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Highlights:  

 The Holt-Winters (HW) method and the GA-Holt-Winters technique were showed 
good forecast behavior for GSM 900 RL, GSM 1800 RL, and GSM 1800 FL.  

 There was a decrease of about 16% in the mean square error (MSE) of the prediction 
of the GA-Holt-Winters technique compared to the Holt-Winters method for GSM 
900 RL in both locations.  

 The MSE prediction values for GSM 1800 RL in locations 1 and 2 decreased by 22% 
and 45% for the GA-Holt-Winters technique compared to the Holt-Winters method.  

 There was a decrease of about 28% and 8% in the MSE of the prediction of the GA-
Holt-Winters technique compared to the Holt-Winters method for GSM 900 RL in 
locations 1 and 2 respectively.  

Abstract. In this research, the suitability of a genetic algorithm (GA) modified 
Holt-Winters (HW) exponential model for the prediction of spectrum occupancy 
data was investigated. Firstly, a description of spectrum measurement that was 
done during a two-week duration at locations (8.511 °N, 4.594 °E) and (8.487 °N, 
4.573 °E) of the 900 MHz and 1800 MHz bands is given. In computing the 
spectrum duty cycle, different decision thresholds per band link were employed 
due to differing noise levels. A frequency point with a power spectral density less 
than the decision threshold was considered unoccupied and was assigned a value 
of 0, while a frequency point with a power spectral density larger than the decision 
threshold was considered occupied and was assigned a value of 1. Secondly, the 
spectrum duty cycle was used in the evaluation of the forecast behavior of the 
forecasting methods. The HW approach uses exponential smoothing to encode the 
spectrum data and uses them to forecast typical values in present and future states. 
The mean square error (MSE) of prediction was minimized using a GA by 
iteratively adjusting the HW discount factors to improve the forecast accuracy. A 
decrease in MSE of between 8.33 to 44.6% was observed. 

Keywords: cognitive radio network; genetic algorithm; Holts-Winters exponential 
smoothing; spectrum measurement; spectrum occupancy; spectrum prediction. 
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1 Introduction 

The cognitive radio networks (CRNs) paradigm has been proposed as a viable 
solution to spectrum allocation inefficiencies. Under this paradigm, a cognitive 
user (CU) is able to utilize a vacant channel opportunistically, without preventing 
licensed users from gaining access to the channel when desired. This demands a 
comprehensive understanding of the spectrum utilization profile and the dynamic 
behavior of licensed users in a realistic scenario via spectrum measurement [1-
3]. However, continuous spectrum measurement is expensive and time-
consuming. This necessitates spectrum prediction. Spectrum prediction uses 
historically observed data from spectrum sensing to forecast future channel states 
of licensed channels [4,5]. Some techniques that have been used for spectrum 
prediction include time series techniques, artificial neural network (ANN), 
Markov model, Bayesian inference, k-nearest neighbors (KNN), etc. [6-10]. 
ANNs have a number of advantages, including the ability to detect complex 
nonlinear relationships between dependent and independent variables without 
requiring formal statistical training, the ability to detect all possible interactions 
between the predictor variables, and the availability of multiple training 
algorithms. Some of the drawbacks of ANNs are their black box character, higher 
computing cost, proclivity to overfitting, and the empirical nature of model 
creation. 

The Markov model’s main advantages are its simplicity and out-of-sample 
forecasting accuracy. Unfortunately, the Markov model is ineffective in 
explaining occurrences and in most situations cannot be considered an accurate 
representation of the underlying reality. Using the Bayesian inference approach 
has certain drawbacks as well. It gives false results when caution is not exercised. 
It has the potential to generate posterior distributions that are highly impacted by 
priors. Although the KNN technique is simple to construct, its efficiency or speed 
decreases rapidly as the data set expands. This is because when the input variables 
are limited, it works well, but as the number of variables increases, it fails to 
anticipate the output of additional data points. Owing to its tendency to choose 
neighbors based on distance criteria, the KNN method is particularly sensitive to 
outliers. Selected literature on spectrum prediction and associated issues is 
reviewed next. Predicting the behavior of CUs in wireless networks was the goal 
of the authors in [6], who gave a comparison of two time series models – 
autoregressive integrated moving average (ARIMA) and seasonal autoregressive 
integrated moving average (SARIMA) – that can forecast primary user behavior 
as well as spectral opportunities for wireless networks in the Wi-Fi frequency 
band. The results revealed that the SARIMA model had the best overall 
performance. This is because the SARIMA algorithm has higher precision in 
terms of availability and occupancy times, it performs better, and is more 
convenient for cognitive radio networks. As a result, the spectrum efficiency is 
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enhanced, and interference and collisions between licensed users and CUs are 
decreased. Furthermore, a two-stage data-driven spectrum estimation (SE) 
technique for a CRN was proposed in [11], comprising a null-hypothesis 
approach with strong Chi-Square Goodness of Fit for validation of the intended 
signal. The key contribution of this study was the development of an optimized 
scalable ARIMA model for frugal SE with minimal response time in terms of 
data length and lag order.  

