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Abstract

The focus of my PhD thesis was to study evolutionary aspects of host-associated microbial
communities. In order to better understand these effects, | developed and applied computa-
tional methods to search for protein families that are under selection within metagenomes
(Publication 1) and applied them to various environments (see the articles “Structure and
function of the bacterial root microbiota in wild and domesticated barley” (Bulgarelli et al.
2015), and “Survival trade-offs in plant roots during colonization by closely related beneficial
and pathogenic fungi" (Hacquard et al. 2016). One consistent finding of these studies was the
high selective pressure acting on gene families associated with the bacterial defense system
(the so-called CRISPR-Cas system) and families annotated as being related to bacteriophages.
To study this CRISPR—phage relationship more closely, | systematically analysed CRISPR
cassettes and CRISPR-related genes in samples from the Human Microbiome project (HMP)
(Publication I1). This resulted in one of the most comprehensive CRISPR collections to
date. Further, we found novel sequence characteristics in the CRISPR loci and described the
differences in the composition of CRISPR-associated genes in different body habitats and a
potential relationship between the CRISPR defence system and the restriction modification
system of bacteria. Furthermore, | performed a similar but less extensive search on metage-
nomic samples from infants: “Genomic variation and strain-specific functional adaptation
in the human gut microbiome during early life" (Vatanen et al. 2019). Next, | turned my
focus to study microbiome evolution in a gnotobiotic mouse model, since this provided the
opportunity to study bacteria evolution on an intermediate scale of complexity. | contributed
to the development of the mouse model described in the Manuscript “ Genome-guided design
of a defined mouse microbiota that confers colonization resistance against Salmonella enterica
serovar Typhimurium” (Brugiroux et al. 2016) and a study comparing the stability of the
community between animal facilities “ Reproducible colonization of germ-free mice with the
Oligo-Mouse-Microbiota in different animal facilities” (Eberl, Ring, et al. 2019) and to a study
focusing on the interaction network of this community (Weiss et al. 2021). However, my
main work with the OMM?'? model has been to study community effects and evolution during
repeated rounds of AB exposure (unpublished Publication I11I).
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Einleitung

Der Schwerpunkt meiner Doktorarbeit lag auf der Untersuchung evolutiondrer Aspekte von
wirtsassoziierten mikrobiellen Gemeinschaften. Um diese Effekte besser zu verstehen, habe ich
computergestiitzte Methoden entwickelt und angewandt, um nach Proteinfamilien zu suchen,
die in Metagenomen (Publikation 1) der Selektion unterliegen, und sie auf verschiedene
Umgebungen angewandt (siehe die Artikel “Structure and function of the bacterial root
microbiota in wild and domesticated barley” (Bulgarelli et al. 2015) und “Survival trade-offs in
plant roots during colonization by closely related beneficial and pathogenic fungi” (Hacquard
et al. 2016). Ein durchgéngiges Ergebnis dieser Studien war der hohe Selektionsdruck, der auf
Genfamilien wirkt, die mit dem bakteriellen Abwehrsystem (dem sogenannten CRISPR-Cas-
System) und Familien, die als mit Bakteriophagen verwandt beschrieben werden, verbunden sind.
Um diese CRISPR-Phagen-Beziehung genauer zu untersuchen, analysierte ich systematisch
CRISPR-Kassetten und CRISPR-verwandte Gene in Proben aus dem Human Microbiome Project
(HMP) (Publikation I1). Dies fiihrte zu einer der bisher umfassendsten CRISPR-Sammlungen.
Dariiber hinaus fanden wir neuartige Sequenzmerkmale in den CRISPR-Loci und beschrieben
die Unterschiede in der Zusammensetzung von CRISPR-assoziierten Genen in verschiedenen
Korperregionen sowie eine mogliche Beziehung zwischen dem CRISPR-Abwehrsystem und dem
Restriktionsmodifikationssystem von Bakterien. AuBerdem habe ich eine dhnliche, aber weniger
umfangreiche Suche an metagenomischen Proben von Siuglingen durchgefiihrt: “Genomic
variation and strain-specific functional adaptation in the human gut microbiome during early
life" (Vatanen et al. 2019). Als Nachstes konzentrierte ich mich auf die Untersuchung der
Mikrobiomevolution in einem gnotobiotischen Mausmodell, da dies die Moglichkeit bot, die
Evolution von Bakterien auf einer mittleren Komplexititsebene zu untersuchen. Ich war an der
Entwicklung des Mausmodells beteiligt, das im Manuskript " Genom-guided design of a defined
mouse microbiota that confers colonization resistance against Salmonella enterica serovar
Typhimurium" (Brugiroux et al. 2016) und eine Studie zum Vergleich der Stabilitit der OMM*?
Gemeinschaft zwischen Tierhaltungsanlagen " Reproducible colonization of germ-free mice with
the Oligo-Mouse-Microbiota in different animal facilities” (Eberl, Ring, et al. 2019) sowie eine
Studie, die sich auf das Interaktionsnetzwerk dieser Gemeinschaft konzentriert (Weiss et al.
2021). Meine Hauptarbeit mit dem OMM?2-Modell bestand jedoch darin, die Auswirkungen
und die Entwicklung der Gemeinschaft wahrend wiederholter AB-Expositionen zu untersuchen
(unverdffentlichtes Manuscript 111).
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Contributions to publications

1. Summary and own contributions to Publication |

In the manuscript "EDEN: evolutionary dynamics within environments”, published in
Bioinformatics (Authors: P. C. Miinch, B. Stecher and A. C. McHardy), | described a method
that makes use of the dy/dg statistic to detect protein families that are under positive and
negative selection in metagenomic samples and applied this method to a collection of such
samples. This method overcomes the current limitations of phylogenetic methods for studying
adaptation and evolutionary dynamics that are not able to cope with Gb-sized metagenome
data. To my knowledge, this is the first software package designed for the detection of protein
families and the regions thereof that are under positive selection within metagenomic datasets,
as well as their associated biological processes. In a further publication (not part of this
cumulative thesis), EDEN generated evidence for a higher degree of selection acting on protein
families within the root-associated microbiota than on those found in bulk soil, especially
protein families linked to pathogenesis, bacteria—phage interactions, secretion and nutrient
mobilization (Bulgarelli et al. 2015). In a further publication (not part of this cumulative
thesis), EDEN was used to compare the selection patterns of strains of Colletotrichum with
different lifestyles (Hacquard et al. 2016). We furthermore analysed human metagenome
samples from different body sites of healthy individuals, as well as individuals with different
body mass indexes, thus providing an initial quantitative analysis of the traces of directional
selection for different types of human-associated metagenomic samples (Miinch, Stecher, and
McHardy 2017). EDEN comes in a Docker installation, allowing its use under all common
operating systems. Via a web-browser interface, the user can upload samples and gene family
definitions in the form of a set of profile Hidden Markov models (pHMM). These samples are
then analysed by fast methods for searching pHMM hits in the sample(s), multiple sequence
alignment, tree inference and substitution counting. Finally, the tool performs statistical tests
to rank these gene families according to the estimated evolutionary pressure and generates
publication reads figures showing (i) the distribution of dy/ds rates among and between the
samples, and (ii) the distribution of dy/ds over the alignment of each protein family, e.g. to
identify epitopes under evolutionary pressure.

In this publication, | conceived and designed the experiments together with BS and ACM; |
implemented, tested and benchmarked the software; | generated all the figures and applied
the method to the dataset of the Human Microbiome Project (HMP) and other datasets and
analysed the results; ACM and | wrote the manuscript with comments from BS. Further, this
work contributed to other publications (Bulgarelli et al. 2015; Hacquard et al. 2016) (not part
of this cumulative thesis).
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2. Summary and own contributions to Publication I

2. Summary and own contributions to Publication Il

In the manuscript “Identification of natural CRISPR systems and targets in the human
microbiome” published in Cell Host & Microbe (Authors: P. C. Miinch, E. A. Franzosa, B.
Stecher, A. C. McHardy and C. Huttenhower), | carried out a comprehensive taxonomic and
functional characterisation of natural CRISPR systems in over 2,000 metagenomes from the
expanded human microbiome project (HMP1-11) and identified over 2.9 million novel CRISPR
spacer sequences within the metagenomes native to oral, skin, vaginal and gut body sites. For
comparison, this is over 20 times greater than the number of CRISPR systems cataloged from
complete microbial genomes in CRISPRCasdb (Pourcel et al. 2020). Furthermore, | performed
a metagenome-based quantification of cas genes, which, together with the CRISPR detection,
provides information on both the potential functional roles of CRISPR—Cas systems and their
targets during human health, and the evolutionary properties and principles of bacteria—virus
relationships. Based on this data resource, | estimated the distribution of CRISPR sequence
variants in different body habitats, identifying oral plaque and the tongue as the sites with
significantly higher CRISPR densities than gut and urogenital sites. | characterised the nucleotide
sequence properties of spacer and repeat regions, identifying a hitherto-unknown palindromic
nucleotide distribution pattern and an association between GC content and spacer length. This
appears to be newly detected in the human microbiome, in contrast to earlier studies on
much smaller populations or on environmental microbial communities. We quantified the
functional potential of these human-associated CRISPR spacers, including their ability to target
bacteriophages. In addition to CRISPR spacers that appear to target phages, we found potential
CRISPR influence on bacterial genes involved in methylation activity, suggesting a yet unknown
connection between the restriction modification and CRISPR defence systems. The spacer and
repeat set described in this study is, to our knowledge, the largest and most comprehensive
comparison of CRISPR carriage and ecology in the human microbiome. As a resource, it can aid
in the identification of viral sequences associated with the human microbiome, which remains
technically challenging, and for the development of a novel CRISPR detection methodology. |
believe that this work advances our understanding of the CRISPR system, and that the results
may be further applied for the optimization of plasmid and phage-based therapies.

