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Abstract - Turbo equalization is an iterative equaliza-
tion decoding scheme for detecting encoded data trans-
mitted over channels that introduce intersymbol inter-
ference. In such a scheme complexity of the optimal
soft-input soft-output (SISO) equalizer, which imple-
ments the BCJR a posteriori probability computation
algorithm, is one of the major concerns. In this paper
we extend the reduced state sequence detection (RSSD)
algorithm to a BCJR-SISO equalizer matched to a non
binary modulation. The resulting reduced-state SISO
(RS-SISO) algorithms can take full advantage from the
flexibility offered by RSSD in reducing the number of
trellis states. However, extension of RSSD algorithm for
obtaining the RS-SISO equalizers requires attention in
the recombination procedure of the forward and back-
ward metrics.
Keywords - Iterative detection, intersymbol inter-
ference, turbo equalization, reduced-state trellis SISO
equalization.

I. Introduction

Coding and interleaving are used in radio communica-
tion systems as a means to ensure reliable data transmis-
sion. When transmission takes place on frequency selec-
tive channels, which introduce intersymbol interference
(ISI), the classical architecture of the receiver consists
of the cascade of detector, de-interleaver, and decoder.
It is well known that the performance of this architec-
ture could be significantly improved by iterating the soft
detection-decoding process, leading to the so called turbo
equalizer (TEQ) scheme [1]. In the receiver implementa-
tion the complexity of the optimal soft-input soft-output
(SISO) equalizer, which implements the BCJR a pos-
teriori probability (APP) computation algorithm [2], is
one of the major concerns. For M-ary phase shift key-
ing (PSK) modulations (e.g. 8-PSK in EDGE, enhanced
data rate for GSM evolution) and severely distorted
channels, a reduced-state SISO (RS-SISO) equalizer is
required for a practical implementation [2].

The main contribution of this work is the extension
of the full flexibility offered by reduced state sequence
detection (RSSD, [3]) to the trellises used to compute
the forward and backward probabilities. RSSD is one

of the most popular techniques for reducing complexity
of the maximum likelihood sequence detector: a local
decision feedback is used to approximate the Viterbi al-
gorithm using a smaller trellis. The application of RSSD
to reduce complexity of the BCJR algorithm has already
been addressed in [4]; however, reduction of the number
of states is presented only by means of the delayed de-
cision feedback sequence detection (DDFSD) that is the
special case of RSSD when the same memory reduction
is operated for all the bits that constitute the symbol.

Apart from the straightforward extension to non-
binary modulation of the RS-SISO algorithm in [4], this
paper deals also with the application of RSSD to the
RS-SISO algorithm proposed in [5]. In [5] modulation
is binary and the DDFSD algorithm is realized in for-
ward and backward recursions preceded by different fil-
ters. The idea of using two different filters, instead of
one, was first proposed in [6] to improve performance of
the RSSD algorithm in combined equalization and de-
coding. Likewise in [5] it is shown that a performance
improvement can be obtained for TEQ schemes based on
RS-SISO equalizers where this form of double filtering is
implemented.

The paper is organized as follows. Section II intro-
duces the system model. Section III resumes RSSD al-
gorithm and the RS-SISO presented in [4]. In section
IV we discuss how RSSD can be extended to RS-SISO
equalization with double filtering. Section V presents
simulation results that provide a significant performance
comparison of the two RS-SISO algorithms in a TEQ
scheme.

II. System Model

The transmitter consists of a convolutional encoder
that is fed by a sequence of i.i.d. information bits. The
resulting coded bits are interleaved, and groups of q bits
are mapped onto the 2q signal points. The model is con-
stituted by a complex-valued baseband equivalent fre-
quency selective channel that introduces ISI and additive
white Gaussian noise (AWGN).

The discrete-time signal at the output of the sampled
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matched filter at time k is

rk =
ν∑

i=−ν

xic̃k−i + nk, (1)

where {c̃k} is the sequence of transmitted symbols, {nk}
is a zero mean Gaussian noise sequence with autocorrela-
tion function {N0

2 xk} (N0
2 is the two sided power spectral

density of the noise), and

xk = x(kT ) =
∫ ∞

−∞
g(t)g(t + kT )dt

is the sampled autocorrelation of the impulse response
of the channel g(t) (T is the symbol time interval). We
assume that ISI affects a limited number of symbols, i.e.
xk = 0 for |k| > ν, where ν defines the memory of the
channel measured in time symbol intervals.

