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Abstract

Reservoir computing has become the state-of-the-art machine learning algorithm
for predicting nonlinear and chaotic dynamics. It features excellent speed and less
required training data compared to other deep learning methods. The first part of
this thesis makes use of the algorithm’s speed aspect. A new encryption algorithm
is developed, which outperforms a previous reservoir computing based encryption
algorithm by a factor of ⇠ 103 in terms of encryption speed. Reservoir computing was
also successfully applied to simulate biological neural functions. One of these functions
is learning multiple tasks with the identical network structure simultaneously, i.e. the
ability to be multifunctional. In reservoir computing, the intrinsic network structure is
not changed during multifunctional processing, resembling its biological counterpart.
The next generation of reservoir computing (NG-RC) was recently introduced,
featuring improved performance. Therefore, the functioning of the reservoir network
is replaced by polynomial multiplications of time-shifted input variables. The second
part of this thesis explores the limits of multifunctionality in NG-RC. The architecture
of the algorithm creates high interpretability of multifunctional behavior. This opens
a new perspective on multifunctionality and allows such behavior to be analyzed by
learned governing equations.
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Chapter 1

Introduction

The whole is greater than the sum of its parts. This famous phrase introduces
a powerful concept of nature, emergence. A system interacting with itself in a
non-equilibrium environment may acquire new and unexpected behaviors through
self-organization. These systems are called complex systems. One defining feature
of complex systems is their ability to encode, store, process, and employ functional
information [1], which thrives emergence behaviors and creates the world around
us. Famous and poorly understood examples are the emergence of consciousness
from the interaction and information processing of neurons in the brain [2], [3] or the
emergence of life itself from gene regulatory networks, protein-protein interaction
networks, and metabolic interaction networks [4],[5]. Another defining feature of
many complex systems is their unpredictability in the long term. However, making
the unpredictable predictable for a longer time is of great interest in many scientific
fields. Only recently, significant efforts have been made to predict the dynamics of
the Covid-19 pandemic [6], [7]. As another example, the prediction of the effects of
nonlinear feedback mechanisms of tipping points in the Earth’s climate system can be
brought up [8]. The problem with predicting these nonlinear or even chaotic dynamics
is the inaccessibility of the governing equations of these systems. In 1981 Takens
[9] showed that essential properties of nonlinear systems could be reconstructed
from pure empirical observations [10]. In recent years, machine learning techniques
have substantially leveraged this approach, reaching state-of-the-art performances.
In 2016 Brunton et al. [11] introduced an efficient algorithm for reconstructing
the governing equations by analyzing data. This essentially reveals algorithmically
physical principles from pure observation. The currently benchmarking machine
learning algorithm for predicting dynamical systems is reservoir computing [12].
Due to its inherently efficient architecture, the algorithm is faster to train [13] and
needs less training data [14] than deep learning methods that are usually hard to
train and data hungry. The architecture expands the input through its network
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2 CHAPTER 1. INTRODUCTION

structure and activation function into a high-dimensional nonlinear representation.
Only this representation is trained with ridge regression onto the desired output,
explaining the remarkable speed of the algorithm. The outstanding prediction
performance is based on invertible generalized synchronization [15],[16]. In essence,
the reservoir network is a high-dimensional dynamical system driven by the input. The
reservoir functionality is given if the reservoir network can generate a high-dimensional
embedding of the input through synchronization. However, since not every network
structure can generate an embedding of any input, the hyperparameter tuning of
reservoir computing is generally comprehensive. If it is successful, it can benchmark
even the hardest task, like predicting multiple chaotic attractors [17][18], complex
spatio-temporal behavior [19],[20] or controlling nonlinear dynamical systems into
arbitrary states [21]. Reservoir computing has also been studied at the intersection
of neuroscience, complex systems, and machine learning as it can perform tasks
usually associated with biological neural functions, such as multifunctionality with
one network structure [16]. Only recently, the next generation reservoir computing
(NG-RC) architecture was published, highlighting its lack of randomness, the fewer
tuneable parameters, and its performance gain in speed compared to the traditional
approach [22]. Essentially, it exchanges the random initialized networks of the
traditional approach by creating the high-dimensional representation of the input
through unique polynomials of time-shifted input variables. This way, astonishing
performance gains are achieved. High-accuracy predictions of chaotic attractors
were of a factor ⇠ 106 less costly, and spatio-temporal chaos predictions of a factor
103 � 104 faster than the traditional approach [23].
Chapter 2 develops separation-based reservoir computing as a high-speed encryption
algorithm. Security and performance aspects are discussed, and patches towards
real-world applicability are made, which leads to encryption speeds ⇠ 103 faster than
a previous reservoir computing based encryption algorithm.
Chapter 3 takes up the ideas from [16] and investigates to what extent NG-RC [22]
can reproduce multifunctionality and the associated biological neuronal functions
without an intrinsic network structure.



Chapter 2

Reservoir Computing Based
Cryptography

Due to the rapid development of digital communication and digital information
transmission, encryption methods play a fundamental role in ensuring secure and
usable digital technologies. Intensive research is being carried out on innovative
encryption methods to enable efficient and secure encoding of the increasing amount
of information such as audio [24] or images [25],[26],[27],[28]. One extensively
investigated field of research is chaos-based cryptography. Due to intrinsic properties
like pseudorandomness, complexity, and sensitivity to parameter changes, chaos-based
cryptography is a promising candidate for innovative and effective encryption methods
and a subject of high research interest. In 2019 alone, approximately 160 papers were
published related to chaos-based cryptographic algorithms [29]. In [30], Mohammad
et al. compared classic image encryption methods like DES, AES, Vigenère, and
RC4 with chaotic encryption techniques and showed that hyper-chaotic maps are
the most efficient approach among them. Further research combines the chaotic map
approach with machine learning techniques of long short term memory structures
(LSTMS), resulting in higher security and efficiency than previous schemes [25].
LSTMS are state-of-the-art recurrent neural network (RNN) architectures. Current
research shows that echo state networks (ESN), also called reservoir computers, can
level the performance of LSTMS but with far less training time, making reservoir
computing an exciting candidate for the intersecting research of machine learning and
cryptography [31]. In 2017 Ramamurthy et al. [27] introduced echo state networks for
symmetric cryptography. They used the echo state network as a prediction algorithm
and reached an encryption and decryption speed of around 3 kilobytes per second on
a 2.7 GHz Intel Core i5. Here, the echo state network is introduced as a separation
algorithm. This way, the echo state network reached with the performance-enhancing
method, an encryption and decryption speed of up to 7.6 megabytes per second
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4 CHAPTER 2. RESERVOIR COMPUTING BASED CRYPTOGRAPHY

on a 2,9 GHz Dual-Core Intel Core i5. The theory of reservoir computing-based
cryptography is explained in section 2.1, followed by a discussion of the security
and performance aspects of the proposed algorithm and some patching methods for
real-world applicability.

2.1 Reservoir Computing

Reservoir computing is a computationally cheap and efficient recurrent neural network
architecture. It reaches state-of-the-art performances in predicting chaotic time series,
and it can learn the climate of a chaotic time series even with a small set of training
data [15]. The idea behind the architecture is to have a nonlinear dimensionality
expansion of the input data and only train the expanded states via ridge regression
onto the desired output. Following [32], the dimensionality expansion is reached by
applying every data point u(t) 2 RM of the input data X = [u(0),u(1), ...,u(⌧)],
where X 2 RM⇥⌧ , onto an input layer Win 2 RN⇥M . The entries of this layer are
drawn randomly from a uniform distribution between the range [�k, k], where k

acts as a tuneable hyperparameter. Every data point u(t) is applied via matrix
multiplication on the input layer, resulting in a N dimensional vector. This vector is
fed at its time t into the reservoir function, defining the reservoir state r(t+�t) at
later time t+�t.

r(t+�t) = tanh(Winu(t) +Ar(t)) (2.1)

A primary property of reservoir computers is their intrinsic network, defined by the
adjacency matrix A of dimension RN⇥N . The current reservoir state vector is itera-
tively applied onto the adjacency matrix and added with the currently expanded input
Winu(t). The sum becomes the argument of the activation function tanh(), defining
the reservoir state at later time t+�t. This way the input X = [u(0),u(1), ...,u(⌧ )]
is nonlinear expanded to the reservoir state matrix R = [r(1), r(2), ..., r(⌧ + 1)].