In this publication, | conceived and planned the experiments together with EAF, ACM and
CH; | performed the CRISPR cassette and cas gene search and analysed the data; | generated
all the figures and tables and wrote the manuscript with input from EAF, ACM, CH and BS.
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3. Summary and own contributions to Publication Il

3. Summary and own contributions to Publication 11

In the unpublished manuscript “Pulsed antibiotic treatments of gnotobiotic mice manifests
in complex community dynamics and resistance effects” prepared for Nature Microbiology,
(Authors: P. C. Miinch, C. Eberl, D. Ring, S. Walfel, A. Fritz, S. Herp, R. Geffers, E. A.
Franzosa, C. Huttenhower, A. C. McHardy and B. Stecher), | performed an evolutionary
analysis of a defined bacterial consortium consisting of 12 cultured strains, the Oligo-Mouse
Microbiota (OMM?2) (Brugiroux et al. 2016) in mice, during repeated antibiotic exposures
to three different clinically important antibiotic compounds. Despite the known impact of
antibiotics on the human microbiome, only a few studies have been performed to understand the
short- and long-term impact of antibiotic treatment on the human microbiome, and this work
aimed to address one of the biggest problems facing the public health sector: understanding
the evolutionary effects on bacterial environments during antibiotic (AB) stress, and evolution
towards AB tolerance or resistance. In complex microbial populations such as the human
gut, understanding the temporal emergence and dynamics of antibiotic-resistant mutants are
difficult to obtain because of the complexity of the microorganisms present. Although pure
in vitro studies on cultured sequenced isolates are valuable, some evolutionary drivers such
as mutation load and fitness costs differ between in vitro and in vivo studies, which makes
it necessary to study these systems as a whole. In this work, | analysed how the community
responds to repeated exposure to antibiotics in the short and long term, and studied the
community dynamics during repeated AB application over 80 days (in five treatment phases
interspaced with resilience phases). Interestingly, some species, such as E. faecalis in the
ciprofloxacin group, increased tolerance to AB within the duration of the study, whereas other
community members, such as A. muciniphila, exhibited a more complex response pattern to AB.
To identify these observations with genomic alterations, | quantified the differences between
samples taken throughout the study on the single nucleotide (SNP) level and accounted for a
range of OMM?!?_specific characteristics that could lead to false positive results in the variant
calling, such as the high intra-species similarity of OMM!2 members or duplication events.
Furthermore, | confirmed that many of the remaining SNPs were indeed located in genes with a
known relationship to antibiotic resistance, such as 30S ribosomal protein S11 and efflux pumps.
Since the response pattern of some bacteria remains complex and could not be explained by
the SNP counts, | analysed other putative evolutionary drivers such as bacterial growth. Here, |
implemented existing methods to estimate growth via the Peak-to-Trough (PT2) ratio based on
the genomic coverage by accounting for OMM?!2-specific characteristics such as local variations
in the coverage pattern. | observed that the growth rate changed during the study time and was
often linked to treatment regimes. Finally, | analysed prophage activation by identifying regions
with high similarity to prophage genes and loci with an abnormally high read coverage on the
reference genome, since these are likely to be the products of prophage activation. | analysed
these regions at all time points and uncovered a treatment-dependent relationship. Again, these
regions contain genes that are potentially associated with AB resistance. Finally, | developed a R
package that applies non-negative matrix factorization to the problem of genotype identification.
Taken together, this work shows that mice stably colonized with synthetic bacterial communities
are a valuable tool for studying community dynamics in response to AB stress. The responses
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Contributions to publications

to AB treatment are multifaceted, and their interaction patterns could be investigated further
by the research community with an R package that we aim to publish alongside the dataset.
In this study, | conceived and designed the experiments together with BS and ACM; | wrote
the grant applications with input from BS and ACM; | performed the mouse experiments
together with DR, CE and SH and BS; | analysed and interpreted the datasets, and wrote the
R libraries and functions for P2T estimation and SNP decomposition, and generated all the
figures and tables; | wrote the manuscript with comments from BS, ACM, EAF and CH.
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Introduction

1. Scaling laws highlight the need for bioinformatics

Moore accurately predicted that the number of transistors would double every two years (Brock
and Moore 2006), driven by a series of exponential growth modes driven in turn by single
interventions that overcome current bottlenecks. Similar advances are also observable if we
compare the improvements in the runtime of bioinformatics software over the past few decades,
such as sequence alignment tools (Muir et al. 2016), probably caused by the introduction of
parallel architectures. A similar law can be observed in genomics, where the costs of DNA
sequencing have dropped significantly over the last few decades, quantified as dollars per base
sequence (ibid.). Technical breakthroughs have resulted in a reduction in the cost per megabase
from ~ 10,000 USD with Sanger technology (1986) to ~10 USD with 454 technology (2007)
to around 10 cents with modern lllumina sequencers (today), reducing costs by a factor of 5-10
per year on average and outpacing Moore's law. This translates to reductions in the growth
rate of databases that collect genetic information, such as GenBank, which has a doubling time
of approximately 18 months, since this is not solely bound by the sequencing costs but also by
data preparation. Comparing these different scaling laws hints that there could be a “biological
overhang”, where the amount of biological data generated will presumably continue to outpace
processing speeds, which would set constraints on runtime complexity. These factors underpin
the need for further improvements in computational methods that can be applied to process
large amounts of biological data, such as the development of more computationally efficient
bioinformatic tools. However, this also highlights that we are in an era with a large amount of
unprocessed sequence information that could be harvested to study the functions of humans,
animals and microbial communities, and how organisms evolve over time. The presence of this
data overhang was my main motivation to study bioinformatics and to focus my Ph.D. research
on developing and applying methods and tools that are suitable for large collections of genomic
datasets. Recently, algorithms were developed (based on deep neural networks) that seem to
exploit the existing computational power far more efficiently than before (Jumper et al. 2021;
Brown et al. 2020; Kaplan et al. 2020), which leads to algorithmic efficiency outpacing the
gains from hardware efficiency, which motivated me to focus my further research on finding and
applying deep learning architectures within the field of genomics (not part of this cumulative
thesis).
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Introduction

2. Computational methods for quantifying evolution

According to the projections of currently available studies, the earth should contain ~ 100 —
10" microbial species. Of these, ~ 107 have been already catalogued; of these, ~ 10° species
are represented in reference genomes and ~ 10% have been cultured, leaving over ~ 99.99% of
microbial taxa to be discovered (Locey and Lennon 2016; Lennon and Locey 2020). At the
smallest scale, these microorganisms have evolved progressively through genetic changes at the
single nucleotide level, called SNPs (Fig. 1). These are the results of mutations, a source of
biological variation that can vary in bacteria from 1078 to 1071 per base per generation (Lynch
et al. 2016) and gives bacterial populations the ability for long-term survival and to adapt to
extreme environmental conditions (Pérez et al. 2017; Merino et al. 2019). Although mutation
rates, in combination with Darwinian selection, seem to be one of the main evolutionary drivers,
the involvement of further mechanisms such as lateral gene transfer mechanisms, homologous
recombination and interactions between hosts, and viruses draw a more complicated portrait of
evolutionary forces in the observed genomic content of microbial populations.

Some of these substitutions may be neutral or silent, meaning that a change in a particular
base pair in an open reading frame does not translate to a change in the amino acid, and
may not cause an erroneous (or evolutionarily fitter) or shortened protein. However, these
substitutions should not be considered as completely neutral, since these still change the
underlying codons and may result in the formation of codon patterns, since DNA replication
may prefer certain codons over others, even if they encode for the same protein. These codon
patterns are the result of translational selection, which describes how codon usage reflects
evolutionary forces acting within an organism (Grantham et al. 1980; Gouy and Gautier 1982).
This results in selection for mRNA expressivity, where highly expressed genes are encoded by
chemically more optimal codons with respect to their translational accuracy. However, methods
for systematically estimating translational selection have been rare until a unified framework
was presented (Reis, Savva, and Wernisch 2004). This showed that genome size is a major
contributor to this evolutionary force, since it is tightly linked to tRNA copy numbers, and that
this force can be observed in organisms when there is a redundancy in the tRNA genes that
the evolutionary force can act on. On the other hand, we can reasonably assume that genome
size is itself a target for selection processes, since it imposes a higher metabolic burden with
reduced fitness on the cell and is associated with the mutation rate (Ochman, Lawrence, and
Groisman 2000; Ranea et al. 2005; Marais, Batut, and Daubin 2020).

