generative models [7, 27]. Where hyperbolic-based deep learning approaches commonly operate
within the Poincaré model represented by the open unit ball, we propose to position class prototypes
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on its ideal boundary – the shell of the unit ball – allowing us to benefit from the representational
power of hyperbolic geometry without requiring prior knowledge to operate.

A few works have recently proposed prototype-based approaches with hyperbolic output spaces.
Hyperbolic Image Embeddings by Khrulkov et al. [19] include a prototype-based setting as a direct
hyperbolic generalization of Prototypical Networks [41], allowing for few-shot learning through
hyperbolic averaging. Beyond few-shot learning, Long et al. [24] introduce a hyperbolic action
network, where action prototypes are projected to a hyperbole based on prior knowledge about
hierarchical relations. Videos are in turn projected to the same space and compared to the prototypes
using the hyperbolic distance, enabling hierarchically consistent action recognition and zero-shot
recognition. Similarly, Liu et al. [23] perform zero-shot recognition using hyperbolic prototypes
positioned based on known hierarchical relations. In this work, we also employ prototypes in
hyperbolic space, but do not require prior knowledge about hierarchies. Recent approaches with
hyperbolic output spaces have shown to be effective in low dimensionalities [19, 24, 23]. Low
dimensional embeddings have several practical use cases and benefits. We list two important use
cases. Compactness: Hyperbolic Busemann Learning enables us to embed high-dimensional inputs
in low-dimensional output spaces. This ability has potential benefits in applications such as data
transmission, compression, and storage. Interpretability: Obtaining high performance with few
output dimensions (i.e., two or three output dimensions) provides the potential to interpret the model
performance and visualize the output space, see Figure 1.

3 Learning with hyperbolic ideal prototypes

3.1 Problem formulation

We are given a training set {(xi, yi)}Ni=1 with N examples, where xi ∈ RI denotes an input with
dimensionality I and yi ∈ {1, .., C} denotes a label from a set of sizeC. We seek to learn a projection
of inputs to a hyperbolic manifold in which can compute proximities to class prototypes. We do so
through a transformation F in Euclidean space, followed by an exponential map from the tangent
space TxM to a hyperbolic manifoldM:

z = expv(F(x; θ)), (1)

where θ denotes the parameters to learn the transformation. The transformation can be any function,
e.g., a deep network or a linear layer akin to logistic regression. The hyperbolic manifold in which
z operates is described throughout this work by the Poincaré ball model (Bd, gBz ), with open ball
Bd = {z ∈ Rd | ||z||2 < 1} and the Riemannian metric tensor gBz = 4(1 − ||z||2)−2Id [11, 34].
Setting its center to v = 0 the exponential map in the Poincaré model is given by:

exp0(x) = tanh(||x||/2) x

||x||
. (2)

Furthermore, the geodesic distance between two points z1, z2 ∈ Bd is given by:

dB(z1, z2) = arcosh

(
1 + 2

||z1 − z2||2

(1− ||z1||2)(1− ||z2||2)

)
. (3)

To train our model, we compare the projected inputs to their class labels, represented by the prototypes
P = {p1, ..,pC}. That is, the overall training loss is given as the aggregation of distance-based
individual losses ` between projected inputs and the prototype of their respective class labels:

L(θ) = 1

N

N∑
i=1

`(exp0(F(x; θ)),pyi). (4)

3.2 Ideal prototypes and the penalized Busemann loss

The central idea of our approach is to position class prototypes at ideal points, which represent points
at infinity in hyperbolic geometry. In the Poincaré model, the ideal points form the boundary of the
ball:

Id = {z ∈ Rd : z21 + · · ·+ z2d = 1}. (5)
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Figure 2: Visualization of the penalized Busemann loss. The left plot shows a color map of the
penalized Busemann loss function, see (8), in dimension two for a single ideal prototype located at
p = (1, 0); contour lines are log-spaced. The right plot shows its gradient with respect to the radial
coordinate. During loss minimization, points in the drop-shaped region adjacent to the prototype will
move outwards, while points outside of the region will move inwards.