2.1.1 Prediction Mode

In prediction mode, the reservoir has to learn to map the current input u(t) onto
the following one u(t +�t). For this task, the reservoir computer has an output
layer Wout, which needs to be trained accordingly. The goal is to learn a mapping
of the current reservoir state r(t + �t) of u(t) onto u(t + �t) simply by matrix
multiplication, so that

u(t+�t) ⇡ Woutr(t+�t). (2.2)
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Therefore, the target matrix of the reservoir state matrix R = [r(1), r(2), ..., r(⌧)]
becomes Y = [u(1),u(2), ...,u(⌧)]. The optimization of Wout is done by ridge
regression,

Wout = argmin(
⌧X

t=1

||WT
outr(t)� u(t)||2 + �||Wout||2) (2.3)

or differently formulated by optimizing,

Wout = YRT (RRT + �I)�1
. (2.4)

The hyperparameter � > 0 is the regression parameter or Tikhonov regularisation
parameter. It can balance the optimization between overfitting and underfitting the
data. The Wout is the only matrix that is trained in the reservoir computing regime,
and ridge regression is a computational cheap optimization algorithm. Both lead to
a significant performance in speed. Applying r(⌧ + 1) onto the trained Wout in Eq.
2.2 leads to the prediction u(t+ 1), which can be fed into the reservoir to receive
r(⌧ + 2) and so on.

2.1.2 Prediction Mode for Cryptography

In 2017 Ramamurthy et al. [27] introduced echo state networks for symmetric
cryptography. Both Alice, the sender of an image, and Bob, the receiver of the image,
share the identical echo state network and the identical secret key. The secret key k
is a random vector with the same dimension as a column vector i(t) 2 RM of the
image to be encrypted. If Alice wants to encrypt the image I = [i(0), . . . , i(t)], she
appends it with the secret key such that I0 = [k, i(0), . . . , i(t� 1)] and transforms it
with Eq. 2.1 to the reservoir state matrix R. She then trains the reservoir states
via Eq. 2.5 onto the desired image, where Y = I. Hence, she can send the trained
part of the echo state network, the Wout, as the cipher to Bob. With this, Bob can
plug the received part into his echo state network and reproduce Alice’s message.
Therefore, he uses his secret key, and transforms it to the reservoir state with Eq.
2.1, applying the reservoir state onto Wout to get i(0). Applying this procedure for
i(0) instead of the secret key gives i(1). And iteratively applying it, decrypts the
cipher such that the image I = [i(0), . . . , i(t)] is reproduced. As the trained part of
Alice echo state network does not contain any original pixel of the image, the trained
part acts as the cipher image. In contrast, the remaining parts of the echo state
network become the key for encrypting the image and decrypting the cipher image.
Further, Ramamurthy et al. experimentally showed that the cipher Wout contains
the two fundamental cryptography properties of diffusion and confusion.
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2.1.3 Separation Mode

Krishnagopal et al. introduced reservoir computing to chaotic signal separation
[33]. She showed that separating a chaotic signal from superimposed data works
in the reservoir computing regime. Following the structure of section 2.1.1, the
superimposed data acts as the input data X = [u(0), . . . ,u(⌧)]. And the training
target Y = [s(0), . . . , s(⌧ )] must be the chaotic signal, for which the reservoir should
learn the mapping to. Note that there is no direct relation between the input data
and the training target. After transforming the training data of X to the reservoir
state matrix R, the training is identically completed with the ridge regression in Eq.
2.5.

2.1.4 Separation Mode for Cryptography

In the following, the idea of section 2.1.3 will be applied to cryptography. One
major difference to section 2.1.2 is that this time the input data X = [u(0), . . . ,u(⌧ )]
becomes the secret key of Alice and Bob. Both additionally share the identical
reservoir computer and are hence able to reproduce the same reservoir state matrix
R. The data to encrypt becomes in this context Y = [s(0), . . . , s(⌧)]. If Alice
wants to encrypt a message now, she can train her reservoir state matrix onto
Y = [s(0), . . . , s(⌧ )] with Eq. 2.5 and send the trained Wout as a cipher of Y to Bob.
Bob can decrypt the message by matrix multiplication of his reservoir state matrix
onto Wout. Experiments have shown that ridge regression is extremely powerful in
reproducing its training data, which in our case is the massage Y. It works so well
that the information about Y does not need to be in X, since this was the case in
the separation mode of section 2.1.3. This allows the free choice of the secret key,
which is necessary for any encryption algorithm. In the next section, the encryption
algorithm is developed. Then, its performance in terms of security and speed is
evaluated and discussed.
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2.2 Encryption Algorithm

The algorithm presented here is based on symmetric cryptography. This means that
the sender and receiver of an encrypted message are both in possession of the same
key, which is used to encode and decode the message. For illustration, the sender and
receiver share an identical image as the secret key X 2 RM⇥⌧ and the sender wants
to securely transmit an image . Each column vector u(i) 2 RM of the secret key is
transformed to the reservoir state vector r(i) 2 RN by the likewise identical reservoir
computer, where N > M . This vector is trained by means of ridge regression on the
corresponding column vector of the image to be encrypted s(i) 2 RJ , where N > J

in general. The ridge regression optimizes the Wout for every transformed column
vector of the secret key, resulting in Wout 2 RN⇥J . This matrix acts as the cipher
image and can be sent as an encrypted representation of Y. Note that this matrix
does not contain any original pixel, nor information about the column dimension ⌧

of the image Y. The encryption algorithm is schematically illustrated in Fig. 2.1.

Figure 2.1: Schematic illustration of the encryption algorithm. Every column vector of
the secret key X is transformed to its reservoir state ri which is trained via ridge regression
onto the corresponding target vector si of the image to be encrypted Y. Applying this
procedure to the whole image Y results in the cipher representation Wout.[34],[35].
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Decryption

The decryption of the cipher image is straightforward. The receiver creates the
reservoir states matrix R 2 RN⇥⌧ with his secret key X and his reservoir computer.
The receiver can then reproduce the original image by matrix multiplication.

Y = WT
outR (2.5)

The decryption in section 2.1.2 required iterations to decrypt the image. In this
method, the matrix multiplication for decryption leads to a great speedup.

Figure 2.2: Encryption and decryption procedure.

Examples

In Fig. 2.3, three examples are shown. The cipher does not contain any pixel
of the original image. As the cipher results from an optimization algorithm, the
decrypted image can not match the original image to one hundred percent, but
high-resolution decrypted images can be achieved. In the following sections, the
security and performance aspects of the proposed algorithm are discussed.
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Figure 2.3: Left: Boat image 512⇥512. Middle: Peper image 128⇥128. Right: Baboon
image 128⇥128.

2.2.1 Security Aspects

We perform a series of tests on the encryption and decryption results to evaluate
the security of the proposed encryption algorithm. Nevertheless, as the proposed
algorithm differs in its core architecture from previously published image encryption
algorithms, there is no mathematical proof that confirms absolute certainty in security.
However, Ramamurthy et al. [27] have shown experimentally that their Wout

contains the two fundamental cryptographic properties of diffusion and confusion.
The architecture here can be seen as a basic construction kit, where additional
security-enhancing methods can easily be integrated, but more to that in this section.

