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Abstract

In this paper, we introduce variational semantic memory into meta-learning to
acquire long-term knowledge for few-shot learning. The variational semantic
memory accrues and stores semantic information for the probabilistic inference of
class prototypes in a hierarchical Bayesian framework. The semantic memory is
grown from scratch and gradually consolidated by absorbing information from tasks
it experiences. By doing so, it is able to accumulate long-term, general knowledge
that enables it to learn new concepts of objects. We formulate memory recall as the
variational inference of a latent memory variable from addressed contents, which
offers a principled way to adapt the knowledge to individual tasks. Our variational
semantic memory, as a new long-term memory module, confers principled recall
and update mechanisms that enable semantic information to be efficiently accrued
and adapted for few-shot learning. Experiments demonstrate that the probabilistic
modelling of prototypes achieves a more informative representation of object
classes compared to deterministic vectors. The consistent new state-of-the-art
performance on four benchmarks shows the benefit of variational semantic memory
in boosting few-shot recognition.

1 Introduction

Memory plays an essential role in human intelligence, especially for aiding learning and reasoning
in the present. In machine intelligence, neural memory [22, 73, 23] has been shown to enhance
neural networks by augmentation with an external memory module. For instance, episodic memory
storing past experiences helps reinforcement learning agents adapt more quickly and improve sample
efficiency [7, 55, 24]. Memory is well-suited for few-shot learning by meta-learning in that it offers
an effective mechanism to extract inductive bias [21] by accumulating prior knowledge from a set of
previously observed tasks. One of the primary issues when designing a memory module is deciding
what information should be memorized, which usually depends on the problems to solve. Though
being highly promising, it is non-trivial to learn to store useful information in previous experience,
which should be as non-redundant as possible. Existing few-shot learning works with external
memory typically store the information from the support set of the current task [41, 70, 57, 40, 30],
focusing on learning the access mechanism, which is assumed to be shared across tasks. The memory
used in these works is short-term with limited capacity [18, 39] in that long-term information is not
well retained, despite the importance for efficiently learning new tasks.

Semantic memory, also known as conceptual knowledge [43, 67, 59], refers to general facts and
common world knowledge gathered throughout our lives [52]. It enables humans to quickly learn
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new concepts by recalling the knowledge acquired in the past [59]. Compared to episodic memory,
semantic memory has been less studied [67, 59], despite its pivotal role in remembering the past
and imagining the future [29]. By its very nature, semantic memory can provide conceptual context
to facilitate novel event construction [28] and support a variety of cognitive activities, e.g., object
recognition [5]. We draw inspiration from the cognitive function of semantic memory and introduce
it into meta-learning to learn to collect long-term semantic knowledge for few-shot learning.

In this paper, we propose an external memory module to accrue and store long-term semantic
information gained from past experiences, which we call variational semantic memory. The function
of semantic memory closely matches that of prototypes [61, 1], which identify the semantics of
objects in few-shot classification. The semantic knowledge accumulated in the memory helps
build the new object concepts represented by prototypes typically obtained from only one or few
samples [61]. We apply our variational semantic memory module to the probabilistic inference of
class prototypes modelled as distributions. The probabilistic prototypes obtained are more informative
and therefore better represent categories of objects compared to deterministic vectors [61, 1]. We
formulate the memory recall as a variational inference of the latent memory, which is an intermediate
stochastic variable. This offers a principled way to retrieve information from the external memory and
incorporate it into the inference of class prototypes for each individual task. We cast the optimization
as a hierarchical variational inference problem in the Bayesian framework; the parameters of the
inference of prototypes are jointly optimized in conjunction with the memory recall and update.
The semantic memory is gradually consolidated throughout the course of learning by updating
the knowledge from new observations in each experienced task via an attention mechanism. The
long-term semantic knowledge on seen object categories is acquired, maintained and enhanced during
the learning process. This contrasts with existing works [57, 70] in which the memory stores data
from the support set and therefore only considers the short term. In our memory, each entry stores
semantics representing a distinct object category by summarizing feature representations of class
samples. This reduces redundant information and saves storage overhead. More importantly it avoids
collapsing memory reading and writing into single memory slots [22, 74], which ensures that rich
context information is provided for better construction of new concepts.

