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Abstract

Background: Local anesthetics (LAs) are widely used to control pain during various clinical treatments. One of the
side effects of LAs, cytotoxicity, has been investigated in various cells including stem/progenitor cells. However, our
understanding of the effects of LAs on the differentiation capacity of stem/progenitor cells still remains limited.
Therefore, a comparative study was conducted to investigate the effects of multiple LAs on viability and multi-
lineage differentiation of stem/progenitor cells that originated from various adult tissues.

Method: Multiple types of stem/progenitor cells, including bone marrow mesenchymal stem/progenitor cells (MSCs),
dental pulp stem/progenitor cells (DPSCs), periodontal ligament stem/progenitor cells (PDLSCs), and tendon-derived
stem/progenitor cells, were either obtained from a commercial provider or isolated from adult human donors.
Lidocaine (LD) and bupivacaine (BP) at various doses (1x, 0.75%, 0.5%, and 0.25x of each physiological dose) were
applied to the different stem/progenitor cells for an hour, followed by induction of fibrogenic, chondrogenic,
osteogenic, and adipogenic differentiation. Live/dead and MTT assays were performed at 24 h after the LD or BP
treatment. At 2 weeks, gRT-PCR was conducted to evaluate the gene expressions associated with differentiation. After 4
weeks, multiple biochemical staining was performed to evaluate matrix deposition.

Results: At 24 h after LD or BP treatment, 1x and 0.75X physiological doses of LD and BP showed significant cytotoxicity in
all the tested adult stem/progenitor cells. At 0.5%, BP resulted in higher viability than the same dose LD, with variance
between cell types. Overall, the gene expressions associated with fibrogenic, chondrogenic, osteogenic, and adipogenic
differentiation were attenuated in LD or BP pre-treated stem/progenitor cells, with notable dose-effect and dependence on
types. In contrast, certain doses of LD and/or BP were found to increase specific gene expression, depending on the cell
types.

Conclusion: Our data suggest that LAs such as LD and BP affect not only the viability but also the differentiation
capacity of adult stem/progenitor cells from various anatomical sites. This study sheds light on stem cell
applications for tissue regeneration in which isolation and transplantation of stem cells frequently involve LA
administration.
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Background

Local anesthetics (LAs) are regularly applied to control
pain in various surgical and non-surgical treatments [1-
4]. During arthroscopic joint surgery, intra-articular ad-
ministration of LAs is common to improve postoperative
pain scores and reduce narcotic consumption [1, 2]. LAs
are also administered into the shoulder joint to treat ro-
tator cuff injuries and diseases [5]. In addition, fat aspir-
ation for a cosmetic purpose or isolation of autologous
adipose-derived stem/progenitor cells (ADSCs) routinely
involves an administration of LAs [6—10].

The mechanism of LAs to prevent local pain has been
well-documented. Commonly used amide-based LAs, in-
cluding but not limited to lidocaine, bupivacaine, ropiva-
caine, and mepivacaine, interrupt neural conduction by
binding to sodium channels, and thereby inhibit the ion
influx [3]. As one of the prominent side effects, LAs
show cytotoxicity leading to apoptosis and necrosis of
cells both in vitro and in vivo although its mechanism
has not been fully understood [1, 4]. The cytotoxicity of
LAs has been reported at a range of significance in vari-
ous primary cell types of clinical interests, including
chondrocytes, tenocytes, dermal fibroblasts, and pre-
adipocytes [4].

Recently, the effects of LAs on stem/progenitor cells
have started receiving attention in consideration of their
applications in the fields of tissue engineering and regen-
erative medicine [1, 2, 6, 11]. As one of the efficient cell
sources for cartilage regeneration, bone marrow-derived
mesenchymal stem/progenitor cells (MSCs) were tested
in culture with various LAs [12]. Similarly, the LAs’
cytotoxicity to ADSCs was evaluated in the context of
subcutaneous fat aspiration, the procedure to isolate au-
tologous stem/progenitor cells for regenerative medicine
[6, 7]. In vitro, the different types of LAs exhibited a dif-
ferent level of cytotoxicity in MSCs and ADSCs, dispro-
portional to the dose [1]. However, investigation of
cytotoxicity of LAs on stem/progenitor cells has been
largely limited, as very few studies addressed potential
side effects of LAs on their differentiation capacity [1, 2,
6,7,11-13].

