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Abstract: The main goal of this review is to provide an updated overview of the involvement of the
RNA-binding protein (RBP) HuD, encoded by the ELAVL4 gene, in nervous system development,
maintenance, and function, and its emerging role in nervous system diseases. A particular focus is on
recent studies reporting altered HuD levels, or activity, in disease models and patients. Substantial
evidence suggests HuD involvement in Parkinson’s disease (PD), Alzheimer’s disease (AD), and
amyotrophic lateral sclerosis (ALS). Interestingly, while possible disease-causing mutations in the
ELAVL4 gene remain elusive, a common theme in these diseases seems to be the altered regulation
of HuD at multiple steps, including post-transcriptional and post-translational levels. In turn, the
changed activity of HuD can have profound implications for its target transcripts, which are overly
stabilized in case of HuD gain of function (as proposed in PD and ALS) or reduced in case of decreased
HuD binding (as suggested by some studies in AD). Moreover, the recent discovery that HuD is a
component of pathological cytoplasmic inclusion in both familial and sporadic ALS patients might
help uncover the common molecular mechanisms underlying such complex diseases. We believe
that deepening our understanding of the involvement of HuD in neurodegeneration could help
developing new diagnostic and therapeutic tools.

Keywords: HuD; amyotrophic lateral sclerosis; Alzheimer’s disease; Parkinson’s disease; RNA-binding
protein; ELAVL4

1. HuD Functions in Neuronal Development, Synaptic Plasticity and Regeneration

The RNA-binding protein (RBP) HuD, encoded by the ELAVL4 gene, is a member of
the Hu protein family, which includes homologs of the Drosophila elav (embryonic lethal
abnormal vision) gene, while HuB (ELAVL2) is expressed in neurons and gonads, and HuR
(ELAVL1) is ubiquitously expressed in all tissues, HuC (ELAVL3) and HuD are exclusively
expressed in neurons [1]. HuD is considered one of the most important regulatory factors
in the nervous system, governing many neuronal processes such as development, plasticity,
and functionality. In this context, HuD exerts its regulatory functions through tightly con-
trolling mRNA metabolism, including neuronal mRNA stability, localization, degradation,
and translation. HuD mRNA is detectable since the initial stages of brain development,
suggesting an early role in the regulation of nervous system formation [2]. Indeed, one of
its leading roles is in the context of neuronal commitment by suppressing neuroblast prolif-
eration [3]. HuD knockout mice showed a significant increase in the self-renewal and loss of
differentiation of neural precursors [4]. Moreover, HuD-deficient mice showed higher levels
of apoptosis and an increased number of subventricular proliferative zones, suggesting
that finely regulated HuD expression is essential for promoting differentiation [4]. HuD
downregulation resulted in a remarkable inhibition of neurites outgrowth [5,6]. Contrarily,
up-regulated HuD levels in embryonic stem cells produced a significant increase in the rate
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and length of growing neurites, and in the number of cells with long extensions [6,7]. This
evidence supports the key role of HuD in neurite morphological development, specifically
in axonal and dendritic elongation [6,8,9]. The HuD protein is predominantly localized in
the cytoplasm, where it acts at the post-transcriptional level by stabilizing its target mRNAs.
In neurons, important HuD targets such as GAP-43, Tau, and NEURITIN1 (NRN1) are
involved in growth cone development and cytoskeletal assembly [5,6,8–11]. In particular,
GAP-43 is crucial for axonal growth during nervous system development [6,8,12]. HuD
promotes neurite outgrowth by increasing GAP-43 mRNA levels by binding its 3’ untrans-
lated region (3’UTR) [6]. Accordingly, a decrease in HuD levels led to an acceleration of
the GAP-43 mRNA degradation rate and resulted in defective neurite outgrowth during
differentiation [8]. The AU-rich element (ARE) present in the 3’UTR is sufficient for GAP-43
mRNA localization and translation in the axon region through the interaction with a com-
plex formed by HuD and ZBP1 [13]. HuD also plays a role in supporting axonal recovery
after neurites damage by stabilizing key target transcripts. Both GAP-43 and HuD levels are
upregulated during post-injury axonal regeneration [13]. Another well-known HuD target
is NRN1, which promotes axon extension during development and upon injury [9,14]. In
addition, NRN1 expression has been detected in the earliest stages of ventral spinal cord
development, suggesting its implication in the refining process of exuberant branches for
establishing neuromuscular junctions (NMJs) [15]. Together these data suggest an indirect
role for HuD during the development of neuromuscular synaptic connections.