To summarize our three contributions: i) We propose variational semantic memory, a long-term
memory module, which learns to acquire semantic information and enables new concepts of object
categories to be quickly learned for few-shot learning. ii) We formulate the memory recall as a
variational inference problem by introducing the latent memory variable, which offers a principled
way to retrieve relevant information that fits with specific tasks. iii) We introduce variational
semantic memory into the probabilistic inference of prototypes modelled as distributions rather than
deterministic vectors, which provides more informative representations of class prototypes.

2 Method

Few-shot classification is commonly learned by constructing T few-shot tasks from a large dataset
and optimizing the model parameters on these tasks. A task, also called an episode, is defined as
an N -way K-shot classification problem [70, 50]. An episode is drawn from a dataset by randomly
sampling a subset of classes. Data points in an episode are partitioned into a support S and query Q
set. We adopt the episodic optimization [70], which trains the model in an iterative way by taking
one episode-update at a time. The update of the model parameters is defined by a variational learning
objective, which is based on an evidence lower bound (ELBO) [6]. Different from traditional machine
learning tasks, meta-learning for few-shot classification trains the model on the meta-training set, and
evaluates on the meta-test set, whose classes are not seen during meta-training.

In this work, we develop our method based on the prototypical network (ProtoNet) [61]. Specifically,
the prototype zn of an object class n is obtained by: zn = 1

K

∑
k Φ(xn,k) where Φ(xn,k) is the

feature embedding of the sample xn,k, which is usually obtained by a convolutional neural network.
For each query sample x, the distribution over classes is calculated based on the softmax over
distances to the prototypes of all classes in the embedding space:

p(yn = 1|x) =
exp(−d(Φ(x), zn))∑
n′ exp(−d(Φ(x), zn′))

, (1)
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where y denotes a random one-hot vector, with yn indicating its n-th element, and d(·, ·) is some
distance function. Due to its non-parametric nature, the ProtoNet enjoys high flexibility and efficiency,
achieving great success in few-shot learning.

The ideal prototypical representation should be expressive and encompass enough intra-class variance,
while being distinguishable between different classes. In the literature [61, 1], however, the prototypes
are commonly modeled by a single or multiple deterministic vectors obtained by average pooling of
only a few samples or clustering. Hence, they are not sufficiently representative of object categories.
Moreover, uncertainty is inevitable due to the scarcity of data, which should also be encoded into
the prototypical representations. In this paper, we derive a probabilistic latent variable model by
modeling prototypes as distributions, which are learned by variational inference.

2.1 Variational Prototype Inference

We introduce the probabilistic modeling of class prototypes, in which we treat the prototype z of each
class as a distribution. In the few-shot learning scenario, to find z is to infer the posterior p(z|x,y),
where (x,y) denotes the sample from the query set Q. We derive a variational inference framework
to solve z by leveraging the support set S.

Consider the conditional log-likelihood in a probabilistic latent variable model, where we incorporate
the prototype z as the latent variable

log
[ |Q|∏
i=1

p(yi|xi)
]

= log
[ |Q|∏
i=1

∫
p(yi|xi, z)p(z|xi)dz

]
, (2)

where p(z|xi) is the conditional prior in which we make the prototype dependent on xi. In general,
it is intractable to directly solve the posterior, and usually we resort to a variational distribution to
approximate the true posterior by minimizing the KL divergence:

DKL[q(z|S)||p(z|x,y)], (3)
where q(z|S) is the variational posterior that makes the prototype z dependent on the support set S to
leverage the meta-learning setting for few-shot classification. By applying the Baye’s rule, we obtain

log
[ |Q|∏
i=1

p(yi|xi)
]
≥
|Q|∑
i=1

[
Eq(z|S)

[
log p(yi|xi, z)

]
−DKL(q(z|S)||p(z|xi))

]
, (4)

which is the ELBO of the conditional log-likelihood in (2). In practice, the variational posterior
q(z|S) is implemented by a neural network that takes the average feature representations of samples
in the support set S and returns the mean and variance of the prototype z. This can be directly adopted
as the optimization objective for the variational inference of the prototype. While inheriting the
flexibility of the prototype based few-shot learning [61, 1], our probabilistic inference enhances its
class expressiveness by exploring higher-order information, i.e., variance, beyond a single or multiple
deterministic mean vectors of samples in each class. More importantly, the probabilistic modeling
provides a principled way of incorporating prior knowledge acquired from experienced tasks. In what
follows, we introduce the external memory to augment the probabilistic latent model for enhanced
variational inference of prototypes.