Starting from the sequence given in (1) the BCJR
equalizer calculates the APP of each transmitted sym-
bol. In the BCJR algorithm the APP of each symbol
is computed by combining two probabilities that come
from two different recursions: one operating on a trel-
lis in the forward direction and the other on a trellis
in the backward one [2]. Reliability of each symbol is
used by a block that computes the corresponding APP
of the bits; the resulting bit sequence is de-interleaved
and passed to the BCJR-SISO decoder. In each system
the SISO algorithms, including those with reduced num-
ber of states, are realized by means of the APP algorithm
in the logarithmic domain and the logarithm of the sum
is computed using the max∗ approximation [2].

When an RS-SISO equalizer is implemented, it is of
crucial importance to define an appropriate filtering of
the observed sequence in order to limit performance loss
due to state reduction. The appropriate form of filtering
depends on the specific implementation of the RS-SISO
algorithm. In the next two sections we present two rel-
evant choices for the RS-SISO algorithms and, for each
one, the type of filtering applied to the discrete-time sig-
nal (1).

III. Reduced State Single Trellis SISO
Algorithm

In RSSD a reduction of the number of states is oper-
ated at level i of the channel memory (for element ck−i)
by partitioning the signal constellation into Ji subsets
using the Ungerboeck set partitioning principle [7]. Let
ak−i be the subset associated to the symbol ck−i. A
trellis state s(k) is defined by the concatenation of the
respective subsets. Let sk = (ak−ν+1, . . . , ak) be the
generic state at time k in the reduced trellis. Throughout
the paper we assume that J0 ≥ · · · ≥ Jν ; in addition the
number of states of the RSSD trellis is given by

∏ν−1
i=0 Ji.

We define a state reduction pattern by using a vector µ

whose q entries are the duration of the memories associ-
ated to each bit (from the most significant (MSB, first
entry) to the least one (LSB, last entry)).

It is well known that in order to obtain good perfor-
mance with RSSD equalization it is essential to operate
an appropriate filtering of the received sequence [8]. In
[5] the benefits of using the MMSE-DFE (minimum mean
square error - decision feedback equalizer) FF (feedfor-
ward filter), over the noise whitening FF, has been shown
also in RS-SISO equalization algorithms. The discrete-
time sequence at the output of the MMSE-DFE FF is

yk =
ν∑

i=0

dic̃k−i + wk, (2)

where {dk} is the overall impulse response and {wk} is
a zero mean white distortion sequence (residual ISI plus
noise) having variance N0/2. The analytic expressions of
the impulse response coefficients {dk} and of the MMSE-
DFE FF impulse response can be found in [5].

It is important to observe that when the RSSD algo-
rithm is applied to trellis reductions, partitioning of the
signal constellation into subsets turns out to be different
for the forward and the backward states. In fact, due to
time reversal in the backward process, the generic sub-
set ak−ν+1+i, associated to symbol ck−ν+1+i in the back-
ward trellis, assumes the same role of subset ak−i, asso-
ciated to symbol ck−i in the forward trellis (i = 0, · · · , ν).
For some state reduction patterns, this could lead to an
ambiguity in the combination of the forward and back-
ward probabilities unless it is adopted the approach sug-
gested in [4] where the backward recursion is computed
over the state history achieved by the forward one. In
this case the two recursions are computed on trellises
where the forward and the backward states are defined
by the same concatenation of subsets. Note that, in this
case, the backward algorithm cannot start until the for-
ward one is concluded, excluding any possibility of par-
allel computation.