In most cases, CRNs use random spectrum sensing of the channels. As such, the 
possibility of a channel being sensed as active is quite high, resulting in 
considerable data loss and a reduction in the network’s effective throughput. The 
difficult challenges of choosing a channel for spectrum sensing following 
spectrum prediction were exploited in [12] to boost the CU’s throughput. In 
addition, a new technique for increasing CU throughput by utilizing underlay 
communication in the spectrum sensing and prediction phases was described. The 
results demonstrated a considerable increase in throughput when this method was 
used. 

Kumar, et al. [13] noted that due to the wait state problem in interweave mode, 
picking the licensed spectrum for sensing at random in a high traffic intensity 
network reduces the throughput of cognitive users. However, dual spectrum 
access overcomes the wait state problem, resulting in increased spectrum usage 
throughput. Furthermore, sensing decisions made without cooperation increase 
sensing inaccuracy and have an impact on sensing performance, resulting in a 
drop in throughput. Therefore, the authors offered a new strategy for cognitive 
users called hybrid spectrum access with spectrum prediction and cooperation, in 
which spectrum prediction, cooperation, and hybrid spectrum access are 
combined to increase the system’s sensing performance and throughput. These 
mitigate unintended licensed-user and CU collisions. 

The influence of the collision factor was addressed in [14]. It was  discovered that 
without prediction, the throughput drops as the collision factor grows. To lower 
the prediction error, the authors ensured that the network was trained using an 
NN based on the multi-layer perceptron model. Following the spectrum 
prediction, the acquired data demonstrated an increase in CU throughput. 
Extending the concept of spectrum prediction further, the authors in [15] studied 
the overlap between spectrum monitoring and spectrum prediction. On the basis 
of received packet characteristics such as the receiver error count, the CU detects 
the appearance of a licensed user during data transmission through spectrum 
monitoring. To improve the performance of cognitive radio networks by 
recognizing the formation of PU promptly and properly, spectrum prediction and 
monitoring techniques are used concurrently for spectrum mobility. Spectrum 
mobility strategies are divided into two categories: reactive and proactive. The 
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findings of both the spectrum monitoring and spectrum prediction algorithms 
were combined using the AND and OR fusion rules. 

A proposed backpropagation training model was used in neural system-based 
spectrum prediction in [16]. A genetic algorithm (GA) and a hybrid combination 
of shuffled frog-leaping algorithm (SFLA) was developed to improve the 
structure of the neural system and reduce the forceful weight auxiliary pattern. 
The GA was used in this case to avoid capturing over-fitted  solutions. 
Randomness was created using the selection, crossover, and mutation processes, 
which spreads out the populace to unify to the set that holds the global optimum 
solution. Simulation results demonstrated that by enhancing the system, the GA-
SFLA-based hybrid algorithm improved the outcomes of finding the optimal 
weights; also, the suggested conspire results showed great forecast accuracy.  

The authors of [17] investigated multi-step-ahead spectrum prediction for CRNs 
with many future states using the support vector machine (SVM) technique. The 
scenario was based on slots. The goal was to see if multi-step-ahead spectrum 
prediction outperformed short-term prediction in terms of reduced channel 
switching and enhanced network throughput. Sensing was done with a traditional 
energy detector. In addition, the authors proposed new closed-form formulas for 
detection probability in additive white Gaussian noise (AWGN) and Rayleigh 
fading channels. The SVM method exhibited low prediction error rates, and 
multi-step-ahead idle-channel scheduling by the SU resulted in a 51% decrease 
in channel switching. For multi-step-ahead prediction with three future states, a 
4% improvement in throughput was reported. Based on the literature review 
above, it can be summarized that spectrum predictions have been based on any 
of the following broad techniques: time series-based approaches, static machine 
learning (ML)-based methods, and hybrids of the previous two.  

