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Article

Introduction

Irritability—proneness to anger and agitation—is common 
in individuals with ADHD, affecting between 25% and 70% 
of youth with the disorder (Geller et al., 2002; Shaw et al., 
2014). In adolescents with ADHD, irritability is associated 
with increased sleep problems, social difficulties, parental 
stress, and days missed from school (Mulraney et al., 2017) 
and alarmingly, related to a marked increase in risk for sui-
cide completion (James et al., 2004), engaging in self-harm-
ing behaviors (Swanson et al., 2014), and substance abuse 
(Harty et al., 2017). However, despite the clinical impor-
tance of irritability combined with ADHD, relatively little is 
known about the underlying pathophysiology.

Alterations in threat- and reward-based processing neu-
ral circuits have been proposed to account for irritability. 
Specifically, altered function of a circuit comprising the 
prefrontal cortex (PFC), anterior cingulate cortex (ACC), 
striatum, and amygdala may give rise to irritability in 

response to a frustrative non-reward, that is, a result of not 
attaining a goal (Brotman et al., 2017). In contrast, dysfunc-
tion in a circuit involving the PFC, amygdala, hypothala-
mus, and periaqueductal gray may propel irritability in 
response to a threat such as, for example, aggressive acts or 
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Abstract
Objective: Irritability is a common characteristic in ADHD. We examined whether dysfunction in neural connections 
supporting threat and reward processing was related to irritability in adolescents and young adults with ADHD. Method: 
We used resting-state fMRI to assess connectivity of amygdala and nucleus accumbens seeds in those with ADHD (n = 34) 
and an age- and gender-matched typically-developing comparison group (n = 34). Results: In those with ADHD, irritability 
was associated with atypical functional connectivity of both seed regions. Amygdala seeds showed greater connectivity 
with right inferior frontal gyrus and caudate/putamen, and less connectivity with precuneus. Nucleus accumbens seeds 
showed altered connectivity with middle temporal gyrus and precuneus. Conclusion: The irritability-ADHD presentation 
is associated with atypical functional connectivity of reward and threat processing regions with cognitive control and 
emotion processing regions. These patterns provide novel evidence for irritability-associated neural underpinnings in 
adolescents and young adults with ADHD. The findings suggest cognitive and behavioral treatments that address response 
to reward, including omission of an expected reward and irritability, may be beneficial for ADHD. (J. of Att. Dis. 2022; 26(7) 
1040-1050)
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criticism (Brotman et al., 2017). Previous studies suggest 
that emotional lability—a construct related to irritability—
is associated with altered functional connectivity of the 
amygdala in those with ADHD (Hulvershorn et al., 2013; 
Yu et al., 2020). Neuroimaging of resting-state functional 
connectivity—that is, the temporal correlation of neural 
activity between brain regions during rest—is a common 
approach to assess altered communication among spatially 
remote brain regions in clinical populations (Fox & 
Greicius, 2010). Compared to previous research reporting 
atypical amygdala functional connectivity, less is known 
about connectivity in reward processing regions and their 
association with irritability despite ample evidence that 
alterations in striatal-reward regions are common in those 
with ADHD (Konrad & Eickhoff, 2010; Rubia, 2018; 
Samea et al., 2019). To address this gap in the literature, we 
examined both amygdala and nucleus accumbens (NAcc) 
connectivity to determine whether irritability in adolescents 
and young adults with ADHD is associated with atypical 
connectivity of these two regions that form part of these two 
networks, with other brain regions. Identifying such con-
nections may provide new clues about what behaviors to 
intervene with depending on the regions with which the 
amygdala and NAcc demonstrate coordinated communica-
tion in relation to irritability.

