
2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

International Journal of Modeling, Simulation,
and Scientific Computing
(2023) 2350013 (32 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S1793962323500137

A Theoretical approach to the computational complexity
measure of abstract DEVS simulators

Yoro Diouf∗,§, Oumar Y. Mäıga† and Mamadou K. Traore‡

∗African University of Science and Technology (AUST)
P.M.B 681, Garki, Abuja F.C.T, Nigeria

†Université des Sciences

Techniques et Technologies de Bamako (USTTB)
Hamdalaye ACI 2000 Rue: 405, Porte: 359

BP: E 423, Bamako, Mali

‡Université de Bordeaux

351 cours de la Libération CS 10004
33405 Talence Cedex, France

§yorodiouf@gmail.com

Received 11 February 2022

Revised 10 April 2022
Accepted 8 May 2022

Published 18 June 2022

DEVS is a sound Modeling and Simulation (M&S) framework that describes a model in
a modular and hierarchical way. It comes along with an abstract simulation algorithm
which defines its operational semantics. Many variants of such an algorithm have been
proposed by DEVS researchers. Yet, the proper interpretation and analysis of the com-
putational complexity of such approaches have not been systematically addressed and
defined. As systems become larger and more complex, the efficiency of the DEVS simu-
lation algorithms in terms of time complexity measure becomes a major issue. Therefore,
it is necessary to devise a method for computing this complexity. This paper proposes a
generic method to address such an issue, taking advantage of the recursion embedded in
the triggered-by-message principle of the DEVS simulation protocol. The applicability
of the method is shown through the complexity analysis of various DEVS simulation
algorithms.

Keywords: Discrete-Event Systems Specification (DEVS); Modeling and Simulation
(M&S); computational complexity; simulation algorithm.

Mathematics Subject Classification 2020: 00A72

§Corresponding author.

2350013-1

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

https://dx.doi.org/10.1142/S1793962323500137

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

1. Introduction

DEVS (Discrete-Event Systems Specification) is widely recognized as a univer-
sal framework for discrete-event simulation.1 It proposes a sound formalism that
comes along with an abstract simulator, which defines its execution semantics.2 An
abstract DEVS simulator is a technology-agnostic description of a correct DEVS
simulation engine. Therefore, it abstracts away all implementation details and only
focuses on the description of the operations to be performed in order to ensure
the correct generation of DEVS models’ behavior. This abstract description is
based on a hierarchical architecture of abstract components called simulators and
coordinators, and a generic message-based inter-component communication scheme
called the DEVS simulation protocol. In this paper, the terms “DEVS abstract
simulator” and “DEVS simulation algorithm” are interchangeably used. Since the
introduction of the original abstract DEVS simulator,1 several variants have been
proposed in the literature, including sequential simulation algorithms2–7 as well as
parallel and distributed versions.8–12 Yet, the proper measure of the computational
complexity of such approaches has not been systematically addressed. As systems
become larger and more complex, the efficiency of the DEVS simulation algorithms
becomes a major issue. Such efficiency can be tackled from at least the following two
angles:

• By experimentally comparing implementations using standardized or ad-hoc
benchmarking study cases — and preferably large-scale simulation models.13,14

The results will depend on hardware and software factors such as the processor(s)
used, the memory access time, the programming language, or the compiler used.

• By theoretically comparing algorithms with each other.15,16 The advantage of this
approach over the preceding one is its independence vis-à-vis the material factors.
Its disadvantage is the relative hardness to properly elaborate the theoretical
measurement.

This work addresses the theoretical approach to DEVS simulation efficiency. As the
DEVS simulation scheme is a tree-based architecture (see Fig. 1), it is important
to observe the behavior of the simulation process when the number of simulation
components grows width-wise and depth-wise. The term width refers to the number
of components per level of the simulation tree, while the term depth refers to the
number of levels of such a tree. The paper tries to provide a generic method to such
an analysis that can apply to any DEVS abstract simulator.

At this stage, it is important to notice that, similar to the complexity analy-
sis of sorting algorithms, the computational complexity measure of DEVS abstract
simulators is not intended to provide efficient implementations, but to allow us
understand how an algorithm behaves as the input (i.e., width and depth of the
simulation tree generated from the structure of the DEVS model to be simulated)
grows larger. Therefore, this computational complexity cannot be used for pre-
dicting/comparing specific implementations. For the latter purpose, experimental

2350013-2

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

results need to be used (taking also into account hardware/middleware-based opti-
mizations).

In Sec. 2, related works are examined. In Sec. 3, the DEVS simulation archi-
tecture is outlined, and the reference model and notation that will be the basis
for our proposal are introduced. In Sec. 4, the approach used for determining the
computational complexity of DEVS abstract simulators is described. In Sec. 5, the
method is applied to various well-known variants of DEVS simulation algorithms.
The results obtained are discussed in Sec. 6. Section 7 concludes the paper and
gives perspectives for future work.

2. Related Works

Performance evaluation and measurement constitute a very important aspect of
model design.17 Some research works have addressed the experimental evaluation
of DEVS simulation performances;13,14,18–20 few have addressed the theoretical eval-
uation of their computational complexity.

Among the experimental works, a noticeable one is DEVStone, a benchmark and
model generator used for performance evaluation18,21 which enables standardized
and exhaustive ways to compare different DEVS-based simulation environments.
A performance evaluation of different and successive versions of CD++ (a C++
implementation of DEVS-based cellular automata simulation) has been conducted
using DEVStone.16,17 In another work, the authors presented a revision of DEVS-
tone18 by introducing new equations and model benchmark, which they used to test
five different DEVS-based environments with respect to execution performance and
memory footprint on two hardware platforms. In Ref. 13, the authors considered
using DEVStone to conduct a technical survey of some of the major DEVS-based
simulators and software frameworks, based on a set of criteria to capture the main
features of each of them, and furthermore provided a classification upon the tests
conducted using these criteria. In Ref. 14, the authors presented a decisional work
which enables modelers to choose the best-suited tool to solve their problem and
furthermore depicted possible ways to extend (or upgrade) the studied tool.

An early work on theoretical approach to DEVS complexity is given in Ref. 22.
For design consideration, a performance evaluation model is considered to find an
optimal model decomposition that can be mapped onto a multiprocessor. Another
work,23 which improved upon Ref. 22, was considered by exploiting the parallelism
natural to discrete models in general; in addition, the work proposed a complex-
ity computational measure that is used to express the speed-up factor gotten from
an optimal model decomposition. This work was done on the basis of the classic
DEVS (CDEVS) formalism [as opposed to parallel DEVS (PDEVS); see Appendix
A]. It is worth mentioning that distributed simulation in Ref. 23 refers to paral-
lel/concurrent execution rather than the proper “distributed execution” as the term
“distributed simulation” holds a much broader meaning. That is, a true distributed
simulation execution would require the use of synchronization mechanisms,24–26

2350013-3

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

namely optimistic and conservative mechanisms, to ensure execution correctness.
More recently, simulation-based activity metrics have been used to corroborate
the choice of a DEVS simulation model among a set of family models based on
analytic-based activity metrics.27 The activity notion for a DEVS system is com-
monly referred to as the number of execution of its transition functions. How-
ever, the authors agreed that getting a good activity metric of models (in order to
evaluate their performance) after the simulation is very difficult. Therefore, they
do not provide any methodological guideline for the general case of any DEVS
model.

Some works not theoretically driven cut into a theoretical performance analysis
as a preamble of an experimental work. A performance measure, which relates to the
number of atomic models, internal transition, and external transition, was proposed
in Refs. 18, 19, and 28. It enabled to represent formulas that can be used to obtain
a theoretical execution time, which was compared to the experimental execution
time to derive the eventual overhead. A comprehensive performance measurement
was proposed in Ref. 17 for DSDEVS for large-scale cellular space models. The
authors considered modeling layer and simulation layer for performance analysis and
proposed quantitative work on performance by considering the overhead inherent to
adding or removing model during simulation in the dynamic simulation scheme. To
achieve significant speed-up in execution time, the authors in Ref. 29 proposed an
extension of the DEVS formalism to exploit the capability of executing hierarchical
and modular DEVS models with the properties of high internal and external event
parallelism.