In this study, we attempted to understand the effect of
LAs on the differentiation capacity of various adult stem/
progenitor cells. Adult stem/progenitor cells are isolated
from various anatomical sites, culture-expanded in vitro,
often engineered, and then transplanted back to the body
to guide the regeneration of diseased or damaged tissues
or organs [14-17]. The procedure for isolating adult
stem/progenitor cells mostly requires the administration
of LAs [14-18]. Moreover, we and others have made
promising progress in an emerging field of in situ regener-
ation which is to guide the regeneration of various tissues
by recruiting and activating endogenous stem/progenitor
cells [19-23]. In situ regeneration approaches, mostly
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requiring delivery of bioactive cues with or without scaf-
folds, necessitate administration of LAs during the surgical
and non-surgical procedures [14, 15, 19-23]. Accordingly,
it is important to understand the potential effects of LAs
not only on short-term cell viability but also on multi-
lineage differentiation afterward. We performed a com-
parative study to understand the effects of commonly used
amid-based LAs such as lidocaine (LD) and bupivacaine
(BP) in various adult stem/progenitor cells, including
MSCs, dental pulp derived stem/progenitor cells (DPSCs),
periodontal ligament stem/progenitor cells (PDLSCs), and
tendon-derived stem/progenitor cells (TSCs). In addition,
we tested osteogenic, chondrogenic, fibrogenic, and adipo-
genic differentiation as a well-accepted evaluation for the
multipotency of the selected stem/progenitor cells [24].
To date, this is the first study that directly compared the
effects of LAs across various stem/progenitor cells.

Materials and methods

Cell isolation

Human bone marrow mesenchymal stem/progenitor cells
(MSCs) were obtained from AllCells (Alameda, CA). With
the Institutional Review Board (IRB) approval, human
dental pulp stem/progenitor cells (DPSCs) and periodon-
tal ligament stem/progenitor cells (PDLSCs) were isolated
from patients undergoing tooth extraction as per our
established protocols [14, 16, 25]. Human tenocytes
harvested from the patellar tendons upon total knee re-
placement were purchased from a commercial provider
(Zen-Bio, Inc., Research Triangle Park, NC), to be used as
a non-stem/progenitor cell control. Tendon stem/progeni-
tor cells (TSCs) were isolated from surgical tendon debris
by sorting primary tendon cells with surface expression of
CD146 following our established method [20, 23].

Live/dead and MTT assay

P2-P4 cells were plated in 24-wells at a density of 2 x
10° cells/well (n=9 per group and time point: 3 cell
sources x 3 biological replicates). Upon 80—-90% conflu-
ence, cells were treated by LAs, including lidocaine (LD)
(Sigma-Aldrich, St. Louis, MO) and bupivacaine (BP)
(Sigma-Aldrich, St. Louis, MO). A total of 4 different di-
lutions in PBS were applied as 1x, 0.75x, 0.5x, and 0.25x
of physiological doses of LD (1%) and BP (0.25%) [11,
26, 27]. After 1 h, the media were discarded, followed by
2-3 times rinsing with PBS and then cultured in a
growth medium for 24h. MTT assay was performed
using a commercial kit (Sigma, St. Louis, MO) as per the
provider’s protocol. Briefly, a total of 100 ul MTT solu-
tion was added to each well with 900 pul medium. After
2h of incubation at 37°C, MTT solubilizer was added
and absorbance at 570 nm and 690 nm was quantified by
spectrophotometry. In separate wells, cell viability was
analyzed using Calcein-AM (Sigma-Aldrich, St. Lois,
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MO) and ethidium homodimer (Sigma-Aldrich) staining.
Briefly, 100 ul of a 1:2000 dilution of calcein-AM and a
1:500 dilution of ethidium homodimer in PBS was added
to each well. Cells were incubated for 30 min at RT and
visualized using a fluorescent microscope. Digital photo-
graphs of the center of each well were taken at x 10
magnification. Calcein-stained live cells were visualized
using a fluorescein filter, whereas ethidium-stained dead
cells were observed using a rhodamine filter. Then, these
two images were merged. The LA treatment of 1-h dur-
ation was consistent with previous studies as clinically
relevant in consideration of the effective time of LAs
and diffusion rate [11, 26, 27]. The selected doses of LA
were based on physiological doses applied for cells with
two additional lower doses to better mimic actual LA
doses at cell level when injected into tissue constructs.