Other substitutions on open reading frames might cause a change at the amino acid level;
these substitutions are known as non-neutral substitutions. Different measures have been
developed to quantify the evolutionary pressure of protein-coding sequences, which mainly can
be classified into tools that detect the signatures of selection in a population and those that
do so in comparative settings. One of the most widely used and reliable measures applied to
protein-coding regions is the dx/ds ratio, which measures the excess of nucleotide-altering
substitutions in a set of genes, which is a general indicator of the mode and strength of
selection (Nielsen 2005; Buschiazzo et al. 2012). Substitutions can be either synonymous
without causing a change in the coding amino acid (also called silent or neutral, as discussed
above) or non-synonymous, causing a replacement of the amino acid. In the absence of
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3. Metagenomics provides a more unbiased view for studying evolutionary properties

selection pressure, synonymous and non-synonymous mutations should occur at the same rate
(dn/ds = 1), although evidence for positive or negative selection appears when the ratio is
> 1 or < 1, respectively. Synonymous substitutions are often quantified as substitutions per
synonymous sites ds (where the number of synonymous sites is a measure of the likelihood
that substitution at a given position in the codon is synonymous, typically occurring in the
third position of codons), are usually regarded as neutral and are not affected by natural
selection. Conversely, non-synonymous changes per non-synonymous site (again, sites indicate
the likelihood that a mutation will cause a change in the amino acid, typically in the first
and second position of a codon), denoted dy, are seen as influencing the bacterial fitness
and will be removed from the population via purifying or negative selection (DeSalle 2000).
A comparison of the relative frequency of both dy and dg can be used as a measure of the
selective forces that act on a given region, and can be performed at different levels such as
sites, codons, genomes and populations (Rocha et al. 2006). As part of my dissertation | have
extended and applied this dx/ds measure to metagenomic samples for quantifying selection
pressures acting on protein families and the putative epitopes thereof (Publication 1).

3. Metagenomics provides a more unbiased view for studying
evolutionary properties

Albeit valuable, previous types of studies on microbial evolution used either single bacterial
cultures in vitro, such as the long-term evolution experiments by Lenski and Travisano (1994)
or were of a comparative nature, analysing a specific set of genomes (Petersen et al. 2007) or
all genomes present in public databases (Endo, lkeo, and Gojobori 1996; Ciufo et al. 2018; Jain
et al. 2018). These methods are arguably limited. Although the first type of study misses out
potential microbe—host interactions, the latter suffers from cultivation and observation bias and
has led to a wide range of controversies; for example, if this cultivation bias should be accounted
for when interpreting species boundaries (Murray, Gao, and Wu 2021; Rodriguez-R et al. 2021).
However, with metagenomic techniques, one can obtain near-complete genome sequences from
environmental samples (West et al. 2007), giving access to Gb-sized datasets of microbial
communities under natural conditions without any cultivation bias. With metagenomics, the
sequenced nucleotide content typically originates from different cells in the sample and does
not show any strong biases regarding the part of the genome or the strain they represent,
thus providing random representations of the naturally occurring diversity (Amann, Ludwig,
and Schleifer 1995). These methods overcome the limitations of the cultivation process (the
cultivation bottleneck) of single isolates. These metagenomic techniques helped to clarify the
aforementioned debate on the presence of species boundaries by applying distance measures
to genomes reconstructed from metagenomes instead of genomes isolated from different
populations and habitats, giving evidence of the presence of a species boundary (Caro-Quintero
and Konstantinidis 2012).

Several technical challenges and limitations must be faced when handling metagenomic
shotgun sequencing datasets. One of them is correct selection of the sequencing depth, defined
by the quantity of reads obtained from a sample. The chosen depth needs to be high enough
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to assemble the genomes of less abundant community members of interest (Kunin et al. 2008).
This is especially a problem in highly complex environments that are dominated by a few single-
bacteria phyla, such as the human gut. Furthermore, downstream analysis of metagenomic
samples often requires the assembly of reads into larger fragments. Here, the current methods
have several limitations; for example, they perform poorly on repetitive regions such as CRISPR
elements (Skennerton, Imelfort, and Tyson 2013).

To understand the evolutionary drivers guiding genomic variation in microbial populations,
metagenomics could give researchers a scalable method for analysing within-community variation
on a populational scale. This would enable fine-grained analyses of the functions of community
members, and studies of their association with phenotypes and environments, as well as studies
of microevolution and adaptation to changing environmental conditions. Using metagenomic
datasets to study molecular evolution would broaden the focus from individual species (Lenski
and Travisano 1994) to whole communities, highlighting the importance of the reciprocal
evolution of interacting species and opening up a universe of previously unknown interactions
to be studied. In all publications presented in this thesis, | analysed such metagenomic samples
and applied existing and novel methods to the raw or assembled genetic content of these
communities to determine the genes, protein families and organisms under evolutionary selection.

4. Virus—bacteria coevolution can be quantified by dy/ds
statistics

Environmental and host-associated microbial communities harbour trillions of microbes including
viruses, among which bacteriophages (phages) that prey on bacteria are the most abundant.
Phages are generally classified as virulent (strictly lytic) or temperate. The latter enables the
phage to integrate its genome into the bacterial chromosome and become a prophage that is
vertically transmitted in the bacterial population. Clearly, lysogenic phages play an important
role in managing bacterial populations and also in bacterial evolution. Since the majority of
bacteria harbour prophage sequences, one of the main evolutionary drivers is the reciprocal
interaction between temperate bacteriophages (phages) and the bacterial host (Canchaya et al.
2003). During this integration process via lysogenization, phage genes can alter the phenotype
of the bacterial host and, once integrated, phages can multiply via concomitant lysis of the
host (ibid.). However, viruses often have a relatively error-prone replication machinery, which,
combined with a fast infection cycle, results in rapid coevolution with their hosts and in highly
diverse sequences (Pedulla et al. 2003). It has been shown that phages can contain genes
associated with virulence such as toxins, effector proteins or other fitness factors (Harald,
Carlos, and Wolf-Dietrich 2004), highlighting that the coevolution of phages and bacteria is
mutualistic rather than predatory (Boyd and Briissow 2002). On the other hand, the presence
of prophages alone can be seen as a further evolutionary factor, since these phages build anchor
points for genome rearrangements and drive genome inversions and translocations (Harald,
Carlos, and Wolf-Dietrich 2004). These prophages constitute, besides other mobile genetic
elements, a substantial part of the laterally acquired DNA (Canchaya et al. 2003), and several
databases have collected the genomic content of publicly available sequenced phages, such as
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Figure 1: Evolutionary Processes in the microbiome likely manifests in variants observable of different
frequencies relative to a reference genome A) Genetic diversity of two genetically distinct
lineages of a bacterial species that have colonized a host. Within a lineage, substitutions
(stars) likely have accumulated and can have profound impact on the host health outcomes.
In many study settings, a reference genome has been identified e.g. via bacterial cultivation
efforts followed by NGS (green point). B) The distribution of variants can be estimated by
mapping the metagenomic reads to the reference genome, often via accounting for technical
biases such as sequencing errors. C) The site frequency spectrum can be represented by the
allele frequency of observed variants in the alignment. This typically consists of substitutions
that have arisen since colonization to the host and are less frequent or singleton variants
which constitute the low-frequency bin in the allele frequency plot. Diverged lineages are
often represented in the alignment by variants with a higher allele frequency. Variants
accumulated shortly after obtaining the reference sequence or mutations that exhibit a high
fitness benefit might be fixed and have a AF of ~ 1.
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PHASTER (Arndt et al. 2016), the successor of PHAST (Zhou et al. 2011).

In principle, shotgun sequencing approaches using metagenomics sequence virus-like particles
alongside the chromosomal bacterial DNA; they can also be used to survey the complete viral
community, without selection based on host or sequence similarity to known viruses (Rosario
et al. 2009). However, early attempts to study phage diversity through metagenomics found
that the majority of phage sequences could not be classified into any known viral taxonomy,
highlighting that the current databases underestimate phage diversity (Simmonds et al. 2017;
Turner, Kropinski, and Adriaenssens 2021). Moreover, studies using metagenomic techniques
have uncovered abundant novel viruses in the human gastrointestinal (Gl) tract that had not
been detected previously, such as the so-called crAssphages (Edwards et al. 2019), which are
viruses that may have coevolved with the human lineage and are an integral part of the normal
human gut virome. This suggests a yet undetected diversity, often referred to as “viral dark
matter”, which remains to be quantified (Hatfull 2015; Krishnamurthy and D. Wang 2017).
Attempts have been made to quantify the phage diversity collected from metagenomes in
databases such as the “Gut Phage Database” (Unterer, Khan Mirzaei, and Deng 2021) which
includes over >140,000 non-redundant gut phages obtained by analysing > 28,000 shotgun
metagenomic datasets. Other studies of the human gut metagenome have been mined for
phage genomes (Gregory et al. 2019) or combined data generated from cultivated approaches
and metagenomes (Paez-Espino et al. 2019). However, further research is needed to understand
the role of phages, particularly in the context of human health, since the role of phages present
in the human Gl tract is still unclear (Camarillo-Guerrero et al. 2021).

Although the performance of software tools analysing metagenomic samples for their bacterial
content has increased (e.g., metagenomic assemblers and taxonomic binners), these tools have
been found to underperform, especially on viral genomes (Sczyrba et al. 2017; Meyer et al.
2021). This gap might be filled by a new generation of machine learning classifiers based on deep
learning (Bzhalava et al. 2018; Liu et al. 2020; Ren et al. 2020) or optimization of traditional
approaches for reconstructing viromes (e.g., by analysing subgraphs of the metagenomic
assembly graph) (Antipov et al. 2020). Furthermore, the co-evolutionary properties could be
analysed more directly without assembly; for example, by analysing the CRISPR spacer content
within metagenomes that could indicate recent encounters between bacteria and phages.