2.2 Variational Semantic Memory

We introduce the variational semantic memory to accumulate and store the semantic information
from previous tasks for the inference of prototypes of new tasks. The knowledge on objects in the
memory is consolidated episodically by seeing more object instances, which enables conceptual
representations of new objects to be quickly built up for novel categories in tasks to come.

To be more specific, we deploy an external memory unit M which stores a key-value pair in each row
of the memory array as [22]. The keys are the average feature representations of images from the
same classes and the values are their corresponding class labels. The semantics of object categories
in the memory provide context for quickly learning concepts of new object categories by seeing only
a few examples in the current tasks. In contrast to most existing external memory modules [57, 47, 8],
our variational semantic memory module stores semantic information by summarizing samples from
individual categories, and therefore our memory module requires relatively light storage overhead,
enabling more efficient retrieval of content from the memory.
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Memory recall and inference It is pivotal to recall relevant information from the external memory
and adapt it to learning new tasks when working with neural memory modules. When recalling a
memory, it is not simply a read out; the content from the memory must be processed in order to fit
the data in a specific task [47, 22, 73]. We regard memory recall as a decoding process of chosen
content in the memory, which we accomplish via variational inference, instead of simply reading out
the raw content from the external memory and directly incorporating it into specific tasks.

To this end, we introduce an intermediate stochastic variable, referred to as the latent memory m. We
cast the retrieval of memory into the inference of m from the addressed memory M ; the memory
addressing is based on the similarity between the content in the memory and the support set from the
current task. The latent memory m is inferred to connect the accrued semantic knowledge stored in
the long-term memory to the current task, which is seamlessly coupled with the prototype inference
under a hierarchical Bayesian framework.

From a Bayesian perspective, the prototype posterior can be inferred by marginalizing over the latent
memory variable m:

q(z|S) =

∫
q(z|m, S)p(m|S)dm, (5)

where q(z|m, S) indicates that the prototype z is now dependent on the support set S and the latent
memory m. To leverage the external memory M , we design a variational approximation q(m|M,S)
to the posterior over the latent memory m by inferring from M conditioned on S:

q(m|M,S) =

|M |∑
a=1

p(m|Ma, S)p(a|M,S). (6)

Here, a is the addressed categorical variable, Ma denotes the corresponding memory content at
address a, and |M | represents the memory size, i.e., the number of memory entries.

We establish a hierarchical Bayesian framework for the variational inference of prototypes:

q̃(z|M,S) =

|M |∑
a=1

p(a|M,S)

∫
q(z|S,m)p(m|Ma, S)dm, (7)

which is shown as a graphical model in Figure 1. We use the support set S and memoryM to generate
the categorical variable a to address the external memory, and then fetch the content Ma to infer
the latent memory m, which is incorporated as a conditional variable to assist S in the inference
of the prototype z. This offers a principled way to incorporate semantic knowledge and build up
the prototypes of novel object categories. It mimics the cognitive mechanism of the human brain in
learning new concepts by associating them with related concepts learned in the past [29]. Moreover, it
naturally handles ambiguity and uncertainty when recalling memory better than the common strategy
of using a deterministic transformation [22, 73].