2. HuD Structure and Functioning Mechanisms

The ELAVL4 gene, located on chromosome 1 in humans, is well conserved in verte-
brates [3]. It spans ~146 kb of DNA and is divided into seven coding exons (E2 to E8) [1].
The complexity of the 5’ sequence of HuD transcripts, which encode different HuD N-
termini, and the alternative splicing of exons 6 and 7 lead to the generation of several HuD
mRNA isoforms [16] (Figure 1). The encoded protein is ~40–42 kDa in size and contains
three RNA recognition motifs (RRMs). The linker region, housing the nuclear export (NES)
and the putative nuclear localization signal (NLS), separates the second and the third
RRM and contains multiple residues that are post-translationally modified [1]. RRM1 and
RRM2 associate with target mRNAs by binding to AREs, which are commonly found in
the 3’UTR of short-lived transcripts encoding proteins involved in cellular proliferation,
differentiation, transcription, RNA metabolism, inflammation, and stress response [1,17].
The third RRM is also involved in ARE binding, but it interacts as well with long poly(A)
tails of transcripts and with other proteins, mediating homo- and hetero-multimerization
of Hu family members [1,16].

HuD variants differ in amino acid sequences of NLS or NES in the linker region, which
play a crucial role in the temporal and spatial regulation of neuronal differentiation [16].
Indeed, the analysis of the sequence between RRM2 and RRM3 led to the identification
of three variants, which are expressed in specific stages of neuronal differentiation and
show variable localization patterns in cells, thus playing different roles according to their
cellular compartment [18].

HuD controls neuronal gene expression at multiple levels, including mRNA turnover,
translation, splicing and localization [16] (Figure 2). Several studies demonstrated the
role of HuD as a stabilizer of neuronal mRNAs, decreasing the deadenylation rate of its
targets [3,17]. Since the deadenylation is the first step of mRNA degradation, followed
by rapid and processive decay of the body of mRNA, HuD plays an important role in
increasing mRNA half-life. Along with promoting mRNA stability, evidence supports the
role of HuD in regulating both the localization and translation of its target transcripts [1].
As previously mentioned, a nuclear export signal in the linker region allows HuD to shuttle
transcripts into the cytoplasm; in addition, the first two RRM domains and the linker region
interact with the mRNA export receptor TAP/NXF1 [19].
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Figure 1. Schematic representation of HuD gene, mRNA, and protein. Top, a schematic represen-
tation of the ELAVL4 gene in which the PD-linked SNPs are indicated. Middle, a schematic repre-
sentation of HuD mRNA isoforms, showing coding exons (green and purple rectangles), alterna-
tive non-coding exon 1 (blue rectangles), and the favored (^) versus putative alternate translation 
start site (*). MicroRNAs and RBPs interacting with the 3’UTR are also displayed. Bottom, sche-
matic diagram of HuD protein domains and the post-translational modification involved in PD. 
This figure was drawn using the vector image bank of Servier Medical Art (https://smart.ser-
vier.com/). 

HuD variants differ in amino acid sequences of NLS or NES in the linker region, 
which play a crucial role in the temporal and spatial regulation of neuronal differentiation 
[16]. Indeed, the analysis of the sequence between RRM2 and RRM3 led to the identifica-
tion of three variants, which are expressed in specific stages of neuronal differentiation 
and show variable localization patterns in cells, thus playing different roles according to 
their cellular compartment [18]. 