5. CRISPR—-Cas immunity is an example of adaptive evolution

As a product of the evolutionary arms race, a fraction of the genome of most bacteria is
dedicated to defense against phages (Koonin, Makarova, and Zhang 2017). Broadly, these
systems can be categorized into “innate defense” including the restriction—modification systems
that discrimination between self and non-self DNA via methylation (Tock and Dryden 2005;
Goldfarb et al. 2015; Ofir et al. 2018), and abortive infection (Abi) systems that shut down the
bacterial cell cycle upon infection (Fineran et al. 2009) and adaptive defense systems. One
well-studied adaptive system involves clustered regularly interspaced short palindromic repeats
(CRISPR), which consist of 23-50 nt repeated sequences interspaced by the so-called spacers
(Fig. 2). These sets of spacers construct a memory of past encounters with foreign DNA and
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allow bacteria to counteract attacks by phages with matching genomic loci. Although they
were first described in E. coli (Nakata, Amemura, and Makino 1989), they are found in ~40%
of the bacterial strains present in public databases (Makarova, Haft, et al. 2011; Pourcel et al.
2020).

CRISPR-associated (Cas) proteins play a role in the three steps of CRISPR—Cas immunity,
namely (i) the acquisition of new spacers in the CRISPR loci, (ii) the maturation of the CRISPR
transcript into small CRISPR RNAs and (iii) interference, which involves targeting and cleavage
of the invading genome (Haft et al. 2005; Koonin, Makarova, and Zhang 2017). It has been
observed that specific sets of cas genes exist in genomes, which guided the classification of
cas types and subtypes (Makarova, Haft, et al. 2011; Makarova, Wolf, Alkhnbashi, et al.
2015; Makarova, Wolf, Iranzo, et al. 2020). This is of interest, since these subsets might
correspond to different modes of action or differences in their preferred targets. Some subsets
are potentially relevant for the development of new genome editing tools, as these come with a
limited set of cas genes required for functioning, such as the Cas9 subtype (Jinek et al. 2012;
Hsu, Lander, and Zhang 2014).

Although the general mechanistic principles of CRISPR-Cas-based defence are known, there
are several ongoing questions in CRISPR biology, such as their natural distribution and variation,
their role in functions other than defence (such as regulatory roles), their interactions with
plasmids and their contribution to bacterial evolvability as a whole. For example, the CRISPR-
Cas system may also interfere with the acquisition of genes that could confer fitness benefits
to the bacteria. CRISPR-Cas could limit the uptake of AB resistance genes in environments
with high AB pressure (Shehreen et al. 2019).

In general, the CRISPR-Cas system is a rapidly evolving defense system that is in a con-
tinuous arms race with bacteriophages, resulting in high evolutionary pressure on cas gene
sequences (Koonin 2019a), which can be observed via the dy/dg statistics (Miinch, Stecher,
and McHardy 2017). It also can be seen as the mechanism of a specific form of genome
evolution (i.e., a system that directly facilitates directed genome evolution). It has been
discussed as evidence of the presence of the quasi-Lamarckian mode of evolution (Koonin
2019b; Wideman et al. 2019). However, this system remains to be studied, since the degree
to which the self-targeting effects of CRISPR-Cas systems might be functionally relevant are
unclear, such as in the context of quorum regulation, repair processes and others (Shmakov
et al. 2018; Newsom et al. 2020).

6. Antibiotics and “Red Queen’” dynamics

Evolutionary forces act not only to provide reproductive advantages in response to abiotic factors,
but also to allow organisms to adapt to competing organisms and their competitive strategies
resulting in the so-called “Red Queen” dynamics (Van and Van Valen 1973). One product of
these coevolutionary Red Queen interactions is the evolution of microbial defense systems, such
as AB compounds and bacteriocins. Survival under conditions with high AB pressure might
select for bacteria with a higher mutation rate, since this can accelerate adaptations (Taddei
et al. 1997). These mutations might alter AB targets, such as the target proteins, or cell
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Figure 2: Schematic representation of CRISPR—Cas adaptation and interference. A) Incorporation of
foreign DNA as spacers in the CRISPR-array from the invader (e.g. plasmid or phage). B)
The CRISPR interference process degrades foreign DNA that was previously incorporated as
spacer sequences.

permeability (Heisig 1996). Besides mutations, many resistance developments can be explained
by the acquisition of resistance genes via horizontal gene transfer events (Robicsek, Jacoby, and
Hooper 2006). However, developing resistance to AB imposes a high fitness cost on the bacteria,
which could be limited by compensatory mutations that restore fitness without the loss of
resistance (Levin et al. 1997). A further evolutionary strategy for surviving high doses of AB is
the stress-induced activation of several regulatory networks, such as the SOS response (Cirz et al.
2007), which was found to be activated in bacteria in response to ciprofloxacin, beta-lactams
and fluoroquinolones (Ames and Gold 1990; Miller et al. 2004; Pérez-Capilla et al. 2005).
This response can increase the rate of mutations through the induction of error-prone DNA
polymerases, thus increasing the rate of acquiring potential mutations conferring resistance
to ABs. Furthermore, some evidence has suggested that AB stress can increase the bacterial
recombination rate (Lépez and Blazquez 2009), which is a further major driving force in
bacterial evolution and survival (Guttman and Dykhuizen 1994), since elements taken up via
horizontal gene transfer are integrated into the bacterial chromosome by such recombination
events.

Human-induced factors drive coevolution between the host and pathogens in agriculture,
aquaculture, and forestry (Percy 2007). Direct public health consequences can arise from
this evolutionary interaction in the form of (multi-) drug-resistant strains (Barbosa and Levy
2000) and further drive biological evolution. Understanding these evolutionary processes is of
profound importance for human prosperity, since it would enable the development of predictive
models that could be used, for example, to estimate the potential of a community to develop
resistance against certain ABs. In particular, the human gut is overly exposed to antibiotics
and harbours a wide variety of resistance genes (Salyers, Gupta, and Y. Wang 2004).
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7. The gastrointestinal system is a melting pot of
coevolutionary interactions

In humans, the Gl tract has a high microbe density. Metagenomic analyses of the human
distal gut microbiome have been performed for around 15 years (Gill et al. 2006) boosting the
development of metagenomic approaches (Robinson, Bohannan, and Young 2010). The gut
microbiome describes the collection of microorganisms in the human Gl tract and their collective
interacting genomes. The study of these interactions was motivated by the observation that
shifts in microbiome composition occur between healthy and diseased individuals, as well as
between age groups and between humans from different geographic locations (Yatsunenko et al.
2012). Recently, similar shifts have even been described in human disease conditions as diverse
as autism, cancer and diabetes.

One major problem in interpreting the results of observational studies is a limitation in their
ability to prove causation. For example, epidemiological studies established that human health
is largely impacted by socioeconomic factors such as educational attainment (Doubeni et al.
2012). Further, diet quality seems to be tightly linked to socioeconomic status (Darmon and
Drewnowski 2008) and there seem to be direct relationships between dietary factors, such
as dietary energy density, and human diseases (Swinburn et al. 2004). Since changes in the
diet were shown to directly alter microbiome composition (Singh et al. 2017), microbiome
studies should adequately address these potentially confounding effects. However, even when
these are addressed carefully, these confounding effects are likely to persist. Fortunately, some
recent advances in research methodologies are less prone to confounding and might clarify
which microbiome—disease interactions are causal. One potential method is the application of
Mendelian randomization techniques to microbiome studies, but these require large genome-wide
association studies highlighting human genome-bacteria associations. Another methodological
advance for detecting the causal relationships between the microbiome and disease is the
development of model systems, such as gnotobiotic (greek; gnotos: known; bios: life) mouse
models. In contrast to normal mice, these mice harbour microorganisms or defined minimal
microbial communities that have been applied to germ-free mice (e.g., through gavaging with
pure cultures of the bacteria of interest). The composition of these communities can be
modulated, their genome sequences are known and the bacteria can also be studied ex vivo in
the laboratory. Within this framework, immunological and ecological mechanisms caused by
individual bacterial species can be studied with high statistical power.

