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Abstract

Background: HIV/AIDS is responsible for the deaths of one million people every year. Although mathematical
modeling has provided many insights into the dynamics of HIV infection, there is still a lack of accessible tools for
researchers unfamiliar with modeling techniques to apply them to their own clinical data.

Results: Here we present ushr, a free and open-source R package that models the decline of HIV during
antiretroviral treatment (ART) using a popular mathematical framework. ushr can be applied to longitudinal data of
viral load measurements, and provides processing tools to prepare it for computational analysis. By mathematically
fitting the data, important biological parameters can then be estimated, including the lifespans of short and
long-lived infected cells, and the time to reach viral suppression below a defined detection threshold. The package
also provides visualization and summary tools for fast assessment of model results.

Conclusions: ushr enables researchers without a strong mathematical or computational background to model the
dynamics of HIV using longitudinal clinical data. Increasing accessibility to such methods may facilitate quantitative
analysis across a broader range of independent studies, so that greater insights on HIV infection and treatment
dynamics may be gained.
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Background
In 2017, one million people died from HIV/AIDS glob-
ally, including 50,000 children less than one year old
[1, 2]. Mathematical modeling has provided many insights
into the dynamics of HIV infection in chronically-infected
adults undergoing antiretroviral treatment (ART). In
particular, simple frameworks describing temporal
changes in viral load have identified distinct subsets of
infected cells (such as CD4 T cells) that decay at different
rates and differentially impact infection dynamics
[3–8]. Such models accurately capture the classic
‘biphasic’ pattern of viral decline: the rapid loss of short-
lived infected cells drives an initial sharp decrease in viral
load, and the loss of other long-lived infected popula-
tions drives a subsequent slower decline phase [3, 4, 9].
Fitting biphasic models to clinical data revealed that over
90% of infected cells in chronically-infected adults are
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short-lived, with an average lifespan of one day [4]. This
highlighted the highly active landscape of HIV infection.
Despite extensive characterization of infected cell pop-

ulations in certain cohorts, there is a need for greater
accessibility to computational tools, so that researchers
unfamiliar with mathematical modeling can apply these
techniques to their own clinical data. Consistent bipha-
sic patterns of viral decay have been demonstrated in very
young infants undergoing ART, similar to those described
in adults [10]. Thus the biphasic model can be applied
across different age groups and may provide important
insights into HIV infection and treatment dynamics, if
made accessible to the wider clinical community.
Through our package ushr (understanding suppression

of HIV in R), we provide tools for modeling the dynam-
ics of HIV infection in a cohort of individuals undergoing
ART. Using the canonical biphasic model of viral decay,
the package estimates the lifespans of short and long-lived
infected cell populations, and the time at which individ-
uals achieve viral suppression. We also provide visual-
ization and summary tools for fast assessment of model
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results. More generally, we present ushr as an acces-
sible framework to encourage analysis and compilation
of HIV dynamics across a broader range of independent
studies. This will enhance our understanding of HIV treat-
ment effects by providing robust, quantitative inferences
of individual parameters that can be compared among
different cohorts.

Implementation
Data preparation
Raw clinical data is often unsuitable for mathemati-
cal analysis of viral decline, and eventual suppression,
during ART. For example, observations may be noisy
and sparse; some individuals may reach suppression and
others may not; and some may not experience consis-
tent decline of viral load, due to factors such as drug
resistance or poor adherence to treatment. Therefore,
prior to any analysis, data must be processed to exclude
individual trajectories that cannot be appropriately
modeled.
In ushr, we only consider individuals who reach sup-

pression within a particular timeframe (specified by the
user). By default, suppression is defined as having at least
one viral load measurement below a specific detection
threshold, d. However, we also allow the user to define
suppression as sustaining at least two consecutive mea-
surements below d. All measurements below the detection
threshold are set to d/2, in line with previous work [11].
To isolate the kinetics leading to initial suppression, viral
load trajectories are truncated after the first measurement
below d.
To differentiate ‘true’ decay dynamics from cases of