HuD controls neuronal gene expression at multiple levels, including mRNA turno-
ver, translation, splicing and localization [16] (Figure 2). Several studies demonstrated the 
role of HuD as a stabilizer of neuronal mRNAs, decreasing the deadenylation rate of its 
targets [3,17]. Since the deadenylation is the first step of mRNA degradation, followed by 
rapid and processive decay of the body of mRNA, HuD plays an important role in in-
creasing mRNA half-life. Along with promoting mRNA stability, evidence supports the 
role of HuD in regulating both the localization and translation of its target transcripts [1]. 
As previously mentioned, a nuclear export signal in the linker region allows HuD to shut-
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region interact with the mRNA export receptor TAP/NXF1 [19].  

Figure 1. Schematic representation of HuD gene, mRNA, and protein. Top, a schematic representation
of the ELAVL4 gene in which the PD-linked SNPs are indicated. Middle, a schematic representation
of HuD mRNA isoforms, showing coding exons (green and purple rectangles), alternative non-
coding exon 1 (blue rectangles), and the favored (ˆ) versus putative alternate translation start site (*).
MicroRNAs and RBPs interacting with the 3’UTR are also displayed. Bottom, schematic diagram of
HuD protein domains and the post-translational modification involved in PD. This figure was drawn
using the vector image bank of Servier Medical Art (https://smart.servier.com/).

With a few exceptions, HuD generally promotes the expression of target genes, en-
hancing their mRNAs’ translation (Table 1). HuD enhances cap-dependent translation by
binding to eIF4A and the poly(A) tail of transcripts via its linker region and the third RRM
domain. However, HuD can also repress some targets’ protein synthesis [1,16]. Moreover,
HuD has been shown to control alternative splicing and alternative polyadenylation of neu-
ronal transcripts. Several studies demonstrated that HuD, along with other neural ELAV
proteins, can promote or suppress exon inclusion by interacting with (or antagonizing)
splicing, transcription, and chromatin components. In addition, by blocking the association
of the essential components of the cleavage and polyadenylation machinery, HuD can
regulate alternative polyadenylation of target mRNAs, such as calcitonin/calcitonin gene-
related peptide (CGRP). In this case, HuD binding is crucial to promote the neuron-specific
CGRP pathway [20]. Finally, it has been recently reported that HuD can bind neuronal
circular RNAs (circRNAs), thus participating in the regulation of networks comprising
mRNAs, circRNAs, and microRNAs [21–23].

https://smart.servier.com/
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Figure 2. Schematic representation of HuD roles in neurons. In the nucleus, HuD cooperates with 
transcription factors for RNA synthesis, it is involved in RNA splicing through interaction with 
spliceosome complex, and it promotes mRNA export to the cytoplasm through nuclear pores. In 
the cytoplasm, HuD is involved in mRNAs translation and, in cooperation with other RBPs, it pre-
vents mRNAs degradation and controls specific mRNA localization in neuronal compartments. 
This figure was drawn using the vector image bank of Servier Medical Art (https://smart.ser-
vier.com/). 
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Figure 2. Schematic representation of HuD roles in neurons. In the nucleus, HuD cooperates with
transcription factors for RNA synthesis, it is involved in RNA splicing through interaction with
spliceosome complex, and it promotes mRNA export to the cytoplasm through nuclear pores. In the
cytoplasm, HuD is involved in mRNAs translation and, in cooperation with other RBPs, it prevents
mRNAs degradation and controls specific mRNA localization in neuronal compartments. This figure
was drawn using the vector image bank of Servier Medical Art (https://smart.servier.com/).

Table 1. HuD target transcripts. The table shows a list of known HuD target transcripts. In the
“Function” column, + indicates upregulation and – indicates downregulation.