To generate gnotobiotic mouse models, germ-free mice are colonised with microbial com-
munities of varying complexity and origins at defined stages of their life to determine how
much of the donor phenotype is transferable to the resulting conventionalised mice via the
microbiota (Gordon and Pesti 1971; Faith et al. 2010). Examples of such communities include
the Altered Schaedler Flora, where causative roles of single microorganisms have been linked
to disease severity in the context of immune mediation (Dewhirst et al. 1999). Variations
of this Altered Schaedler Flora consortium have been developed, often with the intent of
triggering a specific disease phenotype in mice. Another example is the Oligo Mouse Microbiota
model (OMM?!2), which is a bacterial community that provides colonisation resistance against
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infection with specific human pathogens such as Salmonella enterica serovar Typhimurium (Bru-
giroux et al. 2016). Through this model, causative relationships have been demonstrated, for
example, in the case of Mucispirillum schaedleri, which provides protection against Salmonella-
induced colitis (Herp et al. 2019), or E. coli, which provides colonisation resistance against this
pathogen (Eberl, Weiss, et al. 2021). The OMM®? model has also proven to be a valuable
tool for studying evolutionary adaptations (Yilmaz et al. 2021). As part of my dissertation,
| applied the OMM?®? model to study the evolutionary adaptations of the community during
repeated rounds of AB exposure.
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Introduction

A strong body of evidence supports the crucial role of the gut microbiota in human health and
disease (Lloyd-Price, Abu-Ali, and Huttenhower 2016; Human Microbiome Project Consortium
2012). Microbes have co-adapted through various molecular mechanisms with mammalian
hosts to form symbiotic stable relationships (Ley, Peterson, and Gordon 2006), and the ability to
tolerate and respond to a certain amount of environmental perturbations (Sommer et al. 2017).
This results in a fairly stable and host-specific microbial community where the majority of strains
persist over several years (Faith et al. 2013). Yet, long-lasting disruptions of the microbiota have
been observed, for example in response to extreme dietary changes (Turnbaugh et al. 2008) or
antibiotic therapy (Lange et al. 2016). Antibiotics (AB) are likely the largest known driver of
compositional changes in the gut microbiome, which are, in particular when they occur early in
life, associated with development of several diseases such as obesity (Nagpal et al. 2018),
allergic disorders (Droste et al. 2000) and infections (Croswell et al. 2009). Furthermore,
increase in the development of antibiotic resistances frequently occurs in response to antibiotic
overuse which is recognised by the WHO as one of the top ten threats to global health
(Thangaraju and Venkatesan 2019).

Despite the immense impact that antibiotics have on the human microbiome, only a few studies
have been performed to characterize both the short- and long-term responses of the human
microbiome to antibiotic therapy (Nobel et al. 2015; Vrieze et al. 2014). In particular, it is
insufficiently understood which factors determine the ability of the microbiota to return to the
pre-antibiotic state, a process which is termed microbial resilience. It appears that resilience is
mainly determined by the type of antibiotic used, as different antibiotic classes have distinct
inhibition spectra ranging from strain-specific to broad-spectrum effects (Maier et al. 2021).
Moreover, environmental factors, including diet, environmental reservoirs and microbial
community context influence recovery of the microbiota after antibiotic perturbations (Ng et al.
2020). It is unclear however, to what extent other mechanisms like antibiotic detoxification
(Klinemann et al. 2021), antibiotic tolerance or the evolution of antibiotic resistant microbial
populations could also be involved in mediating community resilience. As the effect of drugs on
single strains may vastly differ between in vitro and in vivo communities - these effects are



mainly caused by altered bioavailability of the drug bacterial physiology and microbial
community effects like cross-feeding and competition - in vivo studies are needed.

In complex populations, such as the human gut, the analysis of the evolutionary dynamics of
different bacterial populations is challenging and currently limited to organisms that can be
re-isolated from fecal samples (Zhao et al. 2019). Instead, the study of bacterial model
organisms in mice enables long-term tracking of within-host bacterial evolution as mutants can
be re-isolated, and their genome sequence be compared to the initial population
(Barroso-Batista et al. 2020). Recently, within-host evolution of a defined bacterial community,
the Oligo-Mouse Microbiota (OMM™) has been analyzed at SNP scale over a 6-year period.
This revealed the emergence of stably-co-existing genotypes in the different bacterial
populations (Yilmaz et al. 2021) which colonize the murine gut over years (Eberl et al. 2019).

We used stably associated OMM™ mice to study effects of three different classes of antibiotics
on this microbial community in vivo. This community is composed of 12 publically available,
sequenced strains isolated from mice and represents 5 bacterial phyla that are naturally
abundant in the murine gut. Our study design was optimized to analyze short-term microbiota
perturbation by the AB treatment as well as the recovery of the microbiota during a “resilience”
phase in between different treatments and the response to a secondary AB challenge to
discover potential adaptive community effects. We found that (i) there is, as expected, an
antibiotic-dependent effect to the OMM' community, (ii) strain-specific perturbations do not
always correlate with in vitro determined MIC values determined (iii) the severity of community
perturbation after repeated antibiotic courses decreases over time, pointing at the evolution of
“‘resilience effects” within the community; (iv) we identify that become unaffected by the AB in
the secondary challenge. In select cases we identify de novo mutations in antibiotic-target
genes and which correlated with increased MIC to the AB(v) we solved several problems in read
mapping of metagenomics data to a defined consortium, for example, shared conserved regions
between and within genome lead to an overestimation of variants when not addressed carefully.

Results

Community resilience and a wide variety of response patterns in members of a defined
bacterial community in response to repeated antibiotic treatment

We studied community dynamics of the OMM™ during repeated antibiotic applications for 80
days and performed shotgun metagenomics and strain-specific qPCR to track community
composition and evolution. In order to observe adaptation of the community to antibiotic
challenge, the study design included a total of 4 5-days treatment periods (1 — 1), interspaced
by resilience phases of varying lengths ranging from 5 days up to 35 days (Fig. 1A), which
allowed us to study the influence of repeated applications of AB to the microbial community
dynamics. In this setting, gnotobiotic OMM?'? adult mice caged under germ-free conditions (n =5
per group) were treated with physiologically relevant concentrations (daily dose 25mg/kg) of
antibiotics vancomycin, tetracyclin and ciprofloxacin via the drinking water (see Methods).
During the study period of 80 days, fecal samples from individual mice were collected on a
weekly basis, amounting to a total of 307 samples.

Fecal bacterial community composition showed strong antibiotic-dependent responses,
measured by strain-specificqPCR (Fig. 1BC). Overall composition dynamics across treatment
groups were non-uniform, with a subset of bacterial members exhibiting decreased abundance
after antibiotic exposure. Notably, the impact of AB treatment on community composition is


https://www.codecogs.com/eqnedit.php?latex=t_1-t_4#0

much clearer observable on absolute (Fig. 1B), compared to relative abundances (Fig. 1C),
emphasizing that such signal could be lost when applying transformation to relative abundances
or when measurements are only performed on a relative scale, which is practised in many
metagenomic studies due to the absence of absolute quantification such as cell counts. Of the
initial 12 bacterial members in the community, 10 were reliably detected by gqPCR (missing A.
muris and B. animalis), which has been observed in previous studies using the model (Eberl et
al. 2019). Co-caged mice that undergo the same treatment exhibited a homogenous response
to AB treatment (Fig. 1BC), which is likely attributable to coprophagy (Ng et al. 2020). We
quantified the impact of AB applications to the community composition by measuring community
stability of time points before and after the AB challenge using the Bray-Curtis distance metric.
For all AB groups, the disruptions in community compositions are getting less pronounced with
increased study time (Fig. 1D), indicating a resilience effect through adaptations of community
members.

Permutational analysis of variance (PERMANOVA) of Bray-Curtis dissimilarity indicated that the
treatment group explained 18% of microbial taxonomic variation (permutation test, P < 0.001),
followed by the treatment status on case groups (13%, P < 0.001) and sampling date (4%, P <
0.001). The mouse ID is not significantly associated with variation in the taxonomic composition,
indicating a high within-group homogeneity of the study population. This is in line with a
PERMANOVA analysis of gene-length and coverage normalized (CPM) abundances of
UniRef90 families (Bray-Curtis) recovered from the whole genome shotgun sequencing (WGS)
samples (again with treatment group and sampling date accounting for 21% and 1.3% of
variation, respectively; P < 0.001). Interestingly, we observe a higher variance explained by
treatment status using UniRef90, compared to qPCR and WGS abundance (21%, 13%, 9%,
respectively), which is indicative of the robustness of the measure.

We identified 5 major response patterns: (i) A decrease in absolute abundance at the
consecutive time points after treatment for members such as B. coccoides in the tetracycline
and vancomycin group,; A decrease in abundance similar to (i) but with more pronounced
decrease after the first AB challenge {1 compared to later ones, i.e. such as E. faecalis in the
ciprofloxacin group. This may indicate that the community or the individual members evolve
towards increased AB tolerance or resistance; (iii) the near extinction of a species after
treatment over longer time periods, with re-appearance during the resilience phase, such as E.
faecalis or M. intestinale after vancomycin treatment; (iv) and more complex patterns, for
example of E. faecalis during tetracycline treatment that might arise from multiple sources
including co-dependence of bacterial members (cross feeding) and the presence of multiple
bacteria phenotypes at timpoint ¢. This high diversity of response patterns motivated us to study
factors such as evolution of AB potentially influencing resistance or tolerance, such as bacterial
growth, phage activation and selection of substrains.
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Figure 1: Stability of community over time and treatment regimes measured via species specific qPCR. A)
Schematic representation of study design. 3 treatment groups and one control group (housed together in one cage
per group with 5 mice each) undergo repeated treatment of antibiotics via drinking water (grey vertical bars) between
sample collection time points (circles). Sample i denotes initial time point. ?1-t4+ denotes the time points directly after
treatment, while "1-74 denotes recovery time points where no treatment was applied in respect to the previous time
point. Filled points denote fecal samples which were collected for each mouse individually. B) Community abundance
of all observed community members of the OMM'? community that show either direct response or no response to
treatment (right) or a complex response pattern (left) as an absolute measure (log,,) scaled. For each time point, the
median community abundance is shown. C) Relative abundance of OMM' members at different sample time points
D) Distance between OMM™ composition of mice from the tetracycline and vancomycin group using non-metric
multidimensional scaling (NMDS) of community abundance using Bray-Curtis distances (stress value = 0.09). Initial (
1) communities show high similarity, while a bigger distance between samples is introduced by treatment. E)
Successive treatments are less disruptive to the overall community distance within mice measured as deviations from
previous time points using Bray-Curtis dissimilarities.