viral rebound (due to factors such as drug resistance
or poor treatment adherence), we isolate the viral load
data that form a consistent decreasing sequence towards
suppression, such that each measurement is within a pre-
defined range of the previous measurement. This buffer
range ensures that brief increases in viral load arising
from noise and measurement error do not exclude indi-
viduals from the analysis. Although the buffer could, in
theory, permit gradual growth in viral load over time, such
dynamics are unlikely to arise in individuals transition-
ing towards suppression. Finally, we allow initial increases
in viral load (for example, arising from pharmacologi-
cal delays in drug action) by defining the beginning of
each decreasing sequence as the maximum observation
from the first n measurements, where n will depend on
the data under consideration and can be specified by the
user.
In addition to filtering and processing existing data

according to the above inclusion criteria, ushr also pro-
vides functionality to simulate noisy data from the under-
lying mathematical model. We use such data below to
validate the fitting procedure.

Mathematical model
To model HIV decline during ART, ushr leverages pre-
viously developed ordinary differential equations (ODEs)
that describe interactions between the virus and its tar-
get cells, primarily CD4 T cells (see, for example, refs.
[4–8] and Additional file 1). If ART completely blocks
virus replication, and the clearance of cell-free virus
occurs on a faster timescale than the lifetime of infected
cells, the course of viral load during treatment, V (t), can
be expressed as

V (t) = A exp (−δt) + B exp (−γ t) . (1)

Here, δ and γ are the death rates of short and long-lived
productively infected target cells, respectively; A+B is the
viral load at ART initiation (i.e. V (t = 0)); and A/(A + B)

is the proportion of infected cells at ART initiation that
are short-lived (Additional file 1) [6]. Adopting standard
practice, we omit the dynamics of latently infected cells
and assume their contribution to viral load is minimal rel-
ative to short and long-lived infected cells [4]. We also
assume cells produce infectious virus immediately upon
infection. If we instead incorporated a delay before pro-
ductive infection, δ and γ would reflect the loss rates
of short-lived productively infected cells and long-lived
non-productively infected cells, respectively [12].
Equation 1 is referred to as the biphasicmodel: viral load

initially decays rapidly, reflecting the loss of short-lived
infected cells (at rate δ), and then enters a second, slower
decline phase reflecting the loss of long-lived infected cells
(at rate γ ). This pattern has been observed in both adults
and children during ART [4, 6, 10]. Alternatively, for sub-
jects exhibiting only one decline phase (for example, due
to sparse or delayed observations), one can employ a
single phase version of Eq. 1 given by

V (t) = B̂ exp
(−γ̂ t

)
, (2)

where the decay rate γ̂ can reflect the fast or the slow
phase of HIV decay.
It is important to highlight that while the above

equations are traditionally applied to ART contain-
ing reverse-transcriptase inhibitors (RTIs) and protease
inhibitors (PIs), treatments including integrase inhibitors
(IIs) are also becoming increasingly common. Under II
therapy, viral trajectories exhibit three phases of expo-
nential decline that reflect (1) the loss of short-lived
productively infected cells; (1b) the loss of short-lived
non-productively infected cells; and (2) the loss of long-
lived non-productively infected cells [12]. In order to fit
such trajectories, we also include a triphasic exponential
model given by

V (t) = A exp (−δt)+Ab exp(−δbt)+B exp(−γ t), (3)
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where δ and γ represent the loss of short-lived pro-
ductively infected cells and the loss of long-lived non-
productively infected cells, respectively (phases (1) and (2)
described above). These parameters have the same inter-
pretation as in the biphasicmodel with delay to productive
infection. The additional decay rate, δb, represents the loss
of short-lived non-productively infected cells (phase (1b)),
which is only observed under II therapy. For the remain-
der of the paper we focusmainly on the biphasic and single
phase models for RTI/PIs; further information on imple-
menting the triphasic model for IIs may be found in the
package documentation.