One of the most important advantages of ML is its capacity to analyze enormous 
amounts of data and spot patterns without errors associated with human analysis. 
It has the capacity to improve with time as well. Due to the ever-increasing 
volumes of data handled, the application of ML technology often enhances 
efficiency and accuracy. This provides additional experience to the algorithm or 
software, which may then be utilized to make better judgments or predictions. 
Without the requirement for human interaction, ML enables immediate 
adaptability. Because ML is automated, it can save time and money by allowing 
developers and analysts to focus on higher-level activities, which a machine 
cannot do [18-20]. An error in an ML interface can wreak disaster since all 
following occurrences may be faulty, biased, or just unpleasant. Owing to the fact 
that ML develops over time as a consequence of exposure to large data sets, there 
may be a point when the algorithm or interface is not quite ready for your needs. 
In other words, ML takes time. Handling massive amounts of data and running 
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computer models consumes a lot of computational power, which may be 
expensive [18,19]. Conversely, models based on time series are reliant on their 
own past experiences. As a result, they are unable to show anything that has not 
occurred previously. Due to the inherent unpredictability of these systems, 
forecasting time series can be a difficult undertaking. It is also uncertain how 
much a non-linear deterministic process keeps its qualities when it is distorted by 
noise. Even if the system’s equations are deterministic, noise can alter it in a 
variety of ways. Hence, the need to optimize time series models such as ARIMA 
and HW [21,22]. Therefore, this research investigated the impact of GA 
optimization of the HW technique in the prediction of spectrum occupancy data 
sets. To the best of our knowledge, this is the first instance in which the Holt-
Winters times series technique has been optimized using a genetic algorithm for 
the prediction of GSM spectrum data. This supports the creation of the cognitive 
radio network’s spectrum choice framework, a crucial component of the dynamic 
spectrum assessment paradigm. 

The rest of this paper is organized as follows. In Section 2, a general overview of 
the proposed technique is presented. In Section 3, the spectrum data collection 
and processing procedures are described. Additionally, the GA-Holt-Winters 
prediction model implementation procedure is framed, along with a description 
of the software and machine configurations, and GA parameterization used in this 
study. The results obtained are reported and discussed in Section 4, where, in 
terms of observed mean square error (MSE), the GA-Holt-Winters approach was 
found to have better forecast behavior with the data set than the Holt-Winters 
method. The conclusions reached are presented in Section 5. 

2 Proposed Method 

HW exponential smoothing can effectively predict periodic series with only a few 
training samples. The need for this technique arose owing to the inherent 
periodicity and noisiness associated with the 900 MHz and 1800 MHz 
communication data set, which serves as the basis of this spectrum prediction. 
Measured spectrum occupancy data are processed to extract spectral duty cycles 
as indication of spectral vacancies. An enhanced time series forecasting model of 
spectrum duty cycles based on this strategy is hereby presented. The optimal 
smoothing settings for the HW exponential smoothing are chosen using the 
GA optimization approach. As observed in [23], hybrid models are more 
promising than stand-alone models due to their superior capacity to describe 
nonlinear and unpredictable elements. In addition, they have a much lower 
training complexity than static ML-based techniques. 

Winters [24] extended the Holt [25] technique to express periodicity in time 
series data. The HW technique is also known as the triple exponential smoother 
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(TES). It has two variations, depending on the type of the seasonal constituent; 
these are the additive and the multiplicative method. The additive method is 
the smoother choice when the seasonal fluctuations are fairly the same over 
the entire time series. On the other hand, the multiplicative Holt-Winters 
technique is favorable when the seasonal changes depend on the level of the 
series. The seasonal component is expressed in absolute terms at the scale of 
the observed series in the additive method, and the series is seasonally adjusted 
in the level equation by subtracting the seasonal component. Hence, for each 
cycle, the seasonal components add up to approximately zero. The seasonal 
component is expressed in relative terms (percentages) with the multiplicative 
method.  By dividing with the seasonal component, the series is seasonally 
adjusted. Therefore, for each cycle, the seasonal components add up to ≈m, the 
frequency of the seasonality [26]. The HW seasonal technique is made up of 
four equations. Three for smoothing and one for forecasting. These are 
described in Section 3. Many researchers have applied it in forecasting in 
several areas, including air traffic [27,28], infant mortality [29], electricity 
consumption [30], aircraft failure rate [31], and so on. 

GAs are optimization algorithms based on the principle of Darwinian natural 
selection. They mimic the evolution process in searching for a solution. The 
solution is encoded as a string of binary digits or real numbers. Genetic operators 
such as selection, mutation and crossover are used to produce improved solutions 
with each iteration or generation. The algorithm ends when a preset criterion is 
met. Therefore, with each iteration, members of the old string set with the highest 
fitness function are utilized in generating a different group of strings. Since its 
inception, the GA has been effectively employed in scientific and engineering 
applications to find near-optimal solutions to a range of problems [32-36]. The 
GA or its variant extension of the Holt-Winters method have been used by 
different authors in forecasting in diverse fields. Peng, et al. [37] used a niching 
GA and HW method to predict mining subsidence crucial in engineering 
construction over underground mines. The relative prediction errors were less 
than 2% and the mean error was -0.18%. The authors reported that this was a 
better performance than the SVM-based predictive technique. Amzi [38] used a 
GA to estimate the HW parameters when forecasting tourist arrival data in 
Langkawi, Malaysia. The results of the GA outperformed the conventional 
optimization approaches in terms of mean average percentage error. 