We focused on the amygdala as a central region within 
the threat-based circuit and on the NAcc as a central region 
within the reward processing circuit. In children with 
ADHD, previous resting-state investigations suggest an 
association between emotional lability and increased func-
tional connectivity between the amygdala and the rostral 
ACC as well as decreased functional connectivity with 
posterior insula/superior temporal gyrus (Hulvershorn 
et al., 2013). Longitudinally, among children with ADHD, 
an irritable subtype—characterized by increased negative 
emotionality and greater risk for subsequent comorbidi-
ties—exhibited reduced amygdala–insula functional con-
nectivity (Karalunas et al., 2014). A more recent study also 
employing a seed-based approach reported an association 
between higher emotional lability and lower functional 
connectivity of a subregion of the right amygdala with the 
right dorsolateral PFC and bilateral inferior parietal lobes 
(Yu et al., 2020). The limited overlap in findings among 
these studies suggests that more attention is needed to 
understand the relation between irritability in ADHD and 
underlying threat circuitry function.

Given these preliminary findings, irritability in ADHD is 
likely to be associated with dysfunctional amygdala func-
tional connectivity. However, common abnormalities in 
reward processing suggest that functional connectivity of 
striatal regions may also play a role in irritability in youth 
with ADHD, possibly contributing to aberrant behavioral 
response to frustrative non-rewards (Brotman et al., 2017). 
Compared to the general population, adolescents and adults 

with ADHD show striatal hypo-responsiveness during 
reward anticipation (Plichta & Scheres, 2013). Additionally, 
resting-state functional connectivity between the left NAcc 
and the left orbitofrontal cortex correlated with symptoms 
of emotional lability in 7- to 12-year-old children diagnosed 
with ADHD (Posner et al., 2013). Behaviorally, children 
with ADHD prefer immediate, small rewards over larger, 
delayed rewards (Marco et al., 2009; Marx et al., 2021; 
Schweitzer & Sulzer-Azaroff, 1995), which has been linked 
to both NAcc-PFC functional connectivity and amygdala 
hyperactivity (Costa Dias et al., 2013; Plichta et al., 2009). 
Taken together, these studies suggest that aberrant func-
tional connectivity in the reward network, and involving the 
NAcc specifically, may contribute to irritability symptoms 
in ADHD.

We examined functional connectivity of the amygdala 
and NAcc seeds and their relations to increased irritability 
symptoms in those with ADHD, compared to age- and gen-
der-matched typically developing (TD) adolescents and 
young adults. Informed by prior research using resting-state 
functional connectivity to examine the neural basis of irrita-
bility and emotional lability in children and adults with 
ADHD (Hulvershorn et al., 2013; Karalunas et al., 2014; Yu 
et al., 2020), we hypothesized that higher irritability symp-
toms would be associated with altered resting-state connec-
tivity of the amygdala and NAcc in adolescents and young 
adults with ADHD, compared to their TD peers. We pre-
dicted that functional connectivity with regions of the PFC 
would be particularly sensitive to differing levels of irrita-
bility but refrained from making specific predictions about 
the direction of connectivity.

Method

Participants

In the total ADHD sample, participants included 56 adoles-
cents and young adults (aged 12–23 years) with a diagnosis 
of ADHD-Combined Presentation. Following exclusion 
criteria and sample-matching procedures detailed below, 
the final sample in the current study included 34 youth in 
the ADHD group and 34 youth in the TD group. We refer to 
the participants as “adolescents,” acknowledging that the 
age span includes young adults as well. Two licensed psy-
chologists with extensive experience diagnosing ADHD 
(JFD, JBS) evaluated initial phone screening data to deter-
mine eligibility for the study. Participants meeting the 
phone screen criteria were invited to proceed to the next 
phase of the study, which included an in-depth, in-person 
psychological evaluation. Participants were evaluated 
according to the Diagnostic and Statistical Manual of 
Mental Disorders-IV-TR or 5th Edition (DSM 5, which was 
used upon its publication) criteria for ADHD and all other 
major psychiatric disorders (e.g., mood disorders, anxiety, 
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obsessive-compulsive, trauma, psychosis, addiction, oppo-
sitional defiant, and conduct disorders). Diagnostic inter-
views included the participant and one of their parents/
caregivers for adolescents, while adult participants could 
choose to have their parents, partner, or spouse rate their 
current behavior, depending upon who was most familiar 
with their current behavior (Diagnostic Interview Schedule 
for Child and Adolescents and Young Adult version; Shaffer 
et al., 2000). Parents also reported on symptoms using the 
Conners-3 Parent Rating Scale (CPRS-3) or the Conners’ 
Adult ADHD Rating Scale (CAARS-O), Observer Form—
Long Version (with parent ratings on the young adults) 
(Conners, 2008). Parents of young adults also completed 
the Barkley Adult ADHD Rating Scale—Retrospective 
Scale (Barkley, 2011) to establish the presence of signifi-
cant ADHD behavior before the age of 12 years.

