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Abstract

Data processing is an important step in various
natural language processing tasks. As the com-
monly used datasets in named entity recogni-
tion contain only a limited number of samples,
it is important to obtain additional labeled data
in an efficient and reliable manner. A common
practice is to utilize large monolingual unla-
beled corpora. Another popular technique is to
create synthetic data from the original labeled
data (data augmentation). In this work, we in-
vestigate the impact of these two methods on
the performance of three different named en-
tity recognition tasks.

1 Introduction

Recently, deep neural network models have
emerged in various fields of natural language pro-
cessing (NLP) and replaced the mainstream posi-
tion of conventional count-based methods (Lample
et al., 2016; Vaswani et al., 2017; Serban et al.,
2016). In addition to providing significant perfor-
mance improvements, neural models often require
high hardware conditions and a large amount of
clean training data. However, there is usually only
a limited amount of cleanly labeled data available,
so techniques such as data augmentation and self-
training are commonly used to generate additional
synthetic data.

Significant progress has been made in recent
years in designing data augmentations for computer
vision (CV) (Krizhevsky et al., 2012), automatic
speech recognition (ASR) (Park et al., 2019), nat-
ural language understanding (NLU) (Hou et al.,
2018) and machine translation (MT) (Wang et al.,
2018) in supervised settings. In addition, semi-
supervised approaches using self-training tech-
niques (Blum and Mitchell, 1998) have shown

∗Work completed while studying at RWTH Aachen Uni-
versity.

promising performance in conventional named en-
tity recognition (NER) systems (Kozareva et al.,
2005; Daumé III, 2008; Täckström, 2012). In this
work, the effectiveness of self-training and data
augmentation techniques on neural NER architec-
tures is explored.

To cover different data situations, we select
three different datasets: The English CoNLL 2003
(Tjong Kim Sang and De Meulder, 2003) dataset,
which is the benchmark on which almost all NER
systems report results, it is very clean and the base-
line models achieve an F1 score of around 92.6%;
The English W-NUT 2017 (Derczynski et al., 2017)
dataset, which is generated by users and contains
inconsistencies, baseline models get an F1 score
of around 52.7%; The GermEval 2014 (Benikova
et al., 2014) dataset, a fairly clean German dataset
with baseline scores of around 86.3%1. We observe
that the baseline scores on clean datasets such as
CoNLL and GermEval can hardly be improved by
data adaptation techniques, while the performance
on the W-NUT dataset, which is relatively small
and inconsistent, can be significantly improved.

2 Related Work

2.1 State-of-the-art Techniques in NER

Collobert et al. (2011) advance the use of neural net-
works (NN) for NER, who propose an architecture
based on temporal convolutional neural networks
(CNN) over the sequence of words. Since then,
many articles have suggested improvements to this
architecture. Huang et al. (2015) propose replacing
the CNN encoder in Collobert et al. (2011) with
a bidirectional long short-term memory (LSTM)
encoder, while Lample et al. (2016) and Chiu and
Nichols (2016) introduce a hierarchy into the archi-
tecture by replacing artificially designed features

1From here on, for the sake of simplicity, we omit the
annual information of the datasets.
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with additional bidirectional LSTM or CNN en-
coders. In other related work, Mesnil et al. (2013)
have pioneered the use of recurrent neural networks
(RNN) to decode tags.

Recently, various pre-trained word embedding
techniques have offered further improvements over
the strong baseline achieved by the neural architec-
tures. Akbik et al. (2018) suggest using pre-trained
character-level language models from which to ex-
tract hidden states at the start and end character
positions of each word to embed any string in a
sentence-level context. In addition, the embedding
generated by unsupervised representation learning
(Peters et al., 2018; Devlin et al., 2019; Liu et al.,
2019; Taillé et al., 2020) has been used success-
fully for NER, as well as other NLP tasks. In this
work, the strongest model for each task is used as
the baseline model.

2.2 Data Adaptation in NLP

In NLP, generating synthetic data using forward or
backward inference is a commonly used approach
to increase the amount of training data. In strong
MT systems, synthetic data that is generated by
back-translation is often used as additional training
data to improve translation quality (Sennrich et al.,
2016). A similar approach using backward infer-
ence is also successfully used for end-to-end ASR
(Hayashi et al., 2018). In addition, back-translation,
as observed by Yu et al. (2018), can create various
paraphrases while maintaining the semantics of the
original sentences, resulting in significant perfor-
mance improvements in question answering.

In this work, synthetic annotations, which are
generated by forward inference of a model that is
trained on annotated data, are added to the train-
ing data. The method of generating synthetic data
by forward inference is also called self-training
in semi-supervised approaches. Kozareva et al.
(2005) use self-training and co-training to recog-
nize and classify named entities in the news do-
main. Täckström (2012) uses self-training to adapt
a multi-source direct transfer named entity rec-
ognizer to different target languages, “relexical-
izing” the model with word cluster features. Clark
et al. (2018) propose cross-view training, a semi-
supervised learning algorithm that improves the
representation of a bidirectional LSTM sentence
encoder using a mixture of labeled and unlabeled
data.