Key Sensitivity

The architecture contains two keys. One is the secret key X and the other is the
reservoir computer. Therefore, the sender and receiver need to share the identical
Win and the identical adjacency matrix A. Further, both need to commit to the
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same regression parameter. If those are set, both are able to communicate securely.
Note that the large key space makes it impossible to brute force the cipher, as the
matrix R 2 RN⇥⌧ needs to be guessed, with no information on ⌧ . If an eavesdropper
gets his hand on the reservoir computer, he additionally needs to crack the secret
key X. The reservoir computer non-linearly transforms every column of the secret
key with a dependency on previous transformations into the reservoir state matrix
R. This way, high key sensitivity is achieved, which is a necessary property of an
encryption algorithm. In Fig. 2.4 this sensitivity is illustrated.

Figure 2.4: Decryption with a slightly different secret key.

Robustness Analysis

A good encryption algorithm needs some range of resilience towards noise and
robustness against data loss in the cipher. The decryption results of two examples of
data loss are shown in Fig. 2.5. To decrypt Wout, it is transposed and then multiplied
by a matrix. If some areas in the cipher are missing, matrix multiplication on rows of
Wout with missing data will yield no results. However, the rest of the decrypted image
is not affected by the missing data, which is the case with chaos-based cryptography,
making it vulnerable to data loss attacks. Further, the decryption shows resilience
against noise. The pixels of the encrypted image were normalized before training,
and gaussian noise AG(0, 1) with zero mean and a variance of one was multiplied
with a percentage factor A and then added on the Wout before decryption. The
results for different noise amplitudes can be seen in Fig. 2.6.
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Figure 2.5: Data loss in the cipher and the resulting decrypted images.

Figure 2.6: Decrypted images after noise attack on the cipher image with gaussian noise.
The noise has amplitude A of the maximal value of the image to be encrypted. Even for
A = 5%, the images can be recognized in the decrypted image.

Manipulating Wout

If the encryption method presented here should have security gaps in its base form,
additional methods can improve the security. To be able to extract information
from the Wout, it must have the correct arrangement. If this is not the case, the
arrangement must be restored first, for which there are no logical steps. This allows
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the use of a variety of security-enhancing techniques. The cipher Wout can be further
encrypted using a different image encryption algorithm. Or the Wout can act as Y
in a second encryption loop. Or one simply multiplies Wout by the already existing
adjacency matrix A of the reservoir computer.

2.2.2 Performance Aspects

The limiting parameter that determines the speed of encryption and the quality of
decryption is the network size. In the following, we will determine the minimum
network size required to decrypt the Boat image with 128x128, 256x256, and 512x125
pixels with sufficient quality. Therefore, the encryption and decryption are applied
to images with different network sizes, and the mean absolute error is taken.

Figure 2.7: Mean absolute error of the decrypted image for different network sizes.

The plot shows that the network size N of the reservoir needs to be larger than the
dimension J of the column vectors of the image to be encrypted to achieve sufficient
decryption quality. The next question is how long it takes to encrypt and decrypt
the Boat images in sufficient quality. Therefore, the upper experiment is repeated
100 times per network size, and the mean encryption and decryption time is taken
and plotted.
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Figure 2.8: Mean encryption and decryption time for different network sizes.

Image size 128⇥128 256⇥256 512⇥512

En- Decryption time in [s] 0.008 0.020 0.064

Table 2.1: Minimal mean encryption and decryption time for small error decryption of
the Boat image.

In this plot, the highlighted network sizes of Fig 2.7 are likewise marked in Fig. 2.8
and the mean encryption and decryption time is read off and merged in table 2.1.
Comparing this performance with those of chaos-based algorithms recently published,
the speed of the algorithm becomes apparent, see table 2.2.
To evaluate the algorithm’s speed in terms of how many megapixels per second it
can process, we apply it with different network sizes onto a set of images ranging
from 0.1 up to 24 megapixels, and the corresponding results can be seen in Fig.
2.9. For a fixed network size, the algorithms scale linearly with the megapixel of an
image. However, with increasing network sizes, the performance of the algorithm
decreases significantly. The result of Fig. 2.7 suggests a larger network size than
the dimension of the column vectors of the image to be encrypted to achieve high
decryption performance. Hence, for large-scale or real-world images, this algorithm
will, in this form, end up in high encryption and decryption times.
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Image size Ref[36] Ref[37] Ref[38] Ref[39] here proposed

128 ⇥128 1.93 1.68 1.90 1.28 0.008
256 ⇥256 7.72 6.72 7.59 5.14 0.020
512 ⇥512 31.58 26.88 30.35 20.56 0.064

Table 2.2: Comparison of encryption and decryption speed in s with that of chaos-based
encryption algorithms [39].

Figure 2.9: Evaluation of encryption and decryption speed in MPixel/s for different
network sizes.

In the following subsection, the algorithm will be patched towards a user-friendly
encryption algorithm applicable to real-world images.
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2.2.3 Patches Towards Real-World Application

RGB Images

So far, the algorithm has been applied to grayscale images. To extend the encryption
to RGB images, the algorithm can be readily applied to any color channel of an
RGB image, as illustrated in Fig. 2.10. For this purpose, the secret key must also be
extended accordingly by the number of channels. The resulting Wout can then be
converted into the form of an RGB image and sent to the receiver.

Figure 2.10: Schematic illustration of the encryption algorithm for RGB images [40].
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Slicing

However, for RGB images, the number of data points to be processed triples compared
to grayscale images using the method described above, further reducing the encryption
and decryption speed. This is especially important for large images, which already
have a non-user-friendly encoding and decoding time as grayscale images due to the
slow processing of the large network sizes required for good decryption performance.
The question arises whether one can use the speed advantages of small network sizes
to encrypt larger images.
In fact, this is possible if the sender and receiver agree on a specific slicing width
for images. For example, a slicing width of ws = 100 could be selected, dividing the
image and the secret key into different sections. These can then be concatenated into
an image with a column vector dimension of 100 again and a row vector dimension
of L = M

ws
⌧ , illustrated in Fig. 2.11.

Figure 2.11: Slicing procedure of images for fast encryption by smaller network sizes.

In this way, the speed advantages of small network sizes of, say, N = 150 can be
exploited, resulting in a Wout of dimension 3⇥ L⇥N . The Wout can be reshaped
to a format similar to the RGB image and then sent to the receiver. This additional
procedure is shown in Fig. 2.12. The receiver can rearrange the Wout with the agreed
slicing width and apply his sliced secret key via matrix multiplication to encrypt the
cipher. The safety enhancements of the methods described in section 2.2.1 can be
further improved by the slicing procedure since it is compatible.
The extra step of slicing increases the performance significantly for large-scale images.
Results are shown in table 2.3 for raw image data and the mean encryption and
decryption time of 30 runs. This way, encryption and decryption speeds of up to 7
Mbytes were reached on a 2,9 GHz Dual-Core Intel Corei5.
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Figure 2.12: Schematic illustration of the encryption algorithm for RGB images with the
slicing procedure.

Image size Mbytes (raw) mean time in [s] (30 runs) Mbytes/s

5182⇥4356⇥ 3 18.5 4.59 4.03
3456⇥5183⇥ 3 33.1 4.34 7.63
5472 ⇥3468⇥ 3 25.1 5.6 4.48
5616 ⇥3744⇥ 3 19.4 5.6 3.46
5616 ⇥3744⇥ 3 33.8 5.6 6.03

Table 2.3: Speed performance of the patched algorithm for large-scale RGB images.