Thus, the set of ideal points of hyperbolic space Bd is homeomorphic to the hypersphere Sd. As
a consequence, any of the methods used for prototype embedding into Sd can be used to embed
prototypes into Id. In particular, for d = 2, prototypes can be placed uniformly on the unit sphere S2,
while class-agnostic prototype embedding based on separation can be used for d ≥ 3 [29].

A key issue that needs to be solved, is that ideal points are at infinite geodesic distance from all other
points in Bd and hence the geodesic distance can not be used directly for prototype-based learning.
Therefore, we propose the penalized Busemann loss for hyperbolic learning with ideal prototypes.
The Busemann function, originally introduced in [9] (see also Def. II.8.17 in [8]), can be considered a
distance to infinity and may be defined in any metric space. Let p be an ideal point and γp a geodesic
ray, parametrized by arc length, tending to p. Then the Busemann function with respect to p is
defined for z ∈ Bd as:

bp(z) = lim
t→∞

(dB(γp(t), z)− t). (6)

In the Poincaré model, the limit can be explicitly calculated and the Busemann function is given as:

bp(z) = log
||p− z||2

(1− ||z||2)
. (7)

The full derivation of (7) is provided in Appendix A. Our proposed loss combines the Busemann
function with a penalty term:

`(z,p) = bp(z)− φ(d) · log(1− ||z||2), (8)

with φ(d) a scaling factor for the penalty term which is a function of the dimension of the hyperbolic
space. The first term in the penalized Busemann loss steers a projected input z towards class prototype
p, while the second term penalized overconfidence, i.e., values close to the ideal boundary of Bd. The
prototypes are positioned before training and remain fixed, hence the backpropagation only needs to
be done with respect to the inputs. The gradient of `(exp0(x),p) with respect to x is given as:

∇x `(exp0(x),p) = (x−p) tanh(||x||)
||x|| − tanh(||x||)p · x

+1d p·x
tanh(||x||)/||x|| − 1

||x|| − tanh(||x||)p · x
+tanh(||x||/2),

(9)
with 1d a d-dimensional vector of ones. Figure 2 shows a color map of the penalized Busemann loss
itself and its radial gradient for a prototype located at ideal point p = (1, 0).

In the penalized Busemann loss, φ(d) governs the amount of regularization. Below, we show that this
function should be linear in the number of dimensions.

Theorem 1. For any d ≥ 4 and ideal point p the penalized Busemann loss `(z,p) is the log-likelihood
of a density f(z,p) = 1

C(d) exp (−`(z,p)) on the Poincaré ball Bd if and only if φ(d) > d− 2.
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Proof. To show that f(z,p) is a density, we have to show that the normalization constant

C(d) =

∫
Bd

exp (−`(z,p)) dV

is finite. Here, dV is the hyperbolic volume element on Bd, which is equal to 2d(1 −
||z||2)−ddz1 · · · dzd, see [34]. Furthermore, using invariance of the integrand under rotation, we can
assume without loss of generality that p is equal to the unit vector e1 = (1, 0, . . . , 0), which leads to

C(d) = 2d
∫
Bd

(
(1− ||z||2)φ(d)+1−d

1− 2z1 + ||z||2

)
dz1 · · · dzd.

Switching to (Euclidean) hyperspherical coordinates (r, ϕ1, . . . , ϕd), the integral factorizes into
C(d) = 2d · C1(d) · C2(d), where

C1(d) =

∫ 1

0

∫ π

0

(
(1− r2)φ(d)+1−d

1− 2r cos(ϕ1) + r2

)
rd−1 sin(ϕ1)

d−2dr dϕ1

C2(d) =

∫ π

0

sin(ϕ2)
d−3dϕ2 . . .

∫ π

0

sin(ϕd−2)
2dϕd−2 ·

∫ 2π

0

sin(ϕd−1)dϕd−1.