When a is given, m only depends on Ma and no longer relies on S. Therefore, we can attain
p(m|Ma, S) = p(m|Ma) by safely dropping S, which gives rise to:

q(m|M,S) =

|M |∑
a=1

p(m|Ma)p(a|M,S). (8)

Since the memory size is finite, bounded by the number of seen classes, we further approximate
q(m|M,S) empirically by

q(m|M,S) =

|M |∑
a=1

λap(m|Ma), λa =
exp

(
g(Ma, S)

)∑
i exp

(
g(Mi, S)

) , (9)

whereMa is the memory slot and stores the average feature representation of samples in each category
that are seen in the learning stage, and g(·, ·) is a learnable similarity function, which we implement
as a dot product for efficiency by taking the averages of samples in Mi and S, respectively.

Thus, the prototype inference can now be approximated by Monte Carlo sampling:

q̃(z|M,S) ≈ 1

J

J∑
j=1

q(z|m(j), S), m(j) ∼
|M |∑
a=1

λap(m|Ma), (10)

where J is the number of Monte Carlo samples.
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Figure 1: Graphical illustration of the proposed probabilistic prototype inference with variational
semantic memory. M is the semantic memory module. Stn denotes the samples from the n-th class in
the support set in each t task. Qt is the query set. T is the number of tasks, and N is the number of
classes in each task.

Memory update and consolidation The memory update is an important operation in the main-
tenance of memory, which should be able to effectively absorb new useful information to enrich
memory content. We draw inspiration from the concept formation process in the human cognitive
function [29]: the concept of an object category is formed and grown by seeing a set of similar
objects of the same category. The memory is built from scratch and gradually consolidated by being
episodically updated with knowledge observed from a series of related tasks. We adopt an attention
mechanism to refresh content in the memory by taking into account the structural information of data.

To be more specific, the memory is empty at the beginning of the learning. When a new task arrives,
we directly append the mean feature representation of data from a given category to the memory
entries if this category is not seen. Otherwise, for seen categories, we update the memory content
with new observed data from the current task using self-attention [68] similar to the graph attention
mechanism [69]. This enables the structural information of data to be better explored for memory
update. We first construct the graph with respect to the memory Mc to be updated. The nodes
of the graph are a set of feature representations: Hc = {h0

c ,h
1
c ,h

2
c , . . . ,h

Nc
c }, where hNc

c ∈ Rd,
Nc = |Sc ∪ Qc|, h0

c = Mc, hi>0
c = hφ(xic), hφ(·) is the convolutional neural network for feature

extraction, and xic ∈ {Sc ∪Qc} contains all samples including both the support and query set from
the c-th category in the current task.

We use the nodes Hc on the graph to generate a new representation of memory Mc, which better
explores structural information of data. To do so, we need to compute a similarity coefficient
between Mc and the nodes hic on the graph. We implement this by a single-layer feed-forward neural
network parameterized by a weight vector h ∈ R2d, that is, eiMc

= w>[Mc,h
i
c] with [·, ·] being a

concatenation operation. Here, eiMc
indicates the importance of node i’s features to node Mc. In

practice, we use the following normalized similarity coefficients [69]:

βiMc
= softmaxi(e

i
Mc

) =
exp(LeakyReLU

(
w>[Mc,h

i
c]
)
)∑Nc

j=0 exp(LeakyReLU
(
w>[Mc,h

j
c]
)

)
. (11)

We can now compute a linear combination of the feature representations of the nodes on the graph as
the final output representation of M̄c:

M̄c = σ

( Nc∑
i=0

βiMc
hic

)
, (12)

where σ(·) is a nonlinear activation function, e.g., softmax. The graph attention operation can
effectively find and assimilate the most useful information from the samples in the new task. We
update the memory content with an attenuated weighted average,

Mc ← αMc + (1− α)M̄c, (13)
where α ∈ (0, 1) is a hyperparameter. This operation allows useful information to be retained in the
memory, while erasing less relevant or trivial information.
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2.3 Objective

To train the model, we adopt stochastic gradient variational Bayes [31] and implement it using deep
neural networks for end-to-end learning. By combining (4), (9) and (7), we obtain the following
objective for the hierarchical variational inference:

arg min
{φ,θ,ψ,ϕ}

−
T∑
t

[
N∑
n

[ |Qt
n|∑

(xt
i,y

t
i)∈Qt

n

[ L∑
`

[
log p(yti |hφ(xti), z

(`)
n )
]
+

DKL(
1

J

J∑
j=1

q̃ϕ(zn|m(j), h̄St
n
)||pθ(zn|hφ(xti))