In addition to the promising pre-trained embed-

ding that is successfully used for various NLP tasks,
the masked language modeling (MLM) can also
be used for data augmentation. Kobayashi (2018)
and Wu et al. (2019) propose to replace words with
other words that are predicted using the language
model at the corresponding position, which shows
promising performance on text classification tasks.
Recently, Kumar et al. (2020) discussed the effec-
tiveness of such different pre-trained transformer-
based models for data augmentation on text classi-
fication tasks. And for neural MT, Gao et al. (2019)
suggest replacing randomly selected words in a
sentence with a mixture of several related words
based on a distribution representation. In this work,
we explore the use of MLM-based contextual aug-
mentation approaches for various NER tasks.

3 Self-training

Though, the amount of annotated training data
is limited for many NLP tasks, additional unla-
beled data is available in most situations. Semi-
supervised learning approaches make use of this
additional data. A common way to do this is self-
training (Kozareva et al., 2005; Täckström, 2012;
Clark et al., 2018).

At a high level, it consists of the following steps:

1. An initial model is trained using the labeled
data.

2. This model is used to annotate the additional
unlabeled data.

3. A subset of this data is selected and used in ad-
dition to the labeled data to retrain the model.

For the performance of the method it is critical to
find a heuristic to select a good subset of the auto-
matically labeled data. The selected data should not
introduce too many errors, but at the same time they
should be informative, i.e. they should be useful to
improve the decision boundary of the final model.
One selection strategy (Drugman et al., 2016) is
to calculate a confidence measure for all unlabeled
sentences and to randomly sample sentences above
a certain threshold.

We consider two different confidence measures
in this work. The first, hereinafter referred to as c1,
is the posterior probability of the tag sequence y
given the word sequence x:

c1(y, x) = p(y | x) =
es(x,y)∑
y′ e

s(x,y′)
(1)
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whereby s(x, y) is the unnormalized log score as-
signed by the model to the sequence, consisting of
an emission model qEi and transition model qT :

s(x, yT1 ) =

T∑
i=1

qEi (yi | x) + qT (yi | yi−1)

For the second confidence measure, we take into
account the normalized tag scores at each position.
To get a confidence score for the entire sequence,
we take the minimum tag score of all positions.
Thus, c2 is defined as follows:

c2(y, x) = min
i

qEi (yi | x) + qT (yi | yi−1)∑
y′i
qEi (y′i | x) + qT (y′i | yi−1)

(2)

4 MLM-based Data Augmentation

Instead of using additional unlabeled data, we ap-
ply MLM-based data augmentation specifically for
NER by masking and replacing original text tokens
while maintaining labels.

For each masked token xi:

x̂i = arg max
w

p(xi = w|x̃) (3)

where x̂i is the predicted token, w ∈ V is the token
from the model vocabulary and x̃ is the original
sentence with xi = [MASK].

There are several configurations that can affect
the performance of the data augmentation method:
Techniques of selecting the tokens to be replaced,
the order of token replacement in case of multi-
ple replacement and the criterion for selecting the
best tokens from the predicted ones. This section
studies the effect of these configurations.

4.1 Sampling
Entity spans (entities of arbitrary length) make the
training sentences used in NER tasks special. Since
there is no guarantee that a predicted token belongs
to the same entity type as an original token, it is
important to ensure that the masked token is not in
the middle of the entity span and that the existing
label is not damaged. In this work, we propose
three different types of token selection inside and
outside of entity spans:

• Entity replacement: Collect entity spans of
length one in the sentence and randomly select
the entity span to be replaced. In this case,
exactly one entity in the sentence is replaced.
The sentences without entities or with longer
entity spans are skipped.

• Context replacement: We consider tokens
with the label “O” as context and alternate
between two setups: (1) Select only context
tokens before and after entities, and (2) select
a random subset of context tokens among all
context tokens.

• Mixed: Select uniformly at random the num-
ber of masked tokens between two and the
sentence length among all tokens in the sen-
tence.

The first approach allows only one entity to be gen-
erated and thus benefits from conditioning to the
full sequence context. However, it does not guar-
antee the correct labeling for the generated token.
The disadvantage of the second approach is that
we do not generate new entity information, but
only generate a new context for the existing entity
spans. Even if a new entity type is generated, it
has the original “O” label without a NER classi-
fication pipeline. The disadvantage of the third
approach is that the token may be selected in the
middle of the entity span and the label is no longer
relevant. The sampling approaches depicted on the
Figure 1. In addition, the number of replaced to-
kens should be properly tuned to avoid inadequate
generation. In this work, we do not set any bound-
aries for maximum token replacement and leave
such investigation to future work.

4.2 Order of Generation
In our method, we predict exactly one mask token
per time. Our sampling approaches allow multi-
ple tokens to be replaced. Therefore we have two
possible options for the generation order:

• Independent: Each consecutive masking and
prediction is made on top of the original se-
quence.

• Conditional: Each consecutive masking and
prediction is made on top of the prediction of
the previous step.