Clearly, C2(d) is finite, independently of d, such that it remains to consider C1(d). Instead of solving
the integral exactly, we use the elementary estimate

sin(ϕ1)
2 ≤ 1− 2r cos(ϕ1) + r2 ≤ 4,

valid for all r ∈ [0, 1]. This estimate allows us to obtain both a lower and an upper bound on C1(d).
The upper bound becomes

C1(d) ≤
∫ 1

0

(1− r2)φ(d)+1−d rd−1dr

∫ π

0

sin(ϕ1)
d−4dϕ1,

which (given that d ≥ 4) is finite if and only if φ(d) > d− 2. The lower bound becomes

C1(d) ≥
1

4

∫ 1

0

(1− r2)φ(d)+1−d rd−1dr

∫ π

0

sin(ϕ1)
d−2dϕ1,

which (given that d ≥ 2) is also finite if and only if φ(d) > d− 2, which completes the proof.

Given a trained model, inference is performed by projecting the test example x and selecting the
class with the smallest prototype distance:

y? = argmin
p∈P

`(exp0(F(x; θ)),p). (10)

The Poincaré ball model of hyperbolic geometry has the conformal property, i.e., angles in the
Poincaré ball model coincide with angles in Euclidean space [35]. Thus, the cosine similarity
between two ideal points remains a meaningful measure of their similarity, even in hyperbolic
geometry. As the penalty term is the same for all prototypes, we can equivalently minimize the
Busemann function of the prototypes directly. Moreover, as the Busemann function is a decreasing
function of the cosine similarity, prediction is equivalent to hyperspherical prototype inference:

y? = argmax
p∈P

z

||z||
· p, z = exp0(F(x; θ)). (11)

3.3 Relation to logistic regression

Logistic regression is a foundational algorithm for classification and a pillar in supervised learning
for deep networks with cross entropy optimization. Here, we show that hyperbolic ideal prototype
learning is a natural generalization of logistic regression by showing its equivalence when using
d = 1 dimensions in our approach.
Theorem 2. For dimension d = 1 and with penalty φ(1) = 1, Hyperbolic Busemann Learning with
a single linear layer is equivalent to logistic regression.
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(a) CIFAR-100 (50D).
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(b) CIFAR-10 (5D).

Figure 3: Ablation study on the penalized Busemann loss for CIFAR-100 and CIFAR-10. On
both datasets, adding a non-negative penalty (0.1 to 1) improves the classification results over the
Busemann loss without penalty (0). With more classes, a lower penalty is preferred. The y-axis on
CIFAR-10 starts from 60% to better visualize differences between settings.

Proof. Recall that from the machine learning point of view logistic regression can be described as a
single linear layer in combination with the logistic activation function and cross-entropy-loss. In one
dimension, hyperbolic space B1 becomes the interval (−1, 1). The set of ideal points I1 consists of
the two points ±1. To identify these prototypes with 0/1 (the class labels in logistic regression) we
introduce a linear change of coordinates to

z′ =
z + 1

2
.

Under this change of coordinates B1 becomes the unit interval (0, 1) and the prototypes p′ (the ideal
points) become the endpoints 0 and 1. The exponential map, i.e., the embedding of the base learner
output y = w>x+ w0 into B1, maps y ∈ R to

z′ = exp0(y) =
tanh(y/2) + 1

2
=

1

1 + e−y
,

which is the logistic function. In z′-coordinates, the penalized Busemann loss becomes

`(z′, p′) = 2 log
( |p′ − z′|
2z′(1− z′)

)
=

2 log
(

1
2(1−z′)

)
if p′ = 0

log
(

1
2z′

)
if p′ = 1

.

Rewriting this as
1

2
`(z′, p′) + log(2) = −p′ log(z′)− (1− p′) log(1− z′),

shows that the shifted and scaled penalized Busemann loss coincides with the cross-entropy loss in
dimension d = 1.

Beyond binary classification, multinomial logistic regression is performed in a one-vs-rest manner
with a K-dimensional softmax output for K classes. i.e., in conventional multinomial logistic
regression the output space scales one-to-one with the number of classes. With Hyperbolic Busemann
Learning, we provide a different generalization of logistic regression, where the number of output
dimensions is independent of the number of classes. Most prominently, we find that most of the
classification performance can be maintained in output spaces of small dimension, cf., Tables 1
and 4.