A licensed psychologist (JFD) reviewed all of the diag-
nostic information to determine final ADHD diagnosis and 
presence of other disorders based on the diagnostic inter-
view and DSM Predominantly Inattentive and Predominantly 
Hyperactive/Impulsive Presentation Scales from the CPRS 
or CAARS. Conners-3 Teacher Rating Scales (CTRS) fur-
ther informed diagnosis if there were contradictions 
between the interview and parent rating scale data. In com-
plex cases (i.e., disagreement between CPRS, CTRS, and 
the clinical interview), further follow-up interviews were 
conducted by JFD, and JFD and JBS both reviewed all diag-
nostic information to make a final expert diagnosis 
determination.

Inclusion criteria included IQ ≥ 80 and age between 12 
and 23 years, with additional inclusion criteria for the 
ADHD group of meeting DSM-IV-TR or DSM-5 criteria 
for ADHD, Combined Presentation or Hyperactive/
Impulsive Presentation. However, all participants in this 
study met criteria for the Combined Presentation and none 
for the Hyperactive/Impulsive Presentation. Exclusion cri-
teria included: IQ score < 80; presence of a math or read-
ing learning disability; a self- or parent-reported history of 
head trauma, neurological disorder, or major medical prob-
lem; prescribed psychoactive medication beyond ADHD 
medications (i.e., other than stimulants or atomoxetine); 

presence of any other DSM-IV-TR or DSM-5 Axis I diag-
nosis besides ADHD, oppositional defiant disorder, or con-
duct disorder; a positive drug screen on the day of the 
imaging session; and MRI contra-indications. Of the 56 
clinical participants, 22 (39%) were excluded due to exces-
sive head motion (mean frame-wise displacement > 0.35) 
resulting in a final clinical sample of 34 adolescents with 
ADHD (22 male, 12 female). The 22 excluded participants 
did not differ significantly from the remaining 34 patients 
in their average IQ, inattentive symptoms, and irritability 
ratings or, in the distribution of gender, race, ethnicity, 
household income, and maternal education. The excluded 
participants were however on average younger 
(t(54) = 3.134, p = .003) and with higher hyperactive-impul-
sive symptoms (t(53) = −2.657, p = .010). Twenty-three of 
the ADHD participants were on prescription medication 
(see Table 1 for medication information) but withheld med-
ication for 48 to 96 hours (i.e., at least five half-lives) prior 
to the MRI scan with their physician’s approval. Thirty-
four TD adolescents were matched to the ADHD group on 
sex, age, head motion (see Table 2). The same exclusion 
criteria applied to this control group with the addition of a 
score <60 on the CPRS- 3 or CAARS ADHD Total Scale. 
Table 2 shows average symptom scores and demographic 
information for each group. Informed written parental con-
sent and child assent were obtained from all participants. 
The University of California, Davis Institutional Review 
Board approved the study.

Measures. Conners’ Parent Rating Scale—3 (Conners, 
2008): The CPRS-3 contains 108-items that are rated on 
how frequently certain behaviors occur from 0 (never, sel-
dom) to 3 (very often). The questionnaire has good internal 
reliability (Cronbach’s α ranging from .75 to .94 for all 
scales), high test-retest reliability, and effective discrimina-
tory power (Conners et al., 1998).

Conners’ Adult ADHD Rating Scales (CAARS-O) 
(observer ratings): For participants aged 18 and over, 
ADHD symptoms were assessed by the CAARS-O. Internal 
consistency of the CAARS-O subscales ranges from 0.81 
(Hyperactivity/Restlessness) to 0.89 (Problems With Self-
Concept) (Conners et al., 1999).