]
+DKL(

|M |∑
a

λapψ(m|Ma)||pψ(m|h̄St
n
))

]]
,

(14)
where z(`) ∼ 1

J

∑J
j=1 qϕ(z|m(j), Stn), m(j) ∼

∑|M |
a=1 λapψ(m|Ma), L and J are numbers of Monte

Carlo samples, h̄St
n

= 1
|St

n|
∑

x∈St
n
hφ(x), and n denotes the n-th class. To enable back propagation,

we adopt the reparameterization trick [31] for sampling z and m. The third term in (14) essentially
serves to constrain the inferred latent memory to ensure that it is relevant to the current task. Here, we
make the parameters shared by the prior and the posterior for m, and we also amortize the inference
of prototypes across classes [20], which involves using the samples Stn from each class to infer their
prototypes individually. In practice, the log-likelihood term is implemented as a cross entropy loss
between predictions and ground-truth labels. The conditional probabilistic distributions are set to
be diagonal Gaussian. We implement them using multi-layer perceptrons with the amortization
technique and the reparameterization trick [31, 54], which take the conditionals as input and output
the parameters of the Gaussian. In addition, we implement the model with the objective in (4), which
we refer to as the variational prototypical network.

3 Related Work

Meta-Learning Meta-learning, or learning to learn [60, 64], for few-shot learning [32, 50, 57,
15, 70, 61] addresses the fundamental challenge of generalizing across tasks with limited labelled
data. Meta-learning approaches for few-shot learning differ in the way they acquire inductive biases
and adopt them for individual tasks [21]. They can be roughly categorized into four groups. Those
in the first group are based on distance metrics and generally learn a shared/adaptive embedding
space in which query images can be accurately matched to support images for classification [70, 61,
58, 42, 78, 1, 9]. Those based on optimization try to learn an optimization algorithm that is shared
across tasks, and can be adapted to new tasks, enabling learning to be conducted efficiently and
effectively [50, 2, 15, 16, 21, 66, 56, 77, 49]. The third group explicitly learns a base-learner that
incorporates knowledge acquired by the meta-learner and effectively solves individual tasks [20, 4, 81].
In the fourth group, a memory mechanism has been incorporated. Usually, an external memory
module is deployed to rapidly assimilate new data of unseen tasks, which is used for quick adaptation
or to make decisions [57, 40, 41, 38]. The methods from different groups are not necessarily exclusive,
and they can be combined to improve performance [66]. In addition, meta-learning has also been
explored for reinforcement learning [37, 7, 72, 12, 14, 55] and other tasks [3, 76].

Prototypes The prototypical network is one of most successful meta-learning models for few-shot
learning [70, 48, 25, 17]. It learns to project samples into a metric space in which classification
is conducted by computing the distance from query samples to class prototypes. Allen et al. [1]
introduced an infinite mixture of prototypes that represents each category of objects by multiple
clusters. The number of clusters is inferred from data by non-parametric Bayesian methods [48, 25].
Recently, Triantafillou et al. [66] combined the complementary strengths of prototypical networks and
MAML [15] by leveraging their respective effective inductive bias and flexible adaptation mechanism
for few-shot learning. Our work improves the prototypical network by probabilistic modeling of
prototypes, inheriting the effectiveness and flexibility of the ProtoNet and further enriching the
expressiveness of prototypes by the external memory mechanism.

Memory It has been shown that neural networks with memory, such as the long-short term mem-
ory [26] model, are capable of meta-learning [27]. Recent works augment neural networks with an
external memory module to improve their learning capability [57, 44, 73, 23, 30, 40, 41, 47, 74, 75].
In few-shot learning, existing work with external memory mainly store the information contained in
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Figure 2: Prototype distributions of our variational prototype network without (left) and with
variational semantic memory (right), where different colors indicate different categories. With
the memory the prototypes become more distinctive and distant from each other, with less overlap.