4 Experiments

4.1 Ablation studies

Setup. We first investigate the workings of the penalized Busemann loss. We evaluate the effect of
the penalty term on CIFAR-10 and CIFAR-100 using a ResNet-32 backbone. For the experiment, we
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Figure 4: Visualization of the penalty term and its effect on the output space with a ResNet-32
on CIFAR-10. Without a penalty, examples are close to the boundary, leading to overconfidence.
Contrarily, a high penalty forces examples towards the origin of the Poincaré ball, leading to inter-class
confusion. With the right slope, these factors are balanced, resulting in improved classification.

use Adam with a learning rate of 5e-4, weight decay of 5e-5, batch size of 128, without pre-training.
The network is trained for 1,110 epochs with learning rate decay of 10 after 1,000 and 1,100 epochs.
The prototypes are given by [29] without prior knowledge.

Results. In Figure 3, we show the results for CIFAR-100 and CIFAR-10 for various set-
tings of the penalty term in the Busemann loss. The penalty term φ(d) depends on the output
dimensionality and should be linear in form as per Theorem 1. In the Figure, we show five settings,
corresponding to the slope s of the linear function, i.e., φ(d; s) = s · d. On both datasets the setting
with s=0, where the penalty term is excluded, performs worst, highlighting the importance of includ-
ing a penalty in the Busemann loss. For the other settings, the higher the value, the larger the penalty
and the stronger the pull towards the origin of the output space. On CIFAR-10, all non-zero slopes
improve the classification accuracy. Slope s=0.75 is slightly preferred with an accuracy of 92.3%
versus 91.9% for s=1 and 90.1% for s=0. For CIFAR-100, a too strong penalty negatively impacts
the classification results. A penalty of s=0.1 performs best with an accuracy of 65.8% compared
to 39.7% and 35.9% for s=1 and s=0. We conclude that the penalty term is an influential com-
ponent of the proposed loss and with more classes a lower slope is recommended for best performance.

Analysis. To better understand the penalty term and its effect, we have trained a ResNet-
32 backbone on CIFAR-10 using only two output dimensions. In Figure 4, we visualize the
output space for three slope values, along with the ideal prototypes and test examples. The
visualization clearly shows the importance of the penalty; without it, examples move closely
towards the ideal prototypes leading to over-confidence. On the other hand, a high penalty
pulls all examples close to the origin of the Poincaré ball. Especially with many classes,
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Figure 5: Confidence interpretation.
The larger the distance to the origin, the
more likely the example is correctly clas-
sified, showing that our hyperbolic ap-
proach provides a natural interpretation
of classification confidence.

this leads to smaller inter-class variation and higher con-
fusion. The visualization explains the lower performance
for a high penalty on CIFAR-100 compared to CIFAR-
10. By balancing confidence and inter-class separation,
the best classification results are achieved. Figure 1 and
Figure 4 show intuitively that the distance to the origin
for an example reflects the confidence of the network in
classifying the example. We have performed a quantita-
tive analysis to show that our approach provides a natural
interpretation of classification confidence, see Figure 5. In
general, the closer the example to the origin, the lower the
overall confidence, as also indicated in other hyperbolic
approaches [19, 42]. The red line in Figure 5 shows that
the distance to the origin in our approach also correlates
with angular similarity to the correct class prototype. In
other words, the larger the distance to the origin, the higher
the likelihood of the classification being correct. Again,
this provides a parallel to logistic regression, where the
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Table 1: Comparison to Hyperspherical Prototype Networks on CIFAR-100 and CIFAR-10 using
the same prototypes and a ResNet-32. ∗ denotes results from code provided by [29] in case the
number was not reported in the original paper. For both datasets, our approach obtains a high accuracy,
especially with few output dimensions.

CIFAR-100 CIFAR-10
Dimensions 3 5 10 25 50 2 3 4 5

Mettes et al. [29] 5.5 28.7 51.1 63.0 64.7 30.0∗ 84.9∗ 88.8∗ 89.5∗
This paper 49.0 54.6 59.1 65.7 65.8 91.2 92.2 92.2 92.3

output score can be interpreted as a classification probability, conditioned on the input. We conclude
from the analysis that the severity of the linear penalty matters to balance over-confidence and
inter-class confusion, while the networks outputs enable a direct interpretation of the classification
results.