SNP occurrence associated with AB resistance pattern

During the time course of the experiment we observe treatment specific effects on the SNP
scale (Fig. 2), measured by shotgun NovaSeq pyrosequencing (~6.8 Mbases per sample) on a
subset of 112 samples on selected time points (Fig. 1A). This subset consists of all time points
of one mouse per group plus two biological replicates that originate from mice co-housed on
selected time points. In brief, we mapped quality controlled to the full reference OMM"
collection via BWA mem with stringent conditions and filtered out duplicated reads and ones that
map to multiple positions since we observed that this would inflate SNP counts artificially, due to
high degree of similarities within and between OMM' community members. Variant calling
(SNPs) was done with LoFreq under stringent settings (see Methods). We observed a number
of variants with an intermediate and non-changing AF around ~0.5 which are likely the effect of
duplication events in the genomes relative to the reference sequence, where one duplicated loci
acquired a SNP during the study or on parental generations. We further confirmed the presence
of these regions via the sequence of 90 colonies picked from the plates of the in vivo evolved
community (E. faecalis, C. innocuum and B. coccoides) which also exhibit an intermediate AF
of ~0.5 (Fig. 5A). Since this would inflate observed SNP load, we filtered variants that have a
median AF between 0.1 and 0.7 and a low interquartile range (IQR) of smaller than 0.4,
resulting in a final set of 505 SNPs observed in the whole study (Supplementary Table 1).
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In samples taken from the tetracycline group, we observe SNPs on genes encoding for
ribosomal apparatus, such as the 30S ribosomal protein S11 (q = 9.9*10® on A. muciniphila,
Supplementary Table 1). Furthermore, in B. caecimuris, we observe two SNPs that are present
on S9 gene (g-value = 1.4*10%and 1.9*10%). As tetracyclines act as a protein synthesis inhibitor
and mutations within the 30S gene are known AB binding, these mutations may lead to
tetracyclin resistance. Another mode to acquire resistance is via AB export out of the cell such
as RND-type drug efflux pumps. We observe mutations in the efflux RND transporter permease
subunit on M. intestinale in the ciprofloxacin group (g-value = 0.008). In other bacteria, efflux
pumps are associated with resistance against fluoroquinolones (Jiang et al. 2018; Godreuil et al.
2003). We further found a variety of SNPs in genes with no known link to resistance
mechanism, such as the gene encoding for the transporter auxin efflux carrier (AEC) family
transporter on T. muris in the ciprofloxacin and vancomycin group but not on the tetracycline
group (q = 6.6*107 and 3.2*10°, respectively, Fig. 2). It was shown that proteins with helicase
activities such as the DEAH/RHA protein, is required to modulate bacterial survival under
diverse antibiotics treatments (Grass et al. 2021). Both, in B. caecimuris and T. muris, we find
mutations in the DEAD/DEAH box helicase family protein (Fig. 2), both with a g-value < 0.005 in
the vancomycin group (Supplementary Table X2).

We observe variants associated with genes preservation of cell wall integrity, especially in the
vancomycin group. Vancomycin is a glycopeptide antibiotic known to inhibit peptidoglycan
synthesis and bind to acyl-D-alanyl-D-alanine and inhibits therefore the addition of new units to
the peptidoglycan wall. In T. muris, we identified 3 possible related SNPs in the gene that
encodes the cell envelope integrity protein (folA) which are found in the ciprofloxaxin and
vancomycin group (g-value < 0.0009). Furthermore we observe mutations in the zapD gene
(Fig. 2), encoding essential functions for cell division. This zapD gene is one of the Z-associated
genes, whose products are known as FtsZ-regulatory proteins that exhibit roles in stabilizing
FtsZ-ring assembly (Durand-Heredia et al. 2012), which in turn is an antibiotic target (Silber et
al. 2020; Casiraghi et al. 2020; Ur Rahman et al. 2020). Furthermore, zapD is linked to biofilm
formation (H.-H. Chen et al. 2020) and bacteria within biofilms are refractory to host immune
responses and antibiotic treatment (Arciola, Campoccia, and Montanaro 2018).

Beside these SNPs that are potentially in line with the mode of action of the antibiotics, we
detect a wide range of mutations that are associated with resistance development, but not in
particular with the antibiotic class we used in our study. For example, there is evidence that
glycosyltransferase inhibitors could be an alternative therapeutic strategy to current antibiotics
(Schutzbach and Brockhausen 2009; El Qaidi et al. 2018). Interestingly, in treatment groups find
many SNPs associated with glycosyltransferase inhibition, such as “glycosyltransferase
inhibitors, “glycoside hydrolase family 76 protein”, “glycosyltransferase family 1 protein” and
“glycosyltransferase family 2 protein”, mostly in T. muris and B. caecimuris. In M. intestinale, we
observe SNPs on the “GH92 family glycosyl hydrolase” (2 SNPs with q = 2.5*10® and 4.6*107
Tet., 1 SNP with g = 0.001 in Vanco.). Putative explanation for this could be the presence of
substrains that provide a broad-spectrum resistance to a wide range of potential stressors, and
these get selected by the application of specific antibiotics. Not all SNPs we observe to be
selected should be considered to be associated with an antibiotic target, due to hitchhiking
effects. However, some of them are in genes with hitherto unknown connection to AB resistance
and show a time and application-dependent response, such as genes encoding for the
RagB/SusD family nutrient uptake membrane protein (Fig. 2) which we detect to be associated
with all AB types we have tested in B. caecimuris, and with vancomycin treatment in M.
intestinale and requires further investigation.
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Figure 2: Allele frequency of 67 SNPs that are varying significantly between control and at least one
treatment group, indicating substrain selection or de novo SNP acquisition. Technical zeros, defined when the
read count on a location is lower than 25, are shown as grey. SNPs that are present in less than 8 samples, have an
effect size below 0.1, or have a greater g-value of 0.01 or belong to the intermediate AF group are filtered out. Text in
color indicates that the locations are on one of the differentially coverage regions (see Fig. 4)

AB treatment modulates bacterial growth

SNP analysis identified potential resistance-conferring mutations that could explain gPCR
patterns of selected bacteria such as the resistance development in C. inoccum, it seems that
SNP presence/absence alone cannot explain the more complex response pattern we see after
treatment in community members such as A. muciniphila. Since we had the controlled
experimental setting and high-quality reference genomes at hand, we searched for other types
of signatures that could relate to development of AB tolerance, such as change in growth rate.
Since DNA replication starts from a fixed origin in the circular genome and proceeds
bi-directionally, the coverage distribution of a metagenomic sample mapped to the reference
genome can provide insights into changes in bacterial growth rate (Fig 3A) (Korem et al. 2015).

We used an in-house developed R package (OligoMMR) to identify differences in bacterial
growth rates of specific OMM' community members using metagenomic sequence data. This
method is based on determining sequencing coverage between the peak (origin of replication)



and trough (opposite region in the circular bacterial genome) and provides a quantitative
measure of a species' growth (P2T; Fig. 3A) (Korem et al. 2015). Using this P2T analysis, we
found evidence that antibiotic treatment modulates growth of OMM' community members (Fig.
3). While there are less pronounced differences during the study duration on the estimated
growth rates for bacteria such as F. plautii and B. caecimuris we observe a treatment-dependent
effect for others (Fig. 3BC). Especially during vancomycin treatment, growth rates drastically
decline on the adjacent time point after AB application. For A. muciniphila, while the bacteria
seem largely unaffected by the antibiotics according to the gPCR profile (Fig. 1B), differences in
growth rate are observed in response to AB treatments (Fig. 3B). For example, tetracycline
treatment, A. muciniphila P2T declines sharply and recover during the resilience phase While
the drop in bacterial abundance is often mostly pronounced in the adiacent time point (after 1
week of continuous AB treatment), drop in P2T seems to persist even longer, where the growth
rate is lowest after the second time point we took after treatment (~2 weeks). In the vancomycin
group, we see after treatment a complete stop in bacterial growth in the two next time points
taken after treatment (Fig. 1 bottom, B), which manifests in a drop in absolute qPCR in these
time points. Interestingly, all following treatment regimes influence growth rate positively, and no
clear drop in bacterial cell count is observed, indicating that selection effects affect not only
bacterial survival but also growth rate. Taken together this illustrates the requirement that to
understand adaptations processes to antibiotics, community dynamics should be taken into
account.
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Figure 3: Estimated bacterial growth changes during study time in response to treatment regimes. A)
Coverage profile of the metagenomic reads mapped to the A. muciniphila reference genome. The coverage
distribution (top) shows a clear coverage pattern skewed by the DNA replication process. On a subset of samples,



this coverage distribution is less pronounced (bottom), possible due to reduced growth. Red lines indicate “peak” and
“through” points based on the smoothed coverage profile (solid red and blue lines).The peak-to-trough ratio (P2T) is a
correlated for bacterial growth. B) Aggregated P2T ratios for A. muciniphila stratified by treatment group. While for the
control group treatment regimes (grey areas) are not associated with change in growth rate, for tetracycline and
vancomycin the growth rate is typically lower after treatment. C) Aggregated P2T ratios for selected community
members under different treatment regimes.