Target Region Sequence Regulatory Mechanism Function Reference

AChE 3’UTR AU-rich element mRNA stability + [10]

AChE 3’UTR AU-rich element mRNA stability + [24]

ADAM10 3’UTR AU-rich element mRNA stability + [25]

APP 3’UTR mRNA stability + [26]

APP Intron U-rich
element Alternative splicing + [27]

α-synuclein (SNCA) 3’UTR U-rich
element + [28]

BACE1 3’UTR U-rich
element mRNA stability + [26]

BACE-AS - U-rich
element + [26]

BDNF 3’UTR AU-rich element mRNA stability + [29]

CGPR Intron U-rich
element Alternative splicing + [20]

CaMKIIα 3’UTR AU-rich element mRNA stability + [30]

https://smart.servier.com/
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Table 1. Cont.

Target Region Sequence Regulatory Mechanism Function Reference

CDKN1A 3’UTR U-rich
element mRNA stability + [31]

cirHomer1a - AU-rich element Expression and transport + [22]

GAP-43 3’UTR AU-rich element mRNA stability + [32]

GAP-44 3’UTR AU-rich element Transport + [13]

Gls Intron GU-rich element Alternative splicing - [33]

LRRK2 3’UTR U-rich
element + [28]

MYCN 3’UTR AU-rich element mRNA stability + [34]

MYCN 3’UTR AU-rich element mRNA stability + [35]

NEP 3’UTR AU-rich element mRNA stability + [29]

NGF 3’UTR AU-rich element mRNA stability + [29]

Neuritin 1 3’UTR AU-rich element Localization + [9]

Neuritin 1 3’UTR AU-rich element Localization + [14]

Neuritin 1 3’UTR AU-rich element mRNA stability + [36]

NF–1 Intron AU-rich element Alternative splicing + [37]

NF–1 Intron AU-rich element Local transcription elongation + [38]

Neuroserpin 3’UTR AU-rich element mRNA stability + [39]

NT-3 3’UTR AU-rich element mRNA stability + [29]

NOVA–1 3’UTR AU-rich element mRNA stability and Translation + [40]

MSI1 3’UTR AU-rich element mRNA stability + [41]

Kv1.1 coding region U-rich
element Translation + [42]

SATB1 3’UTR AU-rich element mRNA stability + [43]

SOD1 3’UTR AU-rich element mRNA stability + [44]

Tau 3’UTR U-rich
element Transport + [45]

3. Possible Roles of HuD in Nervous System Diseases

HuD functions have been extensively studied in neuronal development, plasticity, and
regeneration. Recent studies, however, suggest that HuD misregulation might underlie
neurological disorders, including neurodegenerative diseases such as Parkinson’s disease,
Alzheimer’s disease, and amyotrophic lateral sclerosis (Figure 3).

3.1. Parkinson’s Disease (PD)

PD is a neurodegenerative disease characterized by the loss of dopaminergic neurons
caused by the aberrant accumulation of α-synuclein in the midbrain. The pathological
etiology seems to be related to both genetic and environmental risk factors [57]. Interest-
ingly, three different studies analyzed the genetic elements influencing the age-at-onset
(AAO) of PD and among various candidates they reported HuD as a plausibly associated
factor [46–48]. PARK10 is a genetic locus with a robust linkage signal associated with AAO
of PD mapping on chromosome 1p, which hosts the ELAVL4 gene. Among nine different
single-nucleotide polymorphisms (SNPs) found in the Caucasian population, two have
been associated with the AAO of PD. Specifically, rs967582 is located in the first intron and
rs2494876 is a non-synonymous SNP mapping in the coding region of exon 8 [46]. Another
study examined the correlation between ELAVL4 SNPs and AAO of PD in Norwegian,
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United States (US) and Irish populations [47]. While no association was found in the first
two populations, a strong link has been identified in the Irish one for two markers: the
already mentioned rs967582 and another intronic SNP, rs3902720. Given the correlation
between the Iceland population with late-onset PD and their Celtic origins, a possible Irish
founder effect in the ELAVL4 association to PD has been hypothesized. A third study
confirmed the strong correlation between PD and the rs967582 SNP, extending its relevance
also in US and Norwegian populations [48]. Interestingly, the rs2494876 SNP consists of
a serine substitution with a proline in the linker region between RRM2 and RRM3, with
possible consequences in the protein function [17].
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Figure 3. Summative figure of the evidence on the possible implication of HuD in major neurodegen-
erative diseases [25,26,28,44,46–56].