4.2 Comparison to hyperspherical prototypes

Setup. In the second experiment, we compare our approach to its hyperspherical counterpart, in which
the output space is the positively curved hypersphere instead of negatively curved hyperbolic space.
We draw a comparison to Hyperspherical Prototype Networks [29], which has shown to be competitive
or better than conventional softmax cross-entropy and using Euclidean prototypes. For a fair compari-
son, we use the same prototypes and the same network backbone. The difference lies in the choice of
manifold and accompanying loss function. Following [29], we report on CIFAR-100, CIFAR-10, and
CUB Birds 200-2011 [45] across multiple dimensionalities. On CIFAR-100, we use 3, 5, 10, 25, and
50 output dimensions, while we use 2, 3, 4, and 5 output dimensions for CIFAR-10 and 3, 10, 50, and
100 for CUB Birds 200-2011. For CUB Birds 200-2011, we keep the main hyperparameters the same
as for the CIFAR experiments and use a weight decay of 0.0001, 2110 epochs, and a slope of 0.05.

Table 2: Comparison to Hyperspherical Proto-
type Networks on CUB Birds 200-2011 using the
same prototypes and a ResNet-32. ∗ denotes re-
sults from code provided by [29] in case the num-
ber was not reported in the original paper.

CUB Birds 200-2011
Dimensions 3 10 50 100

Mettes et al. [29] 1.0∗ 9.5∗ 41.5∗ 45.6∗
This paper 36.6 43.5 43.5 45.6

Results. We show the classification results for
CIFAR-100 and CIFAR-10 on ResNet-32 in
Table 1 and CUB Birds 200-2011 in Table 2.
Across all dimensions, our approach performs
better and the gap increases when using fewer
dimensions. On CIFAR-100 for five output di-
mensions, we obtain 54.6% accuracy versus
28.7% for hyperspherical prototypes and the rel-
ative difference grows for three dimensions with
49.0% versus 5.5%. On CUB Birds 200-2011
for ten output dimensions, we obtain an accu-
racy of 43.5% versus 9.5% for hyperspherical prototypes. When scaling down to three dimensions,
hyperspherical prototypes obtain 1.0% accuracy and we obtain 36.6%. On CIFAR-10, our perfor-
mance is hardly affected by using few dimensions. The accuracy for our approach in two dimensions
is still 91.2% compared to 92.3% in five dimensions and 30.0% in two dimensions for hyperspherical
prototypes. The high scores with few dimensions highlights the effectiveness of our approach and is
in line with the effectiveness of hyperbolic embeddings in lower dimensionalities [30].

Table 3: Comparison with varying architecture and prototypes on CIFAR-100. ∗ denotes results
from code provided by [29] in case the number was not reported in the original paper. Our approach
is applicable to and effective for any choice of network backbone and choice of prototypes.

DenseNet-121 ResNet-32 w/ prior knowledge
Dimensions 3 5 10 25 50 3 5 10 25 50

Mettes et al. [29] 11.5∗ 45.1∗ 60.5 69.1 71.1∗ 11.5 37.0 57.0 64.0 65.2∗
This paper 66.1 69.0 71.1 72.7 71.8 52.2 56.4 62.4 65.9 68.0
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Table 4: Comparative evaluation to softmax
cross-entropy, Euclidean prototypes, and hyper-
spherical prototypes on CIFAR-100 with ResNet-
32. Baseline numbers taken from [29].

Manifold Prior knowledge
w/o w/

Softmax CE - 62.1 -
Guerriero et al. [17] R100 62.0 -
Mettes et al. [29] S99 65.0 65.2
This paper B50 65.8 68.0

To show that the obtained results generalize to
other network backbones and choice of proto-
types, we report additional results in Table 3 for
CIFAR-100. Using a DenseNet-121 architecture
improves both our approach and the baseline
with similar relative performance improvements
with lower dimensionalities. We also investi-
gate the addition of prior semantic knowledge
in prototypes as per [29]. With these prototypes,
the improvements with few dimensions holds
and additionally boost the performance in high
dimensions. With 50 dimensions, we obtain an
accuracy of 68.0%, compared to 65.8% without using prior knowledge. In Table 4, we show addi-
tional comparisons to softmax cross-entropy and Euclidean prototypes, which re-iterate the potential
of our approach both with and without prior knowledge for prototypes. Overall, we conclude that
our approach is applicable and effective for classification regardless of backbone and choice of
prototypes.