Multi-lineage differentiation

All cells were plated in 12-well dishes (n=9 per group
and time point: 3 cell sources x 3 biological replicates),
and differentiation induction media were applied at 80—
90% confluence, as per our established protocols [16—-20].
Fibrogenic differentiation media consisted of 25 pug/ml as-
corbic acid (Sigma-Aldrich, St. Lois, MO) and 100 ng/ml
connective tissue growth factor (CTGF; BioVendor, LLC,
Asheville, NC). Osteogenic differentiation media included
100 nM dexamethasone, 10 mM [-glycerophosphate, and
0.05 mM ascorbic acid-2-phosphate. Adipogenic differen-
tiation media consisted of a basal medium supplemented
with 0.5 uM dexamethasone, 0.5 uM isobutyl methylxan-
thine, and 50 pM indomethacin. For chondrogenic differ-
entiation, cells were formed pellets by centrifuging 1 x 10°
cells and cultured in high-glucose media supplemented
with 0.1 uyM dexamethasone, 1% 1x insulin-transferrin-
selenium (ITS), 50pug/ml ascorbic acid-2-phosphate,
100 pg/ml sodium pyruvate, 40 pg/ml L-proline, and 10
ng/ml transforming growth factor 3 (TGF-B3; R&D Sys-
tems, Inc., Minneapolis, MN).

Gene expressions

We performed qRT-PCR following our well-established
protocols [16—20]. Briefly, total RNA was extracted at 2
weeks using TRIzol and incubated for 5 min at RT. A total
of 0.2 ml chloroform per 1 ml TRIzol was added, followed
by incubation for 3 min. After centrifugation at 12,000¢
and 4 °C for 15 min, the upper aqueous phase was trans-
ferred into a new tube with 0.5 ml isopropanol. After 10
min of incubation and centrifugation at 12,000¢ and 4 °C
for 10 min, the supernatant was discarded. The pellet was
washed with 1 ml 75% ethanol and dried for 5-10 min.
RNA samples were dissolved in 30 pul RNase-free water,
assessed for concentration and purity at 260 and 280 nm,
and stored at — 80 °C prior to reverse transcription. Quan-
titative real-time PCR was conducted using ViiA 7 Real-
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Time PCR System (Thermo Fisher Scientific, Waltham,
MA) with TagMan gene expression assays for collagen
types L, II, and III (COL-I, 1I, & III); osteocalcin (OCN);
and peroxisome proliferator-activated receptor gamma
(PPARG) and GAPDH as a housekeeping gene.

Histological analysis

At 4 weeks, the plates were washed with PBS and fixed
with 10% formalin. Picrosirius Red (PR) staining was
completed to evaluate collagen deposition, whereas
Alcian Blue (AB) staining to evaluate chondrogenic dif-
ferentiation. Alizarin Red (AR) staining and Oil Red O
(ORO) staining were used to evaluate osteogenesis and
adipogenesis, respectively, following our protocols [19,
20, 22]. The collagen deposition, AR-stained calcifica-
tion, AR-stained proteoglycan, and ORO-positive lipid
droplets were indirectly quantified guided by the previ-
ously validated digital imaging processing protocol [28,
29]. For the imaging-based matrix quantification, a total
of 10-15 areas of interest were randomly selected from
the tissue sections, and subsequently, pre-validated
quantification measures for the color intensity of pixels
were employed.

Statistical analysis

Upon confirmation of normal data distribution, all quan-
titative data of control and treatment groups were ana-
lyzed using one-way ANOVA with a post hoc Tukey test
(p value of 0.05).