3. DEVS Simulation Architecture

DEVS is a formal Modeling and Simulation (M&S) framework that enables models
to be constructed in a hierarchical and modular composition. In the DEVS formal-
ism, there are two basic types of models: atomic model and coupled model (which
is a network of atomic models). DEVS considers not only the model behavior but
also the model structure in its formalism. Model behavior has to do with model
input and output events and states, while the model structure has to do with the
model composition (i.e., atomic or coupled components).

A DEVS model can be expressed in either Classic DEVS1 or Parallel DEVS.4

The latter represents an improvement of the former by: (1) removing from the cou-
pled model specification the tie-breaking function (Select function), which sequen-
tializes the simulation execution by selecting at each simulation cycle only one
component to be active; and (2) introducing in the atomic model specification the
confluent function, which takes care of eventual simultaneous events that may occur
during simulation.

The DEVS modeling formalism has been abundantly presented in the literature.
The interested readers can refer to Appendix A for a short introduction. For further
reading on the DEVS, interested readers can refer to a didactic presentation of

2350013-4

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

(a)

(b)

Fig. 1. (a) Hierarchy of model components and (b) the associated simulators/coordinators.

DEVS in Refs. 30 and 33, but also consult some recent works in Refs. 32, 34,
and 35 for an ample description of the formalism.

3.1. DEVS simulation tree

For simulation executions, a hierarchical DEVS model can be mapped onto a sim-
ulation tree, as shown in Fig. 1. DEVS formalism explicitly separates the model
from its execution engine. The corresponding coordinators and simulators carry out
the simulation of, respectively, the coupled and atomic models.2,5 The simulation
process is dictated by the DEVS simulation algorithm used, to simulate the model
of interest. However, each of these simulation algorithms has different message con-
cepts, although following the same semantics.

For simulation executions, a hierarchical DEVS model can be mapped onto
a simulation tree, as shown in Fig. 1. DEVS formalism explicitly separates the
model from its execution engine. The corresponding coordinators and simulators
carry out the simulation of, respectively, the coupled and atomic models.2,5 The
simulation process is dictated by the DEVS simulation algorithm used, to simulate
the model of interest. However, each of these simulation algorithms has different
message concepts, although following the same semantics.

3.2. Normalized representation for DEVS simulation algorithms

Various DEVS simulation algorithms exist in the literature. Let us introduce the
following definition of our own.

Definition 1. A DEVS simulation algorithm is in the normal form if it is depicted
in a triggered-by-message form, i.e., as a set of action batches to be performed, with
each batch being guarded by the receipt of a given type of message.

This normalized representation of the DEVS simulation algorithms mirrors the
event-driven programming paradigm, in which the flow of instructions is deter-
mined by the triggering of events (i.e., user actions) as presented by Table 1. This
form makes it easy to analytically compute the time complexity of the proposed

2350013-5

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

Table 1. Pattern of DEVS simulation algorithm description in the normal form.

Message Coordinator Simulator

Type of message Computation done by a
coordinator at the receipt of a
message of this type, and
sending of new message(s)
or/and forwarding of the
message received

Computation done by a simulator
at the receipt of a message of
this type, and sending of new
message(s)

algorithm, as the complexity related to the receipt of each type of message can be
computed in isolation and the complexity of the overall algorithm can be derived
from the recursion between the receipt of a type of message and the sending of
other types of messages or/and the forwarding of the message received. This forms
the foundational principles of our approach. Appendix B presents in their normal
form the DEVS simulation algorithms to which our method is applied in Sec. 5.

4. Generic Approach to Complexity Analysis of DEVS Algorithms

Traditionally, the algorithmic complexity of a particular problem is tied to the size
of the problem’s input (as the length of an array to be sorted). In this work, the
input is the DEVS simulation tree, and the size is given by two parameters: width,
which corresponds to the number of children per coordinator, and depth, which
corresponds to the number of levels of the DEVS simulation tree. Another important
aspect is the cost of communication between two computational nodes, in the case
the simulation algorithm is distributed over a computer network. The following sub-
sections present the reference architecture and the notation introduced to support
our strategy for the determination of the DEVS computational complexity.

4.1. Reference architecture

The study of the computational complexity of an arbitrary DEVS model is inher-
ently complex. In order to ease the computation of the time complexity, a balanced
DEVS simulation tree is used, where each coordinator (except the root coordinator)
possesses the same number N of children, as shown by Fig. 2 (in that case, each
coordinator has three children).

The use of a balanced tree enables the exhibition of patterns and eases the use of
recursion due to the hierarchical nature of the model. Let us assume the simulation
tree levels are numbered from 0 to L (= depth), starting from the leaves (therefore,
the root coordinator is the L-level node).

Notice that with such an assumption, L is necessarily greater than or equal to
2. For L = 2, the tree is composed of the root coordinator (at level 2), the top-most
coordinator (at level 1), and the N simulators (at level 0). Also, N is necessarily
greater than or equal to 2, as having a node with only one child does not make
sense.

2350013-6

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

Fig. 2. Example of a balanced simulation tree.

To illustrate the principle of recursion, the sequential processing of the part
enclosed within the circle at the bottom left of Fig. 2 is detailed by Fig. 3 in the
case of the simulation algorithm proposed in Ref. 5. Let us start with the generation
of an output event caused by the reception of an @-message by a (j−1)-level node
(a simulator in this case). After computing its output (y), the node will send it to
its parent coordinator, which in turn processes it and generates new messages to its
influences, and/or forwards it to parent (if the latter is part of influences). Each of
the influences other than parent will receive a q-message, and will send back a D-
message when it is done with the processing of that q-message. The circled area of
Fig. 3 is a zoom on the computational process triggered by the receipt of a q-message
by a j-level node from its (j + 1)-level parent node. The cascade of computations
goes on, with each receipt of message triggering a batch of computations, and each
batch of computations generating messages to be sent. Therefore, the computational
complexity due to the starting @-message will be the sum of the complexity due
to the computation of the y output by the receiving node and the one due to the
sending of the message to its parent node. This latter one is computed the same
way, leading to a recursion in the computation process.

4.2. Reference notations

There are two main approaches to the theoretical measurement of algorithm com-
plexity: time (taken by the processor) and space (in memory). Space complexity
is much less important nowadays because computers have tremendous memory.
This work focuses on time complexity, which relates to a scarcer resource. The idea
behind the concept of time complexity of an algorithm is mainly measuring the
total time required by an algorithm to run successfully until its completion solving
a particular problem.

2350013-7

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

Fig. 3. Example of sequential processing based on the simulation algorithm defined in Ref. 5.

To support our strategy for complexity analysis, a notation is suggested to be
adopted with all DEVS simulation algorithms. The following are defined:

M : Set of all types of messages of the algorithm.
τ(m, j) : Time required to completely process a message of type m at levelj

of the simulation tree. This may include the time needed to do
local computations, send some follow-up messages to children, and
receive feedback from them. In some other cases, only a local
computation is done (and possibly, feedback is given to parent
coordinator).

tcom : Time required to exchange a message between two components
located at contiguous levels (i.e., parent-to-child or child-to-parent
message exchange).

tX : Time required for executing a transition function X by the
simulator, X = {int, ext, con}.

N : Number of children of a coordinator.
L : Number of levels of the simulation tree.
C(N, L) : Cost of computations generated by the root coordinator in a cycle of

simulation (i.e., one of the repetitive threads of computations
performed by the root coordinator).

4.3. Strategy to complexity analysis

A DEVS simulation is a repetition of computation cycles until the simulated dura-
tion expires or a stopping condition occurs. The main idea in this work is to consider
that the computational cost of each of these cycles is decomposable into the cost
of computations resulting in the sending of the message that initiates this cycle
by the root coordinator and the cost of computations of the receipt of that mes-
sage by the top-most coordinator. The latter is in turn decomposable into the cost

2350013-8

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

of computations resulting in the sending of messages to the children of the top-
most coordinator and the cost of computations of the receipt of those messages by
the top-most coordinator’s children. Recursively, this computational approach is
applied until a simulation cycle is complete, i.e., when the root coordinator is ready
to initiate a new recursive thread of computations.

By considering the time it would take for a message to transit between two
adjacent nodes, emphasis is made on the fact that the message-passing process also
affects the execution performance,30 particularly if the model is distributed over a
computing network with high latency.