The transition metric that diverges at time k− 1 from
state sk−1 = (ak−ν , . . . , ak−1) and merges at time k in
state sk = (ak−ν+1, . . . , ak) is given by

ln γ(sk−1, sk) = − 1
N0
|yk −

ν∑

i=0

dick−i(sk−1)|2

+ ln P (sk|sk−1), (3)

where ck−i(sk−1) is the estimate of the (k − i)-th PSK
symbol identified by the survivor path and by the state
sk−1 and P (sk|sk−1) is the a-priori transition probability
between states sk−1 and sk (in the turbo equalizer the ex-
trinsic information assumes the role of a-priori probabil-
ity). Of course local decision feedback requires selection
of a single survivor path per state: as in [5], we choose as
a survivor the path that gives the greatest contribution
to the state probability.



Fig. 1. TEQ scheme for the implementation of joint
equalization and decoding.

IV. Reduced State Double Trellis SISO
algorithm

A different approach can be adopted to extend the
RSSD for reducing complexity of the optimum BCJR
equalizer. Following the design lines in [5], we apply
RSSD technique to trellises where forward and backward
states sf (k) and sb(k) are defined by the concatenation of
the respective, possibly different, subsets; this does not
limit backward recursion to the exploration of the path
history accumulated in the forward stage. As stated in
[5], a successful implementation of this approach needs
a different filtering of the sequence (1) for the forward
and the backward trellises; the clear goal is to make
the impulse response {dk} minimum phase, maximizing
the energy of the first tap weights. At the same time,
in the backward process, signal energy in the last taps

Fig. 2. In this example ν = 3 and µ = [1 2 2].

should be maximized for improving the sub-optimal de-
cision process. Hence the output of the matched filter is
passed through a non-causal MMSE-DFE FF to obtain
the sequence used in the forward recursion, while the
time-reversed version of the mentioned filter is used for
the backward recursion. So the impulse response used in
the backward recursion turns out to be anti-causal and
maximum phase. A pictorial description of the receiver
scheme is reported in figure 1.

The signals at the input of the forward and backward
trellises at time k are respectively

yf
k =

ν∑

i=0

dic̃k−i + wf
k , yb

k =
ν∑

i=0

dic̃k+i + wb
k, (4)

where {wf
k} and {wb

k} are zero mean white distor-
tion sequences (residual ISI plus noise) having vari-
ance N0/2. Let sf

k = (ak−ν+1, . . . , ak) be the generic
state at time k in the reduced forward trellis, and let
sb

k = (ak, . . . , ak+ν−1) be the generic state at time k in
the reduced backward trellis. The two transition metrics
are given by

ln γ(sf
k−1, s

f
k) = −|y

f
k −

∑ν
i=0 dick−i(s

f
k−1)|2

N0

+ ln P (sf
k |sf

k−1), (5)

Fig. 3. In this example ν = 3 and µ = [1 2 3].



ln γ(sb
k+1, s

b
k) = −|y

b
k −

∑ν
i=0 dick+i(sb

k+1)|2
N0

+ ln P (sb
k|sb

k+1), (6)

where the estimate of the (k − i)-th symbol ck−i(s
f
k−1)

is identified by the survivor forward path and by the
forward state sf

k−1 and similarly ck+i(sb
k+1) on the back-

ward side; P (sb
k|sb

k+1) and P (sf
k |sf

k−1) are the a-priori
probabilities associated to the current transitions. Note
that the use of two FF’s allows local decision feedback
correction of the past symbols in the forward recursion
and of the future ones in the backward one.

We emphasize here that extension of RSSD technique
to this architecture is not straightforward because the re-
combination of the metrics between states of the two re-
duced trellises may not be defined unambiguously. This
problem arises since RSSD is applied to trellises that pro-
ceed in opposite time directions using causal and anti-
causal impulse responses. We adopted a simple proce-
dure that discriminates state reduction patterns µ that
allow the dual metrics recombination without ambiguity:
the resulting algorithm has to work on a trellis that has
a fixed and pre-defined rule for recombining forward and
backward metrics. To clarify this point two examples
of reduced forward and backward states are represented
in fig. 2-a and 3-a. The state sf

k and the generic transi-
tion, identified by the input symbol ck+1, define not only
the next forward state sf

k+1 but also the backward state
sb

k−µ+2 useful for the recombination. The memory of sf
k

and ck+1 are superimposed to the memory of a backward
state until a depth equal to µ = max {µ}. The recombi-
nation is well defined when this superimposition brings
to the exact identification of all the backward state bits
(fig. 2-b); on the contrary, when the memory of sf

k and
ck+1 do not overlay all the memory bits of the backward
state, recombination is not specifiable in a single way and
the state reduction pattern is discarded (see the marked
bit in fig. 3-b).