The HW method permits one to correctly predict seasonal series with 
comparatively small training samples. With the use of this technique, a hybrid 
predictive model to forecast spectrum occupancy is proposed here. The GA is 
used to optimize the smoothing parameters for the HW technique. To the best of 
our knowledge, no study has previously reported the application of GA-HW to 
wireless spectrum occupancy data sets covering 900/1800 MHz.  
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3 Methodology 

3.1 The Genetic Algorithm 

The GA starts with a string population and consequently produces other 
generations of populations of strings in accordance with specific nature-inspired 
operations of reproduction, crossover, and mutation. The reproduction operation 
allows retaining the parent chromosome and the transfer of same to the offspring, 
producing a set of improved solutions. In this case, there is no change to the 
chromosome. That is, the output of this process is the same as the input. This 
usually leads to a local optimum [37,39]. In the Crossover operation, two 
chromosomes are concatenated to generate two new chromosomes through the 
process of gene switching for a simple one-point crossover operation on a 
binarized population. For example, if two strings in the current population P are
I and 'I , then [37,39], 

   nj xxxI ,...,,...,1                                      (1)   

            
 ,,,

1 ,...,,...,' nj xxxI 
                                            (2)  

The crossover point is fixed through the random generation of an integer j from 

1 to n. The resulting cross indexes are Eqs. (3) and (4) [35]:  

  ,,
11 ,...,,,..., njj xxxxI                                         (3) 

  njj xxxxI ,...,,,...,' ,
1

,
1                                         (4) 

The Mutation operation, in contrast to Reproduction and Cross-over, involves 
reversing the value of one gene of a chromosome in a random manner, resulting 
in a different but mutated output. Let js be randomly selected, which mutate into 

,
jx , if 1jx  then 0, jx  and if 0jx  then 1, jx . This GA operation creates 

a completely new species; in so doing, it helps to get out of local optimums by 
the creation of an arbitrary locus [37,39,40]. 

The flowchart for the implementation of the GA is shown in Figure 1. The GA’s 
implementation is summarized in Figure 1. First, the algorithm generates a 
random initial population. After that, the algorithm generates a series of new 
populations. The program creates the future population using the individuals in 
the current generation at each step. The algorithm follows these stages to generate 
a new population. The algorithm calculates the fitness value of each member of 
the current population, providing raw fitness scores. The raw fitness ratings are 
scaled to create a more useful range of values. Members, referred to as ‘parents’, 
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are chosen based on their scaled fitness score. Some of the contemporary 
population’s fitness-challenged individuals are designated as ‘elite’. 

 

Figure 1 Flowchart of the genetic algorithm. 

The following generation inherits these outstanding individuals. Children are 
created by mixing the vector entries of two parents (crossover) or by applying 
random modifications to a single parent (mutation). To generate the next 
generation, the present population is replaced by children. When the stopping 
criterium is satisfied, i.e., when the value of the fitness function for the best point 
in the current population is less than or equal to the fitness limit or the maximum 
number of evolutions (1,000) is reached, the algorithm comes to a halt. If not, the 
algorithm continues evolution by crossover and mutation to create a new 
population [41]. 

3.2 Holt-Winters Method 

It is assumed that the seasonal time series model is:  

 𝑦௧ = 𝐿் + 𝜍௧ + 𝜀௧                                                 (5) 

where tL = the linear trend component, which can be represented by: 

 Z 1010 ,:  t                                            (6) 

t = the seasonal adjustment with 2t t m t m       for 1,...,1  mt  

where 𝑚  = the period length of each cycle; and the error 𝜀௧  is taken to be 

uncorrelated with zero mean and constant variance 
2 . As mentioned in Section 

1, the seasonal components add up to zero during one cycle, that is, 
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 ∑ 𝜍௧
௠
௧ୀଵ                                                  (7) 

The HW method calculates dynamic estimates for three components, namely, 

level  tL , trend  t , and seasonality  t , either using an additive model or a 

multiplicative model [24,38,42]. The procedure for updating the parameter 
estimates once the current observation ty is obtained, is as shown in Eqs. (8)-(15).  

The additive model is as shown in Eqs. (8)-(10) [28]: 

     111   ttsttt LyL                                (8) 

     11 1   tttt LL                                          (9) 

     mttttt Ly    111                            (10) 

The forecast value is given in Eq. (11): 

 mtttt Ly   11ˆ                                                          (11) 

The multiplicative model is as shown in Eqs. (12)-(14): 

     111/   ttmttt LyL                                (12) 

     11 1   tttt LL                                               (13) 

 𝜍௧ = 𝛿 ቀ
𝑦௧

(𝐿௧ିଵ + 𝑇௧ିଵ)ൗ ቁ + (1 − 𝛿)𝜍௧ି௠                         (14) 

The forecast value is given as: 

   mtttt Ly   11ˆ                                   (15) 

where  and, are discount factors ranging from [0,1]. An initial value of 0.2 

is selected for all three discount factors.  

In this study, various values for the seasonal period were investigated. The period 
that resulted in the least mean square deviation (MSD) was selected for further 
optimization using the GA. The expression for computing the MSD is given in 
Eq. (16). 