The normal form provides us with a common reading grid for consistently inter-
preting all DEVS simulation algorithms, while the reference notation provides a
unified notation for a unique computational basis. Given a DEVS algorithm in its
normal form, our strategy is the following:

Step 1. For each mεM , do calculate τ(m,0) for top–down messages, and τ(m,L)
for bottom–up messages, in the worst-case scenario.

Step 2. For each mεM , express τ(m,j) in the worst-case scenario either as a func-
tion of τ(m,0) for top–down messages or as a function of τ(m,L) for
bottom–up messages.

Step 3. Express C(N , L) as a function of N , L, and τ(m,j), m ∈ M .
Step 4. Replace in C(N , L) each τ(m,j) by its corresponding function of τ(m,0)

or τ(m,L).
Step 5. The width-wise complexity of the algorithm is given by C(N ,L) as a func-

tion of N when N grows infinitely, and the depth-wise complexity of the
algorithm is given by C(N ,L) as a function of L when L grows infinitely.

The worst-case scenario is considered here, i.e., at a given simulation cycle all
simulators are imminent and influence each other and their parents as well. Other
scenarios (such as best-case and average-case scenarios) can also be considered
without changing the global scheme of the approach.

5. Application

Let us illustrate here the application of our approach with the algorithm proposed
in Refs. 4 and 5. The five steps previously presented are detailed hereafter.

5.1. Step-by- step complexity measure

Step 1. For each mεM , do calculate τ(m, 0) for top–down messages, and τ(m, L)
for bottom–up messages, in the worst-case scenario:

• τ(@, 0) = 2tcom + τ(y, 1) + τ(D, 1) + a, where a includes time to compute an
output event;

2350013-9

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

• τ(y, L) = 0;
• τ(q, 0) = tcom + τ(D, 1) + b, where b includes time to manipulate the bag;
• τ(∗, 0) = max(tint, text, tcon)+tcom+τ(D, 1)+c, where c includes time to compute

tL and tN ;
• τ(D, L) = tcom + τ(∗, L − 1);
• τ(D, L) = 0

Note that D’ is introduced such that (D’,t) = (D, tN), as the algorithm distinguishes
between the receipt of (D, t) and of (D, tN) by the root coordinator. Also, if the
recursion had to continue over the entire simulation run, it would give τ(D, L) =
tcom + τ(@, L − 1), since each receipt of D’ by the root coordinator initiates a new
cycle by the sending of an @-message to the top-most coordinator.

Step 2. For each mεM , express τ(m, j) in the worst-case scenario either as a
function of τ(m, 0) for top–down messages, or as a function of τ(m, L) for bottom–
up messages:

• For m= @,

τ(@, j) = Nτ(@, j − 1) + (N + 1)tcom + τ(D, j + 1) + Nd,

where d includes time to handle the synchronize set. Applying the same recursive
relation, it gives

τ(@, j − 1) = Nτ(@, j − 2) + (N + 1)tcom + τ(D, j) + Nd

Therefore, replacing τ(@, j − 1) by this formula in the first expression leads to

τ(@, j) = N(Nτ(@, j − 2) + (N + 1)tcom + τ(D, j) + Nd)

+ (N + 1)tcom + τ(D, j + 1) + Nd

Hence

τ(@, j) = N2τ(@, j − 2) + N(N + 1)tcom + Nτ(D, j)

+ N2d + (N + 1)tcom + τ(D, j + 1) + Nd

Arranged differently, it gives

τ(@, j) = N2τ(@, j − 2) + (N + 1)(N + 1)tcom

+ Nτ(D, j) + τ(D, j + 1) + (N2 + N)d

Let us replace in this last equation,τ(@, j − 2) by the recursive relation initially
established but applied at level j−2, i.e., Nτ(@, j−3)+(N+1)tcom+τ(D, j−1)+Nd,
which gives

τ(@, j) = N3τ(@, j − 3) + N2τ(N + 1)tcom + N2(D, j − 1) + N3d

+ (N + 1)(N + 1)tcom + Nτ(D, j) + τ(D, j + 1) + (N2 + N)d

2350013-10

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

Arranged differently, it gives

τ(@, j) = N3τ(@, j − 3) + (N + 1)(N2 + N + 1)tcom + N2τ(D, j − 1)

+ Nτ(D, j) + τ(D, j + 1) + (N3 + N2 + N)d

The recursive relation that will successively be applied in every last equation
obtained is

τ(@, j − k) = Nτ(@, j − k − 1) + (N + 1)tcom + τ(D, j − k + 1) + Nd,

until j − k = 1, which also means k = j − 1. That way, it gives

τ(@, j) = Njτ(@, 0) + (N + 1)(Nj − 1 + Nj − 2 + · · · + N + 1)tcom

+ Nj − 1τ(D, 2) + Nj − 2τ(D, 3) + · · · + N2τ(D, j − 1)

+ Nτ(D, j) + τ(D, j + 1) + (Nj + Nj − 1 + · · · + N3 + N2 + N)d

It is known that

N j−1 + N j−2 + · · · + N + 1 =
(N j − 1)
N − 1

Therefore, one can write

τ(@, j) = N jτ(@, 0) + (N + 1)
(N j − 1)
N − 1

tcom +
j∑

k=1

N j−kτ(D, k + 1) + N
(N j − 1)
N − 1

d

• For m = y,

τ(y, j) = Nτ(q, j − 1) + (N + 1)tcom + τ(y, j + 1) + Nd + e,

where e includes time to handle the synchronize set and other local variables. There-
fore,

τ(y, j + 1) = Nτ(q, j) + (N + 1)tcom + τ(y, j + 2) + Nd + e

Replacing τ(y, j − 1) by this expression in the equation giving τ(y, j), it gives

τ(y, j) = Nτ(q, j − 1) + (N + 1)tcom + Nτ(q, j)

+ (N + 1)tcom + τ(y, j + 2) + Nd + e + Nd + e

Arranged differently, it gives

τ(y, j) = Nτ(q, j − 1) + Nτ(q, j) + τ(y, j + 2) + 2(N + 1)tcom + 2Nd + 2e

Replacing τ(y, j + 2) by Nτ(q, j + 1) + (N + 1)tcom + τ(y, j + 3) + Nd + e, it gives

τ(y, j) = Nτ(q, j − 1) + Nτ(q, j) + Nτ(q, j + 1) + (N + 1)tcom + τ(y, j + 3)

+ Nd + e + 2(N + 1)tcom + 2Nd + 2e

2350013-11

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

Arranged differently, it gives

τ(y, j) = Nτ(q, j − 1) + Nτ(q, j) + Nτ(q, j + 1) + τ(y, j + 3)

+ 3(N + 1)tcom + 3Nd + 3e

Repeating the same recursive replacement until reaching the level L, it leads to

τ(y, j) = Nτ(q, j − 1) + Nτ(q, j) + · · · + Nτ(q, L − 2) + (y, L)

+ (L − j)(N + 1)tcom + (L − j)Nd + (L − j)e

Therefore, one can write

τ(y, j) = τ(y, L) + N

L−j−1∑
k=0

τ(q, j + k − 1)

+ (L − j)((N + 1)tcom + Nd + e)

• For m = q

τ(q, j) = b

• For m = ∗

τ(∗, j) = Nτ(qj − 1) + 2Ntcom + Nτ(∗, j − 1) + Nf,

where f includes time to handle the local variables. By replacing τ(∗, j − 1) by
Nτ(qj − 2) + 2Ntcom + Nτ(∗, j − 2) + Nf , it gives

τ(∗, j) = Nτ(q, j − 1) + 2Ntcom + N2τ(q, j − 2)

+ 2N2tcom + N2τ(∗, j − 2) + N2f + Nf

Arranged differently, it gives

τ(∗, j) = N2τ(∗, j − 2) + Nτ(q, j − 1) + N2τ(q, j − 2)

+ 2N(N + 1)tcom + N(N + 1)f

By repeating the recursive replacement, it gives

τ(∗, j) = Njτ(∗, 0) + Nτ(q, j − 1) + N2τ(q, j − 2) + · · · + N jτ(q, 0)

+ 2N(N j−1 + · · · + N + 1)tcom + N(N j−1 + · · · + N + 1)f

As N j−1 + N j−2 + · · · + N + 1 = (Nj−1)
N−1 , one can write

τ(∗, j) = N jτ(∗, 0) + 2N
(N j − 1)
N − 1

tcom

+
j∑

k=1

Nkτ(q, j − k) +
(N j − 1)
N − 1

Nf.