4.3 Criterion
The criterion is an important part of the generation
process. On the one hand, we want our synthetic
sequence to be reliable (highest token probability),
on the other hand, it should differ as much as possi-
ble from the original sequence (high distance). We

2Given example is taken from https://
artificialintelligence-news.com

https://artificialintelligence-news.com
https://artificialintelligence-news.com
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Figure 1: Sampling approaches example2for the MLM data augmentation. Gray color refers to the tokens with the
entity type ”O“ (context), green color refers to the PER entity type and purple color refers to the ORG entity type.
Red square represents the subset of tokens which is used for replacement.

propose two criteria for choosing the best token
from the five-best predictions:

• Highest probability (top token): Choose the
target token only based on the MLM probabil-
ity for that token.

• Highest probability and distance (joint cri-
terion): Choose the target token based on the
product of the MLM probability for the to-
ken and Levenshtein distance (Levenshtein,
1966) between the original sentence and the
sentence with the new token.

Regardless of the combination of the parame-
ters, the sentences must be changed. As a result,
we guarantee that there is no duplication in our
synthetic data with the original dataset.

4.4 Discussion
The main disadvantage of using a language model
(LM) for the augmentation of NER datasets is that
the LM does not take into account the labeling
of the sequence and the prediction of the masked
token, which only depends on the surrounding to-
kens. As a result, we lose important information
for decision-making. Incorporating label informa-
tion as described in Wu et al. (2019) into the MLM
would be the way to tackle this problem.

Another way to reduce the noise in the generated
dataset is to apply a filtering step to the generation

pipeline. One way to incorporate filtering into the
augmentation process is to set the threshold for
the MLM token probabilities: If the probability
of the predicted token is less than a threshold, we
ignore such prediction. However, the problem of
misaligning token labels is not resolved. Therefore,
we adapt our proposed confidence measure from
Section 3 for filtering.

In this work, we do not discuss the selection of
the MLM itself as well as the effects of fine-tuning
on the specific task.

5 Experiments

5.1 Datasets

We test our data adaptation approaches with three
different NER datasets: CoNLL (Tjong Kim Sang
and De Meulder, 2003), W-NUT (Derczynski et al.,
2017) and GermEval (Benikova et al., 2014).

All datasets have the original labeling scheme
as BIO, but following Lample et al. (2016) we
convert it to the IOBES scheme for training and
evaluation. For our baseline models, we do not use
any additional data apart from the provided training
data. Development data is only used for validation.
For CoNLL we skip all document boundaries. The
statistics for the datasets are shown in Table 1.3

3Further details on the used datasets can be found in Ap-
pendix A
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Dataset train dev test
CoNLL 14041 3250 3453
W-NUT 3394 1008 1287
GermEval 24001 2199 5099

Table 1: Dataset sizes in number of sentences.

5.2 Model Description

The Bidirectional LSTM - Conditional Random
Field (BiLSTM-CRF) model (Lample et al., 2016)
is a widely used architecture for NER tasks. To-
gether with pre-trained word embeddings, it sur-
passes other neural architectures. We use the
BiLSTM-CRF model implemented in the Flair4

framework version 0.5, which delivers the state-of-
the-art performance.

The BiLSTM-CRF model consists of 1 hidden
layer with 256 hidden states. Following Reimers
and Gurevych (2017), we set the initial learning
rate to 0.1 and the mini-batch size to 32. For
each task, we select the best performing embed-
ding from all embedding types in Flair. For train-
ing models with CoNLL data, we use pre-trained
GloVE (Pennington et al., 2014) word embedding
(Grave et al., 2018) together with the Flair embed-
ding (Akbik et al., 2018) as input into the model.
For W-NUT experiments, we use roberta-large em-
bedding provided by Transformers library (Wolf
et al., 2019). German dbmdz/bert-base-german-
cased embedding is used for experiments with the
GermEval dataset.

5.3 Unlabeled Data

Additional unlabeled data is required for self-
training. To match the domain of the test data,
we collect the data from the sources mentioned in
the individual task descriptions.

W-NUT Like the test data, the data for W-NUT
consists of user comments from Reddit, which were
created in April 20175 (comments in the test data
were created from January to March 2017), as well
as titles, posts and comments from StackExchange,
which were created from July to December 20176

(the content of the test data was created from Jan-
uary to May 2017). The documents are filtered

4https://github.com/zalandoresearch/
flair/

5https://files.pushshift.io/reddit/
comments/

6https://archive.org/download/
stackexchange

according to length and community as described in
the task description paper and tokenized with the
TweetTokenizer from nltk7.

CoNLL The data was sampled from news ar-
ticles in the Reuters corpus from October and
November 1996. The sentences are tokenized using
spaCy8 and filtered (by removing common patterns
like the date of the article, sentences that do not
contain words and sentences with more than 512
characters as this is the length of the longest sen-
tence in the CoNLL training data).

GermEval We randomly sampled additional
data from sentences extracted from news and
Wikipedia articles provided by the Leipzig Cor-
pora Collection9. In addition to tokenizing the
sentences using spaCy, we do not do any additional
preprocessing or filtering.