 





n

t

tt

n

yy
MSD

1

2ˆ
                                                  (16) 

where ty = the true value, tŷ = the corresponding fitted/predicted one with n  
observed samples. 
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3.3 Genetic-Holt-Winters Algorithm 

The genetic algorithm is used to determine the optimal values of  and, such 

that the forecast errors are minimized. If  and, are too small, over-

smoothing takes place. If they are closer to one, no smoothing takes place. The 
procedure followed are itemized as follows [37]: 

1. Initialization of the GA parameters, e.g., population size and evolution 
number.  

2. Initialization and interval selection of the HW smoothing parameters 
 and, . 

3. Evaluation of the objective function, e.g. MSE between the predicted data 
and the spectrum occupancy, is done as shown in Eq. (17). 

4. Evaluation of the fitness of each individual in the niche, followed by 
selection of the best one in the niche for the next generation. 

5. Optimization of the parameters by minimizing the MSE using the GA 
operations described in Section 3.1.  

 

 

n

yy
f

n

i
tt




 1

2ˆ

min                                                        (17)   

Eqs. (18)-(20) are used to determine the initial values of the levels, trend, and 
seasonality index [42]. 

 1
0

1

n

t
t

L n y



                                              (18) 

 0T N                                          (19)  

 0
0

my
S

L
                                                            (20) 

where N is a selected integer, and my is the average of the selected period samples. 

The implementation framework is shown in Figure 2. The prediction accuracy of 
the HW model is enhanced by using the GA to minimize the MSE via iterative 
adjustment of parameters .and,   
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Figure 2 GA-Holt-Winters model implementation framework. 

3.4 Spectrum Occupancy Dataset 

A selected portion of the spectrum band (885 to 1880 MHz) was measured for 
spectrum occupancy in a few chosen places in Ilorin, a city in the North Central 
zone of Nigeria. The data collection points were categorized by the degree of 
urbanization with the details of the locations shown in Table 1. 

Table 1 Details of selected measurement locations. 

Locations Category GPS Coordinates 
Post Office-GRA area (LOC1) Urban 8.511 °N, 4.594 °E 

Sango-Basin area (LOC2) Sub-urban 8.487 °N, 4.573 °E 

3.4.1 Spectrum Band 

The cellular bands are highlighted. The cellular wireless communication services 
that were taken into account in this research are listed in Table 2, along with the 
associated allocated frequency bands.  

Table 2 Wireless services in the chosen spectrum band (885 to 1880 MHz). 

Wireless Services Allocated Band (MHz) Bandwidth (MHz) 
GSM 900 forward link (FL) 880 – 915 35 
GSM 900 reverse link (RL) 925 – 960 35 

GSM 1800 forward link (FL) 1710 – 1785 75 
GSM 1800 reverse link (RL) 1805 – 1880 75 
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3.4.2 Measurement Equipment Setup 

A sensitive spectrum analyzer is required since the measuring equipment must be 
able to detect both weak and strong signals over the specified frequency range. 
An energy detector, a field strength analyzer (BK PRECISION 2640) with a 
frequency range of 100 kHz to 2.0 GHz, an omnidirectional antenna, a GPS-based 
mobile phone, and a high-capacity storage device integrated into a laptop made 
up the experimental setup. The coordinates of each location’s spectrum 
measurement could be found thanks to the GPS. Table 3, taken from the BK 
PRECISION 2640 user manual, summarizes the main features of the field 
strength analyzer. The setup of the spectrum measurement tools and 
accoutrements is shown in Figure 3. 

Table 3 Selected specifications of the BK PRECISION 2640 field strength 
analyzer.  

Parameter Value 
Frequency range 100 kHz to 2.0 GHz 

Resolution 3.125 Hz 
Resolution bandwidth Variable 

Input impedance 50 Ω 
Sweep time Min. 500 ms 

Measurement amplitude range -45 dBm to -110 dBm 
Average noise level -110 dBm max 

Input sensitivity @35 MHz -2,000 MHz: 150 mVrms 
Frequency selection mode Centre, Start/Stop, Span 
Reference level accuracy ±3.0 dB @ < 600 kHz; ±2.0 dB @ ≥ 600 kHz 

Log scale 0.2 dB/div minimum in 0.25 dB span 

 

 
Figure 3 Spectrum evaluation equipment and accessories set up. 
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Due to its simplicity, the measurement technique is based on energy detection. 
Aside from the measuring power, this was preferred because not much 
information was previously available. 