2350013-12

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

• For m = D,

τ(D, j) = τ(D, j) = tcom + τ(D, j + 1) + Ng,

where g includes time to manipulate the local variables. By replacing τ(D, j + 1)
by tcom + τ(D, j + 2) + Ng, it gives

τ(D, j) = tcom + tcom + τ(D, j + 2) + Ng + Ng = τ(D, j + 2) + 2tcom + 2Ng

By repeating the recursive replacement until we reach the level L, it gives

τ(D, j) = τ(D, j) = (L − j)tcom + N(L − j)g + τ(D, L).

Step 3. Express C(NL) as a function of N , L, and τ(m, j), mεM :

C(NL) = tcom + τ(@, L − 1) + h,

where h includes the initialization time (before simulation cycles).

Step 4. Replace in C(N, L) each τ(m, j) by its corresponding function of τ(m, 0)
or τ(m, L):

From Step 2, we know (replacing j by L − 1) that

τ(@, L) = NL−1τ(@, 0) + (N + 1)
(NL−1 − 1)

N − 1
tcom

+
L−1∑
k=1

NL−1−kτ(D, k + 1) + N
(NL−1 − 1)

N − 1
d

Therefore,

C(N, L) = tcom + h + NL−1τ(@, 0) + (N + 1)
(NL−1 − 1)

N − 1
tcomm

+
L∑

k=2

NL−kτ(D, k) + N
(NL−1 − 1)

N − 1
d.

Replacing τ(@, 0) by tcom + τ(y, 1) + τ(D, 1) + a, which we know from Step 1, and
each τ(D, k) by (L − k)tcom + N(L − k)g + τ(D, L), which would be from Step 2,
gives

C(N, L) = tcom + h + NL−1(2tcom + τ(y, 1) + τ(D, 1) + a)

+ (N + 1)tcom +
L∑

k=2

NL−k((L − k)tcom + N(L − k)g

+ τ(D, L)) + N
(NL−1 − 1)

N − 1
d

We know from Step 1 thatτ(D, L) = τ(y, L) = 0, and from Step 2 thatτ(D, 1) =
(L− 1)tcom + N(L− 1)g + τ(D, L), as well as τ(y, 1) = τ(y, L) + N

∑L−2
k=0 τ(q, k) +

2350013-13

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

(L − 1)((N + 1)tcom + Nd + e), so we get

τC(N, L) = tcom + h + NL−1

(
2tcom + N

L−2∑
k=0

(q, k) + (L − 1)((N + 1)tcom

+ Nd + e) + (L − 1)tcom + N(L − 1)g + a

)

+ (N + 1)
(NL−1 − 1)

N − 1
tcom +

L∑
k=2

NL−k((L − k)tcom + N(L − k)g)

+ N
(NL−1 − 1)

N − 1
d

Arranged differently, we get

C(N, L) = tcom

(
1 + 2NL−1 + NL−1(L − 1)(N + 1) + NL−1(L − 1)

+ (N + 1)
(NL−1 − 1)

N − 1
+

L∑
k=2

NL−k(L − k)

)
+ h + NL

L−2∑
k=0

τ(q, k)

+ NL−1(L − 1)(Nd + e) + NL((L − 1)g + a)

+ Ng

L∑
k=2

NL−k(L − k) + N
(NL−1 − 1)

N − 1
d

From Step 2, we know that τ(q, k) = b, therefore it gives

C(NL) = tcom

(
1 + 2NL−1 + NL−1(L − 1)(N + 2)

+ (N + 1)
(NL−1 − 1)

N − 1
+

L∑
k=2

NL−k(L − k)

)

+ NL(L − 1)(b + g + d) + NLa + NL−1(L − 1)e

+ Ng
L∑

k=2

NL−k(L − k) + N
(NL−1 − 1)

N − 1
d + h

Although this expression can be organized in different ways, there is not much point
in doing a lot more calculations, as what matters is to derive the dominant terms
when L (respectively, N) grows infinitely.

Step 5. The width-wise complexity of the algorithm is given by C(N , L) as a
function of N when N grows infinitely, and the depth-wise complexity is given by
C(N , L) as a function of L when L grows infinitely:

2350013-14

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

Table 2. Computational loads per cycle of some DEVS simulation algorithms.

Algorithms of C(N, L)

Chow et al.4,5 (tcom + α)NL(L − 1) + (2tcom + β)NL−1(L − 1) + (2tcom +
γ)NL−1 + tcomN +

PL
k=1 NL−k(L − k)(tcom + δ) + 2tcom + ε

Chow3 NL(L − 1)(tcom + α) + N(L−1)(L − 1)tcom + N(L−1)(2tcom +

β) + NL+1 λ
N−1

N(L−1)−1
N−1

−N(L+1) γ
N−1

(L − 2) +

NL(NL−1−1
N−1

)δ + N(NL−1−1
N−1

)(2tcom + ωε) + tcom + ε

Zeigler et al.2 NL(L − 1)(tcom + α) + N(L−1)(L − 1)tcom + N(L−1)(tcom +

β) + N(L+1)(tcom+λ
N−1

)(N(L−1)−1
N−1

)−N(L+1)(tcom+γ
N−1

)(L − 2) +

NL(N(L−1)−1
N−1

)δ + N(N(L−1)−1
N−1

)tcom + tcom + ε

Schwatinski and Pawletta6 L(L−1)NL−1(tcom + α) + β(L−1)NL−1 + NL−1λ +
(NL−1)

N−1
(2tcom + γ)tcom + δ

When N grows infinitely (L being constant), the dominant terms are the higher-
degree monomials in N , as C(N, L) is then a polynomial in N . These terms are
tcomNL(L−1)+NL(L−1)(b+g +d)+NLa. Therefore,C(N, L) ≈ (tcom +α)LNL,
where α aggregates all costs for manipulating auxiliary variables (such as synchro-
nize set, time variables, etc.).

On the other hand, when L grows infinitely (N being constant), the domi-
nant terms are the higher-degree exponential functions in L. Therefore,C(N, L) ≈
(tcom+g)NL

L2.
Each complexity measure computed is presented by decreasing order first on

the power of N , and then on L. The whole idea in arranging terms the way they
appear in Table 2 is to quickly identify the most significant terms to be retained
when L or N grows. That way, the complexity order can easily be derived from
these expressions presented in Table 2.

For example, consider C(N, L) for Chow et al.4,5 as established in Sec. 5.1. We
can develop it in the following way:

C(N, L) = tcom + 2tcomNL−1 + NL(L − 1)tcom + NL−1(L − 1)2tcom

+ NL−1 (N + 1)
N − 1

tcom − (N + 1)
N − 1

tcom +
L∑

k=2

NL−k(L − k)tcom

+ NL(L − 1)(b + g + d) + NLa + NL−1(L − 1)e

+ g
L−1∑
k=1

NL−k(L − k) + NL−1 N

N − 1
d − N

N − 1
d + h

We can arrange this expression by starting with the terms containing NL(L − 1),
then terms containing NL−1(L− 1), subsequently the terms containing NL−1, and

2350013-15

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

finally the rest. This gives

C(N, L) = NL(L−1)tcom + NL(L − 1)(b + g + d) + NL−1(L − 1)2tcom

+ NL−1(L − 1)e + 2tcomNL−1 + NL−1 N

N − 1
d

+ NL−1 (N + 1)
N − 1

tcom − (N + 1)
N − 1

tcom +
L∑

k=2

NL−k(L − k)tcom

+ NLa + g

L−1∑
k=1

NL−k(L − k) − N

N − 1
d + tcom + h

Then, some terms can be grouped together to form constant/negligible values (Latin
letters).

To derive the complexity order from the resulting expressions (for each algo-
rithm or abstract simulator), only higher-degree monomials in N are to be retained
when N grows infinitely (L being constant) since C(N ,L) is then a polynomial
in N , and only higher-degree exponential functions in L are to be retained when
L grows infinitely (N being constant). Table 3 depicts the complexity for each of
the simulation algorithms (i.e., abstract simulators) studied in the work (see the
computational details in Appendix C).

