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ABSTRACT

A new computational strategy for the simulation of crack growth processes in quasi-brittle
materials is proposed; it is centered on the partition of unity (PU) concept, first presented
by Babuška and coworkers in [1, 2]. The PU methodology, through an enrichment of the
displacement field, allows a description of the displacement discontinuity, which is in-
dependent of the original mesh layout. This implies a high degree of flexibility in the
definition of the crack pattern and propagation. Results for mode I cohesive crack growth
in a model problem are presented to illustrate the potentiality of the proposed approach.

SOMMARIO

Si propone una nuova strategia computazionale per la simulazione della propagazione di
una frattura in un materiale quasi-fragile, basata sul concetto della Partizione dell’Unità
(PU) proposta per la prima volta da Babuška e dai suoi collaboratori in [1, 2]. Tramite
un arricchimento del campo di spostamento, la metodologia PU consente di descrivere la
discontinuità di spostamento in modo indipendente dalla mesh originale. Questa carat-
teristica porta ad una elevata flessibilità nella definizione del percorso della frattura.
Per illustrare le potenzialità dell’approccio proposto, si presentano i risultati relativi alla
propagazione in modo I di una cricca coesiva in un problema modello per un solido elastico
lineare.

1 INTRODUCTION

For fracture processes in quasi-brittle materials the dissipative mechanisms are predom-
inantly concentrated along cohesive fracture surfaces, while the material in the remain-
ing background domain is often assumed as indefinitely linear elastic. The sources of
nonlinearities are thus located only along lower-dimensionality loci, which require to be
accurately discretized within a Finite Element (FE) context.

In recent years various alternative approaches to quasi-brittle fracture phenomena have
been proposed. Among others, it is worth mentioning here: (a) the use of cohesive inter-
face elements with explicit discretization of the fracture process zone either from a priori
[3, 4], or just after crack activation [5]; (b) the use of embedded crack elements, which
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model the crack evolution inside finite elements by means of discontinuous enhanced dis-
placement fields [6, 7, 8, 9].

An alternative approach is followed herein inspired to the PU-FE method (also named
generalized or extended FE method), recently presented by Babuška and coworkers. By
exploiting the property for which the sum of the nodal shape functions, here defined with
a compact support, is unit everywhere in the domain to be modeled, displacement finite
element approximate solutions can be enhanced through the introduction of ad-hoc as-
sumed local functions. In this way, local known features of the exact solution can be
introduced into the standard FE approximation fields [10, 11].

So far, the PU-FE method has been primarily used to model the effects of reentrant
corners in elastic domains [12] and crack processes in brittle materials [13, 14, 15]; for
both problems the asymptotic elastic solutions in the vicinity of a corner or crack tip are
known with the corresponding stress intensity factors.

The present contribution addresses two aspects of the formulation of PU-FEs for quasi-
brittle fracture mechanics: cohesive forces between the two flanks of the opening crack in
the process zone lead to a reduction of the stress concentration ahead of the tip of the
process zone, so that the stress intensity factors of linear elastic fracture mechanics (and
the relevant asymptotic solutions for displacements) are not correct for the considered
problem; the simulation of crack growth requires not only a description of the discontin-
uous displacement field across the crack but also a particularly accurate modelling of the
deformation state in the bulk of the solid, in proximity of the process zone, especially
ahead of its tip. These two issues are here addressed by means of local enhancement of
the displacement model for three-noded constant strain triangles; the local enhancement
consists of quadratic polynomials, which are discontinuous across the fracture. This pro-
cedure allows to obtain PU-FE solutions with a cubic displacement modelling of the crack
opening in the process zone, containing unknowns only in the vertex nodes of the original
mesh, with the addition of only one node at each crack kink.

In order to emphasize the basic characteristic of the proposed method, only mode I
cohesive fracture processes in two-dimensional linear elastic media under small displace-
ments assumption are considered in this work.