Results
Cytotoxicity of LAs dependent on dose and cell type
By 24 h after the 1-h LA treatment, live/dead assays were
performed to evaluate the cytotoxicity of LD and BP in
varied doses (Fig. 1). Both LD and BP at the physio-
logical dose (1x) showed significant cytotoxicity in all of
the tested stem/progenitor cells and primary tenocytes.
Most of the cells were detached after treatment with 1x
and 0.75x of LD and BP. MSCs, PDLSCs, and tenocytes
showed more viable cells with 0.75x BP than 0.75x LD,
while DPSCs and tenocytes were mostly separated with
0.75x LD and 0.75x BP treatment. Similarly, the 0.5x BP
resulted in a better cell viability of MSCs, PDLSCs, and
tenocytes than the 0.5x LD. All types of cells showed a
higher cell viability with 0.25x LD and 0.25x BP, except
DPSCs. Overall, BP at the lower doses showed higher
cell viability than LD at the same doses (Fig. 1).
Quantitatively, the MTT assay at 24 h showed the cell
viability was disproportional to the dose of LD and BP in
MSCs (Fig. 2a). DPSCs showed a similar tendency,
showing the higher cell viability with lower doses, but
the overall cell viability was very low with all of the
tested doses (Fig. 2b). PDLSCs also exhibited a similar
dose-effect of LD and BP on the cell viability, with a
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Fig. 1 Live/dead assay of cells after treatment with LD and BP for an hour. Physiological dose (1x: 1% and 0.5%, LD and BP, respectively) and
their dilutions (0.75, 0.5, and 0.25x) were applied. It appears most of the dead cells were detached from the culture plate
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Fig. 2 MTT assay performed at 24 h after 1 h of treatment with LD and BP at various doses (a—e) and the quantitative comparison in between
cell types at low doses (0.5x and 0.25x) (f) (n=3 cell sources x 3 biological replicates per group; p < 0.001 between the groups without the
same letter)
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0.5x LD and 0.5x BP. The viability of PDLSCs and TSCs
at 0.25x BP was significantly higher than LD at the same
dose.

Fibrogenic differentiation

By 2 weeks of culture with fibrogenic induction supple-
ments (FIS), mRNA expression of COL-I and COL-III
were measured by qRT-PCR in cells pre-treated with
low doses of LD or BP for 1h (Fig. 3). Control cells were
not pre-treated by LD or BP and underwent induced dif-
ferentiation. DPSCs, PDLSCs, and TSCs resulted in sig-
nificantly lower COL-I expression with LD and BP pre-
treatment in a dose-dependent manner (Fig. 3b-—d).
Interestingly, an hour pre-treatment with 0.5x LD sig-
nificantly increased COL-I expression in MSCs and
tenocytes after 2weeks of fibrogenic differentiation
(Fig. 3a, e). When the effect of low (0.25x) dose of LD
and BP, considered minimally cytotoxic, was directly
compared across various cell types, MSCs were found to
be more resilient to LAs as compared to other cell types
with regard to the FIS-induced COL-I expression
(Fig. 3f). COL-I expression in TSCs and PDLSCs were
the most severely impaired by 0.25x LD and 0.25x BP,
respectively (Fig. 3f). Similarly, COL-III expressions were
significantly reduced in all the tested cell types by pre-
treatment with LD or BP in a dose-dependent manner
(Fig. 4a—e). Remarkably, a specific dose of LD (0.5x) and
BP (0.25x) significantly increased COL-III expressions in
MSCs and tenocytes, respectively (Fig. 4a, e). When
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different cell types were compared, MSCs and tenocytes
produced higher COL-III expressions than the other
cells pre-treated by 0.25x LD (Fig. 4f). In 0.25x BP,
COL-III expression was significantly higher in MSC than
all the other cell types (Fig. 4f). After 4 weeks in FIS,
cells were fixed and stained with Picrosirius Red (PR) for
collagen deposition. MSC and TSC formed collagen-rich
pellet-like structures with (Fig. 5a, d). However, there
was no obvious difference in PR-positive collagen matrix
formation from MSCs and tenocytes (Fig. 5a, e). TSCs
pre-treated with 0.25x LD and 0.5x BP showed some-
what modest collagen staining (Fig. 5d), probably con-
sistent with COL-I and COL-III expressions (Figs. 3d
and 4d). DPSCs pre-treated with 0.5x LD (Fig. 5b) and
PDLSCs pre-treated with 0.5x LD and 0.25x BP ap-
peared to show less collagen (Fig. 5c), consistently with
COL-I and III expressions (Figs. 3b, ¢ and 4b, c). Fur-
thermore, digital image processes showed the relatively
quantified, PR-positive collagen depositions, which were
mostly consistent with histological observations (Supple-
mentary Figure 1).