Algorithms of Chow et al.4,5 and Schwatinski and Pawletta6 have a better width-
wise complexity than those of Chow3 and Zeigler et al.2 For example, for L = 2
(as already mentioned in Sec. 4.1, L is necessarily greater than or equal to 2), the
algorithms of Chow et al.4,5 as well as Schwatinski and Pawletta6 have a width-
wise complexity of O(N2), while those of Chow3 as well as Zeigleret al.2 have a
width-wise complexity of O(N4).

This does not mean that the specific implementations of Chow et al.4,5 or
Schwatinski and Pawletta6 necessarily outperform specific implementations of
Chow3 or Zeigler et al.2 Rather, it means that if the models to be simulated have
more and more immediate sub-components (for example, from a coupled model
having 1000 atomic model components to a coupled model having 1000 atomic
model components), the degradation of execution performances observed for any
specific implementation (whether optimized or not) of Chow3 or Zeigler et al.2 will
be worse than the one observed for an implementation (whether optimized or not)
of Chow et al.4,5 or Schwatinski and Pawletta.6

Table 3. Complexity order of some DEVS simulation algorithms (L ≥ 2).

Complexity Chow et al.4,5 Chow3 Zeigler et al.2 Schwatinski and Pawletta6

Width-wise O(NL) O(N2L) O(N2L) O(NL)

Depth-wise O(L2N
L
) O(LNL) O(LNL) O(L2N

L
)

2350013-16

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

On the contrary, Chow3 and Zeigler et al.2 have a better depth-wise complexity
than Chow et al.4,5 and Schwatinski and Pawletta.6 For example, for N = 2 (as
already mentioned in Sec. 4.1, N is also necessarily greater than or equal to 2),
Chow et al.4,5 as well as Schwatinski and Pawletta6 have a depth-wise complexity
of O(L22L), while Chow3 as well as Zeigler et al.2 have a depth-wise complexity of
O(L2L).

Therefore, if the models to be simulated are more and more decomposed into
sub-components and sub-sub-components (for example, from a coupled model hav-
ing two model components, each of which has two model components in turn, and
so on to level 10, to a coupled model having two model components, each of which
has two model components in turn, and so on to level 1000), the degradation of
execution performances observed for any specific implementation (whether opti-
mized or not) of Chow et al.4,5 or Schwatinski and Pawletta6 will be worse than
the one observed for an implementation (whether optimized or not) of Chow3 or
Zeigler et al.2

6. Experimental Results

Here, our theoretical results are partly assessed with experimental results obtained
from a specific implementation of the DEVS abstract simulators. The focus is on
Chow et al.’s4,5 algorithms, which have been implemented in the Java-programmed
SimStudio package.31

Let us consider a disease-spreading situation in a population composed of indi-
viduals, each represented by an atomic model. Each individual has a health status,
which is either Susceptible, Infected, or Recovered. While a susceptible individual
will remain in his/her health status until being infected, an infected individual will
recover after five days (incubation time), and a recovered individual will become
susceptible after two days (immune time). A susceptible individual gets infected
when in touch with two infected individuals.

The DEVS model of such an individual is defined as follows:

MIndividual = 〈X, Y, S, δint, δext, δconf , λ, ta〉,

where

• X = {(CONTACT, v) | v ∈ {Susceptible, Infected, Recovered}}, CONTACT is
the name of the unique input port of the model and v is the value received on it;

• Y = {(HEALTH, v) | v ∈ {Susceptible, Infected, Recovered}}, HEALTH is the
name of the unique output port of the model and v is the value sent on it;

• S = {(status, σ) | status ∈ {Susceptible, Infected, Recovered}, σ ∈ �}, status
is the current health status of the individual, while σ is the remaining time to be
in that status;

• ta(status, σ) = σ;

2350013-17

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

• δint (Infected, σ) = (Recovered, 2), δint (Recovered, σ) = (Susceptible, +∞), time
units are in days, and there is no possible internal transition from the Susceptible
health status (only a received infection can trigger a transition from that status);

• δext((status, σ), e, x) = (Infected, 5) if x contains at least two Infected statuses,
(status, σ − e) otherwise.

Both the width-wise and the depth-wise growths of the model are experimented:

• For the width-wise growth, let us consider L = 2 [for which it is known the width-
wise complexity is O(N2)], and let us gradually increase the number of individuals
in the population. That way, the corresponding simulation tree (which has only a
root coordinator at level 2, a top-most coordinator at level 1, and several children
at level 0) will gradually have more and more leaves.

• For the depth-wise growth, let us consider N = 2 [for which it is known the
depth-wise complexity is O(L22L)], and let us initially decompose the population
into two clusters, each of which is made of two individuals. Then after, let us
gradually decompose each cluster into two sub-clusters, each of which is made of
two individuals. That way, the corresponding simulation tree will gradually have
more and more levels, with each node at a given level having two children.

The disease-spreading model is always fully connected, i.e., all components within
any given component send their statuses to each other. Figure 4 shows the principle
of the evolution of the model’s structure, width-wise and depth-wise.

Simulation experiments are executed for various scenarios of population’s struc-
ture, and each experiment lasts for 100 simulated days. Figure 5 depicts the increase
of execution time (ET) in milliseconds, as the model grows width-wise (from N = 2
to N = 1024), while Fig. 6 compares the experimental results (dotted line) with
the theoretical results (straight line) established in the previous sections. The exe-
cution performances are averaged over 10 simulation executions for each scenario.
Obviously, Fig. 6 assesses the worst-case nature of the complexity measure (as com-
pared to the experimental results), and Fig. 5 assesses whether the experimental
performances degrade akin to the theoretical ones.

Figure 7 depicts the increase of execution time as the model grows depth-wise
(from L = 2 to L = 10) with a fixed value of N (i.e., 2).

Figure 8 compares the experimental and corresponding theoretical results.
Note that the model considered in this work is a balanced hierarchical DEVS

model, where at each level the number of subordinates per coordinator is the
same. In practice, DEVS hierarchical models are not balanced. In such a case,
our approach can be used to find the upper and lower bounds to the computational
complexity to be determined. That is, for any regular DEVS model, one can find
two DEVS balanced models that prove the boundedness of the complexity measure
of the regular model in terms of complexity analysis.

2350013-18

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

7. Conclusion

This paper presents a generic approach to the determination of the computational
complexity of DEVS simulation algorithms, which exploits their recursive nature
when they are expressed in a triggered-by-message form. The approach is based
on a balanced simulation tree and uses a reference notation that can apply to any
DEVS algorithm. The computational load generated by each type of message of the
simulation protocol is first computed, and then used to derive the overall load of
the algorithm per simulation cycle. The computational complexity results from the
asymptotic growth of the width or the depth of the simulation tree. The approach
is applied to four DEVS simulation algorithms, and a comparative study of them
is provided.

This approach can be adopted with any DEVS simulation algorithm, whether
a variant of CDEVS or PDEVS, or even a DEVS extension that is expressed with
CDEVS or PDEVS. However, this paper focuses only on sequential simulation,
and only on balanced simulation trees. For simulation that employs a nonbalanced
DEVS model, the approach provides lower and upper bound estimates of the com-
plexity. For distributed simulation, additional message types have to be introduced
in the DEVS algorithm to ensure the necessary synchronization between simulation
components that interact remotely. This has no impact on the applicability of our

Fig. 4. Experimental model (width-wise and depth-wise growths).

2350013-19

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

approach, but the number of processors used must also be considered, as well as
the way the communication time between two adjacent simulation nodes varies.
Examining the case of parallel and distributed DEVS simulation is envisioned as
future work.

Fig. 5. Execution performances as the model grows width-wise (from N = 2 to N = 1024).

Fig. 6. Theoretical versus experimental results (width-wise growth; from N = 2 to N = 1024).

2350013-20

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

It is worth mentioning that even if the focus of this approach is on finding a
way to measuring the computational complexity of a DEVS abstract simulator,
rather than improving the existing ones, it can serve as a computational mean to
comparing various solutions and demonstrating any improvement from one solution
to another.

Fig. 7. Execution performances as the model grows width-wise (from L = 2 to L = 10).

Fig. 8. Theoretical versus experimental result (depth-wise growth; from L = 2 to L = 10).

2350013-21

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

Acknowledgments

This work has been partially supported by the African Development Bank (AfDB).