2.3 Conclusion

In this chapter, the theory of reservoir computing for cryptography was introduced
and extended by a new method. The realization that the trained weights of the
reservoir network are able to reproduce their training data in high accuracy opens the
door for cryptographic considerations of this machine learning algorithm. The method
presented here is based on a separation approach, where the reservoir computer
is trained to learn a mapping between the secret key matrix and a matrix to be
encrypted. Since the ridge regression as the core encryption algorithm learns this
mapping independently of the relation between the secret key matrix and the matrix
to be encrypted, a free choice of the key matrix is possible. This is a fundamental
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property of using separation-based reservoir computing as an encryption method. In
its basic form, this method has interesting security aspects, such as exceptionally
large key length or that the cipher does not contain any information about the
matrix’s arrangement or row vector dimension to be decrypted. Furthermore, this
method can be seen as a construction kit, where further modifications or encryptions
of the cipher information can be easily integrated as an additional enhancement of
security. Performance-wise, this method has high-speed encryption and decryption
speeds for small network sizes. However, due to the quadratic scaling of the network
matrix, the speed decreases rapidly for larger networks. Since larger networks are
needed to encrypt larger matrices, this effect is counterproductive for real-world
applicability. Therefore, a method was introduced to reshape the column vector
dimension of the matrix to be encrypted to allow the application of smaller and
faster networks. This has enabled encryption and decryption speeds of up to 7
MBytes/s, which are over 1000 times faster than the prediction-based reservoir
computer encryption algorithm. Moreover, this method was introduced as an image
encryption algorithm, but since it works with arrays and matrices, it applies to a
wide range of data formats such as audio and video.



Chapter 3

Exploring the Limits of
Multifunctionality in NG-RC

Biological neural networks can learn or imitate dynamical systems through pure
experience [41], while artificial neural networks do so by learning from training data.
Both share a similar approach that attempts to approximate the governing equations
of a dynamical system using a high-dimensional representation of the input data.
However, how these high-dimensional representations are optimally designed in the
artificial environment is far from understood. It is also not known in great detail how
learning emerges in biological neural networks [16]. Advances in the field of machine
learning often arise from a two-way street between neuroscientific observation and
mathematical representation [42]. Current research is concerned with imitating
biological neuronal functioning with artificial systems. The goal is to gain a deeper
understanding of the involved biological mechanisms, simulate them, and also let
artificial intelligence learn from the brain. One characteristic biological function
is the ability to learn multiple tasks simultaneously with the same neural network
structure [43], [44], [45]. Switching the neural activity pattern based on the processed
information to fulfill a specific different task without changing any synapses is a
biological phenomenon that is not well understood theoretically. Recent publications
are trying to simulate this behavior with artificial neural networks [16], [42], [18],
[17], [46]. A successful machine learning algorithm for this task seems to be reservoir
computing (RC). The architecture expands the input data through its fixed networks
and nonlinear activation function into a high-dimensional nonlinear representation,
which is used to learn a particular task. The network structure is not changed during
the training or testing process, resembling its biological counterpart. Herteux et al.
[17] showed that reservoir computers could simultaneously learn multiple disjointed
chaotic attractors with the same readout matrix, introducing artificial neural networks
to multifunctionality. Fylnn et al. [18] quantified when multifunctionality occurs

19
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based on its hyperparameters. In [16], Lu et al. draw inferences about how biological
neural networks learn, relying on the successful learning of multifunctionality through
reservoir computing. They argued that due to the success of reservoir computing,
which is based on invertible generalized synchronization (IGS) [15], the functioning
of biological neural networks must also be based on IGS.
Lately, the next generation reservoir computer (NG-RC) was introduced [22]. Bollt
et al. [47] showed the mathematical equivalence of RC and a nonlinear vector
autoregression (NVAR) machine. Gauthier et al. additionally introduced time-
shifted coordinates into the process of the NVAR, calling that method NG-RC. A
remarkable feature of this algorithm is that it eliminates the need for a network
structure. The necessary dimensionality expansion is achieved by concatenating
unique polynomials of the input variables. Due to its mathematical equivalence to
reservoir computing, the question arises of whether biological neural functions can
be imitated without the fundamentally expected network structure.
The following chapter explores the limits of multifunctionality in NG-RC. In the first
section, the NG-RC architecture is explained. Then, section 2 applies it to a primary
example of learning two oppositely rotating circular trajectories. Section 3 evaluates
the multifunctional performance of NG-RC in learning two chaotic attractors. In
each of these two sections, there is a conclusion that summarizes the performance of
NG-RC from a technical machine learning perspective. Section 4 presents a proof-of-
principle of the switching behavior between two learned chaotic attractors. And in
Section 5, the results are bundled and discussed from a computational neuroscience
perspective.

3.1 NG-RC Architecture

In July 2021, Gauthier et al. published the next generation reservoir computing
architecture (NG-RC), highlighting its lack of randomness, the fewer parameters, and
its performance gain in speed compared to the traditional approach [22]. Standard
reservoir computing uses randomly initialized reservoir matrices as a network structure
and a linear readout. The NG-RC uses a set of unique polynomials to achieve a
nonlinear dimensionality expansion at its core. The resulting state space of the input
data is then consistently trained via ridge regression onto the desired output target.
Loosely following the notation of [22], the d-dimensional data points x 2 Rd of
the input data X = [x0, ....,xn] are transformed with a polynomial multiplication
dictionary P into a higher dimensional state space. The unique polynomials of
certain orders O, included in P[O], are labeled as an index.
For illustration purposes, we consider a two-dimensional input data point xi =
(xi,1, xi,2)T and transform it with the unique polynomials of order 1 and 2,
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Further, Gauthier introduced a time shift expansion Ls
k of the input data, distin-

guishing the NG-RC from classic nonlinear vector autoregression (NVAR) algorithms.
The k value indicates the number of past data points with which the current data
point is concatenated, and the s value indicates how far these points are separated
in time. Applying this expansion to the input data defines the linear reservoir layer
of the NG-RC. Following the previous example of two-dimensional input data points
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= ri+1 2 R14
, (3.2)

where ri+1 defines the state vector which is mapped with a readout matrix Wout onto
the desired output target yi. The mapping is learned consistently to the traditional
reservoir computing approach via ridge regression. In the training phase of the
NG-RC the input training data XT of length T is transformed to the state matrix
R = P[O](Ls

k(XT )) accordingly. Note that due the k and s value a warm-up time of
�t = ks is needed, where entries of the state matrix at time t < � are not defined.
Consequently, the output target matrix Y needs to be adjusted. The readout matrix
Wout is learned via optimizing,

Wout = YRT (RRT + �I)�1
. (3.3)

Matrix I is an identity matrix, and � is the regression parameter.
The output target matrix Y can be defined in two different ways to learn the predic-
tion of trajectories with ridge regression.
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NG-RC as a One-step-ahead Integrator
In this setup, the NG-RC as a one-step-ahead integrator evolves according to,

xi+1 = xi +Woutri+1, (3.4)

The reservoir state vector, ri+1, is projected using the readout matrix Wout to
resemble the output target �xi+1 = xi+1 � xi.
Therefore, the output target matrix needs to be defined as follows,

Y =
TX

i=�t

Xi �Xi�1 = [�x�t+1 . . . �xT ] (3.5)

After training, the trajectory is driven by the NG-RC according to,

xi+1 = xi +WoutP
[O](Ls

k(xi)) (3.6)
(3.7)

NG-RC as an Autonomous Dynamical System
In this setup, the NG-RC drives the trajectory directly as,

xi+1 = Woutri+1, (3.8)

As the NG-RC needs to predict the following coordinate, the output target matrix is
the input data matrix shifted to one step into the future, such that

Y = [x�t+1 . . . xT ]. (3.9)

This way, the NG-RC drives the trajectory as follows,

xi+1 = WoutP
[O](Ls

k(xi)) (3.10)
(3.11)

Overall, both architectures reduce the tunable hyperparameters to the orders O, the
k and s value and the regression parameter �.

3.1.1 Nonlinear Vector Autoregression

In practice, the NG-RC architecture reduces to a nonlinear vector autoregression
algorithm in the case where no time shifts are included, so for P[O](L1

1()) when
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k = 1 [47] . The ridge regression optimizes the parameters of the Wout such that
the polynomial library P[O] is fitted to the training data. In combination, WoutP[O]

provides the fitted governing equation of the training data. The following illustrates
this using the Lorenz equations as an example.