3.4.3 Data Collection and Processing 

The power spectral densities (PSD) were measured by the spectrum analyzer. The 
method used to process the measured data was then indicated. If the PSD for a 
certain channel was greater than a predetermined threshold, the channel was 
considered occupied; otherwise, the channel was considered unoccupied. The 
collected data of the field measurement are represented in matrix 𝒀 (Eq. (21)), 
where each element is the received signal power (𝑷), dependent on both time 𝑡௜ 
and frequency 𝑓௝ . The power density, temporal variations and duty cycle are 
usually of interest. The duty cycle may be defined empirically as a ratio of the 
time a frequency fragment is declared occupied. In other words, it is the 
probability that a communication channel is busy [43]. 

 𝒀 = ൣ𝑷൫𝑡௜, 𝑓௝൯൧                                              (21) 

Every element 𝑷൫𝑡௜, 𝑓௝൯ of the matrix represents a sample of the received power 
observed by the energy detector at the instant of time 𝑡௜, ∀𝑖 = 1,2, . . . , 𝑁௧, with 𝑁௧ 
being the maximum number of time points in the measurement, and each 
frequency slot 𝑓௝ , ∀𝑗 = 1,2, . . . , 𝑁௙, with 𝑁௙ being the maximum number of bins 
under consideration.   

Spectrum occupancy DC is computed using a specific set of measurements from 
the spectrum analyser over a range of frequencies and a time interval. When the 
binary hypothesis is used, the indicator function 𝛩஽൫𝑡௜ , 𝑓௝൯ with a value of 1 is 
assigned for signal power above the decision threshold 𝜆௞ and a value of 0 is 
assigned for signal power below the decision threshold. This is shown in Eq. (22) 
[43]: 

 𝛩஽൫𝑡௜, 𝑓௝൯ = ቊ
0, 𝑖𝑓 𝑷൫𝑡௜ , 𝑓௝൯ < 𝜆௞

1, 𝑖𝑓 𝑷൫𝑡௜ , 𝑓௝൯ ≥ 𝜆௞                               
(22)   

For frequency slot 𝑓௝, the measured DC 𝛥൫𝑡௜ , 𝑓௝൯ is given as, 

                  𝛥൫𝑡௜, 𝑓௝൯ =
ଵ

ே೟
∑ 𝛩஽൫𝑡௜, 𝑓௝൯

ே೟
௜ୀ௝ୀଵ                               (23) 

The average duty cycle is evaluated from the mean of individual 𝛥൫𝑡௜ , 𝑓௝൯ for all 
frequency slots 𝑁௙  and is expressed as,  

                       𝛥୧,୨(𝑎𝑣𝑔) =
ଵ

ே೑
∑ 𝛥൫𝑡௜ , 𝑓௝൯

ே೑

௜ୀ௝ୀଵ
                      (24)    
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The measurement resolution is chosen as 250 kHz, slightly wider than the 200 
kHz bandwidth of the service bands. The number of frequency  readings per time 
slot 𝑛௙ is given by Eq. (25), 

 𝑛௙ =
௙ೞ೟೚೛ି௙ೞ೟ೌೝ೟

ோ೘
                                                (25) 

The total number of time slots for each location is defined by Eq. (26), 

 𝑛௧௦ = ೘்

௦௪௘௘௣ ௧௜௠௘
                                                (26) 

where 𝑇௠ is a function of the time spent in measurement. For each service band, 
two weeks (20,160 minutes) is spent on either the forward link or the reverse link. 
Thus, there are ൣ𝑛௙ × 𝑛௧௦൧ data points to be captured during measurement per 
location. 

3.4.4 Frequency Bin Size and Resolution Bandwidth  

The measurement technique takes into account the link between the frequency 
resolution and the transmitted signal’s bandwidth. The bin size is necessary to 
ascertain this relationship. The service bandwidth is taken into account while 
choosing the bin size. If the bin size stays somewhat smaller than the signal 
bandwidth, the spectrum occupancy prediction will be more accurate. In an area 
with low PU activity, a bin size greater than the signal bandwidth causes an 
overestimation of channel usage [44]. 

Additionally, by reducing the resolution bandwidth (RBW), the system is better 
able to detect low-power signals at the expense of longer measurement times. 
This is due to the fact that a smaller RBW improves the system’s ability to resolve 
the signal frequency, lowering the noise floor. The RBW was 12.5 kHz. This is a 
suitable compromise between measurement duration, as represented by the 
average sweep time of the spectrum analyzer and the detection capabilities, as 
shown by the observed duty cycle [44].  

3.4.5 Setting of Decision Threshold 

 The decision threshold chosen has an impact on the spectrum duty cycle, as 
shown in [45]. Overestimation is caused by noise samples that are above the 
decision threshold while the decision threshold is noticeably low. However, 
because of the incorrect detection of faded primary transmissions, a very high 
decision threshold causes underestimation of the real spectrum occupancy level. 
Variable mi-dB criteria are used in setting the decision threshold. Here, the 
threshold was placed mi-dB above the average noise level determined by a 
matched load placed across the SA, depending on the band. Variable mi-dB 
criteria were used since the variance of noise 𝜎ଶ𝑋(𝑓) and the noise levels may 
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change from one band to another depending on the measurement setup, and as 
such a fixed m-dB threshold across the whole frequency range being measured is 
unsuitable. The decision threshold 𝜆௞in dB is expressed in Eq. (27): 

  𝜆௞ = 𝜇𝑋(𝑓) + 𝑚௜                                         (27) 

where 𝜇𝑋(𝑓) is the average noise level. 