2 GOVERNING EQUATIONS

Let us consider a three-dimensional domain Ω bounded by the two disjointed surfaces Γt

and Γu (such that Γt ∪Γu = Γ and Γt ∩Γu = ∅) on which tractions and displacements are
imposed, respectively, and by a propagating internal fracture surface Γd (Figure 1). Γd

consists of a crack surface on which the interaction between crack flanks is possible only
upon crack closure under compressive stress states, and of the current fracture process
zone, where cohesive interaction between the opening (and possibly sliding) surface flanks
is taking place.

In what follows it is assumed that the crack originates from the boundary so that only
one running crack tip has to be followed during crack growth; this is not a limitation of
the proposed approach but allows to rule out bifurcation phenomena along the equilib-
rium path. Similarly, during the analyses possible crack branching phenomena are not
accounted for.

The equilibrium of the quasi-brittle medium described above is governed by the fol-
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Figure 1: Geometry of modeled domain and notation.

lowing equations:
CTσ + b̄ = 0 in Ω; (1)

σn = t̄ on Γt; (2a)

σm = −t+ on Γ+d , σm = t− on Γ−
d . (2b)

Here: σ is the vector of stress components; b̄ and t̄ are the assigned external loads per
unit volume and surface, respectively; C is the differential compatibility operator; n is
the unit outward normal to Γ and m is the unit normal to Γd, defined by the direction
of propagation as shown in Figure 1; accordingly, Γ+d and Γ−

d define the two sides of the
crack acted upon by tractions t+ and t−, which express the cohesive interaction in the
fracture process zone. The equilibrium condition across the fracture surface Γd reads:

t
.
= t− = −t+. (3)

Under the assumption of linearized kinematics, the compatibility conditions in Ω and
along Γu are given by

ε = Cu in Ω, u = ū on Γu; (4)

ε and u being the strain and the displacement vectors, respectively, and ū the assigned
values of displacements along Γu.

The material behavior is assumed linear elastic for the bulk material in Ω, i.e.

σ =Dε in Ω, (5)

while a nonlinear elastic-softening (holonomic) interface behavior is assumed on Γd (Figure
2), described by:

t =

{

Ed [u] +
〈

[u]− [u]M
〉

(Qd −Ed) if [u] ≤ [u]u

0 if [u] > [u]u
on Γd. (6)
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Figure 2: Mode I assumed constitutive behavior in the process zone.

In (5) and (6) D is the matrix of elastic moduli; Ed and Qd are the positive and neg-
ative elastic stiffnesses, respectively, of the two linear branches of the interface traction-
displacement discontinuity curve ; [u] denotes the displacement discontinuity along Γd,
defined as:

[u] = u

∣

∣

∣

∣

Γ
+

d

− u

∣

∣

∣

∣

Γ
−

d

. (7)

The two terms at the right-hand side represent the displacement field computed on Γ+d
and Γ−

d , respectively; [u]M and [u]u in (6) indicate the displacement discontinuity at the
peak and at vanishing cohesive tractions (see Figure 2 for mode I loadings); the symbol
〈 〉

denotes the McAuley brackets (〈x〉 = 1/2(x+ |x|)).
The traction-displacement discontinuity relationship along Γd is concisely expressed

in rate form by:
ṫ =Dt

Γ [u̇] , (8)

Dt
Γ being the matrix of interface tangent moduli (Dt

Γ = Ed for [u] ≤ [u]M , Dt
Γ = Qd for

[u]M < [u] ≤ [u]u, D
t
Γ = 0 for [u]u < [u]). More advanced interface laws are discussed

e.g. in [16].

3 FINITE ELEMENT FORMULATION

Let U be the space of admissible displacements u in Ω, i.e. such that u = ū on Γu,
u possibly discontinuous on Γd and u ∈ C0 everywhere else in Ω. By introducing the
test functions v ∈ U0 (with zero prescribed displacements on Γu), the weak form of the
incremental equilibrium equations reads:
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∫

Ω

εT (v) σ̇ dΩ =

∫

Ω

vT ˙̄b dΩ +

∫

Γt

vT ˙̄t dΓt +

∫

Γ
+

d

vTṫ
+
dΓd +

∫

Γ
−

d

vTṫ
−
dΓd

=

∫

Ω

vT ˙̄b dΩ +

∫

Γt

vT ˙̄t dΓt −

∫

Γd

[v]T ṫ dΓd ∀v ∈ U0. (9)