Chondrogenic differentiation

By 2 weeks of pellet culture with chondrogenic induction
supplements (CIS), mRNA expression of COL-II and
aggrecan (AGC) were measured by qRT-PCR in cells
pre-treated with low doses of LD or BP for 1h (Fig. 3).
Control cells were not pre-treated by LD or BP and
underwent induced chondrogenic differentiation. For all
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Fig. 5 Picrosirius Red (PR) staining show collage deposition after 4 weeks in FIS. MSC and TSC self-assembled into collagen-rich cell pellet-like structures
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the tested cells, COL-II expressions induced by CIS were
mostly shut off by pre-treatment with LD or BP with a
few exceptions (Fig. 6a—d). In MSCs, 0.25x BP led to no
significant change in COL-II expression (Fig. 6a),
whereas PDLSCs expressed COL-II only with 0.5x LD
(Fig. 6¢). AGC expression showed a somewhat distinct
pattern to that of COL-II (Fig. 7). In PDSCs and TSCs,
1h of LD or BP pre-treatment significantly diminished
AGC expression by 2 weeks (Fig. 7c, d), with an excep-
tion of 0.25x BP which greatly elevated AGC expression
in PDLSCs (Fig. 7c). In MSCs and DPSCs, AGC expres-
sions were significantly increased with LD or BP pre-
treatment in a dose-dependent manner (Fig. 7a, b). In
direct comparison between cell types, MSCs and DPSCs
exhibited significantly higher AGC expressions with
0.25x LD than other cells, whereas PDLSCs showed the
highest AGC expression with 0.25x BP among all the
tested cell types (Fig. 7e). Alcian Blue (AB) staining after
4 weeks of culture with CIS produced proteoglycan-rich
cartilaginous matrix (Fig. 8), largely consistent with
AGC mRNA expression at 2weeks (Fig. 7). MSC and
DPSC pellets showed a denser AB-positive matrix with
0.25x LD and 0.5x BP as compared to other pre-
treatment and control (Fig. 8a, b). PDLSCs displayed a
dense AB-positive matrix with 0.25x BP (Fig. 8c), while
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TSCs showed weak AB staining with LAs pre-treatment
in comparison with the control group (Fig. 8d). In
addition, the imaging-based quantification of the AB-
positive cartilaginous matrix was mostly consistent with
ACAN expressions (Supplementary Figure 2).

Osteogenic differentiation

By 2 weeks of pellet culture with osteogenic induction
supplements (CIS), mRNA expression of osteocalcin
(OCN) were measured by qRT-PCR in cells pre-treated
with low doses of LD or BP for 1 h (Fig. 9). Control cells
were not pre-treated by LD or BP and underwent in-
duced osteogenic differentiation. In MSCs, low doses
(0.5x and 0.25x) of BP pre-treatment significantly ele-
vated OCN expressions by 2 weeks as compared to LD
and control (Fig. 9a). OCN expressions in DPSCs were
likely at a negligible level in all of the test groups
(Fig. 9b). PDLSCs showed significantly lower OCN ex-
pression with 0.5x and 0.25x LD when compared to the
control and BP pre-treated groups (Fig. 9c). In TSCs, LD
or BP pre-treatment exhibited no significant changes in
OCN expression, except for 0.25x BP with a higher
OCN expression (Fig. 9d). In direct comparison between
cell types (Fig. 9¢), MSCs and PDLSCs showed signifi-
cantly higher OCN expressions than TSCs and DPSCs
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pared to 0.25x LD (Fig. 9e). Alizarin Red (AR) staining
after 4 weeks produced a calcified matrix without any
noticeable difference across the test and control groups