4.3 Comparison to hyperbolic prototypes

Setup. The second experiment has shown that Hyperbolic Busemann Learning boosts the classifica-
tion results compared to its hyperspherical counterpart. In the third experiment, we draw a comparison
to the recent hyperbolic action network [24], the only hyperbolic prototype approach to date which is
not restricted to few-shot or zero-shot settings. In [24], action classes are embedded as prototypes
in the interior of the Poincaré ball based on given hierarchical relations. In contrast, we position
prototypes on the ideal boundary of the Poincaré ball, which can be done both with and without prior
hierarchical knowledge. To showcase this possibility, we have performed a comparative evaluation
on ActivityNet [10] and Mini-Kinetics [48] for the search by action name task. The ActivityNet
dataset is a large untrimmed video dataset, which have been trimmed in [24] based on the available
temporal annotations. The trimmed dataset contains ∼23K videos and 200 classes, with a ∼15K split
for training and ∼8K for validation. Alongside trimming, a modified and more balanced ActivityNet
hierarchy with three levels of granularity is provided [24]. The Mini-Kinetics dataset consists of
∼83K trimmed videos and 200 classes, with a ∼78K split for training and ∼5K for validation.We
use the hierarchy with three levels of granularity for the Mini-Kinetics as detailed in [24].

We use both the prototypes from prior hierarchical knowledge [24] with entailment cones [15] and
knowledge-free prototypes from separation [29]. For our approach, we project the hierarchical
prototypes on the ideal boundary through `2-normalization. For both datasets, we use the same
pre-trained model for feature extraction and three-layer MLP for final classification as [24], with
Adam as optimizer, a learning rate of 1e-4, and learning rate drop after 900 iterations. All other
hyperparameters are the same as in previous experiments. Following [24], we report three metrics:

Table 5: Hyperbolic prototypes comparison on ActivityNet for the search by video name task.
When using prototypes from hierarchical knowledge, we score best across the three metrics when
using 10 output dimensions. Where [24] is restricted to prototypes from hierarchies, our approach
can also employ knowledge-free prototypes, e.g., from separation, to boost the standard mAP metric.

Prototypes from hierarchies Prototypes from separation
Dimensions 2 10 20 50 2 10 20 50

Long et al. [24]
mAP 26.9 68.3 66.9 67.1 - - - -
s-mAP 72.0 93.8 92.7 93.1 - - - -
c-mAP 91.9 97.7 97.2 97.5 - - - -

This paper
mAP 40.8 70.6 66.3 65.6 44.1 78.0 79.4 78.5
s-mAP 79.2 95.1 94.5 94.7 48.9 88.6 86.2 86.7
c-mAP 92.9 98.0 97.8 98.2 60.8 84.0 90.6 91.7
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Table 6: Hyperbolic prototypes comparison on mini-Kinetics for the search by video name task.
When comparing the models trained on the prototypes from hierarchies, our model outperforms when
using low dimension embeddings.

Prototypes from hierarchies Prototypes from separation
Dimensions 2 10 20 50 2 10 20 50

Long et al. [24]
mAP 28.8 64.4 63.5 64.5 - - - -
s-mAP 79.0 94.2 94.1 94.5 - - - -
c-mAP 91.0 96.5 96.3 96.5 - - - -

This paper
mAP 51.7 67.5 65.0 64.0 56.4 70.7 71.6 71.7
s-mAP 88.3 95.6 95.1 95.0 62.0 76.8 78.8 80.0
c-mAP 94.1 97.1 97.1 97.0 71.0 82.5 84.5 85.6

mean Average Precision (mAP), sibling-mAP (s-mAP), which counts a prediction as correct
if it is within 2-hops away in the hierarchy, and cousin-mAP (c-mAP), which does the same for 4-hops.