For the purpose of the present study, a separate score for 
irritability was derived by summing scores on items 14, 48, 
73, 81, 100 of the CPRS-3 and items 8, 19, 23, 61 of the 
CAARS-O. Internal consistency of the CPRS-3 and CAARS 
irritability items were 0.92 and 0.84 respectively. The items 
chosen from each questionnaire correspond to items on the 
Affective Reactivity Index (ARI) (Stringaris et al., 2012). 
To validate our irritability measure we correlated CPRS-3 
and CAARS irritability scores with ARI scores in a sub-
sample of participants that completed both questionnaires. 
Correlations were high: CPRS-3 (n = 21): r = .96, p < .0001; 
CAARS (n = 12): r = .71, p = .01.

Table 1. Medication Information for the ADHD group.

N

Number of subjects unmedicated 11
Number of subjects medicated 23
 Atomoxetine 1
 Methylphenidate hydrochloride extended release (Concerta) 5
 Dextro-amphetamine (Adderall) 2
 Dextro-amphetamine extended release (Adderall XR) 7
 Lisdexamfetamine dimesylate (Vyvanse) 5
 Methylphenidate 2
 Dexmethylphenidate HCL extended release (Focalin XR) 1
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Resting state MRI data acquisition: Imaging data were 
acquired on a Siemens 3.0 T TIM Trio MRI scanner. 
T2-weighted functional images were acquired with the 
following parameters: TR = 2,000 ms; TE = 25 ms; flip 
angle = 80°, 36 slices, matrix = 64 × 64; FOV = 220 mm; 
voxel size = 3.4 × 3.4 × 3.4 mm. The duration of the rest-
ing state scan was 6 minutes 4 seconds. The T1-weighted 
high-resolution anatomical image was acquired with the 
following parameters: TR = 1,900 ms; TE = 3.06 ms; flip 
angle = 8°; 160 slices; FOV = 256 mm; acquisition voxel 
size = 1.0 × 1.0 × 1.0 mm. Participants were instructed to 
look at a fixation point during the scan acquisition.

Functional connectivity analysis. All analyses including image 
preprocessing were carried out using the CONN toolbox v. 
17.0 (http://www.nitrc.org/projects/conn/) (Whitfield-
Gabrieli & Nieto-Castanon, 2012). T1 structural scans were 
segmented into gray matter, white matter, and cerebrospinal 
fluid and then normalized to the Montreal Neurological 
Institute (MNI) template. Preprocessing of functional 
images included slice timing correction, spatial coregistra-
tion of functional data to each participant’s structural scan, 
spatial normalization to MNI space, and spatial smoothing 
using a 6 mm full-width-at-half-maximum Gaussian kernel. 
Prior to smoothing, we identified outlier volumes across 
subjects in acquisitions with a framewise displacement 
above 0.9 mm or global BOLD signal changes above 5 SD 
using artifact removal toolbox (ART) (https://www.nitrc.
org/projects/artifact_detect/). For each subject, outlier vol-
umes, head-motion (six-parameters of translation and rota-
tion), and other spurious sources of noise (e.g., signal from 
white matter and cerebrospinal fluid) were regressed out 
using the aCompcor method (Behzadi et al., 2007). Then, 
temporal high-pass filtering (0.008–0.09 Hz) was applied to 
the residual BOLD time course to exclude remaining physi-
ological noise (e.g., respiratory effects).

Seed regions were defined using the default ROIs within 
CONN based on the Harvard-Oxford Subcortical Atlas, left 
and right amygdala as well as left and right NAcc. First-
level correlation maps were produced by extracting the 
denoised BOLD time course from each seed and computing 
Pearson’s correlation coefficients between that time course 
and the time courses of all other voxels in the brain. 
Correlation coefficients were Fisher-transformed into Z 
scores, which increases normality and allows for improved 
second-level General Linear Model analyses. We adjusted 
the cluster significant threshold for the four seed regions to 
an FDR cluster-corrected threshold of p < .0125. Unpaired 
t-tests were performed to assess between-group differences 
in seed-to-voxel functional connectivity. As the groups 
were matched on sex, age, and head motion, we did not 
include these variables as covariates in our initial analysis. 
To ensure effects were due to irritability symptoms above 
and beyond hyperactive-impulsive symptoms as suggested 
previously (Hulvershorn et al., 2013) in a follow-up analy-
sis we controlled for hyperactive-impulsive symptoms. We 
also assessed separately if results would hold if we con-
trolled for differences in full-scale IQ.