In equation (9) use has been made of the fact that, in view of the assumed linearized
kinematics, Γd ≡ Γ+d ≡ Γ−

d .
Taking into account the constitutive laws for the bulk material (5) and for the cohesive

part (6) of the fracture surface, the structural problem can be expressed in variational
form as:

find u̇ ∈ U :

∫

Ω

εT (v)Dε̇ (u̇) dΩ+

∫

Γd

[v]TDt
Γ [u̇] dΓd

=

∫

Ω

vT ˙̄b dΩ +

∫

Γt

vT ˙̄t dΓt ∀v ∈ U0.

(10)

Since we confine our attention to two-dimensional domains, the fracture surface Γd

reduces to a line within Ω. The approximate PU-FE solution is obtained subdividing
first the domain Ω into a standard mesh of triangular finite elements. The discretized
displacement field uh (x) is then obtained according to the following enriched model:

uh (x) =
∑

i∈I

φi (x)u
i +
∑

j∈J

3
∑

k=0

H (x)φj (x)ψkj (x)
kδj, (11)

where set I collects all the nodes of the triangulation, while set J gathers only those
nodes, except for the current tip node, whose support ωj is cut by Γd. φi (x) is the usual
linear shape function centered at node i (according to the notation used in [2], φi (x) is the
partition of unity subordinate to the covering {ωi} of domain Ω); H (x) is the Heaviside
step-function, defined as:

H (x) =

{

+1 if (x− x∗)Tm > 0

−1 if (x− x∗)Tm < 0
(12)

x∗ being the closest point projection of x onto Γd. ψkj (x) (k = 0, 1, 2, 3) are the enrich-
ment functions, here defined as:

ψ0j (x) = 1, (13)

ψ1j (x) =

(

x− xj

hj

)2

, (14)

ψ2j (x) =

(

y − yj

hj

)2

, (15)

ψ3j (x) =

(

x− xj

hj

)(

y − yj

hj

)

. (16)
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Figure 3: Specimen geometry and applied boundary conditions (mm).

hj is a scaling factor introduced to reduce pollution errors in the numerical solution and
is related to the mean size of the elements that are currently sharing the vertex node j (in
the example shown in the forthcoming Section it has been set hj = 1); ui are the standard
nodal degrees of freedom which represent the values of displacements for x ≡ xi, when
i 6∈ J ; kδj are the additional nodal degrees of freedom introduced in order to enhance the
displacement model.

The proposed approximation (11) is able to capture accurately two of the main features
of the exact solution, i.e.:

• the discretized displacement field is discontinuous across Γd, thanks to the presence
of H (x) in the enhanced term of the assumed displacement model uh (x), with
discontinuity given by

[u]h = uh

∣

∣

∣

∣

Γ
+

d

− uh

∣

∣

∣

∣

Γ
−

d

=
∑

j∈J

3
∑

k=0

2

(

φj (x)ψkj (x)

)

Γd

kδj; (17)

• the opening displacement along Γd displays a cusp-like shape in the process zone,
where cohesive tractions have the effect to eliminate the stress singularity ahead of
the crack tip, typical of linear elastic fracture mechanics.

A major drawback of the proposed solution is that the enhanced displacement interpo-
lation lead to a semidefinite matrix of tangent stiffness moduli. However, the spurious
zero energy modes do not correspond to any deformation of the element, which therefore
passes the patch test. In this work, results have been obtained by solving iteratively the
linearized system of equations, according to the technique proposed in [12].
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(a) (b)

Figure 4: (a) Symmetric and (b) biased meshes used to discretize the model problem

4 MODE I CRACK GROWTH IN A MODEL PROBLEM

The proposed PU-FE approach is used to analyze the crack growth in the thin pre-notched
specimen shown in Figure 3. Due to the symmetry of geometry and applied boundary
conditions, a rectilinear mode I crack growth is expected.