5.4 Self-training

Before applying the approach described in Sec-
tion 3, we need to find the thresholds t for the
confidence measures c1 and c2 for each corpus. We
evaluate both confidence measures on the develop-
ment sets of the three corpora. One way to evaluate
confidence measures is to calculate the confidence
error rate (CER). It is defined as the number of
misassigned labels (i.e. confidence is above the
threshold and the prediction of the model is incor-
rect or the confidence is below the threshold and the
prediction is correct) divided by the total number
of samples.

Figure 2 shows the CER of c1 and c2 on the
development set of W-NUT for different threshold
values t. For the threshold of 0.0 or 1.0 the CER
degrades to the percentage of incorrect or correct
predictions as either all or no confidence values are
above the threshold. For c2 there is a clear optimum
at t̂2 = 0.42 and for larger and smaller thresholds
the CER rises rapidly.

In contrast, the optimum for c1 at t̂1 = 0.57 is
not as pronounced. This motivated us not only to
choose the best value in terms of CER, but also a
lower threshold t′1 = 0.42 with slightly worse CER.
In this way, we include more sentences where the
model is less confident without introducing too
many additional errors. The threshold values for

7https://www.nltk.org/api/nltk.
tokenize.html

8https://github.com/explosion/spaCy
9https://wortschatz.uni-leipzig.de/de/

download

https://github.com/zalandoresearch/flair/
https://github.com/zalandoresearch/flair/
https://files.pushshift.io/reddit/comments/
https://files.pushshift.io/reddit/comments/
https://archive.org/download/stackexchange
https://archive.org/download/stackexchange
https://www.nltk.org/api/nltk.tokenize.html
https://www.nltk.org/api/nltk.tokenize.html
https://github.com/explosion/spaCy
https://wortschatz.uni-leipzig.de/de/download
https://wortschatz.uni-leipzig.de/de/download
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Figure 2: CERs for c1 (orange) and c2 (blue) with dif-
ferent threshold values on the W-NUT development set.
Vertical dashed lines represent t̂1 and t̂2.

W-NUT CoNLL GermEval
t̂1 0.57 0.83 0.63
t′1 0.42 0.70 0.50
t̂2 0.42 0.50 0.47

Table 2: Selected confidence threshold values.

CoNLL and GermEval are selected analogously.
Table 2 provides an overview of all threshold values
that are used in all subsequent experiments.

The unlabeled data is annotated using the base-
line models described in Section 3 (we choose the
best runs based on the score on the development
set) and is filtered based on the different confidence
thresholds. Then we sample a random subset of
size k from these remaining sentences. For tasks
where the data comes from different sources, e.g.
news and Wikipedia for GermEval, we uniformly
sample from the different sources to avoid that a
particular domain is overrepresented. The selected
additional sentences are then appended to the origi-
nal set of training sentences to create a new training
set that is used to retrain the model from scratch.

To validate our selection strategy, we test our
pipeline with different confidence thresholds for
both confidence measures. Figure 3 shows the re-
sults on the test set of W-NUT. For each threshold,
3394 sentences are sampled, i.e. the size of the
training set is doubled. The results confirm our se-
lection strategy. t′1 and t̂2 give the best results of all
tested threshold values. In particular, t′1 performs
better than t̂1.

Table 3 shows the results of self-training on all
three datasets. For each of them, we test the three
selection strategies by sampling new sentences in
the size of 0.5 times, 1 times and 2 times the size of

0.2 0.4 0.6 0.8

threshold

0.50

0.52

0.54

f1
-s

co
re

c1

c2

Figure 3: Average F1 scores and standard deviation
(shaded area) of 3 runs on the test set of W-NUT after
retraining the model on additional data selected using
different confidence measures (color) and thresholds.

the original training data. For W-NUT we get up to
2% of the absolute improvements in the F1 score
over the baseline. On larger datasets like CoNLL
and GermEval these effects disappear and we only
get improvements of up to 0.1% and in some cases
even deterioration.

5.5 MLM-based Data Augmentation

We follow the approach explained in Section 4
and generate synthetic data using pre-trained mod-
els from the Transformers library. We concatenate
original and synthetic data and train the NER model
on the new dataset. We test all possible combina-
tions of the augmentation parameters from Section
4 on the W-NUT dataset. Table 4 shows the re-
sult of the augmentation. When sampling with one
entity, there is no difference between independent
and conditional generation, since only one token
in a sentence is masked. We therefore only carry
out an independent generation for this type of sam-
pling. We report an average result among 3 runs
along with a standard deviation of the model with
different random seeds.