Lorenz
To evaluate the performance of reconstructing governing equations simply by pro-
cessing data, we look at the chaotic Lorenz attractor as an example. From its true
equations the training data XT of size TL = 10.000 with time step �t = 0.001 is
generated. The NG-RC is trained as an on-step-ahead integrator in the first applica-
tion to reconstruct the governing dynamical equations. In the second application, it
is used to reconstruct the Lorenz system’s integrated equations directly. The true
Lorenz equations for this example are defined as follows, and the training data is
plotted in Fig. 3.1,

ẋ = 10(y � x),

ẏ = x(28� z)� y, (3.12)

ż = xy � 8

3
z,

Reconstructing the Governing Equations
Following Eq. 3.4 and Eq. 3.5, the training of R = P[1,2](L1

1(XT )) onto Y, yields to
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Figure 3.1: Lorenz training data

where Wout values smaller than 0.02 were neglected. This way, the NVAR has learned
the following equations,

ẋ = 9.99y � 9.96x,

ẏ = 27.9x� 0.94y � xz, (3.13)
ż = �2.67z + xy,

which have only a small deviation in their parameterizations compared to those of
the true Lorenz equations.
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Reconstructing the Integrated Governing Equations
Following Eq.3.8 and Eq. 3.9 , training R = P[1,2](L1

1(XT )) onto Y, yields
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,
where Wout values smaller than 0.002 are neglected. The following equations were
learned.

xt+1 = 9.98xt + 0.02yt,

yt+1 = 0.055xt + 0.999yt � 0.002xtzt, (3.14)
zt+1 = 0.955zt + 0.002xtyt.

In general, both approaches provide an easily accessible solution to the given problem.
The basic governing equations can be read from the architecture and the proposed
parameterization is good enough to evaluate the characteristics of the Lorenz system,
all by pure observation of the training data.
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3.2 The ’Seeing Double’ Task

The ‘Seeing Double’ (SD) problem is a paradigmatic example of training a reservoir
computer to achieve multifunctionality [18]. In the following, the next generation
reservoir computing approach is applied to three different setup-ups of the ’Seeing
Double’ Task, the non-overlapping case (I), the partly overlapping case (II), and
the completely overlapping case (III) of two contrarily rotating circles, see Fig.
3.2-3.4. Due to its experimental simplicity, it allows examining the conditions for
multifunctionality on a base level. For the classic RC, this setup showcased the role
of the spectral radius in the occurrence of multifunctionality. In next generation
reservoir computing, however, there are far fewer parameters to optimize and no
randomness involved in the architecture. Therefore an extensive parameter scan can
be made to examine the performance of NG-RC on a primary multifunctionality task
and evaluate the role of its hyperparameters.

Figure 3.2: Case I Figure 3.3: Case II Figure 3.4: Case III

3.2.1 Completely Overlapping Case

Applying the NG-RC as P[1,2](L1
2()) and as a one-step-ahead integrator on the seeing

double task showcases some inner workings of the algorithm. After training, the
NG-RC could drive the trajectories on the circles in both directions, see Fig. 3.6.
Both predicted trajectories in Fig.3.6, the orange and the blue circle, rotate in
opposite directions, indicated by the order of the red and green markers. The
direction is defined by the order of two concatenated data points. In this case, the
NG-RC starts predicting with the last elements of the corresponding circle training
data, capturing its direction of rotation. Noticeable is its behavior when scaling
down the starting prediction points, which results in the green and the yellow circle.
With the downscaling, the NG-RC seems to scale down the radius of the learned
trajectory intrinsically.
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Figure 3.5: Training data of overlapping
circles Green/red markers indicate
the direction of rotation.

Figure 3.6: Overlapping circles prediction of
the P[1,2](L1

2()) NG-RC. Green/red markers
indicate the direction of rotation. Green/yel-
low circles are untrained and predicted trajec-
tories.

Compared to other machine learning algorithms, a significant advantage of this
algorithm is its interpretability of what it learned. The architecture of the algorithm
allows to read off the learned equations. This time the polynomial multiplication
dictionary additionally includes time-shifted coordinates, and the Wout provides the
parameters accordingly,

✓
�xt

�yt

◆
= WoutP

[1,2]

⇡
✓
0.99989995 0 �0.99999995 0 0 . . . 0

0 0.99990005 0 �1.00000005 0 . . . 0

◆
P[1,2]

=

✓
0.99989995xt � 0.99999995xt�1

0.99990005yt � 1.00000005yt�1

◆

with neglecting entries of Wout with an absolute value smaller than 0.001.
The learned equations are

xt+1 = xt +�xt = 1.99989995xt � 0.99999995xt�1

yt+1 = yt +�yt = 1.99990005yt � 1.00000005yt�1
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In this setup, the NG-RC learned an uncoupled linear system. Looking at the learned
parameters, the regression seems to approach the parameters to 1 or -1. For xt�1

and yt�1, the parameters differs on the eighth digit from -1. However, rounding
these values to 1 and -1 results in a Wout that drives the trajectory to infinity.
To investigate, how the circular prediction changes towards infinity, n predictions
are plotted in Fig. 3.7 with slightly different parameters c = 0.000005n for yt�1

respectively, so that

xt+1 = xt +�xt = 1.99989995xt � 0.99999995xt�1

yt+1 = yt +�yt = 1.99990005yt � (1.00000005 + c)yt�1

.
The interesting point here is that the NG-RC learned a linear feedback representation
of the Lissajous Curves to describe a circular motion, which is highly sensitive to its
parameters. The equations for Lissajous Curves are,

x = A sin(at+ �)

y = B sin(bt)

.
where ratios a

b and A
B and phase difference � defines the shape of the curve.

As the regression parameter � penalizes large Wout values during the optimization,
it directly influences the learned parameters of the governing equations. Scanning
over � has shown that it determines whether the NG-RC drives the trajectory to
infinity, on a circle, or to a fixed point. The evolution of Wout entries with respect
to � gives rise to the different behaviors of the NG-RC.
In Fig.3.8, the evolution of the x associated weights in the first-row vector of Wout

with respect to � are plotted. Respectively, the y associated weights are plotted in
Fig. 3.9. Scanning over � and evaluating the prediction performance showed that
for regression parameters smaller than � < 4 · 10�8 the predicted trajectory diverges.
This threshold is highlighted as the yellow dashed line in both plots. For a � slightly
smaller than this threshold, the predicted trajectory is plotted in Fig.3.10.
Further, for � > 1 · 10�5 the predicted trajectory starts circling inwards towards a
fixed point, see Fig.3.11. This threshold is indicated by the black dashed line in both
plots.
The different behaviors of the NG-RC predictions need to be explainable with
the evolution of the Wout weights. The weights associated with the linear states
xt, yt, xt�1, yt�1 are highlighted in Fig. 3.8 and Fig. 3.9. They differ qualitatively
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Figure 3.7: Modifying the learned linear system of the NG-RC for the prediction of circle
trajectories by changing a parameter on the sixth digit after the comma leads to Lissajous
curves.

from those associated with higher orders. The higher-order weights are dominant
for small � values. Increasing � showcases how these weights are penalized by the
regression parameter. The evolution of the higher-order weights around the threshold
� = 4 · 10�8 is shown in Fig. 3.12 and Fig. 3.13. Essentially, they are suppressed
by larger regression parameters such that their effect on the prediction becomes
negligible, and the linear system becomes dominant. In Fig. 3.14-3.17 the evolution
of the weights associated with the linear states is plotted. Noticeable, is that they
stay constant close to 1 or �1 in range � 2 [1 · 10�9

, 1 · 10�5], whereas the higher
order weights are penalized. This results in a learned linear system that can predict
circular trajectories even in the completely overlapping case. For � > 1 · 10�5, the
regression starts to penalize the linear weights, resulting in a decreasing amplitude
of the trajectory per prediction step, which ends up in a fixed point.
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Figure 3.8: Evolution of the x
associated weights of the Wout with
respect to the regression parameter �.

Figure 3.9: Evolution of the y associated
weights of the Wout with respect to the re-
gression parameter �.