Table 1: Benefit of variational prototype network over ProtoNet [61] in (%) on miniImageNet,
tieredImageNet and CIFAR-FS.

miniImageNet, 5-way tieredImageNet, 5-way CIFAR-FS, 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet 47.40 ± 0.60 65.41 ± 0.52 53.31 ± 0.89 72.69 ± 0.74 55.50 ± 0.70 72.01 ± 0.60

Variational prototype network 52.11 ± 1.70 66.13 ± 0.83 55.13 ± 1.88 73.71 ± 0.84 61.35 ± 1.60 75.72 ± 0.90

Table 2: Benefit of variational semantic memory in our variational prototype network over alternative
memory modules [22, 73] in (%) on miniImageNet, tieredImageNet and CIFAR-FS.

miniImageNet, 5-way tieredImageNet, 5-way CIFAR-FS, 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Variational prototype network 52.11 ± 1.70 66.13 ± 0.83 55.13 ± 1.88 73.71 ± 0.84 61.35 ± 1.60 75.72 ± 0.90
w/ Rote Memory 53.15 ± 1.81 66.92 ± 0.78 55.98 ± 1.73 74.12 ± 0.88 62.71 ± 1.71 76.17 ± 0.81
w/ Transformed Memory 53.85 ± 1.71 67.23 ± 0.89 56.15 ± 1.70 74.33 ± 0.80 62.97 ± 1.88 76.97 ± 0.77
w/ Variational semantic memory 54.73 ± 1.60 68.01 ± 0.90 56.88 ± 1.71 74.65 ± 0.81 63.42 ± 1.90 77.93 ± 0.80

the support set of the current task [41, 70, 40], focusing on learning the access mechanism shared
across tasks. In these works, the external memory is wiped from episode to episode [18, 39]. Hence, it
fails to maintain long-term information that has been shown to be crucial for efficiently learning new
tasks [47, 18]. Memory has also been incorporated into generative models [8, 36, 74] and sequence
modeling [34] by conditioning on the context information provided in the external memory. To store
minimal amounts of data, Ramalho and Garnelo proposed a surprise-based memory module, which
deploys a memory controller to select minimal samples to write into the memory [47]. In contrast
to [8], our variational semantic memory adopts deterministic soft addressing, which enables us to
leverage the full context of memory content by picking up multiple entries instead of a single one [8].
Our variational semantic memory is able to accrue long-term knowledge that provides rich context
information for quickly learning novel tasks. Rather than directly using specific raw content or
deploying a deterministic transformation [22, 73], we introduce the latent memory as an intermediate
stochastic variable to be inferred from the addressed content in the memory. This enables the most
relevant information to be retrieved from the memory and adapted to the data in specific tasks.

4 Experiments

Datasets and settings We evaluate our model on four standard few-shot classification tasks:
miniImageNet [71], tieredImageNet [53], CIFAR-FS [4] and Omniglot [33]. For fair comparison
with previous works, we experiment with both shallow convolutional neural networks with the same
architecture as in [20] and a deep ResNet-12 [42, 35, 38, 51] architecture for feature extraction. More
implementation details, including optimization settings and network architectures, are given in the
supplementary material. We also provide a state-of-the-art comparison on the Omniglot dataset and
more results on the performance with other deep architectures, e.g., WRN-28-10 [79].

Benefit of variational prototype network We compare against the ProtoNet [61] as our baseline
model in which the prototypes are obtained by averaging the feature representations of each class.
These results are obtained with shallow networks. As shown in Table 1, the proposed variational
prototype network consistently outperforms the ProtoNet demonstrating the benefit brought by
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Table 3: Advantage of memory update with attention mechanism.
miniImageNet, 5-way tieredImageNet, 5-way CIFAR-FS, 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

w/o Attention 53.97 ± 1.80 67.13 ± 0.76 56.05 ± 1.73 74.27 ± 0.85 62.93 ± 1.76 76.79 ± 0.80
w/ Attention 54.73 ± 1.60 68.01 ± 0.90 56.88 ± 1.71 74.65 ± 0.81 63.42 ± 1.90 77.93 ± 0.80