W-NUT and CoNLL datasets are augmented us-
ing a pre-trained English BERT model10 and Ger-
mEval with a pre-trained German BERT model11

respectively. We do not fine-tune these models.
Sampling from the context of the entity spans

shows significant improvements on W-NUT test
set. First of all, it includes implicit filtering: Only
the sentences with the entities are selected and re-

10https://huggingface.co/
bert-large-cased-whole-word-masking

11https://huggingface.co/
bert-base-german-cased

https://huggingface.co/bert-large-cased-whole-word-masking
https://huggingface.co/bert-large-cased-whole-word-masking
https://huggingface.co/bert-base-german-cased
https://huggingface.co/bert-base-german-cased
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W-NUT CoNLL GermEval
∆ sen. F1 ∆ sen. F1 ∆ sen. F1

1 baseline +0% 52.7± 2.48 +0% 92.6± 0.18 +0% 86.3± 0.06

2 c1 ≥ t̂1 +50% 54.2± 0.35 +50% 92.5± 0.06 +50% 86.0± 0.08

3 c1 ≥ t̂1 +100% 53.6± 1.41 +100% 92.5± 0.12 +100% 86.1± 0.26

4 c1 ≥ t̂1 +200% 53.5± 0.53 +200% 92.4± 0.08 +200% 86.3± 0.14

5 c1 ≥ t′1 +50% 53.7± 1.95 +50% 92.5± 0.02 +50% 86.1± 0.21
6 c1 ≥ t′1 +100% 54.8 ± 0.33 +100% 92.6± 0.09 +100% 86.2± 0.12
7 c1 ≥ t′1 +200% 53.5± 0.29 +200% 92.5± 0.06 +200% 86.4 ± 0.03

8 c2 ≥ t̂2 +50% 54.6± 0.42 +50% 92.7 ± 0.04 +50% 86.0± 0.16

9 c2 ≥ t̂2 +100% 54.2± 0.98 +100% 92.6± 0.06 +100% 86.4 ± 0.15

10 c2 ≥ t̂2 +200% 54.5± 0.43 +200% 92.7 ± 0.02 +200% 86.3± 0.05

Table 3: Results of self-training.

placed. Therefore, compared to other methods, we
add less new sentences (except when replacing en-
tities). Second of all, since replacing tokens with
a language model should result in the substitution
with similar words, the label is less likely to be
destroyed while context tokens are replaced.

On the other hand, the mixed sampling strategy
performs the worst among all methods. We believe
that this is the effect when additional noise is in-
cluded in the dataset (by noise we mean all types of
noise, e.g. incorrect labeling, grammatical errors,
etc). Allowing masking of words up to sequence
in some cases destroys the sentence, e.g. incorrect
and multiple occurrences of the same words can
occur. In Appendix B we present the examples
of augmented sentences for each augmentation ap-
proach and each dataset. Additionally, we report
the average number of masked token.

To analyze the resulting models, we plot the
average confidence scores of the test set as well
as the number of errors per sentence for the best
baseline model and best augmented model. We use
the best baseline system with 54.6% F1 score and
the best model corresponding to the setup of line
8 in Table 4 with 57.4% F1 score. We count the
error every time the model predicts a correct label
with low confidence or an incorrect label with high
confidence. We set high and low confidence to be
0.6 and 0.4 respectively. Figure 4 shows that the
augmented model makes a more reliable prediction
than the best baseline system model.

We repeat the promising MLM generation
pipeline on the CoNLL and GermEval datasets.
These datasets contain more entities in the origi-
nal data. In addition, even though the entity re-
placement sampling did not work well on W-NUT
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average token confidence
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Figure 4: Average confidence score and the error per
sentence on W-NUT test data. MLM DA refers to the
setup of line 8 in Table 4

dataset, we repeat these experiments, since gener-
ating new entities is the most interesting scenario
for using the MLM augmentation.

Although the MLM-based data augmentation
leads to improvements of up to 3.6% F1 score
on the W-NUT dataset, Table 5 shows that such
effect disappears when we apply our method to
larger and cleaner datasets such as CoNLL and
GermEval. We believe there are several reasons
for that. First, our MLM-based data augmentation
method does not guarantee the accuracy of the la-
beling after augmentation. So for larger datasets,
there are many more possibilities to increase the
noise of the corpus. Moreover, we do not study
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sampling generation criterion ∆ sen. F1
1 baseline - - - +0.0% 52.7± 2.48

2
entity independent

top token +24.4% 53.7± 0.91
3 joint +24.7% 54.6± 0.50
4

mixed
conditional

top token +98.7% 52.3± 1.25
5 joint +99.7% 51.7± 1.36
6

independent
top token +98.6% 53.7± 0.89

7 joint +99.7% 53.3± 0.61
8

context
conditional

top token +33.8% 56.3 ± 1.21
9 joint +35.8% 55.6 ± 1.12
10

independent
top token +33.8% 55.0 ± 1.16

11 joint +35.8% 56.0 ± 0.06
12

random context
conditional

top token +96.8% 54.9 ± 0.40
13 joint +99.7% 54.5± 1.21
14

independent
top token +96.9% 53.7± 0.93

15

MLM DA

joint +99.7% 53.5± 2.40

Table 4: Results of the MLM-based augmentation on the W-NUT dataset. entity refers to the sampling
tokens from entity spans of length one, mixed means sampling from the complete sequence, context indi-
cates sampling from the entity span context, random context denotes sampling from random context labels.
conditional refers to the conditional generation and independent refers to the independent generation type.
The top token criterion selects the token based on the highest probability, and the joint criterion takes into
account the token probability and the Levenshtein distance.

how well pre-trained models suit the specific task,
which might be crucial for the DA. Besides, for
GermEval augmentation, we use the BERT model
with three times fewer parameters than for W-NUT
and CoNLL.