Figure 3.10: Diverging circle predictions
for � close to circular predictions
(yellow dashed line in Fig. 3.8 and 3.9).

Figure 3.11: Fix point reaching predictions
for � larger than those for circular predictions
(black dashed line in Fig. 3.8 and 3.9).
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Figure 3.12: Zoomed in plot of the
yellow dashed line in Fig. 3.8. Nonlinear
x associated weights are getting suppressed
by a growing regression parameter.).

Figure 3.13: Zoomed in plot of the yellow
dashed line in Fig. 3.9. Nonlinear y associated
weights are getting suppressed by a growing
regression parameter.
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Figure 3.14: Zoomed in plot of the
black dashed line in Fig. 3.8. Linear
x associated weight is getting suppressed
by a growing regression parameter.

Figure 3.15: Zoomed in plot of the
black dashed line in Fig. 3.9. Linear
y associated weight is getting suppressed
by a growing regression parameter.

Figure 3.16: Zoomed in plot of the
black dashed line in Fig. 3.8. Linear
x associated weight is getting suppressed
by a growing regression parameter.

Figure 3.17: Zoomed in plot of the
black dashed line in Fig. 3.9. Linear
y associated weight is getting suppressed
by a growing regression parameter.
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3.2.2 Non and Partly Overlapping Case

To examine the multifunctional performance of NG-RC on non and partly overlapping
contrarily rotating circles trajectories, we let the circles collide. Therefore, we set
the center of the first circle on the x-axis to xC1,center 2 [�10, 10] with a step size
of �xC1,center = 0.5 and the center of the second circle reflected on the y-axis to
xC2,center 2 [10,�10] correspondingly. For every step, the NG-RC prediction of both
circles is evaluated with an error metric called roundness [48]. It determines whether
a trajectory has a periodic behavior and indicates its direction of rotation. If both
properties fit the corresponding circle, the roundness �(C) of it is calculated as the
difference between the radius of the largest and smallest circle required to enclose
and inscribe the predicted cycle. If the relative roundness �(C)rel =

�(C)
r ) < 0.15,

where r is the radius of the circle, then the trajectory is well predicted. And if this
holds true for both circle predictions, the NG-RC achieved multifunctionality. In the
following, we scan over different regression parameters � for the colliding case and
evaluate the NG-RC performance with this metric. The list of regression parameters
� is defined as [9, 8, 7, 6, 5, 4, 3, 2, 1] · 10�j for j 2 [1, 2, 3, 4, 5, 6, 7, 8, 9].
As a first example, we look at the NG-RC setup used in the completely overlapping
case, P[1,2](L1

2()). In Fig. 3.18, the yellow regions display that both predicted circles
have a relative roundness of less than 0.15. This indicates regions of multifunctionality.
The � in this figure shows the index of the above-defined regression parameter list.
For xC1,center = 0, it measures more accurately the results of Fig. 3.8 and Fig. 3.9,
where the NG-RC shows in this case multifunctional behavior in range �[26] = 0.0001
and �[86] = 3 · 10�8. The figure also shows regions of multifunctionality in the partly
overlapping case for 5 � |xC1,center| > 0 . This result raises the question of how
this area of multifunctionality is affected by changing the k and the s value of the
NG-RC.
In Fig. 3.19, this scan is applied on k 2 [2, 3, 4] and for s 2 [1, 2, 3, 4, 7] for P[1,2](Ls

k()).
For k > 2 similar multifunctionality behavior emerges. Regarding the behavior of
the completely and the partly overlapping case, increasing s results in a less wide but
therefore longer area. This means that the ability of NG-RC to predict the partly
overlapping trajectories decreases when the time step size between the processed
data points increases. This trades off to a larger � range for multifunctionality in
the completely overlapping case.
If the enclosing length of the data processed by the NG-RC defined by ks ranges from
4-10, areas of multifunctionality emerge for the non-overlapping case. Interesting to
note is that this behavior is similar across different k values. This basically shows
that the performance and the functionality of a NG-RC is not inevitably better
when it has more features. A deeper understanding of how k and s and the enclosed
length of the data ks can be related to the behavior of the training data could be
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Figure 3.18: Colliding circles case scanned over different regression parameters � for
P[1,2](L1

2()) . For |xC1,center | > 5 non overlapping case, for 5 � |xC1,center | > 0 partly
overlapping case and for xC1,center = 0 completely overlapping case. Yellow regions relate to
the successful multifunctional behavior of the NG-RC. The smaller the value of the pixel,
the better the circles were predicted.

worthwhile for setting up multifunctional NG-RCs.
Another question that arises is how the NG-RC performance changes when changing
the orders in the polynomial multiplication dictionary. So far, we have stayed with
O = [1, 2]. In Fig. 3.20, k = 2 is kept constant, and per row, the orders are changed
or increased.
For O = [1, 2, 3] in the second row, the NG-RC could not provide a stable, multi-
functional prediction of the circles
One line below, O = [1, 2, 4] again yields multifunctional predictions. They are domi-
nant, especially in the non-overlapping case. The range of multifunctional predictions
tends to increase with increasing s, implying that more regression parameters lead
to periodic circular orbits. For s > 2, the NG-RC also shows multifunctionality in
the partly overlapping case for one specific shift value.
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Figure 3.19: Colliding circles case scanned over different regression parameters � for
P[1,2](Ls

k()).

The orders O = [1, 2, 3, 4] provide multifunctional predictions only in the non-
overlapping case. The range of multifunctional predictions decreases with increasing
s until for s = 7, multifunctionality largely disappears.
These results indicate that the choice of orders plays a crucial role in the performance
of the NG-RC. It seems that the performance is best when the selected orders match
those of the training data, which is obviously O = [1, 2]. The inclusion of order 3
significantly degrades the performance in both cases. Whereas the inclusion of order
4 worsens the result in the completely and partly overlapping case, the NG-RC can
still produce multifunctional predictions in the non-overlapping case. It is noteworthy
that an increasing feature space does not necessarily lead to better or more functional
NG-RC performances.
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Figure 3.20: Colliding circles case scanned over different regression parameters � for
P[O](Ls

k=2()).

3.2.3 Conclusion

The NG-RC architecture is generally capable of solving the Seeing Double task.
Some architectures even solved all three cases with the same parameterization.
Despite choosing a NG-RC with polynomial terms, the trained NG-RC results in
the completely overlapping case in an uncoupled set of linear equations, which can
generate circular trajectories when initialized with two consecutive on any given
circle. On the other hand, setting up a traditional RC on that task results in a
learned limit cycle [18]. These qualitative differences could not have been resolved
by a parameter scan in higher orders or different k and s values.
Considering the non-overlapping case, multifunctionality was achieved in most cases
when the enclosing length ks of the data processed by the NG-RC was in the range
[4, 10]. This experimentally found limitation might be data specific with respect to
the time step size of the training data. A more fundamental understanding of this
observation could be worthwhile for constructing multifunctional NG-RCs or RCs.
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3.3 Lorenz and Halverson System

In neuroscience, the functional nature of chaotic attractors is of interest. The fact
that new distinct trajectories keep emerging through one learned system could be
the theoretical basis of creativity [49]. This concept is of interest, for example, in
the neurological functioning of composing music or speaking language according to
grammatical rules [50], [51], [52]. The following section expands the multifunctionality
analysis of the NG-RC architecture to a more complex task. Two different chaotic
attractors will be placed in phase space, from where the NG-RC should learn the
dynamics of both attractors. The setup strictly follows the setup of [17]‚ where
the Lorenz attractor and the Halverson attractor are located diagonally opposite.
A broad hyperparameter scan is made to test whether the NG-RC can learn both
chaotic attractors such as its traditional counterpart.

Lorenz and Halverson Data

The Lorenz system in Eq. 3.15 and the Halverson system in Eq. 3.16 have a symmetry
under the transformation (x, y, z) ! (�x,�y, z). Hence, both attractors are suited
as a more complex multifunctionality test case.