Regions with differential coverage

We have shown that community adaptation to antibiotics is linked to SNP acquisition and
selection and change in growth rates. Next, we also wanted to address if changes in prophage
induction (Modi et al. 2013). Lysogenic phages are integrated in the bacterial genome as
prophage but get activated in response to diverse environmental stimuli including antibiotics to
excise from the genome and produce phage progeny (ref). Using similarity search of the
reference OMM' collection to known phage proteins (Arndt et al. 2016), we identified 58
putative prophage regions (found across 11 strains), of which 5 were marked as intact, 43 as
incomplete and 10 as incomplete, Supplementary Table 1).

We observe abnormal low read coverage near some of the predicted prophage regions (Fig 4A,
grey bars), which could be explained by loss of prophage regions in vivo within the study time or
parental generations in respect to the reference genome, highlighting that prophage population
OMM'™ is vastly evolving. Prophage activation would be indicated by higher read coverage in a
predicted prophage region. We found several examples for predicted prophages within B.
caecimurius. (Fig. 4A). Interestingly, an increase in coverage is observed at time points
collected after AB-treatments, for example at day 4 and day 9, while coverage of the region was
not increased at other time points (initial time point and time points after treatment)(Fig. 4B). We
quantified the difference between coverage inside the loci vs. the adjacent region of the
bacterial chromosome by calculating the fold-change in coverages (Fig. 4B, red dotted line and
black dotted line).

We identified two further loci where we observe an increase in coverage in respect to the
reference genome, again potentially due to prophage induction in the bacterial population(Fig.
4A). This time, fold-change of these regions are associated with specific treatment regimes (Fig.
4C), for example, the fold-change of region 2 seems stable in the control, ciprofloxacin and
vancomycin group, but increased during study time in the tetracycline group, indicating that the
presence of multiple copies are advantageous for the bacterial fithess only under tetracycline
treatment. Fold change differences of region 3 are particularly pronounced at the last time points
in the vancomycin group (Fig. 4C) and seem associated with a drop in growth rate (Fig. 3C). In
total, region 1 contains 68 ORFs, some of which are bacteriophage associated, such as “phage
tail tape measure protein”, “phage portal protein”, methyltransferases and reverse transcriptases
(Supplementary Table 2). However, the remaining content of the loci is poorly annotated, but
this prophage further contains “ParB/RepB/Spo0J family partition protein” usually associated
with low copy number plasmids and “N-acetylmuramoyl-L-alanine amidase” which have found to
be associated with other prophages and play a major role in lysis (Longchamp, Mauél, and
Karamata 1994).

We identified a region on the chromosome exhibiting a differential and treatment-group
dependent coverage, (Region 1) that encode a ADP-ribosylglycohydrolase family protein,
essential for ADP-ribosylation in viruses and bacteria (Catara et al. 2019) linked to defence to
antibiotic stress (Baysarowich et al. 2008) as well as linked to the toxin-antitoxin (TA) systems
that are required for the development of persister cells that survive antibiotic stress by
downregulating bacterial growth and upregulating beneficial phenotypes in these environments
such as biofilm formations (Catara et al. 2019). This finding is particularly interesting in the



context of change in bacterial growth quantified earlier since low growth rates could highlight the
presence of persister cells.

We further identified 2 regions with differentially coverage, Region 2 and 3, encoding 32 and 39
proteins, respectively. While region 2 encodes a range of transposase, it is likely associated with
a mobile genetic element, region 3 contains no known phage gene for transposase gene,
leaving the mode of propagation unknown. Interestingly, there are several similarities between
region 2 and 3, for example both encode a efflux RND transporter permease and a efflux RND
transporter periplasmic adaptor subunit and a TolC family protein. These efflux pumps are
known to confer multidrug resistance on bacteria by transporting a wide spectrum of structurally
diverse antibiotics (Venter et al. 2015) via the outer-membrane channel TolC (Pradel and Pagés
2002). In region 2, further membrane associated genes belong to RagB/SusD as well as
SusF/SusE, and TonB-dependent receptors as well as MATE efflux transporters, while region 3
contains ABC transporters. Taken together, this indicates that subpopulations exist with varying
numbers of copies of these regions 1-3 producing cells with a different number of membrane
transporters, and cells that have multiple copies in their genome are more resistant under
antibiotic stress due to optimized transport of the antibiotic compound out of the cell.

A B 10000
B. caecimuris; Control group; Day 63 5000

predicted prophage
0.
10000 1
—
5000 1
900 1 k)
g o
[ 0 10000
g [0)
5 S 50004
3 6001 3
(&) > 0
& 10000+
5000
300 1 0
- 10000 1
i h
-7 | predicted prophage 5000+ .
0e+00 1e+06 2e+06 3e+06 4e+06 Se+06 n
—_—
Position in genome 29 30 31
Position [in million nt]
Cc Reglon 1 Region 2 Region 3
8000 A 3000 4 2000 4 inside region
o
. difference
20001 ,\,_’-&;w 1000 AL~ V"X o /\/J\f\/_\ N
500 4
8000 1 30001 2000 N P
6000 1 4 . .
2000 ] 2000 4 1500 outside region
> 2 S 1000 & 10001
& 000 8 € 5004
2 8000 1 = 3000 2 2000
§ 60001 8 3 Control
40001 20001 W RA A= O
2000 1 1000 10001 Ciprofloxacin
8000 500°
A 3000 ] Tetracyclin
6000 2000
4000 1 2000 1 1500 1 Vancomycin
2000 1 10001 /\A/\/\/\ 10001
" y y y y T T T T T 500- T T T T T
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

Day Day Day



Figure 4: Coverage of prophage loci changes during treatment. A) On B. caecimuris we identified 3 regions with
high similarity to known prophages (grey vertical lines) that align with regions where we see a particular high or low
read coverage. Based on the coverage profile we identified 3 loci where the abundance is high on a subset of
samples (colored vertical lines). B) For region 1 we found on the genome (marked red) shows a differential coverage
where high changes in coverage of the loci in respect to its neighborhood are present after vancomycin treatment (i.e.
on day 4 and 18) but a low fold change is present before treatment (day 0) or during resilience (day 9 and 14). C)
Fold changes (FC) in coverage of the loci compared to the coverage adjacent to the loci is shown as filled region,
displayed with coverage outside the region (lower line) and coverage of the loci (upper line). While region 1 (red)
shows a high fold-change after treatment in the vancomycin group, region 2 (green) shows a higher and
time-dependent fold change in the tetracycline group. Region 3 shows a high fold change on the vancomycin group
after the 4th treatment round.

Reisolation of evolved bacterial community members confirm changes in antibiotic
sensitivity

To assess if the evolved strains exhibit altered sensitivity to the respective antibiotics(i.e.
acquired resistance to the applied antibiotics during the course of study), we picked 45 single
colonies from the evolved community taken from the last time point from the cecal content for E.
faecalis, C. innocuum and B. coccoides. Variant calling was performed using the same workflow
as for the WGS samples but with mapping against the respective individual reference genome.
Next generation sequencing retrieved on average 15.3M reads per sample.

We expected that AF of the observed variants (SNPs) in these samples were either near zero or
1. However, especially in C. innocuum we observed a multitude of variants with an intermediate
AF of ~0.5. Interestingly, the coverage within these regions was elevated by the factor ~2 (Fig.
5A) which is indicative of a duplication event, where one copy has evolved and acquired a SNP
but the other remained unchanged in the reference genome. A value slightly below 2 may arise
due to the fact that one of the duplicated regions accumulated more mutations and due to the
stringent mapping, not all reads were mapped to the reference genome. AF values within these
regions are also intermediate in the metagenomic shotgun samples. We conclude thatAF
around 0.5 should be interpreted with caution and have therefore filtered all metagenomic
shotgun samples for the respective genomic regions.

Variant counts differ substantially between the colonies and we identified on average ###
variants per sample for E. faecalis (Fig. 5B). This high variability is mainly driven by a subset of
E. faecalis samples that have an abnormal high SNP load. On C. innocuum, we observe an
overlap of variants that we detect in the MSG and variants that we detect when processing the
isolates alone. As abundance of E. faecalis was too low in MGS, we could not compare the
datasets side by side. Phenotypic characterization of a subset of isolates revealed that they
exhibit different MIC values. In particular, SNPs in the 30S ribosomal protein gene S10 in C.



innocuum correlated with increased MIC against tetracycline.
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Figure 5: SNPs observed on the 30S ribosomal protein lead to a de novo acquired resistance against
tetracycline. A) A subset of variants exhibit an intermediate AF on the isolates (y axis) also exhibit an intermediate
AF in the WGS samples (left), leading to an inflated estimate of variants if not controlled appropriately. On the
isolates, the coverage of the problematic variants is higher compared with variants near 1 or zero (right), indicating
that these problematic regions are duplicated regions. B) Number of SNPs observed in the isolates differ substantially
(top), and samples such as SW104 that have a high number of SNPs have these scattered throughout the genome
(bottom). C) A subset of mutations that are present in the isolates (left) and metagenomes (right). Grey regions
indicate the presence of a technical zero ( read count on a location is lower than 25). MIC subplot indicates if the

inhibitory concentration of the evolved community is higher (arrow up) or lower (arrow down) or similar (“-”) compared
to unevolved stock samples.