in each cell type (Fig. 10a—d). DPSCs formed very dense
calcified matrix clusters (Fig. 10b), whereas TSCs
showed isolated calcified nodules (Fig. 10d). Quantified
calcification by digital image processing (Supplementary
Figure 3) was relatively consistent with the OCN
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Fig. 10 Alizarin Red (AR) staining of various stem/progenitor cell cultured in OIS for 4 weeks
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expression patterns for MSCs, PDLSCs, and TSCs. In
contrast, DPSCs showed distinct patterns between the
gene expression and the quantified calcified matrix.

Adipogenic differentiation

By 2 weeks of culture with adipogenic induction supple-
ments (AIS), mRNA expression of Peroxisome
proliferator-activated receptor gamma (PPARG) were
measured by qRT-PCR in cells pre-treated with low
doses of LD or BP for 1h (Fig. 11). Control cells were
not pre-treated by LD or BP and underwent induced
adipogenic differentiation. In MSCs, PPARG expressions
were significantly lower with LD (0.5x and 0.25x) and
0.5x BP but higher with 0.25x BP as compared to the
control group (Fig. 11a). In DPSCs, PPARG expressions
were dramatically reduced or shut off with LD or BP
pre-treatment (Fig. 11b). In PDSCs, PPARG expressions
were significantly lower with 0.5x LD and higher with
0.5x and 0.25x BP than control (Fig. 11c). In TSCs,
PPARG expressions were significantly lower with 0.5x
LD, 0.25x LD, and 0.25x BP but significantly higher with
0.5x BP (Fig. 11d). In direct comparison between cell
types, PDLSCs showed the highest PPARG expressions
with 0.25x LD, whereas MSCs and PDLSCs displayed
significantly higher expressions than the others with
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0.25x BP (Fig. 11e). Oil Red O (ORO) staining at 4
weeks of culture in AIS showed substantial lipid droplets
formation in MSCs with pattern (Fig. 12a), consistent
with PPARG expressions (Fig. 11a). DPSCs revealed no
lipid droplets with LD or BP pre-treatment (Fig. 12b),
consistently to qRT-PCR data (Fig. 11b). PDLSCs
showed more lipid droplets with 0.25x LD and 0.5x BP
(Fig. 12c), consistent with gene expressions (Fig. 11c).
TSCs showed lipid droplets without an apparent differ-
ence in between the test and control groups (Fig. 12d).
Imaging-quantified ORO was mostly consistent with the
PPARG expression for MSCs and DPSCs, not for PDLS
Cs and TSCs (Supplementary Figure 4).

Discussion

This study is the first one that directly compared the ef-
fects of LAs not only on cell viability but also on differ-
entiation capacity in several adult tissues derived from
stem/progenitor cells. Overall, our findings suggest that
LAs including LD and BP at physiological doses are
toxic to in vitro cultured stem/progenitor cells with a
notable variance in different cell types. We have also
found that lower doses of LD and BP, despite their min-
imal cytotoxicity, significantly affect the differentiation
capacity of stem/progenitor cells. Our data suggest that
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a short-term exposure to LD or BP administered for
pain control may impair the viability of local stem/pro-
genitor cells as well as their long-term regenerative cap-
acity. These findings may have a substantial clinical
impact as LAs are frequently applied during the proce-
dures to isolate stem/progenitor cells from adult tissues
for regenerative medicine [3, 11, 16]. Moreover, the
long-lasting side effect of LAs can be detrimental to the
emerging in situ regeneration application that requires
LAs administration during surgical procedures for deliv-
ering bioactive cues to recruit and/or stimulate endogen-
ous stem/progenitor cells [14, 20-23].