ẋ = �L(y � x),

ẏ = x(⇢L � z)� y, (3.15)
ż = xy � �Lz

ẋ = ��Hx� 4y � 4z � y
2
,

ẏ = ��Hy � 4z � 4x� z
2
, (3.16)

ż = ��Hz � 4x� 4y � x
2

For both equations, the standard parametrization of �L = 10, ⇢L = 28, �L = 8
3

and �H = 1.3 is chosen. The training and testing data is generated by integrating
Eq. 3.15 and Eq. 3.16 with the Runge-Kutta 4 method and a time step size of
�t = 0.02. In both scenarios, a training length of TL = 20.000 for every attractor is
used. Considering the warm-up time for each attractor data, the data is concatenated
for the training phase. Furthermore, the data is normalized individually. In this
setup, the center of the Halverson is shifted into the volume (�1,�1,�1)T and the
center of the Lorenz onto the diagonal opposite (1, 1, 1)T . Both attractors are then
normalized, see Fig. 3.21.
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Figure 3.21: Fixed attractor setup as in [17]. Multifunctional performance of the NG-RC
is evaluated on this setup up.

3.3.1 Comparing NG-RC and NVAR for Multifunctionality

In [53], Gauthier et. al postulated that the next generation reservoir computer
has an implicit traditional reservoir computer. It will work for any task a Reser-
voir Computer has been applied to, but with much less work to optimize and
deploy. He enumerates where NG-RC has been successfully applied, for example, on
spatio-temporal systems, image classification, control, and radio-frequency signal
identification. The multifunctionality task is an exceptional case of application,
where the performance of traditional reservoir computers is outstanding. At this
time, results on the performance of NG-RC on the multifunctionality task have not
been published. In the following, we take the identical setup [17] and evaluate and
compare the performance of NG-RC and NVAR on this task.

Feature Space

The quote that the NG-RC architecture will take far less work to deploy comes from
the reduced feature space of the state vector compared to the traditional approach,
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which is defined as the number of network nodes. In the paper, Gauthier et al.
introduced the NG-RC as P[1,2](Ls

k()) and P[1,3](Ls
k()) basically, where for a three

dimensional input data xi the resulting feature spaces for different k values are of
size,

Orders k=1 k=2 k=3 k=4 k=5 k=6

dim(P[1,2](Ls
k(xi))) = 9 27 54 90 135 189

dim(P[1,3](Ls
k(xi))) = 13 62 174 376 695 >1000

Herteux et al. showed that a traditional RC with 500 nodes could successfully predict
the Lorentz and Halverson task [17]. In section3.2, we saw that the NG-RC performs
best if the orders of the polynomial multiplication dictionary relate to those of the
true system. Hence, including higher orders to apply the NG-RC on a more complex
task could be worthwhile. For the following parameter scan, all combinations of
orders up to order eight and different k values are included, such that the resulting
feature space is smaller than N = 1000. Further, for k > 1 we set s = 1, 2, 3, 4 and 5.
Consequently, we test 407 different NG-RC architectures, including the 127 NVARs
for k = 1, on the Lorenz and Halverson system.

Kernel Trick

Herteux et al. investigated the influence of a Lu readout [54] on the multifunctionality
performance, which expands the current reservoir state vector ri to r̃i = (ri, r2i ) =
(r1, r2, . . . , r21, r

2
2, . . .). He showed that it breaks the symmetry of the activation

function of the reservoir and overall increases the prediction performance. There is
no symmetric activation function in NG-RC, but applying the Lu readout expands
the current state vector with higher-order features. Gauthier et al. explained
in the peer review [55] that going to higher-order polynomials with the NG-RC
architecture is computationally expensive and suggests applying the kernel trick to
obtain higher-order polynomial features in a computationally cheap way. Essentially,
this follows the idea of the Lu readout but also includes higher orders of the state
vector. Therefore, the performance of each of the 407 NG-RC architectures will be
additionally evaluated for the following readout expansions.
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P[O](Ls
k(xi))

[1] = ri

P[O](Ls
k(xi))

[2] = (ri, r
2
i )

... (3.17)
P[O](Ls

k(xi))
[8] = (ri, r

2
i , r

3
i , r

4
i , r

5
i , r

6
i , r

7
i , r

8
i )

(3.18)

Training

To have a direct comparison to the traditional reservoir computing setup [17], we
train the NG-RC to become an autonomous dynamical system, according to Eq. 3.8.

Performance Measures

The performance of a trained NG-RC is evaluated by comparing the correlation
dimension and the largest Lyapunov exponent of the predicted data to those of the
training data [17]. If these measures match, the NG-RC was able to learn the climate
or long-term behavior of the corresponding attractor. Hence, the NG-RC succeeds
in the multifunctionality task if the prediction data of the Lorenz system and the
Halverson system can reproduce the measures of the corresponding training data.

Regression Parameter

One hyperparameter which is worthwhile optimizing is the regression parameter. The
prediction of a trained NG-RC was highly sensitive to the regression parameter in first
simulations. Therefore, we scan over � 2 [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1] · 10�i

for i 2 [1, 2, 3, 4, 5, 6, 7, 8, 9].

Starting Values

Further, a not yet mentioned hyperparameter is the starting time series of length
�t = ks. In the first simulations, the performance of the NG-RC was sensitive to the
starting series. Therefore, we expand the parameter scan over � for an additional
dimension of 50 different starting time series per attractor. Starting from the last
training data point to 500-time steps into the future with a step size of 10. The
idea behind this additional scan is that a well-learned multifunctional system should
be able to predict the corresponding attractor without dependence on the initial
conditions when they are on the attractor. This needs to be fulfilled to call the
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trained NG-RC a stable multifunctional system. On the other hand, traditional
reservoir computers have a synchronization phase before they start predicting. Due to
this phase, the dependence on the initial conditions convergence to zero, uncoupling
it from the necessity of scanning over starting values.

3.3.2 Results

To illustrate the approach, the performance of P[1,2,3,4,5,6,7](L1
1()) on the multifunc-

tionality task can be seen for different kernel tricks in Fig. 3.22. In the images on
the left, the regression parameter index on the x axis and the starting value shift
index on the y axis is used to book multifunctional behaviors of the predictions. If
both trajectories did not diverge or reach a fixed point after 20.000 prediction steps,
the corresponding � and the starting value shift are marked as a yellow pixel in
the image. The Lyapunov exponent and the correlation dimension of each of the
predicted data are evaluated and scattered in corresponding plots on the right if the
predicted data did not diverge or reach a fixed point correspondingly. An orange dot
indicates that the Lorenz and the Halverson prediction run both for 20.000 prediction
steps, whereas a blue one indicates a monofunctional. The red circles show the
Lyapunov exponents’ target region and the training data’s correlation dimensions.
The Lorenz and Halverson prediction measures should match these regions to have a
good-performing multifunctional system. Each row differs by the kernel trick used to
expand the state vector. Noticeably, in the first row, no prediction could run 20.000
steps without diverging. Simply concatenating each state vector with its squared
entries, let regions of multifunctionality emerge. Kernel trick three further increases
the multifunctional performance, and higher orders let it decrease. Hence, scanning
for this method could be worthwhile for the performance of NG-RC or NVAR.
Scanning over 81 regression parameters and 51 starting value shifts and applying eight
kernel tricks on 407 different NG-RC architectures results in 13.450.536 simulations.
From this, the role of hyperparameters in this multifunctional task can be deduced.
First, we separate the NVAR’s for k = 1 and the NG-RC’s for k > 1 . Then we look at
the prediction performance on single attractors for both algorithms as well as at the
multifunctional predictions, given the feature space dimension. Only the prediction
results are considered, whose Lyapunov exponent and correlation dimension have a
maximal deviation of 5 % from those of the training data.
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Figure 3.22: Parameter scan results of one out of 407 NG-RC architectures, including
the 127 NVARs for k = 1. Left images bookkeep for which regression parameter and shift
index the prediction of both attractors did not diverge or reach a fixed point, indicated by
a yellow pixel. The right plots evaluate the correlation dimension (CD) and the Lyapunov
exponent (LY) of the corresponding attractor if the prediction run for 20.000 prediction
steps without diverging or reaching a fixed point. Orange dots indicate multifunctional
behavior for 20.000 prediction steps. The LY and CD of the training data are highlighted
as the red circles. Multifunctional predictions are good if the orange dots matches these
circles. Blue dots indicate monofunctionals.
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Feature Space

The amount of good performing single attractor predictions given the feature space
dimension for a prediction length of 20.000 are scattered in Fig. 3.23 for the
NVAR and in Fig. 3.24 for the NG-RC. Correspondingly, the distributions of the
multifunctional predictions are shown in Fig. 3.25 and Fig. 3.26. There are a
few interesting points to make here. First, the number of occurrences discloses a
qualitative difference between the NVAR and the NG-RC for this task.