Set of highly correlated SNPs can be decomposed into genotypes using NMF

Major allele frequency distributions of variants observed over the study time (Fig 2) show
evidence that some of the OMM™ strains appear to be non-monoclonal and species have
adapted within the host over generations, resulting in sets of linked variants. Furthermore, due
to often low coverage and low sequence divergence, direct assembly of substrains show no
clear separation of genomes on the substrain boundary. However, the non-random linkage of
SNPs over time points, and oftentimes a positive correlation of allele frequency (AF) of variants
between study groups (Fig. 2) support validity of the detected variants and the presence of
haplotypes in the study population. To detect haplotypes we developed a method based on
sparse non-negative matrix factorization (Methods) which detects co-occurring linear
combinations of the SNPs profile of a bacteria in multiple samples (i.e. genotypes) and
calculates the fraction of explained variance for each decomposed haplotype to the overall
sample’s variance in AF. Using this approach we successfully recovered co-occurring SNP
combinations. The reconstructed haplotypes show a strong time and treatment-dependent
effect.

Discussion

In this study, we present the community effects of a defined mouse microbiota to repeated
applications to antibiotics. We identified selection effects and potential de novo mutation on the
SNP level. Furthermore, estimated growth rates show a drop in growth rate after AB application,
potentially due to the selection of persister cells that are evolved to exhibit a slow growth rate



but are physiologically more resistant to a wide range of stressors. Finally, re-isolation and
sequencing of cells from the evolved community show that some SNPs reach fixation, and that
carriers of SNPs are resistant to antibiotics and exhibit a higher MIC concentration, potentially
due to mutations in ribosomal genes that prevent antibiotic binding (Jacoby 2005). This is one of
the first strain-level genome based analyses on the evolution of AB resistance in the gut
microbiome.

We present a range of caveats that are important to consider when performing similar
experiments using low-complex community models such as the OMM'2. First, we observe a high
similarity within chromosomal regions of the OMM'? community that would result in a highly
inflated SNP profile. One solution to account for these effects would be masking of regions with
high similarity to other regions or by limiting the mapping to unique locations (e.g. not consider
reads that would map to multiple positions). Furthermore, we found that absolute abundance
measures, as provided by qPCR measures (especially on a log,, scale), are intuitive to
understand and response effects are harder to understand on a relative scale (Fig. 1BC).
Duplication events complicate SNP analysis, since we observe that duplication events lead to
an inflated SNP count whereby many of the SNPs exhibit intermediate AF. However, we see
that copy number variations of specific loci such as genes seem to be a biological process
linked with AB selection and filtering of these variants are non-trivial.

It was shown that bacterial persisters form a subpopulation of antibiotic-tolerant cells that form
within a population of genetically antibiotic-susceptible bacteria and multiple genetic pathways
involved in persister formation were identified (Harms et al. 2017), such as RelA, SpoT, the
protease Lon, and toxin-antitoxin (TA) modules (Cohen, Lobritz, and Collins 2013), which
release toxins to inhibit cellular processes in turn slowing down protein synthesis (Korch,
Henderson, and Hill 2003). Interestingly, we see a SNP within the coding region of the
toxin-antitoxin (TA) system in F. plautii, but, however, no significant difference of the SNP in the
treatment groups in respect to control. Furthermore, some genes encoded on the region 1
where we observe differences in read counts, potentially due to phage activation, encode
genes related to the TA system which could trigger a persister phenotype. A reduced growth
rate after treatment could be attributable to the selection of persister cells that are resistant but
exhibit a significantly reduced growth rate. The growth rates we observe would be in line with
the selection of persister cells after treatment.

Observed ABR sensitivity of community members on the population level is in line with MIC
concentrations observed in monocultures (Methods, Supplementary Figure S1). Difference in
growth rate is a further factor that could cause the observed response patterns. Bacteria with
relatively slow growth rates in monocultures (Supplementary Table 5), for example, B.
caecimuris and A. muciniphila show intrinsic resistance against all three AB used in this study.

*kk

It was shown that AB enhances the genome-wide mutation rates (Long et al. 2016). We observe
this phenomenon on the isolates of evolved community members of E. faecalis, but also on the
control group and tetracycline group but not on ciprofloxacin and vancomycin groups. ***

, potentially due to the presence of subpopulations with a hypermutator phenotype where the
mutations are scattered around the whole genome (Fig. 5B bottom) or be of a technical origin.

Understanding the factors contributing to resilience and dysbiosis are crucial for the success of
faecal transplantation and therapeutic manipulation of the gut microbiome (Kootte et al. 2012).
Furthermore, this study will provide guidance on how to tackle technical challenges that arise
when analysing metagenomic content of gnotobiotic mouse models. Previous studies



characterized the short and long term effect of compositional and functional changes caused by
antibiotic treatment in mice in the context of high-fat diet and obesity (Nobel et al. 2015) and
identified effects of AB to high-fat diet induced obesity. The effects of AB treatment have also
been studied and showed that antibiotic pressure resulted in reproducible, long-lasting
alterations of the gut microbiome, including a decrease in overall diversity (Antonopoulos et al.
2009) and in the context of susceptibility to infections (Theriot et al. 2014). While the above
mentioned studies are valuable, current studies on AB are using conventional mouse
microbiomes, which has been shown to be a confounding factor, since mice raised in different
research institutions or obtained from different vendors can exhibit profound differences in
microbiota composition (Stecher et al. 2010). Gnotobiology is a method to mechanistically
investigate microbiota functioning and to assess causality in alterations of gut microbiota
composition. The use of gnotobiotic mouse models could be valuable to study community
adaptation and the consequences of AB treatment in a mechanistic manner, for example, by
controlling for interaction networks, such as cross-feeding or competition (Weiss et al. 2021). In
particular, it is unclear, to which extent the microbiota returns to the pre-antibiotic state and
which factors play a role in mediating resilience such as environment such as diet and the role
of bacteria acquiring AB resistance as a consequence.

Methods

Animal experiments

In order to effectively capture the adaptation of the bacterial community to the AB challenge, the
study design included a total of 4 treatment periods, interspaced by resilience phases of varying
lengths ranging from 5 days up to 35 days, which allowed us to study the influence of repeated
applications of AB to the microbial community dynamics. We treated adult mice stably colonized
by the defined OMM' community with physiologically relevant concentrations of antibiotics,
vancomycin (Roth, 0242.3), tetracyclin (Sigma-Aldrich, T7660) and ciprofloxacin (Sigma-Aldrich,
17850) via drinking water (0,167mg/ml) and housed them under germ-free conditions (5 mouse
per study group) or control (Fig. 1A). We observed no difference in the quantity of water
consumed between the groups. During the study period of 80 days, fecal samples from each
mouse were collected on a weekly basis, amounting to a total of 307 samples. All animal
experiments were approved by the local authorities (Regierung von Oberbayern) and an ethics
committee, and were performed according to the legal requirements.

Quantitative PCR of bacterial 16S rRNA genes

We determined the absolute abundance of the individual strains of the OMM?'? consortium at
different time points via qPCR as outlined in Brugiroux et al. (Brugiroux et al. 2016).

Reisolation of evolved strains

Cecal content from OMM'? mice was taken and diluted with sterile PBS (dilution series). Several
dilutions were spread on AAM agar plates to obtain single colonies Colonies were picked based
on colony morphology and used for inoculation of liquid AAM cultures. KB1 clones were grown
aerobically as this is the only bacterium in the community that can grow aerobically. 146 colonies
were restreaked on fresh plates to obtain single colonies. Cultures were analyzed via
Gram-staining to check for contaminations. Cultures were used to stock the isolated clones.



Residual 8 ml cultures were used for chromosomal DNA isolation using the Turnbaugh method
(bead bashing + phenol chloroform extraction).

Genome sequencing, mapping and variant calling

We employed shotgun NovaSeq pyrosequencing (~6.8 Mbases) per sample on a subset of 112
samples on selected time points (WGS profile of all time points for one mouse per group plus
two biological replicates per group of selected time points) (Fig. 1A). We analysed sequenced
samples via a snakemake pipeline (Késter and Rahmann 2012). This includes QC’ing reads via
fastp using default arguments (S. Chen et al. 2018). We mapped all WGS samples to the
combined reference genome collection. This collection consists of high-quality reference
genomes (Lamy-Besnier et al. 2021). These reference genomes are optimized using
chromosome conformation capture (Hi-C) data to reorganize, close, and improve the quality of
these 12 genomes, based on the reference genomes we have published recently (Garzetti et al.
2017). We use bwa mem with the “-x intractg” to map QC’ed reads to the reference genomes.
Mapping fraction to the reference set was very high (>95%). We then removed duplicated reads
and reads that map to multiple positions using “samtools fixmate - -" and “ samtools view -bq 1”.
Variant calling was performed using LoFreq (Wilm et al. 2012) using the options "lofreq viterbi”
and "lofreq indelqual --dindel” and “lofreq call-parallel --sig 1E-4 --min-cov 25 --min-bq 25
--min-alt-bq 25 --min-mq 60 -d 10000".

Coverage quantification

We calculated coverage per sample using the “bamCoverage” command on the “bam” files that
are written by the “lofreq viterbi” and “lofreq indelqual” step. These .bam files contain the
alignment information of reads after removing exact duplicates and reads that are mapping to
multiple positions.
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Figure S2: Loci with highly different read coverage dependent on treatment group on time points. Location
and orientation of genes based on published genome annotation.
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