Time to suppression
In addition to modeling the course of HIV decline, we
also estimate the time to reach virologic suppression
(‘time to suppression’ (TTS)) below a defined thresh-
old using both parametric and nonparametric methods.
For the parametric approach, TTS is calculated as the
time at which V (t) = x, where x is the suppression
threshold, and V (t) is given by Eq. 1 for the bipha-
sic model, Eq. 2 for the single phase model, and Eq. 3
for the triphasic model. In contrast, the nonparamet-
ric approach does not require a mathematical model.
Instead, we apply linear interpolation between the first
measurement below the suppression threshold and the
preceding measurement. Time to suppression is then
defined as the time at which the interpolation line
crosses the suppression threshold. Estimates can also be
quoted as the time since ART initiation, if this date is
recorded.

Model fitting
We obtain independent parameter estimates, with 95%
confidence intervals, for each subject by fitting either
the biphasic, single phase, or triphasic model to the
corresponding viral load data using maximum likeli-
hood optimization (as described previously [13]). We
recommend the biphasic and single phase models
for individuals undergoing RTI/PI-based therapy, and
the triphasic model for II-based therapy. Data are
log10-transformed prior to fitting and optimization is
performed using optim() in R [14], assuming normally-
distributed errors. After fitting, we use the resulting
parameter estimates to calculate the infected cell lifespans
(for example in the biphasic model, 1/δ and 1/γ for short
and long-lived infected cells, respectively).
Only subjects with a minimum number of measure-

ments above the detection threshold (to be specified by
the user) are fit using each model. We recommend at
least nine observations for the triphasic model, six for
the biphasic model, and three for the single phase model.
Subjects with fewer than the required number of mea-
surements are not included in themodel fitting procedure,

although they can still be included in nonparametric TTS
calculations.
Finally, in the case of RTI/PIs, some individuals may

have large differences in viral load between the first and
second measurements. This is common with sparse clin-
ical data and suggests an unobserved transition from the
fast to the slow decay phase. To prevent such occur-
rences biasing the estimated slope of decay when fitting
the single phase model, we remove the first measurement
if the difference in viral load is greater than a specified
threshold.

Results
ushr captures dynamics of previously published data
We first demonstrate the general capability of ushr
by using the package to analyze publicly available data
from the ACTG 315 clinical trial. These data have been
described previously [5, 15, 16], and are available with the
package, or at https://sph.uth.edu/divisions/biostatistics/
wu/datasets/ACTG315LongitudinalDataViralLoad.htm
(accessed 15 September 2019). Briefly, longitudinal
measurements of HIV viral load are documented for
46 chronically-infected adults undergoing RTI/PI-based
ART. The assay detection threshold was 100 RNA copies
ml−1, and data were recorded up to 28 weeks following
treatment initiation.
Given such a dataset, one can use ushr to process

the data and fit the applicable mathematical model (here,
biphasic or single phase). First, individual trajectories that
adhere to the specific inclusion criteria are identified i.e.
those that form a consistent decreasing sequence towards
the detection threshold, and include the minimum num-
ber of observations required for model fitting (six for the
biphasic model and three for the single phase model). Our
algorithm then fits the appropriate model to the data and
computes the best-fit parameter estimates with 95% con-
fidence intervals. Note that the single phase model is only
applied to individuals ineligible for the biphasic model.
Both the data processing and model fitting steps can be
achieved in one line of code using the ushr() function
(or ushr_triphasic() if fitting the triphasic model).
The resulting model trajectories can be visualized using
plot_model() (Fig 1 and Additional file 2).
For the ACTG 315 data, twelve individuals were fit

with the biphasic model (Fig 2), and four with the single
phase model (Fig 3). Although some single phase sub-
jects had sufficient data to fit the biphasic model (i.e. at
least six observations), the resulting 95% parameter con-
fidence intervals were either unattainable or sufficiently
wide to indicate an unreliable fit. This can occur, for exam-
ple, when one of the decay phases is poorly documented
(i.e. has few data points). As a result, the subjects were
re-fit with the single phase model. This re-fitting step is
automated in the package, although the user can control