Total Simulations # good Pred.: Lorenz Halverson Multifunctionals

NVAR 4197096 20083 415416 1325
NG-RC 9241047 154 4480 37

Table 3.1: Statistic of good predictions (max. deviation of 5% in the correlation dimension
and the Lyapunov exponent compared to those of the training data and prediction length
of 20.000 steps without diverging or reaching a fixed point.)

Further, the shapes of the distributions showcase that both performances of the
algorithms do not increase with a larger feature space, which is thought to be the case
for traditional reservoir computers. Instead, the distributions show maxima between
100 and 500 features. That indicates that the polynomial features represented in this
area and the accordingly learned parameterization fit the mathematical description
needed to reconstruct the attractor with respect to the training data of the other.
Both algorithms could predict the Halverson system 20-30 times more often than
the Lorenz system. Comparatively to traditional reservoir computing, only a small
fraction of the trained algorithms showed multifunctionality.
One interesting question for further research here would be how the shape, position,
and density of these distributions change with the distance of both attractors in real
space. And especially if there is a relation between larger feature spaces and the
minimized chance of multifunctionality.
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Figure 3.23: The number of good
monofunctional NVAR predictions
given the feature space dimension.

Figure 3.24: The number of good monofunc-
tional NG-RC predictions given the feature
space dimension.

Figure 3.25: The number of good
multifunctional NVAR predictions
given the feature space dimension.

Figure 3.26: The number of good multifunc-
tional NG-RC predictions given the feature
space dimension.
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Best Performing Prediction

The best performing multifunctional prediction was made by the NVAR P[1,2,3,4,5,6,7](L1
1())

[3]

and � = 7e� 09 for 20.000 prediction steps.

Figure 3.27: Prediction plots of table 3.2

Training: Lorenz Halverson Prediction: Lorenz Halverson

Lyapunov 0.857 0.727 0.859 0.726
Correlations Dim 2.033 1.924 2.019 1.914

Table 3.2: Best multifunctional prediction in this setup for P[1,2,3,4,5,6,7](L1
1())

[3] and
� = 7e� 09 and 20.000 prediction steps.
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3.3.3 Conclusion

The NG-RC and the NVAR are, in general, capable of learning multistable chaotic
dynamical systems with reasonable accuracy in climate prediction. However, the
frequency of stable trajectories with 20.000 prediction steps is strikingly small,
especially for the NG-RC architecture. This result may expose weaknesses in the
NG-RC architecture in comparison to the multifunctional performance of traditional
RC. While most of the NG-RC simulations diverge, traditional RC, with its activation
function, includes a natural control mechanism that prevents the prediction from
divergence. Furthermore, the sensitivity to the starting values of the prediction is
high. Small changes often lead from stable trajectories to diverging ones or vice versa.
In traditional RC, this behavior is generally not the case since the synchronization
phase removes the dependence on the initial conditions. This makes the starting
values a new parameter in the NG-RC architecture, which can be worth keeping
in mind while searching for multistable systems. Besides this, applying the kernel
trick and with it including higher order terms was generally beneficial. However, it is
interesting to note that the principle of "the more, the better" does not apply here
to the dimension of the feature space. Looking at Fig. 3.23-3.26, we see a decreasing
frequency of successful predictions for larger feature spaces. A frequency maximum
is reached at about a feature space dimension of N = 400. How the shape of this
distribution changes for different multifunctional setups or how it changes for the
two attractors with different positions in phase space are worthwhile questions for
further research, especially while monitoring the evolution of the involved terms
correspondingly. Moreover, as part of this work, the parameter scan was performed
to create an autonomous dynamical system according to Eq. 3.8 to directly compare
with the traditional RC based results [17]. Consequently, broadening the analysis for
the one-step-ahead integrator approach or including a bias term may lead to different
results.

3.4 Switching Between Attractors

When the Lorenz and Halverson attractors are closer together in phase space, the
NG-RC and NVAR architectures may allow new interesting dynamics to emerge,
reminiscent of a human cognitive function, the ability to spontaneously switch
between mimicking different dynamical patterns [56]. The following three examples
are shown as a proof-of-principle. The setup is the same as in 3.3, with the difference
that the positions of the attractors are closer together, and training is performed as
a one-step integrator according to Eq. 3.4.
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Chaotic Switching

Both attractors merge while retaining their structural features. Switching between
the attractors appears to occur spontaneously. The results were generated with
P[1,2,3,4,5,6,7](L1

1())
[2] and � = 1.

(a)

(b)

Figure 3.28: (a) Chaotic switching between the learned Halverson and Lorenz trajectories,
(b) z-axis trajectories over time of the predictions.
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Chaotic Switching to a Fixed Point

Both attractors merge while retaining some of their structural features. Switching
between the attractors appears to occur spontaneously, and an additional fixed point
is created. The results were generated with P[1,2,3](L2

2())
[2] and � = 2.

(a)

(b)

Figure 3.29: (a) Chaotic switching between the learned Halverson and Lorenz trajectories
and emergence of additional fixed point, (b) z-axis trajectories over time of the predictions.
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Synchronization to a Periodic Orbit

Both attractors synchronize into a new periodic orbit while keeping a few basic
structural characteristics. Switching between the old attractor centers is periodic. The
results were generated with P[1,2,3](L2

2())
[2] and � = 2.1. Note that this conceptual

change is due to a minor change in the regression parameters compared to the
previous example.

(a)

(b)

Figure 3.30: (a) Synchronization to a periodic orbit, (b) z-axis trajectories over time of
the predictions.



50CHAPTER 3. EXPLORING THE LIMITS OF MULTIFUNCTIONALITY IN NG-RC

3.5 Conclusion

By exploring the limits of multifunctionality with next generation reservoir comput-
ing (NG-RC), biological neural functions, like learning multiple chaotic attractors
or spontaneous switching between them, could be imitated. Remarkably, this was
possible without using a network structure. The necessary high dimensional repre-
sentation of the input data is achieved by expanding it with time-shifted coordinates
and polynomial multiplications. This way, high interpretability is created. Learning
two completely overlapping oppositely rotating circular trajectories with the NG-RC
architecture resulted in a linear feedback representation of the Lissajous curves. The
governing equations could be read from the architecture, allowing traceability of
how functionality is obtained or changed. This provides an exciting opportunity
to study biological neural functions from a different perspective and through the
analysis of governing equations. So far, reservoir computing has been used to explore
multifunctionality in neural networks. It was shown that the surprising success of
reservoir computing relies on invertible generalized synchronization. Furthermore, the
mathematical equivalence of nonlinear autoregression architectures and traditional
reservoir computing was shown. A logical and presumably worthwhile question
for further research is whether invertible generalization synchronization is also the
driving mechanism for the success of next generation reservoir computing. Moreover,
the interpretability of the architecture allows for a simplified synchronization analysis
of the system or even the individual terms. This provides an exciting starting point
for further research at the interface of complex systems and machine learning.
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