Appendix A. DEVS Modeling Formalism

DEVS formalism was initially known as CDEVS while presenting some limitations
to perform parallel implementation. Some of its limitations include a tie-breaking
function that handles simultaneously occurring internal transitions of the compo-
nents of a coupled model, and the fact that it ignores an internal transition function
while occurring at the same time with an external input event (collision), in which
case the external transition function always takes place. PDEVS has been intro-
duced to alleviate this drawback.4 In this paper, PDEVS is referred to as DEVS.

An atomic DEVS model is defined by the n-tuple 〈X, Y, S, δint, δext, δconf , λ, ta〉,
where

• X , Y , and S are, respectively, the input set, output set, and state set (at any
time, the system modeled is in one of the possible states);

• ta: S → �+∞
0 is the time advance function (i.e., it gives the lifespan of each state),

with �+∞
0 designating the set of nonnegative real numbers, including +∞;

• δint: S → S is the internal transition function (i.e., it is triggered only when the
elapsed time in the system’s current state scurr has reached ta(scurr) without the
system being disturbed by any receipt of input);

• λ :S → Y is the output function (i.e., it computes the output of the system, each
time an internal transition is occurring);

• δext: Q×X → S is the external transition function [i.e., it is triggered only when
the system receives an input, while the elapsed time in the system’s current state
scurr has not reached ta(scurr)], and Q = {(s, e) | s ∈ S, 0 ≤ e < ta(s)} is called
the total state;

• δconf : S × X → S is the confluent transition function [i.e., it is triggered only
when the system receives an input at exactly the time when the elapsed time in
the system’s current state scurr has reached ta(scurr)].

The operational semantics of an atomic model is informally described as follows: At
the start, the system is in an initial state and remains there until the time specified
by ta is exhausted or until the input event is received. In the former case, an internal
transition function occurs then the system switches to another state after sending
output event as defined by the output function λ. In the latter case, if input event is
received before the specified time, then the external transition function is applied.
When a collision occurs, i.e., an external event is received concurrently with the
elapsed time equal to the time specified by the time advance function, the confluent
function is applied in such a way that the system sends output value and changes
to a new state.

A coupled DEVS model is a structure: 〈Xself , Yself , {Md}d ∈ D, {Id}d ∈
D, {Zi,j}i ∈ D ∪ {self}, j ∈ Ii〉 where

2350013-22

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

• Xself and Yself are defined the same way as X and Y are for atomic models (self
being here a reference to the coupled model, while component models are referred
to using the indices such as i, j, or d);

• D is the set of component references (thus, not including self);
• Md is the component model referenced by d, an atomic or a coupled model, with

Xd and Yd as, respectively, its input and output sets;
• Id is the influence set of component model d, i.e., all other models sending input

to d;
• Zself,d∈Iself : Xself → Xd are the external input transfer functions, which determine

how the inputs received by self are translated into the inputs to component models
influenced by self;

• Zd/self∈Id,self : Yd → Yself are the external output transfer functions, which deter-
mine how the outputs sent by component models influencing self are translated
into the outputs of self;

• Zi∈D,j∈D−{i}: Yi → Xj are the internal transfer functions, which determine how
the outputs sent by component models are translated into the inputs to compo-
nent models they influence.

Appendix B. DEVS Abstract Simulation Algorithms in Normal
Form

Tables B.1–B.4 given hereafter present the simulation algorithms of coordinators,
simulators, and the root coordinator, respectively, of Chow et al.,4,5 Chow,3 Zeigler
et al.,2 and Schwatinski and Pawletta.6

Table B.1. Simulation algorithms of Chow et al.4,5

Message Coordinator Simulator

(@, t)

If t = tN then tL = t
Send (@, t) to IMM children
Cache child in synchronize set
Wait until (D, t) s are received
Send (D, t) to parent

Check the simulation time
If t = tN then

Compute y = λ(s)
Send (y, t) to parent

Send (D, t) to parent

(y, t)

For all influencees j of child i do
q = Zi,j(y)
Send (q, t) to child j
Cache j in synchronize set

Wait until (D, t) s are received
If self is in Ii

y = Zi,self(y)
Send (y, t) to parent

(q, t) Add event q to the bag
Add event q to the bag
Send (D, t) to parent coordinator

(Continued)

2350013-23

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

Table B.1. (Continued)

Message Coordinator Simulator

(∗, t)

If tl ≤ t < tN then
For all j in Iself and all q in bag

q = Zself,j(q)
Send (q, t) to j
Cache jin synchronize set

Empty bag
Wait until (D, t) s are received
For all i in synchronize set

Send (∗, t) to i

Case tL ≤ t < tN and bag �= empty
e = t − tL
s = δext(sebag)
Empty bag

Case t = tNand bag is empty
s = δint(s)

Caset = tN and bag is not empty

s = δcon(sbag)
Emptybag

Caset > tNort < tLRaise error
tL = t and tN = t + ta(s)
Send(D, tN)to parent coordinator

(D, t)

tl = t
Compute minimum tN of component’s tN
Clear the synchronize set
Send(DtN) to parent coordinator

Message Root coordinator

(D, tN) Send (@, t) to the top-most coordinator
(D, t) Send (∗, t) to the top-most coordinator

Table B.2. Simulation algorithms of Chow.3

Message Coordinator Simulator

(∗, xcountt)

Compute IMM and INF
For each ein IMM ∪ INF

Calculate i count
If e is an influencee of self then

i count = i count + x count
Send(∗i count; t) to e
Increment count

count = x count
If t = tNthen

Send(#λ(s)t) to the parent
If count = then

s = int(s)
Else

Block until count = 0
s = δcon(sxb)

Else
Block until count= 0
s = δext(s, t − tLxb)

tN = t + ta(s) and tL = t
Emptyxb

Send(DtN) to parent coordinator

(#, y, t)

Use Zsource,j s
If target is the current coupled model d (self)

Send(#, Zsource,self (y)t) to parent
Else

Send(#; Zsource,target(x), t) to target

2350013-24

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

Table B.2. (Continued)

Message Coordinator Simulator

(#, x, t)
Use Zsource,j s
For each child r in the target

Send (#Zsource,target(x), t) to r

Block if count = 0
Lock xb

xb = xb?x
Unlock xb

Increment count

(D, t)
Block when count = 0
Cache tN and component sending this message
Decrementcount

Message Root coordinator

(D, tN) t = tN Send(∗, t) to the top-most coordinator

Table B.3. Simulation algorithms of Zeigler et al.2

Message Coordinator Simulator

(∗, t) Compute the set IMM in cache with t = tN
Send (∗, t) to e in IMM

Check the simulation time
If t = tN then compute y = λ(s)
Send (y, t) to parent coordinator

(y, t)

Add (yd, d) to mail and mark d as reporting
If this is the last d in IMM

yparent = ∅
For each d in IN&d is reporting

If Zd,N (yd) �= ∅ then
Add yd to yparent

Send y-message(yparent , t) toparent
For each dεIr&dreporting&Zd,r(yd) �= ∅

Add Zd,r(yd) to yr

Send x − messages (yr , t) to r
Foreach e inIMM&yr = ∅

Send x − message (∅, t) to e

(x, t)

Compute the set receivers (R) of self (N)
For each r in R&r in IN

Send x − message (ZN,r(x), t) to r
For each r in IMM and not in R

Send x − message (∅, t)tor

If (x = ∅ and t = tN) then
s = δint(s)

ElseIf(x �= ∅ and t = tN)
s = δcon(sx)

Else(x �= ∅ and (tl ≤ t < tN))
e = t − tl
s = δext(sx)

tl = t and tN = tl + ta(s)

(D, t)
tl = t
tN = mintNd

|dinD

Message Root coordinator

(DtN) t = tN Send (∗, t) to the top-most coordinator

2350013-25

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

Table B.4. Simulation algorithms of Schwatinski and Pawletta.6

Message Coordinator Simulator

(∗, t)

If mail is empty then
Set layer=active
Send (Y, t) to all children in IMM

Wait until mail is not empty and layer = passive
For all nonempty y-messages in mail

Send (x, t) to corresponding receivers
Send (∗, t) to all children in IMM with

no input in mail
Set layer to passive and mail to empty
Update tl and tN

s = δint(s)

(Y, t) Forward Y -message to all children in IMM
y = λ(s)
Send (y, t) to parent coordinator

(x, t)

If IMM �= ∅ then
Save x in mail
Send (∗, t) to oneself

Else
Forward (x, t) according to Zi,d

If t = tN then
s = δcon(sex)

If tl ≤ t < tN then
s = δext(sex)

Update tl andtN
Send (DtN) to parent

(y, t)

Save y in mail
Wait until all (y, t) are received from

children in IMM
If layer=passive then

If mail is not empty
Send all (y, t) in mail to supCoord

Else
Send empty (y, t) to supCoord

Else
Set layer to passive

(D, t)
tl = t
tN = mintNd

|d in D
Send (D, tN) to parent coordinator

Message Root coordinator

(D, tN)
t = tN
Send (∗, t) to the top-most coordinator

Appendix C. Theoretical Complexity of Some DEVS Simulation
Algorithms

C.1. Simulation algorithms of Chow3

Step 1. For each m ∈ M , do calculate τ(m, 0) for top–down messages, and τ(m, L)
for bottom–up messages, in the worst-case scenario:

• τ(∗, 0) = max(tint, text, tcon)+2tcom + τ(y, 1)+ τ(D, 1)+a, where a includes time
to compute an output event and to manipulate local variables;

2350013-26

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

• τ(y, L) = 0;
• τ(x, 0) = b where b includes time to manipulate the bag;
• τ(D, L) = 0, as each D-message received by the root coordinator initiates a new

cycle.