5.5.1 Filtering of Augmented Data

As discussed in Section 4, an additional data filter-
ing step can be applied on top of the augmentation
process. We report results on two different filtering
methods: First, we set a threshold for the proba-
bility of the predicted token (in our experiments
we use the probability 0.5); Second, we filter sen-
tences by minimum confidence scores as discussed
in Section 3. We set the minimum confidence score
according to Table 2. We apply filtering to the
worst and best-performing model according to the
numbers in Table 4. The filtering results on W-NUT
are shown in Table 6.

In the case of the worst model, filtering based on
the token probability improve the performance of
the model by 2.6% compared to the unfiltered one.
Filtering by confidence score does not improve the
performance, but significantly reduces the standard
deviation of the score. The results are expected,
since by using token probability we increase the
sentence reliability and completely change the syn-
thetic data, while using the confidence score we

filter on the same synthetic data. In the case of
the better model, we see the opposite trend. Here
filtering leads to performance degradation and an
increase in the standard deviation.

We apply the same filtering techniques for
CoNLL and GermEval. Table 7 shows the results
for 3 different models. We choose the best, the
worst and the model with the highest number of
additional sentences for filtering. In the case of
the worst model, the performance is improved by
1.1% F1 score with the minimum confidence filter-
ing for CoNLL and 0.5% F1 score for GermEval
compared to the unfiltered version. However, for
the best model, the results remain at the same level
and the baseline systems are not improved.

Although we do not achieve significant improve-
ments compared to the baseline system, we see a
potential in the MLM-based augmentation with the
combination with filtering.

6 Discussion and Future Work

In this work, we present results of data adapta-
tion methods on various NER tasks. We show that
MLM-based data augmentation and self-training
approaches lead to improvements on the small and
noisy W-NUT dataset.

We propose two different confidence measures
for self-training and empirically estimate the best
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CoNLL GermEval
sampling generation criterion ∆ sen. F1 ∆ sen. F1

1 baseline - - - +0.0% 92.6 ± 0.18 0.0% 86.3 ± 0.06

3 entity independent joint +57.9% 91.5± 0.10 +47.9% 85.9± 0.06
8

context
conditional

top token +65.7% 92.4± 0.12 +51.4% 86.1± 0.26
9 joint +72.2% 92.3± 0.06 +58.5% 86.0± 0.15
10

independent
top token +65.7% 92.5± 0.06 +51.4% 86.1± 0.15

11 joint +72.2% 92.2± 0.17 +58.5% 86.0± 0.20
12

MLM DA

rand. cont. conditional top token +85.1% 92.1± 0.15 +94.1% 86.1± 0.10

Table 5: Results of the MLM-based data augmentation on CoNLL and GermEval datasets. The row numbers refer
to the row numbers of the Table 4.

∆ sen. filtering F1
+99.7% - 51.7± 1.36
+86.3% token prob. 54.3 ± 0.315
+59.5% min. conf. 51.2± 0.60

+33.8% - 56.3 ± 1.21
+13.8% token prob. 53.3± 2.009
+10.4% min. conf. 51.7± 2.10

Table 6: F1 scores of using filtered augmented data on
W-NUT. The row numbers refer to the row numbers of
the Table 4.

CoNLL GermEval
filtering ∆ sen. F1 ∆ sen. F1

none +57.9% 91.5± 0.10 +47.9% 85.9± 0.06
tok. prob. +7.8% 92.4± 0.15 +13.1% 86.1± 0.293
min. conf. +13.5% 92.6± 0.15 +13.9% 86.4 ± 0.12

none +65.7% 92.5± 0.06 +51.5% 86.1± 0.15
tok. prob. +22.5% 92.5± 0.15 +34.5% 86.3 ± 0.2110
min. conf. +52.1% 92.6 ± 0.20 +23.9% 86.1± 0.10

none +85.1% 92.1± 0.15 +94.1% 86.1± 0.10
tok. prob. +42.5% 92.8 ± 0.06 +76.1% 86.1± 0.0012
min. conf. +58.9% 92.6 ± 0.12 +62.3% 86.0± 0.21

Table 7: F1 scores of using filtered augmented data on
CoNLL and GermEval. The first line represents the
augmentation method from Table 4.

thresholds. Our results on the W-NUT dataset show
the effectiveness of the selection strategies based
on those confidence measures.

For MLM-based data augmentation, we suggest
multiple ways of generating synthetic NER data.
Our results show that even without generating new
entity spans we are able to achieve better results.

For future work, we would like to incorporate
label information into the augmentation pipeline by
either conditioning the token predictions on labels
or adding additional classification steps on top of
the token prediction. Another important question
is the choice of the MLM and the impact of task-
specific fine-tuning. Further investigations into the
filtering step should also be carried out.