Results

Demographic and clinical information for the sample is 
provided in Table 2. The groups were closely matched on 
age and sex and no significant differences were observed 
for maternal education level, household income, race, and 
ethnicity. As expected, the ADHD group scored signifi-
cantly lower on full-scale IQ (though still in the normal 
range), and significantly higher on core ADHD symptom 
measures of inattention and impulsivity/hyperactivity and 
on irritability (see Table 2).

Amygdala seeds: A group × irritability interaction effect 
was found for functional connectivity between the left 

Table 2. Demographic, Clinical, and MRI Head Motion Information for the ADHD and Control Groups.

ADHD (n = 34) TD (n = 34) Statistic

Gender: Male/female 22/12 22/12  
Mean (SD) Age (years) 16.29 (2.68) 15.99 (2.85) t(66) = 0.46, p = n.s.
Race: White/Black or African American/

Asian/Multiracial/other or unknown
25/1/0/7/1 (73.5%/2.9%/0%/20.6%/2.9%) 18/2/2/10/2 (52.9%/5.9%/5.9%/29.4%/5.9%) χ2 (4, N = 68) = 4.34, p = n.s.

Ethnicity: Not Hispanic/Hispanic/unknown 22/8/4 (64.7%/23.5%/11.8%) 24/10/0 (70.6%/29.4%/0%) χ2 (2, N = 34) = 4.31, p = n.s.
Maternal education: bachelor’s degree 

or higher
28 (82.4%) 27 (79.4%) χ2 (1, N = 68) = .10, p = n.s.

Household income: above $100k 19 (55.9%) 12 (35.3%) χ2 (1, N = 68) = 2.62, p = n.s.
Mean (SD) IQ 106.82 (11.56) 114.15 (10.11) t(66) = −2.78, p = .007
Mean (SD) Conners’ DSM inattention* 80.91 (10.37) 42.56 (5.10) t(48.08) = 19.35, p < .001
Mean (SD) Conners’ DSM hyperactive/

impulsive*
78.21 (12.19) 43.35 (4.71) t(42.64) = 15.55, p < .001

Mean (SD) irritability 6.32 (3.90) 1.21 (1.68) t(44.9) = 7.03, p < .001
Mean (SD) framewise displacement 0.19 (0.09) 0.17 (0.06) t(66) = 0.98, p = n.s.
Mean (SD) relative motion (mm) 0.09 (0.04) 0.09 (0.03) t(66) = 0.94, p = n.s.
Mean (SD) absolute motion (mm) 0.33 (0.23) 0.25 (0.17) t(66) = 1.60, p = n.s.

*Mean score based on the t-scores for the CPRS’ Parent Scores (participants 17 years and younger) and CAARS-O (participants 18 years and older).

http://www.nitrc.org/projects/conn/
https://www.nitrc.org/projects/artifact_detect/
https://www.nitrc.org/projects/artifact_detect/
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amygdala and right inferior frontal gyrus and between the 
left amygdala and bilateral precuneus/cuneus (Figure 1, 
Table 3). Irritability symptoms were more positively associ-
ated with functional connectivity between the left amygdala 
and the right inferior frontal gyrus in the ADHD group com-
pared to the TD group. For functional connectivity between 
the left amygdala and the bilateral precuneus/cuneus, irrita-
bility was more negatively associated in the ADHD com-
pared to the TD group. This interaction was not observed 
for the right amygdala. Simple main effects of irritability in 
the ADHD group showed that higher irritability was associ-
ated with higher functional connectivity between the left 
amygdala and bilateral putamen/caudate and lower func-
tional connectivity of the left amygdala with the precuneus 
and lingual gyrus. This simple main effect of irritability and 
functional connectivity with the putamen/caudate was also 
observed for the right amygdala. No simple main effect of 
irritability was observed in the TD group. Both the interac-
tion and the simple main effects of irritability remained sig-
nificant when controlling for hyperactive-impulsive 
symptoms. The group × irritability interaction for the left 
amygdala also remained significant when covarying for IQ 
differences, suggesting that neither IQ nor hyperactive-
impulsive symptoms were related to the observed associa-
tions with irritability.