Step 2. For each m ∈ M , express τ(m, j) in the worst-case scenario either as a
function of τ(m, 0) for top–down messages, or as a function of τ(m, L) for bottom–
up messages:

• τ(∗, j) = Nτ(∗, j − 1) + Ntcom + Nc, where c includes time to manipulate local
variables,

⇒ τ(∗, j) = N jτ(∗, 0) + N
(N j − 1)
N − 1

(tcom + c);

• τ(y, j) = Nτ(xj − 1) + (N + 1)tcom + τ(y, j + 1) + Nd, where d includes time to
manipulate local variables,

⇒ τ(y, j) = τ(y, L) + N

L−j−1∑
k=0

τ(x, j + k − 1) + (L − j)((N + 1)tcom + Nd);

• τ(x, j) = Nτ(x, j − 1) + Ntcom + Ne, where e includes time to manipulate local
variables,

⇒ τ(x, j) = N jτ(x, 0) + N
(N j − 1)
N − 1

(tcom + e);

• τ(D, j) = f , where f includes time to manipulate local variables.

Step 3. Express C(N, L) as a function of N , L, and τ(m, j), m ∈ M :

τC(NL) == tcom + (∗, L − 1) + g,

where g includes time to initialize the simulation (before entering the loop of sim-
ulation cycles).

Step 4. Replace in C(N, L) each τ(m, j) by its corresponding function of τ(m, 0)
or τ(m, L):

C(N, L) = tcom + g + NL−1τ(∗, 0) + N
(NL−1 − 1)

N − 1
(tcom + c)

⇒ C(N, L) = tcom + g + NL−1(max(tint,text,tcon) + 2tcom + τ(y, 1)

+ τ(D, 1) + a) + N
(NL−1 − 1)

N − 1
(tcom+c)

with τ(y, 1) = τ(y, L)+N
∑L−2

k=0 τ(x, mk)+(L−1)((N +1)+Nd), and τ(D, 1) = f .

Step 5. The width-wise complexity of the algorithm is given by C(N , L) as a
function of N when N grows infinitely, and the depth-wise complexity is given by

2350013-27

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

C(N , L) as a function of L when L grows infinitely:
When N grows infinitely (L being constant, and given L ≥ 2), C(N, L) ≈ (λ +

δ)N2L−2, and when L grows infinitely (N being constant), C(N, L) ≈ (2tcom +
α + γ)NLL. Notice the condition L ≥ 2 always holds, otherwise the simulation
tree is reduced to the root coordinator and its child (which therefore is necessarily
a simulator) and there is no way for N to grow (as there is no possible top-most
coordinator).

C.2. Simulation algorithms of Zeigler et al.2

Step 1. For each mεM , do calculate τ(m, 0) for top–down messages, and τ(m, L)
for bottom–up messages, in the worst-case scenario:

• τ(∗, 0) = tcom + τ(y, 1) + a, where a includes time to compute an output event;
• τ(y, L) = 0;
• τ(x, 0) = max(tint, text, tcon) + b, where b includes time to manipulate local vari-

ables;
• τ(D, L) = 0, as each D-message received by the root coordinator initiates a new

cycle.

Step 2. For each m ∈ M , express τ(m, j) in the worst-case scenario either as a
function of τ(m, 0) for top–down messages, or as a function of τ(m, L) for bottom–
up messages:

• τ(∗, j) = Ntcom + Nτ(∗, j − 1) + c, where c includes time to manipulate local
variables,

⇒ τ(∗, j) = N jτ(∗, 0) +
(N j − 1)
N − 1

(Ntcom + c);

• τ(y, j) = Nτ(xj − 1) + (N + 1)tcom + τ(y, j + 1) + Nd, where d includes time for
variables update,

⇒ τ(y, j) = τ(y, L) + N

L−j−1∑
k=0

τ(x, j + k − 1) + (L − j)((N + 1)tcom + Nd);

• τ(x, j) = Nτ(x, j − 1) + Ntcom + Ne, where eincludes time to manipulate local
variables,

⇒ τ(x, j) = N jτ(x, 0) + N
(N j − 1)
N − 1

(tcom+e);

• τ(D, j) = Nf , where f includes time to manipulate local variables.

Step 3. Express C(N , L) as a function of N , L, and τ(m, j), mεM :

τC(N, L) = tcom + (∗, L − 1) + g,

where g includes time to initialize the simulation.

2350013-28

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

Step 4. Replace in C(N, L) each τ(m, j) by its corresponding function of τ(m, 0)
or τ(m, L):

C(N, L) = tcom + g + NL−1τ(∗, 0)+
(NL−1 − 1)

N − 1
(Ntcom + c)

⇒ C(N, L) = tcom + g + NL−1 + (max(tint, text, tcon) + 2tcom

+ τ(y, 1) + τ(D, 1) + a) + N
(NL−1 − 1)

N − 1
(Ntcom+c),

with τ(y, 1) = τ(y, L) + N
∑L−2

k=0 (x, k) + (L − 1)((N + 1)tcom + Nd).

Step 5. The width-wise complexity of the algorithm is given by C(N , L) as a
function of N when N grows infinitely, and the depth-wise complexity is given by
C(N , L) as a function of L when L grows infinitely:

When N grows infinitely (L constant, and L ≥ 2),C(N, L) ≈ (tcom + λ +
δ)N2L−2, and when L grows infinitely (N constant), C(N, L) ≈ (3tcom+α+γ)NLL

C.3. Simulation algorithms of Schwatinski and Pawletta6

Step 1. For each mεM , do calculate τ(m, 0) for top–down messages, and τ(m, L)
for bottom–up messages, in the worst-case scenario:

• τ(∗, 0) = tint;
• τ(Y, 0) = tcom + τ(y, 1) + a, where a includes time to compute an output event;
• τ(x, 0) = tcom + τ(D, 1) + max(text, tcon) + b, where b includes time to update

time variables;
• τ(y, L) = 0;
• τ(D, L) = 0, as each D-message received by the root coordinator initiates a new

cycle.

Step 2. For each mεM , express τ(m,j) in the worst-case scenario either as a func-
tion of τ(m,0) for top–down messages, or as a function of τ(m,L) for bottom–up
messages:

• τ(∗, j) = Nτ(Y, j − 1) + Nτ(x, j − 1) + 2Ntcom + c, where c includes time to
manipulate local variables;

• τ(Y, j) = Nτ(Y, j − 1)

⇒ τ(Y, j) = N jτ(Y, 0);

• τ(x, j) = τ(∗, j)

⇒ τ(x, j) = τ(∗, j) = N jτ(∗, 0) +
j∑

k=1

Nkτ(Y, j − k) +
(N j+1 − 1)

N − 1
(2tcom + c);

• τ(y, j) = tcom+τ(y, j+1)+d, where d includes time to manipulate local variables,

⇒ τ(y, j) = τ(y, L) + (L − j)(tcom + d);

2350013-29

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

• τ(D, j) = tcom + τ(D, j + 1) + Ne, where e includes time to manipulate local
variables,

⇒ τ(D, j) = τ(D, L) + (L − j)(tcom + Ne).