https://sph.uth.edu/divisions/biostatistics/wu/datasets/ACTG315LongitudinalDataViralLoad.htm
https://sph.uth.edu/divisions/biostatistics/wu/datasets/ACTG315LongitudinalDataViralLoad.htm
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Fig. 1 Schematic of package pipeline. Raw input data is first
processed to isolate and prepare individual trajectories that adhere to
the specific inclusion criteria. The processed data are then fit using
the biphasic or single phase model to obtain fitted model predictions
and corresponding parameter estimates. These first two steps can be
achieved in one line of code using the ushr() function (or
ushr_triphasic() if fitting the triphasic model).The output
information can then be visualized; for example by plotting the
model fits, using plot_model(), and inspecting the 95%
parameter confidence intervals (CIs) using summarize_model()

the confidence interval width above which a biphasic fit is
deemed unreliable.
A summary of the model applied to each subject, and

the associated infected cell lifespans, can be obtained
using summarize_model() (Additional file 2). The
biphasic fits from the ACTG 315 data had median lifes-
pans of 2.1 days (SD = 0.8) and 25.6 days (SD = 11.9)
for short and long-lived infected cells, respectively. These
estimates are in line with previous analyses of these data;
for example, 2.3 days and 31.3 days, respectively [5].
The single phase fits had a median lifespan of 9.1 days
(SD = 5.8). To assess the robustness of parameter esti-
mates for each subject, one can view their correspond-
ing 95% confidence intervals (Additional file 2). Pairwise
parameter correlation plots can also be viewed to assess
dependencies at the population-level. We present further
analyses comparing parameter estimates with their true
values below.
Finally, one can calculate the TTS for all eligible sub-

jects with the get_TTS() function. The user can specify
the threshold viral load under which a subject is defined
to have reached suppression. Here we set the suppres-
sion threshold equal to the detection threshold. The user
can also specify whether the parametric or nonparamet-
ric method should be used. For the ACTG 315 data,
the median TTS estimates were 65.7 (SD = 31) and 69.8
days (SD = 37.9) for the parametric and nonparametric
methods, respectively (Additional file 2).

Parameter estimates are accurate for sufficiently high
resolution data
Study sampling design can have a substantial impact on
the reliability of parameter estimates obtained frommodel

Fig. 2 Biphasic model fit to published data. Twelve subjects from the
ACTG 315 study were fit using the biphasic model. The solid lines are
the model predictions, points are the observed data, and the dashed
lines represent the experiment detection threshold. Subject
identifiers are included in the top right corner of each panel. Units of
HIV viral load are RNA copies ml−1

fitting. For example, short-lived cells have an average
lifespan on the order of days, which may be difficult to
estimate accurately in a clinical setting, given the chal-
lenge of obtaining frequent observations. Indeed, one may
expect to overestimate this lifespan, as the most reliable
fits will tend to derive from individuals with slower decay
and thus more information regarding the first decline
phase.
We investigated this possibility by comparing param-

eter estimates derived from simulated data with differ-
ent sampling frequencies (Additional file 3). Briefly, we
simulated data using the simulate_data() function
in ushr, and specified the number of subjects with
nsubjects = 200. This command generates individ-
ual trajectories from the biphasic model (Eq. 1), using
underlying parameters that are sampled from lognormal
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Fig. 3 Single phase model fit to published data. Four subjects from
the ACTG 315 study were fit using the single phase model. The solid
lines are the model predictions, points are the observed data, and the
dashed lines represent the experiment detection threshold. Subject
identifiers are included in the top right corner of each panel. Units of
HIV viral load are RNA copies ml−1

distributions with user-specified mean and standard devi-
ation. Gaussian noise (with zero mean and user-specified
standard deviation) is added on the log10 scale, and the
number of observed time points is randomly sampled
for each subject from a pre-defined range. This approach
assumes subjects are sampled at regular intervals until
either the end of the study period or they are lost to
follow-up.
To investigate the impact of sampling resolution, we var-

ied the frequency of observation times using three differ-
ent scenarios. In our high resolution dataset, individuals
were sampled four times per month; in the medium res-
olution dataset this was reduced to twice per month; and
in the low resolution dataset, the frequency was reduced
further to once per month. In all cases, individuals were
sampled for a minimum of three months andmaximum of
one year.
As above, we fit the high, medium, and low resolution

datasets using ushr(), then calculated an average devi-
ation score that summarized the difference between the
true and estimated parameter values. For each param-
eter p, and study resolution r, we defined the average
deviation as