Table 4: Comparison with other memory models.
miniImageNet, 5-way tieredImageNet, 5-way CIFAR-FS, 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MANN [57] 41.38 ± 1.70 61.73 ± 0.80 44.27 ± 1.69 67.15 ± 0.70 54.31 ± 1.91 67.98 ± 0.80
KM [74] 53.84 ± 1.70 67.35 ± 0.80 55.73 ± 1.65 73.36 ± 0.70 62.58 ± 1.80 77.11 ± 0.80
Variational semantic memory 54.73 ± 1.60 68.01 ± 0.90 56.88 ± 1.71 74.65 ± 0.81 63.42 ± 1.90 77.93 ± 0.80

probabilistic modeling. The probabilistic prototypes provide more informative representations of
classes, which are able to encompass large intra-class variations and therefore improve performance.

Benefit of variational semantic memory We compare with two alternative methods of memory
recall: rote memory and transformed memory [22, 73] (The implementation details of are provided
in the supplementary material). As shown in Table 2, our variational semantic memory surpasses
alternatives on all three benchmarks. The advantage over rote memory indicates the benefit of
introducing the intermediate latent memory variable; the advantage over transformed memory
demonstrates the benefit of formulating the memory recall as the variational inference of the latent
memory, which is treated as a stochastic variable. To understand the empirical benefit, we visualize
the distributions of prototypes obtained with/without variational semantic memory in Figure 2 on
miniImageNet. The variational semantic memory enables the prototypes of different classes to be
more distinctive and distant from each other, with less overlap, which enables larger intra-class
variations to be encompassed, resulting in improved performance.

Benefit of attentional memory update We investigate the benefit of the attention mechanism for
memory update. Specifically, we replace the attention-based update with a mean-based one; that is,
we use M̄ = 1

Nc

∑
i h(xic). The experimental results are reported in Table 3. We can see that the

memory update with attention mechanism performs consistently better than that using the mean-based
update. This is because that the with the attention mechanism, we are able to better absorb more
informative knowledge from the data of new tasks by exploring the structural information.

Figure 3: Effect of memory size.

Effect of memory size We conduct this exper-
iment on miniImageNet. From Figure 3, we can
see that the performance increases along with
the increase in memory size. This is reasonable
since larger memory provides more context in-
formation for building better prototypes. More-
over, we observe that the memory module plays
a more significant role in the 1-shot setting. In
this case, the prototype inferred from only one
example might be insufficiently representative of
the object class. Leveraging context information
provided by the memory, however, compensates
for the limited number of examples.

Comparison with other memory models To demonstrate the effectiveness of our variational
memory mechanism, we compare with two other representative memory models, i.e., the memory
augmented neural network (MANN) [57] and the Kanerva machine (KM) [74]. MANN adopts an
architecture with augmented memory capacities similar to neural Turing machines [22] while the
KM deploys Kanerva’s sparse distributed memory mechanism and introduces learnable addresses
and reparameterized latent variables. The KM was originally proposed for generative models, but
we adopt its reading and writing mechanism to our semantic memory in the meta-learning setting
for few-shot classification. The results are shown in Table 4. Our variational semantic memory
consistently outperforms MANN and the KM on all three datasets.
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Table 5: Comparison (%) on miniImageNet, tieredImageNet and CIFAR-FS using a shallow feature extractor.

miniImageNet, 5-way tieredImageNet, 5-way CIFAR-FS, 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching Net [70] 43.56 ± 0.84 55.31 ± 0.73 - - - -
MAML [15] 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75 58.90 ± 1.91 71.52 ± 1.10

Relation Net [63] 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 65.32 ± 0.70 55.00 ± 1.01 69.30 ± 0.80