Among widely used amide-based LAs, we selected LD
and BP in this study given their levels of cytotoxicity are
distinct to each other based on previous reports [30].
Studies in the past found a higher level of cytotoxicity of
LD in contrast to a relatively lower cytotoxicity of BP [2,
13, 31]. Consistent with the previous data, our findings
confirm that LD produces a higher level of cytotoxicity,
whereas BP has a lower level cytotoxicity in all of the
tested cells, including MSCs, DPSCs, PDLSCs, TSCs,
and tenocytes. To directly compare the effects of LD and
BP, we applied the same relative dilutes (1x, 0.75x, 0.5x%,
and 0.25x) to the physiological dose of the respective LA
(1% LD and 0.5% BP) [2]. As administered LAs are dif-
fused through surrounding tissues, the actual effective
dose on tissue-resident or adjacent stem/progenitor cells
in vivo is expected to be much lower than the injected
dose. However, there is no quantitative in vivo measure-
ment of spatiotemporal drug distribution over time
given its technical difficulties associated with the com-
plexity of in vivo tissue/matrix construction. Accord-
ingly, the 1-h treatment with LD or BP down to 0.25x

may not represent the actual dose and duration exposed
to stem/progenitor cells in vivo. Despite this limitation,
the selected doses and duration of LD and BP are con-
sistent with other in vitro studies [1, 2, 25, 26]. More-
over, our lowest dose (0.25x) of LD or BP yielded a
minimal degree of cytotoxicity but led to significant
changes in differentiation capacity. Thus, it can be con-
cluded that the selected doses represent effective doses
to test the hypothesis in this study.

We observed interesting gene expression patterns dur-
ing induced differentiation of LD or BP-treated stem/
progenitor cells. Overall, the mRNA markers associated
with differentiation significantly decreased in LD- or BP-
treated stem/progenitor cells, supporting our hypothesis.
However, specific doses of LD or BP somehow increased
the certain gene expressions, largely depending on the
cell type and target lineage. We have no clear under-
standing of how a short-term exposure to LD or BP in-
creases the expressions of certain genes in the course of
differentiation over weeks depending on the types of
stem/progenitor cells. As LD and BP inhibit ion chan-
nels, the observed alternation in the gene expressions
may be associated with ion transport. Likewise, several
previous studies suggest that ion channels play roles in
cell cycle, metabolism, and mechanotransduction of
MSCs, PDLSCs, and TSCs [3, 32-34]. Yet, we cannot
rule out the possibility that LD and BP may interact with
certain receptors in the stem/progenitor cells directly or
indirectly. Thus, additional follow-up signaling studies
are necessary to understand the underlying mechanism
of LD and BP in various stem/progenitor cells.

Another limitation of this study is the ages of the cell
donors being not identical. In other words, the cell types
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used in the study were collected from several donors,
and consequently, the types of stem/progenitor cells var-
ied according to the selection of donors, source tissue,
and isolation procedure. Bone marrow MSCs, PDLSCs,
and DPSCs were isolated from relatively young donors
(~20-40years old), but tenocytes were isolated from
relatively older donors (~50-65 years old) with degen-
erative joint diseases. Such inevitable age discrepancies
across the donors may have had some influence on the
behaviors of stem/progenitor cells. Besides the age, other
clinical or genetic factors of individual donors might
have contributed to the sensitivity in response to LAs.
Our lack of understanding of the LAs’ mechanism on
differentiation is another limitation of this study. Pain
relief by lidocaine and bupivacaine functioning through
voltage-gated sodium channels was reported to play im-
portant roles in MSCs [33]. However, the roles of so-
dium channels have been rarely studied for the other
types of stem/progenitor cells. In addition, as isolated
from human tissues, all of the tested stem/progenitor
cells may have been exposed to LAs during their own
isolation procedures. Although the actual doses and dur-
ation of LAs reaching to cellular level are presumably
negligible, we cannot rule out the potential effect of such
pre-exposure.

In conclusion, our data suggest that LAs such as LD
and BP affect not only the viability but also the differen-
tiation capacity of adult stem/progenitor cells from vari-
ous anatomical sites. This study has implications in stem
cell applications for tissue regeneration in which isola-
tion and transplantation of stem cells frequently involve
LA administration.
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