Results. The comparative evaluation on ActivityNet and Mini-Kinetics is shown in Table 5
and Table 6. When hierarchical knowledge is available, we only position the leaf nodes on the
boundary and the internal nodes of the hierarchy will be positioned inside the Poincaré ball. Using
the prototypes from hierarchical knowledge, we find that both our approach and the baseline favor
low-dimensional embeddings. Our highest score for the mAP metric on Activity-Net (70.6%)
outperforms the baseline (68.3%) and the same holds for sibling-mAP (95.1% versus 93.8%) and
cousin-mAP (98.2% versus 97.5%). The same holds on Mini-Kinetics. These results highlight our
ability to employ prototypes with prior knowledge. We note that the baseline performs additional
tuning for the curvature in hyperbolic space, while we only use a standard curvature of one. A unique
benefit of our approach is the ability to employ hyperbolic spaces without requiring hierarchical
priors for prototypes. We find that positioning prototypes solely based on data-independent separation
provides a boost in mAP, from 68.3% by [24] to 79.4%. In contrast, the hierarchical metrics
score lower with the prototypes from separation. This is a direct result of the lack of hierarchical
knowledge during prototype positioning. An explanation for the better performance of hierarchical
prototypes over separation prototypes for s-mAP and c-mAP compared to standard mAP comes from
how the prototypes are constructed. For the hierarchical prototypes, classes with the same parent will
be pulled together, while other classes will be pushed away. This boosts the s-MAP and c-mAP
since these metrics allow for confusion with hierarchically related classes. However, the standard
mAP considers all other classes as negatives. In that case, separation prototypes are preferred as
they push all classes away during prototype construction. Overall, we conclude that Hyperbolic
Busemann Learning provides both an effective and general approach for prototype-based learning
with hyperbolic output spaces.

5 Conclusions

In this paper, we introduce Hyperbolic Busemann Learning with ideal prototypes. Where existing
work on prototype-based learning in hyperbolic space requires prior knowledge to operate, we
propose to place prototypes at the ideal boundary of the Poincaré ball. This enables a prototype
positioning without the need for prior knowledge. We introduce the penalized Busemann loss to
optimize examples with respect to ideal prototypes. We provide both theoretical and empirical support
for the idea of ideal prototypes and the proposed loss. We prove its equivalence to logistic regression
in dimension one and show on three datasets that our approach outperforms recent hyperspherical
and hyperbolic prototype approaches.

Broader impact. Our approach allows for both knowledge-based and knowledge-free prototypes
and this choice matters depending on its broader utilization. Knowledge-free prototypes make fewer
errors but the remaining ones are less hierarchically consistent. Hence critical applications such as in
the medical domain benefit from the former, while search-based applications benefit form the latter.
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A Full derivation of Busemann function in Poincaré model

In the Poincaré model, the unit-speed geodesic γp(t) from the origin towards the ideal point p is
given by

γp(t) = p tanh(t/2).
Inserting into (6) and using the hyperbolic distance as given in (3) we obtain the following represen-
tation of the Busemann function:

bp(z) = lim
t→∞

(
arcosh (1 + x(t))− t

)
,

where

x(t) = 2
‖p tanh(t/2)− z‖2

(1− tanh(t/2)2)(1− ‖z‖2)
.

Using that tanh(t/2) = (et − 1)/(et + 1), it follows that

lim
t→∞

e−tx(t) =
1

2

‖p− z‖2

1− ‖z‖2
.

In particular, this shows that x(t) grows to infinity as t→∞. Using the representation of the inverse
hyperbolic cosine in terms of the logarithm, we obtain (with Landau’s small-o notation)

arcosh (1 + x(t)) = log
(
1 + x(t) +

√
x(t)2 + 2x(t)

)
= log

(
2x(t) + o(x(t))

)
,

as x(t)→∞. Thus, it follows that

bp(z) = lim
t→∞

{
log
(
2x(t) + o(x(t))

)
− t
}
= lim
t→∞

log
(
2e−tx(t) + e−to(x(t))

)
=

= log
(
2 lim
t→∞

e−tx(t) + 0
)
= log

‖p− z‖2

1− ‖z‖2
,

as claimed in (7).
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