Step 3. Express C(N , L) as a function of N , L, and τ(m, j), mεM :

τC(N, L) = tcom + (∗, L − 1) + f,

where f includes time to initialize the simulation (before entering the loop of sim-
ulation cycles).
Step 4. Replace in C(N, L) each τ(m, j) by its corresponding function of τ(m, 0)
or τ(m, L):

C(N, L) = tcom + f + NL−1τ(∗, 0) +
L−1∑
k=1

Nkτ(Y, L − 1 − k)

+
(NL − 1)

N − 1
(2tcom + c)

⇒ C(N, L) = tcom + f + NL−1τ(∗, 0) +
L−1∑
k=1

NkL−1τ(Y, 0)

+
(NL − 1)

N − 1
(2tcom + c).

Step 5. The width-wise complexity of the algorithm is given by C(N, L) as a
function of N when N grows infinitely, and the depth-wise complexity is given by
C(N,L) as a function of L when L grows infinitely:

When N grows infinitely (L constant),C(N, L) ≈ (L(L− 1)tcom + L2α + L(β −
α)+2tcom +γ−β +λ)NL−1, and when L grows infinitely (N constant), C(N, L) ≈
(tcom + α)L2NL.

References

1. Zeigler B.,Theory of Modeling and Simulation, Wiley, 1976.
2. Zeigler B. P., Kim T. G., Praehofer H., Theory of Modeling and Simulation, 2nd edn.,

Academic Press, San Diego, 2000.
3. Chow A. C., Parallel DEVS: a parallel, hierarchical, modular modelling formalism

and its distributed, Simulation 13:55–67, 1996.
4. Chow A. C., Zeigler B. P., Parallel DEVS: A parallel, hierarchical, modular modelling

formalism, Proc. 26th Winter Simulation Conf., Lake Buena Vista, IEEE, Piscataway,
pp. 716–722, 1994.

5. Chow A. C., Zeigler B. P., Kim D. H., Abstract simulator for the Parallel DEVS
Formalism, Proc. Fifth Annu. Conf. AI, and Planning in High Autonomy Systems,
Gainesville, IEEE, Piscataway, pp. 157–163, 1994.

6. Schwatinski T., Pawletta T., An advanced simulation approach for parallel DEVS
with ports, Proc. 2010 Spring Simulation Multiconf., pp. 132–139, 2010.

7. Himmelspach J., Uhmacher A. M., Sequential processing of PDEVS models, Proc.
3rd EMSS, pp. 239–244, 2006.

2350013-30

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Computational complexity measure of abstract DEVS simulators

8. Wainer G. A., Discrete Event Modelling and Simulation: A Practitioner’s Approach,
1st edn., CRC Press, Boca Raton, 2009.

9. Syriani E., Vangheluwe H., Modelling and simulation-based design of a distributed
DEVS simulator, Proc. Winter Simulation Conf., pp. 3007–3021, 2011.

10. Bisgambiglia P.-A., Bisgambiglia P., DecPDEVS: New simulation algorithms to
improve message handling in PDEVS, Open J. Model. Simul. 9:172–197, 2021.

11. Martin C. R., Trabes G. G., Wainer G. A., A new simulation algorithm for PDEVS
models with time advance zero, Proc. Winter Simulation Conf., Orlando, pp. 2208–
2220, 2020.

12. Cárdenas R., Henares K., Arroba P., Wainer G., Risco-Mart́ın J. L., A DEVS simu-
lation algorithm based on shared memory for enhancing performance, Proc. Winter
Simulation Conf., Orlando, 2020.

13. Franceschini R., Bisgambiglia P. A., Touraille L., Bisgambiglia P., A survey of mod-
elling and simulation software frameworks using Discrete Event System Specification,
Proc. Imperial College Computing Student Workshop, pp. 40–49, 2014.

14. Van Tendeloo Y., Vangheluwe H., An evaluation of DEVS simulation tools, Simulation
93:103–121, 2016.

15. Knuth D. E., Selected Papers on Analysis of Algorithms, CSLI Lecture Notes, Vol.
102, Centre for the Study of Language and Information, Stanford, 2000.

16. Balakirsky S., Kramer T., Comparing algorithms: Rules of thumb and an example,
Proc. 2004 Performance Metrics for Intelligent System (PerMIS) Workshop, pp. 16–
18, 2004.

17. Sun Y., Hu X., Performance measurement of dynamic structure DEVS for large scale
cellular space models, Simulation 85:335–351, 2009.

18. Risco-Martin J. L., Fabero J. C., Mittal S., Zapater M., Reconsidering performance
of DEVS modelling and simulation environments using the DEVStone benchmark,
Simulation 93:459–476, 2017.

19. Glinsky E., Wainer G., DEVSTONE: a benchmarking technique for studying per-
formance of DEVS modelling and simulation environments, Proc. IEEE Int. Symp.
Distributed Simulation and Real-Time Applications, pp. 265–272, 2005.

20. Wainer G., Glinsky E., Gutierrez A. M., Studying performance of DEVS modelling
and simulation environments using the DEVStone benchmark, Simulation 87:555–
580, 2011.

21. Gutierrez-Alcaraz M., Wainer G., Experiences with the DEVStone benchmark, Proc.
2008 Spring Simulation Multiconf., pp. 447–455, 2008.

22. Baik D., Zeigler B. P., Performance evaluation of hierarchical distributed simulators,
Proc. 17th Conf. Winter Simulation, pp. 421–427, 1985.

23. Zeigler B. P., Mapping hierarchical discrete event models to multiprocessor systems:
Concepts, algorithm, and simulation, Parallel Distrib. Comput. 9:271–281, 1990.

24. Jefferson D. R., Virtual time, ACM Trans. Prog. Lang. Syst. 7:404–425, 1985.
25. Fujimoto R. M., Parallel and distribution simulation systems, Proc. 31st Conf. Winter

Simulation — A Bridge to the Future, Vol. 1, pp. 122–131, 1990.
26. Jafer S., Wainer G., Conservative vs. optimistic parallel simulation of DEVS and Cell-

DEVS: A comparative study, Proc. 2010 Summer Computer Simulation Multiconf.,
pp. 342–349, 2010.

27. Capocchi L., Santucci J.-F., Pawletta T., Folkerts H., Zeigler B. P., Discrete-event
simulation model generation based on activity metrics, Simul. Model. Pract. Theory
103:102122, 2020.

28. Glinsky E., Wainer G., Performance analysis of DEVS environments, Proc. AIS Arti-
ficial Intelligence, Simulation and Planning, 2002.

2350013-31

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

2nd Reading

June 17, 2022 16:37 WSPC/262-IJMSSC/S1793-9623 2350013

Y. Diouf, O. Y. Mäıga & M. K. Traore

29. Wang Y.-H., Zeigler B. P., Extending the DEVS formalism for massively parallel
simulation, Discrete Event Dyn. Syst. 3:193–218, 1993.

30. Van Tendeloo Y., Vangheluwe H., Introduction to parallel DEVS modelling and sim-
ulation, Proc. Model-Driven Approaches for Simulation Engineering Symp., pp. 1–12,
2018.

31. Traoré M. K., SimStudio: A next generation modeling and simulation framework,
Proc. 1st Int. Conf. Simulation Tools and Techniques for Communications, Networks,
and Systems, 2008.

32. Van Tendeloo Y., Vangheluwe H., DEVS: Discrete-event modelling and simulation
for performance analysis of resource-constrained systems, in Foundations of Multi-
Paradigm Modelling for Cyber-Physical Systems, Springer, Cham, pp. 127–153, 2020.

33. Casas P. F., The DEVS formalism, in Formal Languages for Computer Simulation:
Transdisciplinary Models and Applications, IGI Global, Hershey, pp. 62–102, 2014.

34. Gabriel A. W., Rhys G., Azam K., Introduction to the discrete event system spec-
ification formalism and its application for modeling and simulating cyber-physical
systems, Proc. 2018 Winter Simulation Conf., Vol. 2, pp. 177–191, 2018.

35. Zeigler B. P., Muzy A., Kofman E., Theory of Modeling and Simulation: Discrete
Event & Iterative System Computational Foundations, Academic Press, San Diego,
2018.

2350013-32

Copyright of the works in this Journal is vested with World Scientific Publishing.

The article is allowed for author’s personal use only. No further distribution is allowed.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