3.5 Experimental Setup 

 A presentation of the design and settings of the machine used in the experiment 
is given in this section. The fitness function adopted in this study, with 
justification, is explained. Furthermore, the GA-Holt-Winters model parameters 
are initialized and the running of the proposed GA-Holt-Winters model and the 
comparison method, i.e., the unmodified HW model, are discussed. 

3.5.1 Settings and Design of Experimentation Machine 

The GA-Holt-Winters model advanced in this research is used to predict 
spectrum occupancy data. The result of the GA-Holt-Winters model was 
compared with that of the unmodified HW model. The GA-HW technique was 
implemented in Microsoft Excel 2016 Solver and MATLAB R2018a on a 
machine configured as follows: Intel Core i5, CPU 2.88 GHz, RAM 8 GB, 64-bit 
operating system. The MSE was used as the objective function to determine the 
GA-Holt-Winters model’s accuracy in the forecasting of spectrum occupancy. 
The MSE provides an estimate of the error between the true spectrum occupancy 
and the forecast by the GA-Holt-Winters model. The closer MSE is to 0, the more 
accurate the prediction model.  

The MSE is computed using Eq. (28). 

 MSE =  
ଵ

௡
∑ (𝑦௧ − 𝑦௧ෝ )ଶே

௜ୀଵ                                  (28) 

3.5.2 Initialization of the GA-Holt-Winters Model Parameter 
Settings 

The frequency of crossing is determined by the crossover probability. If there is 
no crossover, the offspring will be identical replica of their parents. If there is 
crossover, the offspring is made up of chromosomes from both parents. If the 
likelihood of crossover is 100 percent, then crossing produces all offspring. If it 
is 0 percent, a new generation is created using exact copies of the chromosomes 
from an older population. The number of chromosomes in a population is 
measured by its size (in one generation). If there are not enough chromosomes, 
the GA only has a few crossover options and only a small portion of the search 
space is examined. On the other hand, the GA slows down when there are too 
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many chromosomes. According to previous research, increasing the population 
size after a certain point (which depends primarily on encoding and the problem) 
is ineffective because it does not speed up the problem-solving process. 

Crossover is done with the assumption that the new chromosomes will have better 
bits of the old chromosomes and thus are improved. However, it is preferable to 
leave a portion of the population to the following generation. The chance of 
chromosomal sections mutating is expressed as a percentage. If there is no 
mutation, the offspring is taken without any changes following crossover. When 
mutation occurs, a portion of the chromosome is altered. If the mutation 
probability is 100%, the entire chromosome is altered; if it is 0%, nothing is 
altered. The GA is mutated to avoid it from slipping into a local optimum – 
although this should not happen very frequently – as the GA will then revert to 
random search. 

In this work, the population size = 20, crossover rate = 100%, mutation rate = 
10% and the number of evolutions = 1000. The initial HW discount factors were 
set at 0.3 each. 

4 Results and Discussion 

The results obtained from the models presented in Section 3 are reported and 
analyzed in this section.  

4.1  Selection of the Choice of Period 

To determine the number of periods best suited for the forecast, the MSDs for 
when the number of periods is 3, 6, 9 and 12 were evaluated. The MSDs at 3 
periods were consistently the lowest in each band for the links considered, as can 
be seen from Table 4.  

Table 4 Mean absolute deviation of spectrum duty cycle of selected links. 

Bands/Links Mean Absolute Deviation at selected period number 
3 6 9 12 

GSM 900 RL LOC1 4.00 4.23 4.40 4.56 
GSM 900 RL LOC2 1.96 2.08 2.14 2.21 

GSM 1800 RL LOC1 6.32 6.89 7.24 7.32 
GSM 1800 RL LOC2 4.44 4.71 4.73 4.85 
GSM 1800 FL LOC1 3.97 10.63 49.97 86.03 
GSM 1800 FL LOC1 0.67 0.71 0.70 0.77 

The MSD for all links for when the number of periods was 3 and 12 varied by up 
to 12% for GSM 900 RL in both locations; 16% for GSM 1800 RL location 1; 
and 9% for GSM 1800 RL location 2. There was a wide deviation in the case of 
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GSM 1800 FL location 1 and 15% in the case of GSM 1800 FL location 2. 
Therefore, the number of periods selected was 3. 

4.2 Prediction Results 

A plot of the prediction results for HW and GA-HW for GSM 900 RL for both 
locations are shown in Figures 4 and 5 respectively. 