Increased activity of the Leucine-Rich-Repeat Kinase-2 (LRKK2), due to mutations
such as the G2019S, is a major cause of familial PD. Pastic et al. recently demonstrated
that LRKK2 can phosphorylate conserved serine and threonine residues in the RRM2 of
neuronal ELAVLs, including HuD [28]. They proposed that hyperphosphorylation of the
RRM2 by LRKK2-G2019S can alter the activity of HuD in PD. Specifically, phosphorylation
of HuD RRM2 increases its binding to mRNA target. Notably, HuD hyperphosphorylation
by LRRK2 has an inhibitory effect on its mRNA stabilizing activity, while it enhances its
effects on mRNA splicing. Levels of several HuD targets, including genes involved in
the mitochondrial organization, inflammation, and organelle trafficking, were accordingly
altered in PD patients.

3.2. Alzheimer’s Disease (AD)

HuD involvement in processes of learning and memory formation paved the way for
studies on the impairment of its functions in AD, a neurodegenerative disease characterized
by progressive loss of memory and cognitive functions. Amadio et al. showed a remarkable
decrease in HuD levels correlated to an increase of β-amyloid (Aβ) aggregates in post-
mortem hippocampal tissues of AD patients [25]. They reported higher levels of pathogenic
Aβ peptide with a length of 42 residues (Aβ1-42) compared with a shorter physiological
form (Aβ1-40). This might be partly due to impaired ADAM10 mRNA stabilization due to
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reduced HuD levels. ADAM10 encodes for one of the most relevant α-secretases involved
in APP cleavage for producing soluble and non-pathogenic AβPP. The presence of an
ARE region in the ADAM10 3’UTR suggested possible post-transcriptional regulation by
HuD [25]. Immunoprecipitation analysis demonstrated that ADAM10 mRNA is indeed
a HuD target [25]. In addition, HuD binding to the ADAM10 ARE could be promoted by
protein kinase C (PKC). PKC, which is decreased in postmortem AD brain tissues, is di-
rectly implicated in the activation of the α-secretase ADAM10, leading to an increase of the
soluble AβPP production at the expense of Aβ fragments. Moreover, PKC promotes HuD
export from the nucleus and its cytoplasmic and cytoskeletal localization, with important
consequences in the up-regulation of HuD targets [49].

In contrast with the earlier study by Amadio et al. [25], who found decreased HuD
levels in the hippocampus, other authors have later reported increased HuD levels in AD
patients’ post-mortem samples. In particular, increased HuD levels have been detected
in superior temporal gyrus by Kang et al. [26] and in the frontal cortex, possibly due to
increased activation of the thyroid hormone pathway, by Subhadra et al. [50]. Regarding
the underlying pathological mechanisms, Kang et al. investigated the association between
HuD, the β-secretase BACE1, and the long noncoding RNA (lncRNA) BACE1AS [26]. β-
secretase enzymes are crucial for Aβ production and represent possible druggable targets
for AD treatment. BACE1AS acts as a BACE1 expression enhancer thanks to sequence
complementarity to BACE1 mRNA. HuD binding to BACE1AS increases the levels of this
lncRNA, thus indirectly promoting BACE1 stabilization and translation [26]. Accordingly,
increased levels of HuD were mirrored by increased BACE1AS and BACE1 mRNA levels
in AD brains. Moreover, HuD overexpressing mice showed increased amounts of Aβ,
APP, BACE1, and BACE1AS in the hippocampus, cortex, and cerebellum [26]. Collectively,
these data further support the implication of HuD in APP cleavage control during AD
progression.