For both self-training and MLM-based data aug-

mentation we would like to improve the integration
in the training process. The contribution of the
original training data to the loss function could
be increased or additional data could be weighted
by their confidence. Finally, we would like to
test whether we can combine the two methods to
achieve additional improvements.
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A Data Description

In our work we use three NER datasets:

• CoNLL 2003 (Tjong Kim Sang and De Meul-
der, 2003) contains news articles from the
Reuters12 corpus. The annotation con-
tains 4 entity types person, location,
organization, miscellaneous. We
remove the document boundary information
for our experiments.

• W-NUT 2017 (Derczynski et al., 2017)
contains texts from Twitter (training data),
YouTube (development data), StackExchange
and Reddit (test data). The annota-
tion contains 6 entity types: person,
location, corporation, product,
creative-work, group

• GermEval 2014 (Benikova et al., 2014): con-
tains the data from the German Wikipedia and
news Corpora. The annotation contains 12
entity types: location, organization,
person, other, location deriv,
location part, organization
deriv, organization part, person
deriv, person part, other deriv,
other part.

Table 8 shows detailed statistics of those datasets.
Together with number of entities, tokens and sen-
tences we report the percentage of the labelled to-
kens among all the tokens.

Dataset train dev test
#sentences 14041 3250 3453
#entities 23500 5943 5649
#tokens 203621 51362 46435
#entity types 4 4 4

CoNLL

%labelled 16.7 16.8 17.5
#sentences 3394 1008 1287
#entities 1976 836 1080
#tokens 62730 15723 23394
#entity types 6 6 6

W-NUT

%labelled 5.0 7.9 7.4
#sentences 24001 2199 5099
#entities 29077 2674 6178
#tokens 452790 41635 96475
#entity types 12 12 12

GermEval

%labelled 9.3 9.5 9.3

Table 8: Dataset sizes in number of sentences, tokens
and entities. Here, entity means the entity span, e.g.
European Union is considered as one entity.

12https://trec.nist.gov/data/reuters/
reuters.html

B MLM-based Data Augmentation

B.1 Data statistics
The number of masked tokens solely depends on
the augmentation strategy discussed in section 4.
Table 9 reports the average number of masked to-
kens in the sentence on W-NUT dataset for each
augmentation strategy. Table 10 and Table 11 show
the average number of masked tokens in the sen-
tence for the most promising augmentation strate-
gies for CoNLL and GermEval tasks.

sampling generation criterion ∆ sen. Masked

entity independent
top token +24.4% 1.2

joint +24.7% 1.2

mixed
conditional

top token +98.7% 7.4
joint +99.7% 8.8

independent
top token +98.6% 7.0

joint +99.7% 8.8

context
conditional

top token +33.8% 4.4
joint +35.8% 4.5

independent
top token +33.8% 4.3

joint +35.8% 4.5

random context
conditional

top token +96.8% 7.1
joint +99.7% 8.1

independent
top token +96.9% 6.9

joint +99.7% 8.1

Table 9: Average number of masked tokens for each
augmentation strategy on W-NUT dataset.

sampling generation criterion ∆ sen. Masked
entity independent joint +57.9% 1.1

context
conditional

top token +65.7% 3.4
joint +72.2% 6.4

independent
top token +65.7% 3.4

joint +72.2% 6.4
random context conditional top token +85.1% 4.5

Table 10: Average number of masked tokens on
CoNLL dataset.

sampling generation criterion ∆ sen. Masked
entity independent joint +47.9% 1.0

context
conditional

top token +51.4% 4.4
joint +58.5% 5.7

independent
top token +51.4% 4.3

joint +58.5% 5.3
random context conditional top token +94.1% 6.0

Table 11: Average number of masked tokens on Ger-
mEval dataset.

B.2 Data Examples
We show the data examples on different dataset by
varying one augmentation parameter while keeping
others unchanged. Table 12 shows the examples
on W-NUT dataset. In Table 13 and Table 14 we
collect the examples for GermEval and CoNLL.

https://trec.nist.gov/data/reuters/reuters.html
https://trec.nist.gov/data/reuters/reuters.html


13

Parameter Value Example
- RT @Quotealicious: Today, I saw a guy

driving a <corporation>Pepsi</corporation>
truck, drinking a <product>Coke</product>.
MLIA #Quotealicious

entity RT @Quotealicious: Today, I saw a guy
driving a <corporation>Pepsi</corporation>
truck, drinking a <product>beer</product>
MLIA #Quotealicious

context RT @Quotealicious : Today, I saw a guy
driving a <corporation>Pepsi</corporation>
car, drinking a <product>Coke</product>.
MLIA #Quotealicious

random context m me: Today, I saw a man driving a
<corporation>Pepsi</corporation> truck,
buying a <product>Coke</product>. MLIA
#Quotealicious

Sampling

mixed m @Quotealicious Earlier Today, I saw a guy
driving a <corporation>Pepsi</corporation>
truck, drinking a <product>Coke</product>.
MLIA #Quotealicious

- What is everyone watching this weekend?
<group>Twins</group>?
<group>Vikings</group>? anyone going to see
<creativework>Friday Night
Lights</creativework>?

independent What is everyone watching this weekend?
<group>Twins</group>?
<group>Vikings</group>? anyone going to see
<creativework>the Night
Lights</creativework>?