Dp,r = 1
np,r

np,r∑

i=1

(
θi − θ̂i

)
/θi, (4)

where np,r is the number of subjects in the study that were
fit with the biphasic model, θi is the true parameter value
for subject i, and θ̂i is the estimated value. Note that for the
parameters A and B, we log10-transformed θi and θ̂i prior
to calculating the deviance. For TTS values, we used the
parametric approach to calculate θi and θ̂i from the cor-
responding true and estimated parameters, respectively.
We repeated the process for 100 different randomly sam-
pled underlying parameter distributions, resulting in 1200

average deviation scores (4 parameters, 3 study resolu-
tions, and 100 repetitions).
In general, estimates of the short-lived lifespan from the

low resolution studies had the largest deviation (Fig 4).
The values were consistently negative, indicating overes-
timation; and the shortest lifespans exhibited the largest
deviances. These results are consistent with the intuition
that the fastest decay phases are most vulnerable to infre-
quent sampling. All other parameter values had relatively
low deviation scores, although the long-lived lifespan esti-
mates also exhibited a slight negative bias at low sampling
frequencies.
Finally, we explored the extent to which estimates from

the subset of individual trajectories fit using the bipha-
sic model could be extrapolated across the whole study
population. We focussed on the short and long-lived lifes-
pans since these exhibited the greatest deviances. For
each study and lifespan, we compared the true population
median to the median estimate from the fitted subset.
Unsurprisingly, estimates from low resolution studies
were the poorest representation of the true population-
wide values (Fig 5). Both lifespans were overestimated,
reflecting problems with infrequent observations, as dis-
cussed above. In addition, fewer subjects in these low

Fig. 4 Average deviation from true parameters. Average deviation
scores were calculated for each parameter and study resolution using
Eq. 4. These were then compared with the true mean parameter
value used to simulate each study. Simulated parameter values reflect
the following units: days for TTS and the short and long lifespans of
infected cells; RNA copies ml−1 for A and B. TTS stands for time to
suppression
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Fig. 5 Comparison of fitted estimates to population-wide values.
Median values (in days) of the short-lived (a) and long-lived (b)
lifespans across all subjects in each simulated study were compared
to the median estimates from the subset analyzed with the biphasic
model. Low, intermediate, and high sampling resolutions are
depicted in the panels. Dashed lines represent the one-to-one
threshold where estimates are equal to true values

resolution studies had sufficient data for fitting, leading
to smaller sample sizes and a greater departure from the
population average.
In contrast, estimates from the intermediate and high

resolution studies were in good agreement with the true
population average, although the long-lived lifespans were
slightly underestimated at higher values. At intermediate
and high resolutions, the effects of sample size and infre-
quent observations are reduced. However, our algorithm
for simulating data is such that individuals with slow
second decline phases are more likely to be lost to follow-
up before reaching suppression. Thus our fitting may
be biased towards subjects with shorter long-lived lifes-
pans than the population average. The effect will be most
pronounced when the average long-lived lifespan is high
and restrictions from infrequent sampling are minimal.
Overall, these results demonstrate that our fitting proce-

dure can reliably estimate individual parameters at inter-
mediate and high sampling resolutions, and that these
estimates represent an unbiased sample of parameters
across the population. Conversely, caution must be taken
when interpreting parameters at low resolutions, and in
extrapolating these estimates to the wider population.