SNAIL (32C) by [4] 45.10 ± 0.85 55.20 ± 0.80 - - - -
GNN [19] 50.31 ± 0.83 66.42 ± 0.90 - - 61.90 ± 1.03 75.30 ± 0.91

PLATIPUS [16] 50.10 ± 1.90 - - - - -
VERSA [20] 53.31 ± 1.80 67.30 ± 0.91 - - 62.51 ± 1.70 75.11 ± 0.91

R2-D2 (64C) [4] 49.50 ± 0.20 65.40 ± 0.20 - - 62.30 ± 0.20 77.40 ± 0.20

R2-D2 [11] 51.70 ± 1.80 63.31 ± 0.91 - - 60.20 ± 1.80 70.91 ± 0.91

CAVIA [82] 51.80 ± 0.70 65.61 ± 0.60 - - - -
iMAML [46] 49.30 ± 1.90 - - - - -
VSM (This paper) 54.73 ± 1.60 68.01 ± 0.90 56.88 ± 1.71 74.65 ± 0.81 63.42 ± 1.90 77.93 ± 0.80

Table 6: Comparison (%) on miniImageNet and tieredImageNet using a deep feature extractor.

miniImageNet, 5-way tieredImageNet, 5-way

1-shot 5-shot 1-shot 5-shot

SNAIL [38] 55.71 ± 0.99 68.88 ± 0.92 - -
AdaResNet [41] 56.88 ± 0.62 71.94 ± 0.57 - -
TADAM [42] 58.50 ± 0.30 76.70 ± 0.30 - -
Shot-Free [51] 59.04 ± n/a 77.64 ± n/a 63.52 ± n/a 82.59 ± n/a
TEWAM [45] 60.07 ± n/a 75.90 ± n/a - -
MTL [62] 61.20 ± 1.80 75.50 ± 0.80 - -
Variational FSL [80] 61.23 ± 0.26 77.69 ± 0.17 - -
MetaOptNet [35] 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
Diversity w/ Cooperation [13] 59.48 ± 0.65 75.62 ± 0.48 - -
Meta-Baseline [10] 63.17 ± 0.23 79.26 ± 0.17 - -
Tian et al. [65] 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49
VSM (This paper) 65.72 ± 0.57 82.73 ± 0.51 72.01 ± 0.71 86.77 ± 0.44

State-of-the-art comparison As shown in Tables 5 and 6, our variational semantic memory (VSM)
sets a new state-of-the-art on all few-shot learning benchmarks. On miniImageNet, our model using
either a shallow or deep network achieves high recognition accuracy, surpassing the second best
method, i.e., VERSA [20], by a margin of 1.43% on the 5-way 1-shot using a shallow network.
On tieredImageNet, our model again outperforms previous methods using shallow networks, e.g.,
MAML [15] and Relation Net [63], and deep networks, e.g., [65]. On CIFAR-FS, our model delivers
63.42% on the 5-way 1-shot setting, surpassing the second best R2D2 [4] by 1.12%. The consistent
state-of-the-art results on all benchmarks using either shallow or deep feature extraction networks
validate the effectiveness of our model for few-shot learning.

5 Conclusion

In this paper, we introduce a new long-term memory module, named variational semantic memory,
into meta-learning for few-shot learning. We apply it as an external memory for the probabilistic
modelling of prototypes in a hierarchical Bayesian framework. The memory episodically learns to
accrue and store semantic information by experiencing a set of related tasks, which provides semantic
context that enables new object concepts to be quickly learned in individual tasks. The memory recall
is formulated as the variational inference of a latent memory variable from the addressed content
in the external memory. The memory is established from scratch and gradually consolidated by
updating with knowledge absorbed from data in each task using an attention mechanism. Extensive
experiments on four benchmarks demonstrate the effectiveness of variational semantic memory in
learning to accumulate long-term knowledge. Our model achieves new state-of-the-art performance
on four benchmark datasets, consistently surpassing previous methods. More importantly, the findings
in this work demonstrate the benefit of semantic knowledge accrued through long-term memory in
effectively learning novel concepts of object categories, and therefore highlight the pivotal role of
semantic memory in few-shot recognition.
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Broader Impact

This work introduces the concept of semantic memory from cognitive science into the machine
learning field. We use it to augment a probabilistic model for few-shot learning. The developed
variational framework offers a principled way to achieve memory recall, which could also be applied
to other learning scenarios, e.g., continual learning. The emprical findings indicate the potential role
of neural semantic memory as a long-term memory module in enhancing machine learning models.
Finally, this work will not cause any foreseeable ethical issue or societal consequence.
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