The reliability of the symbol transmitted at time k is
computed as [5]

L(ck) = max
ck

∗
{
ln α(sf

k−1)+ln γ(sf
k−1, s

f
k)+lnβ(sb

k−µ+1)
}

where α(sf
k−1), β(sb

k−µ+1) are respectively the forward
and the backward probabilities at time k−1 and k−µ+
1. Forward and backward probabilities are computed
recursively, as usual [2], on the two filtered versions of
signal (4).

V. Simulation results

We are considering, as in [9], the possibility of us-
ing a TEQ for EDGE; the architecture of EDGE is the
same as GSM, except for the use of 8-ary phase-shift
keying (8-PSK) instead of binary Gaussian minimum-
shift keying (GMSK). The 8-PSK modulation is tested

by means of a TEQ consisting of the RS-SISO equal-
izer, a random 4086 bit long interleaver and a convolu-
tional code with rate 1/2. Numerical results are pre-
sented for two channels: 1) a hard-to-equalize static
channel ([5]) having discrete time autocorrelation func-
tion [xk]60 = {1 0.92 0.73 0.49 0.27 0.11 0.03}; 2) the TU
profile channel given in [10]. The channels are assumed
to be perfectly known to the receiver; the former is a
channel that remains static for all the block length while
the latter changes at each block of 114 symbols modelling
a fast fading hypothesis. The convolutional code, in oc-
tal representation, is (133, 171) for both channels. We
have compared our state reduction strategy (denoted as
DRT, double reduced trellis) with the solution without
double filtering (SRT, single reduced trellis).

Fig. 4 reports word error rate (WER) achieved after
three turbo iterations for the TU profile channel in a
selection of reduction patterns; Eb is the average received
energy per information bit. We can observe that DRT
architecture has a performance advantage that increases
as the state reduction gets larger, achieving 0.5 − 0.75
dB at WER = 10−2 with 8-state equalizers. In addition
DDFSD pattern reductions (µ = [1 1 1] and µ = [2 2 2])
have the best performance for DRT but not for SRT; in
fact we expect a DRT particularly effective for DDFSD
since, as explained in sec. IV, double filtering is used to
minimize the signal energy of the discarded taps.

Fig. 5 and 6 show similar performance results for the
static channel decoded by 64 and 16 state trellises respec-
tively: performance advantage provided by DRT is again
more evident at largest state reductions. Differently from
the previous channel, the best performance is provided
by the pattern reductions µ = [0 0 6] for DRT or SRT
and µ = [0 0 4] for DRT. It can be noted that flexible im-
plementation of these complexity reduction techniques in
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Fig. 4. Word error rate (WER) versus Eb/N0 at the
third iteration for the TU-GSM channel with channel
SISO’s reduced to 64 (continuous lines) and 8 states
(dashed lines).



8-PSK is fundamental to obtain a number of states that
can be any power of 2 and not of 8.

Of course performance improvement depends on the
number of iterations, even if a small number equal to 3, 4
is usually sufficient for achieving the final performance
in these applications; DRT has usually a faster conver-
gence and its use in a TEQ may be useful for limiting
the decoding delay.

VI. Conclusions

The paper has presented an architecture for imple-
menting reduced state SISO equalizers in non binary
modulations, maintaining full flexibility of the reduc-
tion patterns and the performance advantage provided
by double pre-filtering techniques for forward and back-
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Fig. 5. Word error rate (WER) versus Eb/N0 at the
third iteration for the static channel with reduction to
64 states (SRT - dashed lines, DRT - continuous lines).
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Fig. 6. Word error rate (WER) versus Eb/N0 at the
third iteration for the static channel with reduction to
16 states (SRT - dashed lines, DRT - continuous lines).
The SRT scheme with µ = [0 0 4] does not provide
satisfactory performance.

ward recursions. Simulation results were presented for
two RS-SISO equalizers and their corresponding perfor-
mance were compared both for static and fading channels
in a turbo equalizer scheme.
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