ushr performs comparably to nonlinear mixed effects
modeling
In ushr we take an individual-based approach by inde-
pendently fitting data from each subject that meets our
inclusion criteria and our minimum number of observa-
tions. Since the model equations are pre-defined (i.e. do
not need to be specified by the user), our package has the
advantage of straightforward implementation. Conversely,
another common method for fitting longitudinal clinical
data is to use a population-based approach such as
nonlinear mixed effects (NLME) modeling [5, 17]. Briefly,
the NLME framework aims to describe inter-subject
variation in the population by assuming a form for the
distribution of parameters at the population-level. This
approach has the advantage that information from all indi-
viduals who meet the inclusion criteria can be leveraged
to inform the overall fits, regardless of the number of
available measurements. However, existing NLME soft-
ware packages are typically general purpose, and require
users to manually define model structure according to
their specific need. In addition, imposing population-level
distributions may cause NLME to perform poorly on
individuals with outlying dynamics.
In order to compare estimates obtained from NLME

modeling with those obtained above from ushr, we
re-fit the low, medium, and high resolution datasets
using the NLME package saemix in R (Additional
files 4, 5, 6, 7, and 8) [18]. In brief, we defined the
parameters A,B, δ, and γ as log-normal distributions
with individual random effects, and used saemix to fit
Eq. 1 and estimate the corresponding population-level
distributions.
In general, we found lifespan estimates from the NLME

approach were similar to, or marginally worse than,
those obtained from ushr for the intermediate and high
resolution data (Fig 6). Conversely, for the low resolu-
tion data, the NLME lifespans were closer to the true
population average, although the short-lived lifespans
were slightly underestimated. In summary, our individual-
based algorithm performs comparably to the population-
based NLME approach, with clear discrepancies only
becoming apparent at low sampling resolutions.

Conclusions
ushr provides free and open-source software for
researchers looking to model viral decline in HIV-infected
individuals undergoing ART. The package implements a
mathematical framework that has been shown to capture
viral dynamics in adults and children [4, 6, 10], and auto-
mates all major steps of the analysis: data processing and
filtering, model fitting and parameter estimation, and out-
put visualization. Specifics of the particular data set can
be chosen by the user, such as the detection threshold
of the measurement assay and the duration of the study
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Fig. 6 Comparison of ushr’s individual approach with nonlinear
mixed effects modeling. Median values (in days) of the short-lived (a)
and long-lived (b) lifespans across each study population were
compared to the corresponding estimates from the subset that were
fit using the individual-based approach of ushr (blue) or nonlinear
mixed effects (NLME) modeling (purple). Note that the subsets fit
using ushr are generally smaller than those fit using NLME due to
the minimum number of observations required for individual
inclusion. Low, intermediate, and high sampling resolutions are
depicted in the panels. Dashed lines represent the one-to-one
threshold where estimates are equal to true values

period. Users can also specify tuning parameters of the
modeling process, including theminimumnumber of data
points required for fitting. Importantly, the package can
be used for both RTI/PI and II-based therapy, although the
choice of model must be guided by the data at hand, taking
into consideration the type of therapy and the observed
pattern of decay.
More generally, the package provides tailored and acces-

sible tools for mathematical analysis of longitudinal HIV
data. Although care must be taken when interpreting
estimates from low resolution studies, and extrapolating
values to larger populations, the procedure can be used
to elucidate and compare virus dynamics across indi-
viduals undergoing ART. Notably, the package performs
comparably to a population-based NLME approach, and
has the advantage that the model is pre-defined. Software
that requires user-defined equations or model frame-
works may be more challenging to implement for those
new to computational modeling. Thus, in developing this
package we hope to encourage more quantitative analy-
ses of HIV clinical studies, so that greater insights on viral
infection and treatment dynamics can be gained.

Availability and requirements
Project name: ushr
Projecthomepage:https://github.com/SineadMorris/ushr
Operating system(s): Platform independent
Programming language: R (≥3.5.3)
Other requirements: R packages dplyr (≥0.8.0.1), tidyr
(≥0.8.3), and ggplot2 (≥3.1.1)
License:MIT licence
Any restrictions to use by non-academics: None
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modeling.
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simulation study.
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