Nucleus Accumbens seeds: No significant group × irrita-
bility interaction effect for either the left or the right NAcc 
was found. A main effect of irritability in the ADHD group, 
however, showed that higher irritability was associated with 
greater functional connectivity between the left NAcc and a 
region in the left posterior middle temporal gyrus, and 
lower functional connectivity between the left NAcc and a 
cluster in the precuneus (Figure 1, Table 3). A trend for 
greater functional connectivity between the right NAcc and 
the left posterior middle temporal gyrus with higher levels 
of irritability was also observed but did not survive correc-
tion for multiple comparisons (p = .025). When statistically 
adjusting for symptoms of hyperactivity/impulsivity, the 
simple main effects of irritability observed for the left NAcc 
no longer survived the threshold for multiple comparisons 
(p = .028).

Discussion

Given poor outcomes for individuals with ADHD and high 
levels of irritability, we aimed to identify neural markers of 
irritability in adolescents with ADHD and contrast these to 
those within typically developing adolescents. We focused 
on two regions, the amygdala and the nucleus accumbens, 
to examine circuits that support reward and threat 

Figure 1. Resting-state functional connectivity maps with seeds in the left (A) and right (B) amygdala and left nucleus accumbens 
(C). (A) Irritability in the ADHD group was positively associated (yellow) with functional connections between the left amygdala and 
right inferior frontal gyrus and negatively (purple) with connectivity between the left amygdala and bilateral precuneus compared to 
the typically developing control group. (B) Irritability levels in the ADHD group were positively associated with functional connectivity 
between the right amygdala and bilateral putamen/caudate. (C) A main effect of irritability in the ADHD group revealed stronger 
connectivity between the left NAcc and a region in the left posterior middle temporal gyrus and weaker connectivity between the left 
NAcc and the precuneus.
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Table 3. The Four Seed Regions (Left and Right Amygdala, Left and Right Nucleus Accumbens) and Significant Target Regions 
Associated with Irritability.

Coordinates

Cluster size (k) Beta T p x y z

Seed: left amygdala
 Group × Irritability interaction
  (+) right IFG +54 +16 +24 137 .08 4.85 .005
  (−) precuneus/cuneal cortex +22 −70 +32 136 −.08 −4.18 .005
  (−) precuneus −4 −60 +62 102 −.07 −4.23 .012
 Main effect irritability: ADHD
  (−) precuneus −14 −68 +38 1,310 −.03 −6.10 <.001
  (−) lingual gyrus +04 −82 −08 120 −.03 −4.02 .009
  (+) left caudate/putamen −18 +10 +04 144 .03 4.49 .005
 Main effect irritability: TD n.s.
Seed: right amygdala
 Group × Irritability interaction n.s.
Main effect irritability: ADHD
  (+) bilateral putamen/caudate −16 +16 +02 293 .03 4.68 .002
  (+) right putamen/caudate +26 −04 +10 262 .03 4.46 .003
 Main effect irritability: TD n.s.
Seed: left nucleus accumbens
 Group × Irritability interaction n.s.
 Main effect irritability: ADHD
  (−) precuneus +10 −64 +40 163 −.03 −4.53 .002
  (+) left pMTG −52 −38 −04 126 .03 4.52 .004
 Main effect irritability: TD n.s.
Seed: right nucleus accumbens
 Group × Irritability interaction n.s.
 Main effect irritability: ADHD
  (+) left pMTG −52 −40 −06 119 .02 4.42 .025
 Main effect irritability: TD n.s.