Material properties are set as: bulk material (in Ω): Young’s modulus E = 20000
(MPa), Poisson’s ratio ν = 0.2; mode I cohesive interface (on Γd): first branch elastic
stiffness Ed = 50000 (MPa/mm), second branch elastic stiffness Qd = −25 (MPa/mm),
maximum traction carrying capacity tIM = 3 (MPa). Figure 2 shows the assumed mode
I, traction tI vs opening displacement [uI], law (subscript I is dropped for brevity in the
remainder of this Section); the mode II, tII− [uII] behavior is instead assumed indefinitely
linear elastic. According to these model parameters, the mode I fracture toughness is
GI = 0.18 (N/mm).

Figure 4 shows the two discretizations used: (a) has a layout symmetric with respect to
the expected propagation path; (b) is biased in order to introduce a preferential, spurious
inclined layout. In the figure the dots represent the position of crack tip at each stage
of the computed fracture propagation. The continuous solid lines denote the initial pre-
notch while the dotted straight segments that connect the dots represent the evolution of
Γd under the applied loading conditions.

The adopted fracture growth criterion allows a step-wise propagation of Γd when the
maximum tensile stress ahead of the tip of the process zone is greater that tIM . The local
direction of fracture propagation is assumed orthogonal to the direction of the maximum
tensile stress. In Figure 4 it can be seen that, due to round-off errors and lack of sym-
metry in the biased mesh, Γd does propagate following a zig-zag polyline path around
the rectilinear propagation direction. For comparison purposes, this specimen has been
also modeled by means of 8-noded isoparametric element in Ω and by means of 6-noded
interface elements with the cohesive constitutive law (6). In this case, only one half of
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(a) (b)

Figure 5: (a) Measured load P vs imposed displacement ū response of the specimen; (b) current position
of crack tip (xc) and fracture process zone tip (xpz) for given displacement ū.

the specimen has been discretized due to symmetry conditions.
Figure 5a shows the computed reaction P vs imposed displacement ū curve. In this

and in the forthcoming figures, “FE” refers to the FE solution obtained with interface
elements, while “PU-FE” refers to the solution obtained with the enhanced PU-FE ap-
proach and symmetric discretization. Even though the two approaches are based on
different techniques for the simulation of the crack growth, the modeled global behavior
is substantially the same. The main difference appears not to be related to the assumed
crack propagation scheme but rather it concerns the initial elastic behavior, which is stiffer
in the PU-FE simulation due to the coarse discretization of Ω. From Figure 5a one can
also observe slight oscillations in the P − ū PU-FE curve in correspondence of each tip
advancement. This is mainly due to the finite size of the imposed increment of fracture
length ∆a = 20 (mm) adopted in the PU-FE simulation, which is defined a priori and is
neither related to the actual crack length nor to the size of the fracture process zone. To
compensate for the numerical sudden topology modification of Γd, a finite initial elastic
stiffness has been introduced in the interface behavior (see equations 6). The oscillations
could be further lowered just reducing the size of ∆a. Figure 5b presents a comparison
between the FE and PU-FE solutions concerning the positions of the tip (xc) of the crack
and the tip (xpz) of the process zone (xpz−xc being the length of the process zone) vs. the
prescribed displacement ū. It can be noted that xc evolves smoothly during the PU-FE
analysis, while a slightly irregular behavior is observed for xpz.

For different values of the applied reaction force P , Figure 6 shows the mode I cohesive
traction profiles in the fracture process zone computed with the two approaches (FE with
pre-defined interfaces and PU-FE). One can notice that good agreement is obtained also
in this case.

In Figure 7 the results obtained with the symmetric and biased PU-FE meshes of
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(a) (b)

Figure 6: (a) Mode I cohesive tractions in the fracture process zone at the three different stages of crack
growth marked in (b).

Figure 7: Effects of the mesh on the measured load P vs load point displacement ū specimen response.

Figure 4 are compared. As expected, the different discretization affects the pre-peak
P − ū response only marginally, while a noticeable difference is evidenced in the softening
branch. The higher reaction peak in the biased mesh is motivated by the fact that the
resolved traction on an inclined crack is lower than the nominal applied one, while the
longer zig-zag path followed by the propagating fracture implies a higher dissipation and
therefore a larger fracture energy.
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[13] N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth without remeshing.
International Journal for Numerical Methods in Engineering, 46:131–150, 1999.
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