 

Figure 4 Forecast for GSM 900 RL location 1. 

 
The MSE of the HW was 36.34 while that of GA-HW was 30.51 for the data set 
of GSM 900 RL location 1. 

 

Figure 5 Forecast for GSM 900 RL location 2. 

The MSE of HW was 8.91 while that of GA-HW was 7.56 for the data set of 
GSM 900 RL location 2. 
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A plot of the prediction results for HW and GA-HW for GSM 1800 RL for both 
locations are shown in Figures 6 and 7 respectively. 

… 

Figure 6 Forecast for GSM 1800 RL location 1. 

The MSE of HW was 121.97 while that of GA-HW was 95.58 for the data set of 
GSM 1800 RL location 1. 

 

Figure 7 Forecast for GSM 1800 RL location 2. 

The MSE of HW was 60.96 while that of GA-HW was 33.77 for the data set of 
GSM 1800 RL location 2. A plot of the prediction results for HW and GA-HW 
for GSM 1800 FL for both locations are shown in Figures 8 and 9 respectively. 
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Figure 8 Forecast for GSM 1800 FL location 1. 

The MSE of HW was 103.65 while that of GA-HW was 74.86 for the data set of 
GSM 1800 FL location 1. 

 

Figure 9 Forecast for GSM 1800 FL location 2. 

The MSE of HW was 0.84 while that of GA-HW was 0.77 for the data set of 
GSM 1800 FL location 1. A good forecast of the spectrum duty cycle was 
obtained for the links considered. This was due to these spectrum links being 
characterized with several vacancies. For other links, the MSE obtained are 
shown in Table 5. Consistently, the MSE values obtained by the GA-Holt-
Winters technique were lower than those obtained by the Holt-Winters method. 
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The optimized discount factors, which were modified in the implementation of 
the GA-Holt-Winters approach are shown in Table 6. The initial values used were 
0.30 each. For GSM RL 900 RL location 2, GSM 1800 RL location 1 and GSM 
1800 FL location 1, there were no trend components.  

Table 5 Comparison of MSE for selected links. 

Bands/Links Forecast Mean Square Error 
Percentage Decrease in MSE 

Holt-Winters GA-Holt-Winters 
GSM 900 RL LOC1 36.34 30.51 16.04 
GSM 900 RL LOC2 8.91 7.56 15.15 

GSM 1800 RL LOC1 121.97 95.58 21.64 
GSM 1800 RL LOC2 60.96 33.77 44.60 
GSM 1800 FL LOC1 103.65 74.86 27.78 
GSM 1800 FL LOC2 0.84 0.77 8.33 

Table 6 Obtained discount factors for minimum MSE of forecast links. 

Bands/Links  Discount Factors 
α γ δ 

GSM 900 RL LOC1 0.31 0.00 0.11 
GSM 900 RL LOC2 0.47 0.00 0.01 
GSM 1800 RL LOC1 0.38 0 0.07 
GSM 1800 RL LOC2 0.02 0.06 0.48 
GSM 1800 FL LOC1 0.38 0.00 0.24 
GSM 1800 FL LOC2 0.24 0.23 0.11 

 
In Table 7, the results obtained from GA-enhanced Holt-Winters (GHW) 
prediction were compared with those of Holt-Winters (HW), ARMA, and 
ARIMA. GHW consistently performed better than the other techniques. 

Table 7 Comparison of prediction results using MSE. 

 HW GHW ARMA ARIMA 
900 RL 22.629 19.100 25.110 24.920 
1800 RL 91.470 64.674 125.530 86.732 

5 Conclusion 

Spectrum prediction is motivated by the knowledge that continuous spectrum 
measurement is expensive and time-consuming. In spectrum prediction, historical 
data  from spectrum sensing are used in forecasting future spectrum states. In this 
research, the suitability of the GA modified Holt-Winters exponential model in 
the prediction of spectrum occupancy data was investigated. The Holt-Winters 
method and the GA-Holt-Winters technique were observed to show good forecast 
behavior for GSM 900 RL, GSM 1800 RL, and GSM 1800 FL. There was a 
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decrease of about 16% in the MSE of the GA-Holt-Winters technique compared 
to the Holt-Winters technique for GSM 900 RL in both locations.  

The MSE values for GSM 1800 RL in locations 1 and 2 decreased by 22% and 
about 45% for the GA-Holt-Winters technique compared to the Holt-Winters 
technique. Finally, there was a decrease of about 28% and 8% in the MSE of the 
GA-Holt-Winters technique compared to the Holt-Winters technique for GSM 
900 RL in locations 1 and 2 respectively. However, the Holt-Winters method and 
the GA-Holt-Winters technique could not be applied to GSM 900 FL in both 
locations owing to the presence of large amounts of unoccupied spectrum slots. 
A more robust methodology such a neural network-based technique will be used 
in the future to predict spectrum duty cycle for all links. 
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