Note. All results are p < .0125 (FDR-corrected). (+) = indicates a positive association; (−) = indicates a negative association; IFG = inferior frontal gyrus; pMTG = posterior 
middle temporal gyrus.

behaviors. Crucially, we observed an association between 
irritability symptoms and functional connectivity between 
the amygdala and inferior frontal and posterior midline 
regions with varying irritability symptoms in the ADHD but 
not the TD group. In addition to the group differences, irri-
tability symptoms in the ADHD group were also associated 
with greater functional connectivity between the amygdala 
and the caudate/putamen as well as between the left NAcc 
and a posterior temporal region. The results support altered 
functional connectivity of both threat and reward circuits, 
when ADHD is accompanied by irritability, extending to 
other key regions involved in cognitive control and emotion 
processing.

The observed association between irritability and func-
tional connectivity between the left amygdala and the right 
IFG was significantly more positive in the ADHD group 
compared to the TD group suggesting a diminished ability 
for cognitive control, specifically inhibition and emotion 
regulation typically attributed to the IFG (Aron & Poldrack, 
2005). Right IFG and amygdala show strong positive func-
tional connectivity during task-based emotion paradigms 
(Kerestes et al., 2017) and become negatively connected 
during successful regulation of negative emotions (Ochsner 

et al., 2012). As the observed positive association between 
irritability and IFG-amygdala functional connectivity 
remained even after controlling for hyperactive-impulsive 
symptoms, the results confirm previously reported associa-
tions with less efficient emotion regulation mechanisms in 
irritable youth (Leibenluft, 2017).

Compared to the TD group, irritability was negatively 
associated with functional connectivity between the left 
amygdala and posterior midline regions within the precu-
neus in the ADHD group. Amygdala-precuneus connections 
support successful emotion regulation by directing attention 
away from affective information (Ferri et al., 2016; Roy 
et al., 2009; Zhang & Li, 2012). Reduced functional con-
nectivity therefore may increase irritability by preventing an 
attentional shift away from emotional stimuli (Ferri et al., 
2016). Such altered or reduced connectivity between these 
two regions has been reported in several other psychopa-
thologies known for high levels of irritability including chil-
dren diagnosed with bipolar disorder (Rich et al., 2008; 
Stoddard et al., 2015), adolescents with depression (Cullen 
et al., 2014), adults with childhood maltreatment (van der 
Werff et al., 2013), post-traumatic stress disorder (Nicholson 
et al., 2015), and schizophrenia (Mukherjee et al., 2012).
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Group by irritability interactions were only observed for 
the left but not right amygdala and with connectivity to 
right but not left IFG. The left amygdala has been shown to 
respond more consistently to negative emotions during task 
fMRI studies using emotion paradigms (Wager et al., 2008) 
and the right IFG plays a more dominant role in regulating 
emotions and during inhibitory control compared to its left 
counterpart. Even though we did not formally test laterality 
differences, atypical asymmetry in brain structure and func-
tion is a common observation in ADHD (Langleben et al., 
2001; Shaw et al., 2009; Silk et al., 2016) and has also been 
implicated in the neurobiology of irritability (Althoff et al., 
2017; Chaarani et al., 2020); as such it is likely, that left and 
right fronto-limbic and fronto-striatal connections differen-
tially contribute to the pathophysiology of irritability in 
ADHD.

In the ADHD group, heightened irritability was associ-
ated with increased amygdala-striatal functional connectiv-
ity, suggesting associations between irritability and both 
altered reward processing and arousal (Beauchaine & 
Tackett, 2020; Brotman et al., 2017). Similarly, the left 
NAcc showed greater functional connectivity with a region 
in the left posterior middle temporal gyrus with increasing 
irritability in the patient group. The stronger functional con-
nectivity between the two regions may thus hint at more 
rigid reward expectancies (Badre & Wagner, 2007) that 
may result in pathological temper outbursts or reactive 
aggression when reward expectancies are not met (Brotman 
et al., 2017). Given that there were no significant group dif-
ferences for these associations these main effects should be 
interpreted cautiously. It is possible that the low variability 
of the irritability ratings in the TD group contributed to the 
lack of significant group differences. It would be valuable 
to compare the ADHD group to another clinical group to 
determine whether the main effects observed here are spe-
cific to ADHD. Additionally, a dimensional symptom-based 
approach independent of diagnostic category as proposed 
by the RDoC framework (Cuthbert & Insel, 2013) may pro-
vide complementary information on the neural underpin-
nings of irritability.