Transcript levels of another HuD target, neuroserpin, are increased in AD brains [50].
Neuroserpin is an inhibitor of tissue plasminogen activator (tPA). tPA inhibition leads to a
dramatic reduction of plasmin protease activity, which regulates and degrades β-amyloid
plaques for safeguarding brain homeostasis. Thus, in AD patients’ brain, increased HuD
activity might lead to an aberrant rise in neuroserpin protein levels [50].

A recent study analyzed the effects of HuD loss- and gain-of-function in an iPSC-based
AD model [51]. HuD overexpression rescued the AD-associated phenotype, up-regulating
some specific APP splicing isoforms and reducing the Aβ1-42/Aβ1-40 ratio. In particu-
lar, the authors showed a significant increase in the APP695 splicing isoform, which is
downregulated in AD, at the expense of the APP751 and APP770 isoforms. In addition,
HuD overexpressing cortical neurons showed Aβ1-42 reduced levels compared with the
β-amyloid protective Aβ1-40 counterpart. Transcriptional and proteomic analysis in over-
expressing neurons revealed that HuD regulates several cellular pathways. Particularly
noteworthy is “axogenesis signaling”, including axonal guidance and synaptogenesis regu-
lation. Moreover, aberrant DNA damage, cell cycle re-entry and mitochondrial pathways
were impaired in HuD knock-down and AD conditions.

3.3. Amyotrophic Lateral Sclerosis (ALS)

ALS is a complex neurodegenerative disease primarily caused by motoneurons’ (MNs)
progressive loss, with considerable genetic and phenotypic heterogeneity. Indeed, clinical
and basic research evidence suggests multiple contributing factors, with important but
varied genetic components and a complex onset. Recent evidence suggests that altered
HuD activity might be a common underlying pathomechanism in both familial (fALS) and
sporadic (sALS) ALS.

In 2011, two independent laboratories studied HuD in the context of the MN. The
authors showed how the interaction between HuD and survival of motor neuron (SMN)
could rescue motor neuron defects in spinal muscular atrophy, albeit with different mecha-
nisms [9,58]. HuD was then found among the interactors of ALS-linked factors, including
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the RBPs Fused in sarcoma (FUS) and TAR DNA binding protein 43 (TDP-43), in neuroblas-
toma cells [55]. More direct evidence of the possible involvement of HuD in ALS was shown
in 2017, when our laboratory performed a transcriptome profiling in induced pluripotent
stem cells (iPSCs)-derived MNs. HuD transcript and protein levels were significantly
increased in MNs carrying a severe ALS-linked mutation in the FUS gene (P525L) [53].
This may be partly due to the fact that miR-375, a microRNA negatively regulating HuD
expression, was downregulated in FUS mutant MNs. Notably, miR-375 involvement in
ALS might extend to sporadic ALS, since its levels were altered in a sALS mouse model [59].
Other microRNAs might be involved in HuD regulation in ALS. For instance, a mouse
model carrying an ALS mutation in the Cu/Zn SuperOxide Dismutase 1 (SOD1) gene
showed increased levels of miR-129-5p and decreased HuD levels [52].