Order

conditional What is he doing this weekend with
<group>the</group> ##ing
<group>Vikings</group>? anyone going to
install <creativework>Friday Night
lights</creativework>?

- <person>Oscar</person>’s new favorite pass
time is running as fast as he can from one
end of the house to another yelling
BuhBYYYYYE

top token <person>Jack</person>’s new favorite pass
time is running as fast as he can from one
end of the house to another yelling
BuhBYYYYYE

Criterion

joint <person>Ben</person>’s new favorite pass time
is running as fast as he can from one end of
the house to another yelling BuhBYYYYYE

Table 12: Data examples of W-NUT augmentation.
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Parameter Value Example
- Zu einer Gebietsveränderung kam es 1822, als

das vorher selbständige <LOC>Champsigna</LOC>
nach <LOC>Soucia</LOC> eingemeindet wurde.

entity Zu einer Gebietsveränderung kam es 1822, als
das vorher selbständige <LOC>Champsigna</LOC>
nach <LOC>Paris</LOC> eingemeindet wurde.

context Zu einer Gebietsveränderung kam es 1822, als
das vorher selbständige <LOC>Champsigna</LOC>
nach <LOC>Soucia</LOC> verlegt wurde.

random context Zu einer Gebietsveränderung kam es 1822, als
das damals selbständige <LOC>Champsigna</LOC>
nach <LOC>Soucia</LOC> eingemeindet wurde.

Sampling

mixed Zu einer Eingemeindung kam es 1822, als die
damals selbständige <LOC>Dorf</LOC> nach
<LOC>Turin</LOC> verlegt wurde.

- Aus diesem Grund wurde er Anfang Januar auch
nach nur wenigen Tagen aus dem Klinikum
<LOC>Jena</LOC> in eine Reha-Einrichtung am
<LOC>Bodensee</LOC> verlegt.

independent Zu diesem Grund wurde er Anfang Januar und
nach nur zwei Tagen aus dem Klinikum
<LOC>Jena</LOC> in die Reha-Einrichtung am
<LOC> Boden </LOC> verlegt.

Order

conditional Aus diesem Grund wo ich Anfang Januar auch
nach nur wenigen Tagen aus dem Klinikum
<LOC>Jena</LOC> in die Reha-Einrichtung am
<LOC>Bodensee</LOC> verlegt.

- Mit ihm der gleichen Meinung sind
<PER>Pyrrhon</PER> und <PER>Erillus</PER> von
<LOC>Karthago</LOC>.

top token Mit ihm der gleichen Meinung sind
<PER>Pyrrhon</PER> und <PER>Gregor</PER> von
<LOC>Karthago</LOC>.

Criterion

joint Mit ihm der gleichen Meinung sind
<PER>Alexander</PER> und <PER>Erillus</PER>
von <LOC>Karthago</LOC>.

Table 13: Data examples of GermEval augmentation.



15

Parameter Value Example
- <PER>Christopher Reeve</PER> --

<PER>Reeve</PER> was best known for playing
the comic book hero <PER>Superman</PER> in
four movies but his greatest heroics came in
real life.

entity <PER>Christopher Reeve</PER> --
<PER>Reeve</PER> was best known for playing
the comic book hero <PER>Batman</PER> in four
movies but his greatest heroics came in real
life .

context <PER>Christopher Reeve</PER> The
<PER>Reeve</PER> is best known for playing
the comic book superhero <PER>Superman</PER>
in four movies but his greatest heroics came
in real life.

random context <PER>Christopher Reeve</PER> --
<PER>Reeve</PER> popular best known for
popular popular popular book hero
<PER>Superman</PER> in four movies but his
popular heroics came in real popular popular

Sampling

mixed <PER>Christopher Reeve</PER> The
<PER>He</PER> is best known for playing the
comic book superhero <PER>Superman</PER> in
the films but his greatest heroics came in
real life.

- Four weeks ago <ORG>Stagecoach </ORG> said it
had agreed the deal in principle, and it
expected to pay 110 million stg-plus for the
firm, with <ORG>Swebus</ORG>’ current owner,
the state railway company.

independent Four days ago <ORG>it</ORG> said it had made
the deal in principle, and it expected to
raise 110 million euros to the operation
contract including <ORG>Swebus</ORG> ’
current employer being the state railway
company.

Order

conditional Two years ago <ORG>Stagecoach</ORG> said it
had made the deal in principle, and was
expected to pay 110 million marks for the
operation, with <ORG>Swebus</ORG>’s owner,
the Swedish railway company.

- <ORG>ZDF</ORG> said <LOC> Germany </LOC>
imported 47,600 sheep from <LOC> Britain
</LOC> last year, nearly half of total
imports.

top token <ORG>He</ORG> said <LOC> they </LOC> imported
more goods from <LOC> Germany </LOC> that
year, nearly half of all number.

Criterion

joint <ORG>ZDF</ORG> this <LOC> this </LOC> this
47,600 sheep this <LOC> this </LOC> this year
this nearly half of this imports.

Table 14: Data examples of CoNLL augmentation.