Our results differ from those reported by Hulvershorn 
et al. (2013), who found a positive association between 
emotional lability and left amygdala-medial PFC functional 
connectivity. Age differences across samples or measure-
ment of irritability as compared to emotional lability may 
be relevant. Our findings also differ to some extent from 
those reported by Yu et al. (2020) who found that emotional 
lability was correlated positively with connectivity of the 
right (superficial) amygdala and dlPFC as well as inferior 
parietal regions. These authors, however, restricted their 
analysis to regions that initially showed significant between-
group differences during a task. Significantly, comparable 
to our results, they found that the ADHD group exhibited 
weaker connectivity between the amygdala and the precu-
neus compared to controls.

Our findings should be interpreted in light of several 
limitations. First, although we used a well-validated clinical 
questionnaire, the instrument was not specifically devel-
oped to measure irritability and may have missed important 
aspects of the irritability phenotype (Vidal-Ribas et al., 
2016). Second, our study is limited to a cross-sectional 
examination of irritability and functional connectivity. 
Given the long-term clinical implications of heightened irri-
tability, it is important to examine neural markers of 
improvement or worsening of irritability-related impair-
ments longitudinally. Third, our final sample size was 
diminished considerably after losing 39% of the clinical 
sample due to excessive head motion. Even though height-
ened head motion is common in participants with ADHD 
(Kong et al., 2014; Satterthwaite et al., 2012) the reduced 
sample size limits the generalizability of our results espe-
cially to younger ADHD participants and those with higher 
hyperactive-impulsive symptoms. Fourth, parental educa-
tion and income, along with participant IQ, were relatively 
high, potentially also reducing generalizability. Thus, fol-
low-up studies will need to recruit participants with more 
varied incomes and educational levels that reflect the gen-
eral population. Lastly, differences in developmental stage 
or brain maturation may account for some of the results 
observed here given the wide age-range of our participants. 
Future studies may separately utilize irritability ratings, 
age, and individual brain maturation indices (Cao et al., 
2015; Dosenbach et al., 2010; Truelove-Hill et al., 2020) to 
examine developmental and maturational effects on irrita-
bility in those diagnosed with ADHD and typically devel-
oping youth.

Our sample was carefully phenotyped clinically, and the 
results present important information on the neural corre-
lates of irritability in adolescents, who are most representa-
tive of adolescents with the ADHD, Combined Presentation. 
We recruited participants with evidence of significant 
impulsivity and therefore, meet criteria for the Combined 
Presentation, and excluded volunteers with the Inattentive 
ADHD Presentation, because of a need in the field to char-
acterize the relation between behavioral symptoms of 
impulsivity and associated neural functioning. Furthermore, 
there is evidence of functional connectivity differences 
between the Inattentive and Combined Presentations of 
ADHD (Fair et al., 2012) and thus recruiting from Inattentive 
ADHD populations may have obscured some potential 
findings.

Taken together, we revealed alterations in functional 
connectivity of the amygdala and the NAcc in association 
with heightened irritability in ADHD. Anomalies with con-
nections to frontal, temporal, and posterior midline regions 
may give rise to not only increased impulsivity and difficul-
ties in attention but also to heightened irritability. These 
observed associations between irritability and functional 
connectivity of NAcc and amygdala suggest treatments that 
address response to reward, primarily omission of an 
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expected reward and irritability may be beneficial for those 
with ADHD. This may include training to increase inhibi-
tory and cognitive control or reduction in the effect of stim-
uli eliciting irritability, including cognitive or behavioral 
training such as exposure therapy (Kircanski et al., 2019; 
Linke et al., 2020), perhaps meditation techniques, or phar-
macological approaches that affect how one responds to 
cues signaling reward loss, absence of an expected reward, 
and other situations associated with irritability.
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