Subsequent studies suggested that, beyond microRNAs, the molecular mechanisms
underlying HuD altered levels in ALS might involve multiple levels of regulation. By
taking advantage of photoactivatable ribonucleoside-enhanced crosslinking and immuno-
precipitation (PAR-CLIP), we found that ALS mutant FUS, but not the wild-type protein,
binds the HuD mRNA 3’UTR [56]. Mutant FUS binding to 3’UTRs generally correlates with
increased protein levels of its targets [60]. In the case of HuD, the molecular mechanism
involves the RBP FMRP (fragile X mental retardation protein). In MNs, FMRP directly
binds the 3’UTR of HuD and acts as a negative regulator of HuD translation [54]. Mutant
FUS binding to the same sites intrudes on this function, leading to increased HuD trans-
lation [54]. In turn, HuD targets NRN1 and GAP-43 were increased in FUS-ALS human
and mouse models [54,61]. Accordingly, increased axon branching, arborization, and faster
growth upon injury were observed in FUS mutant cells. These axonal phenotypes were
rescued by dampening NRN1 levels in FUS-P525L MNs, demonstrating that this phenotype
is a consequence of increased NRN1 [54]. New evidence suggests that the effects of HuD
upregulation on its target genes in ALS might extend beyond NRN1 and GAP-43. By taking
advantage of human iPSC-derived MNs cultured in compartmented chambers and RNA
profiling by digital colour-coded molecular barcoding in soma and neurites, it was found
that HuD overexpression in FUS-WT MNs produces changes strikingly similar to those
observed in mutant FUS MNs, especially for the expression of a set of genes involved in
synaptic transmission and neuron development [62]. This finding supports the importance
of HuD in the context of a complex regulatory RBP network, which is in place in normal
MNs and disrupted upon FUS mutation (and possibly also in sALS, see below). Accord-
ingly, Tebaldi et al. showed that genes associated with MN diseases, such as ALS and spinal
muscular atrophy (SMA), were enriched among HuD targets and that HuD overexpression
in NSC-34 cells (a mouse hybrid line between MNs and neuroblastoma) increases their
translation [63]. Interestingly, it has been recently reported HuD can bind and regulate the
expression of neuronal circRNAs [22]. Since several circRNAs were deregulated upon FUS
loss of function or mutation in MNs [64], this evidence suggests the possibility that the ac-
tivities of these two RBPs might converge also on this class of transcripts, with implications
for ALS.

HuD might play a role also at late disease stages as it was detected as a component
of pathological cytoplasmic inclusions in FUS and TDP-43 ALS patients’ postmortem
samples [55,56]. HuD capturing in these macromolecular aggregates, which represent a
hallmark of the pathology, might occur via direct protein-protein interaction with mutant
FUS (and possibly other protein components of the inclusions), through prior recruitment
of HuD into stress granules (which are thought to represent precursors of the aggregate),
and/or by binding to RNA molecules involved in aggregate formation [56,65]. Interest-
ingly, the co-expression of mutant FUS and HuD in HeLa cells is sufficient to induce
the formation of stiff cytoplasmic speckles, which might represent an early stage during
aggregate formation [56].

HuD involvement in ALS might extend to the sporadic cases devoid of any mutation
in known ALS-linked genes. We have detected HuD in pathological inclusions of sALS
patients, colocalizing with a phosphorylated form of TDP-43 typically associated with the
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pathology [56]. The Cereda and Perrone-Bizzozero laboratories recently demonstrated that
HuD binds the 3’UTR of SOD1 mRNA increasing its levels during oxidative stress [44].
Notably, increased mRNA and protein levels of both SOD1 and HuD were reported in
the motor cortex of sporadic ALS patients, possibly due to increased HuD binding to
SOD1 mRNA [44].

4. Conclusions and Future Perspectives

HuD involvement in neurological diseases was initially proposed when SNPs in the
ELAVL4 gene were associated with PD. Since then, increasing evidence points to a possible
role for this RBP in other neurodegenerative diseases as well. This is not unexpected, given
its multiple functions in the nervous system. However, strong genetic evidence of HuD
mutations associated with AD and ALS is still missing, and even for PD a causal effect of
the aforementioned SNPs is still uncertain.

Recent studies suggest that in neurodegenerative diseases rather than being mutated
per se, HuD functions could be altered due to impairment of the transcriptional, post-
transcriptional and/or post-translational regulatory mechanisms that ensure, in normal
neurons, proper levels of expression and activity. In PD, this would occur due to mutations
in LRKK2, a kinase that phosphorylates HuD and other neural ELAVLs regulating their
RNA binding ability. Altered HuD activity has been also proposed to play a role in AD.
In this case, several studies have shown either decreased or increased HuD levels in post-
mortem patients’ brain samples [25,26,50]. Such apparently conflicting evidence might
result from the different brain regions analyzed (hippocampus or cortex). Moreover, it
has been proposed that both a loss-of-function (in an iPSC-based model) and an aberrant
gain-of-function (in a mouse) of HuD might trigger pathological mechanisms in AD [26,51].
Collectively, it is conceivable that an alteration of HuD levels in opposite directions might
occur at different disease stages and/or in different brain regions in AD patients. In any
case, both increased and decreased activity of HuD might produce a significant effect on
multiple targets involved in AD pathogenesis.

In MNs, the 3’UTR of the HuD transcript represents an important regulatory element,
to which direct binding has been shown for several microRNAs and RBPs. ALS-linked
RBPs FUS and TDP-43 are involved in microRNA biogenesis. Therefore, impairment in
the production of specific microRNAs might, at least in part, cause an aberrant increase of
HuD protein levels in ALS patients’ MNs. Moreover, recent evidence that FMRP negatively
regulates HuD translation in MNs suggests that, in normal conditions, keeping low levels
of HuD is crucial for these cells. Thus, HuD aberrant upregulation due to environmental
(e.g., oxidative stress) or genetic (FUS or TDP-43 mutation) triggers might represent an
early pathogenic event with important consequences on the expression of several other
genes involved in MN diseases. We and others have also reported that HuD is a component
of pathological inclusions found in fALS (TDP-43 and FUS) and sALS. Notably, most of
the proteins associated with these aggregates are ubiquitously expressed, while HuD is
a neural-specific factor. Whether HuD represents a mere bystander or an active trigger
in toxic aggregate formation is still unknown. Answering this question might lead to
developing novel therapeutic strategies for ALS based on HuD targeting.

In conclusion, increasing evidence of alteration of HuD levels and/or activity in multi-
ple neurodegenerative diseases lays the basis for the rational design of new diagnostic and
therapeutic approaches. However, there are still important aspects that need to be clarified.
A relevant point is related to the isoforms produced by alternative splicing, transcrip-
tional start sites and cleavage/polyadenylation sites that are expressed in physiological
and pathological conditions. Most of the studies have been focused so far on major HuD
isoforms, but we cannot exclude that minor isoforms, possibly with different intracellular
localization and/or RNA binding activity, play any role in disease. Notably, alternative
cleavage and polyadenylation can produce transcripts with shorter 3’UTRs, which would
escape from negative regulation by miRNAs (such as miR-375) and RBPs (such as FMRP).
Similarly, post-translational modifications, such as phosphorylation, that might alter HuD
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activity have been rarely taken into consideration in previous studies. We believe that better
characterization of HuD mRNA and protein species expressed at different disease stage,
and in different brain regions, would provide important information to better clarify its
contribution to disease. Another important advancement would be the characterization of
HuD targetome in the specific cell type affected by each neurodegenerative disease, possibly
at different disease stages. To this regard, human iPSCs, which can be derived from patients,
modified by gene editing and differentiated into (virtually) any cell type, could represent
a useful tool for RNA-immunoprecipitation or cross-linking and immunoprecipitation
(CLIP)-based approaches. In parallel with these basic studies, we propose that strategies
for modulating HuD levels (or activity) should be taken into account for developing new
therapeutic approaches for neurodegenerative diseases. In this regard, an interesting op-
portunity is provided by recent pre-clinical and clinical studies based on the use of artificial
oligonucleotides, such as aptamers or antisense oligonucleotides (ASOs) [66,67]. Aptamers
are synthetic modified nucleic acids able to bind with high affinity a molecular target. An
important advancement in the field comes from the possibility to design aptamer sequences
which are highly specific for a given RBP, thus allowing to interfere with its activity and/or
visualize it by microscopy with subcellular resolution [68]. ASOs can be used to modulate
gene expression at the post-transcriptional level by different mechanisms, e.g., splicing
modulation or RNase H-mediated knock-down. Importantly, this technology has been
already translated into an effective drug for neurodegeneration [69].
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