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Abstract

Background: To evaluate and compare the progression of ciliopathy and non-ciliopathy autosomal recessive
Retinitis Pigmentosa patients (arRP) by measuring the constriction of hyperautofluorescent rings in fundus
autofluorescence (FAF) images and the progressive shortening of the ellipsoid zone line width obtained by
spectral-domain optical coherence tomography (SD-OCT).

Results: For the ciliopathy group, the estimated mean shortening of the ellipsoid zone line was 259 μm
per year and the ring area decreased at a rate of 2.46 mm2 per year. For the non-ciliopathy group, the
estimated mean shortening of the ellipsoid zone line was 84 μm per year and the ring area decreased
at a rate of 0.7 mm2 per year.

Conclusions: Our study was able to quantify and compare the loss of EZ line width and short-wavelength
autofluorescence (SW-AF) ring constriction progression over time for ciliopathy and non-ciliopathy arRP genes.
These results may serve as a basis for modeling RP disease progression, and furthermore, they could
potentially be used as endpoints in clinical trials seeking to promote cone and rod survival in RP patients.
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Background
Retinitis Pigmentosa (RP), an inherited retinal dis-
order, causes progressive photoreceptor cell death,
resulting in permanent vision loss. Individuals with
RP usually present with night blindness, then loss of
daytime peripheral vision, and eventual extreme visual
impairment or blindness. Some cases rapidly progress
over two decades while some have slow progression,
never resulting in actual blindness. The prevalence of
RP is approximately 1 in 3500–4000 [1]. The disease
can be inherited in an autosomal recessive (50–60%),

autosomal dominant (30–40%) or X-linked (5–15%)
manner [2]. Thus far, at least 64 genes (RetNet;
https://sph.uth.edu/retnet/) have been found to be as-
sociated with RP. Among these 64 RP genes, at least
18 (28%) encode proteins that localize to the cilia in
photoreceptors (autosomal recessive RP: ARL6, BBS1,
BBS9, C2ORF71, C8ORF37, CLRN1, FAM161A, MAK,
TTC8, TULP1, USH2A and CEP290; autosomal dom-
inant RP: RP1, TOPORS and RP1L1; X-linked RP:
OFD1, RP2, RPGR) [3, 4]. Cilia are tiny, hair-like
microtubule-based cellular organelles that extend out-
wards from the cell surface. Almost all vertebrate
cells have cilia and they serve a variety of sensory
functions (in both unicellular and multicellular organ-
isms) [5].
The notion of retinal ciliopathies was first discovered

with the observation that patients with X-linked retinitis
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pigmentosa and Usher syndrome show irregularities in
the tails of sperm and in sperm motility [6, 7]. Sperm
flagella and photoreceptor cilia share a common axo-
neme structure. In photoreceptors, cilia are responsible
for connecting the outer and inner segments of photore-
ceptors. There are four ciliary compartments in photore-
ceptors: the distal cilium, the proximal cilium (known as
the connecting cilium), the basal body and the periciliary
complex [8, 9]. In addition to its structural function, the
photoreceptor cilium plays a critical role in transport.
Every minute, an estimated 2,000 opsin molecules are
delivered to the outer segments through the cilia [10–
12]. Retinal ciliopathies highlight the importance and
need for more research on cilia and perhaps a common
focus for therapies for ciliopathies.
As of now, specialized genetic counseling and optimiz-

ing remaining vision remain essential to RP management.
Many promising new therapies are on the horizon and
already have clinical trials underway [13, 14]. Thus, there
is a great need for studies describing natural disease pro-
gression for different types of RP; continued tracking of
RP’s progression provides critical data to help create met-
rics for future clinical trials. Also, such metrics can help
with patient counseling for specific types of RP.
FAF images reveal that several RP patients have hyperau-

tofluorescent rings, which are thought to be caused by ab-
normal lipofuscin accumulation in the perifoveal region of
the retinal pigment epithelium (RPE) [15, 16]. The abnor-
mal lipofuscin accumulation could be attributed to defect-
ive outer segment regeneration, a precursor of apoptosis in
RP. As previously described, SW-AF images have revealed
many hyperautofluorescent rings which progressively con-
strict, correlating with a worsening of visual function over
time as measured by pattern electroretinogram (ERG) [17].
Our study evaluated and compared the progression of

ciliopathy and non-ciliopathy arRP patients by measur-
ing clinically-relevant parameters including the constric-
tion of hyperautofluorescent rings in FAF images and
the progressive shortening of the ellipsoid zone line
width obtained by SD-OCT.

Results
After the inclusion and exclusion screening of the 141
index cases with arRP, 18 ciliopathy patients and 15 non-
ciliopathy patients were selected. Among the ciliopathy
group, mutations were found in 9 USH2A patients, 3
CEP290 patients, 2 C2ORF71 patients, 1 FAM161A pa-
tient, 1 MAK patient, 1 BBS1 patient and 1 CLRN1 pa-
tient. A model for the localization of retinal ciliopathy
proteins for each of these genes is represented in Fig. 1.
Patients’ clinical and genetic details are summarized in
Table 1. These 18 patients accounted for a percentage of
12.0% for mutations in ciliary genes in our arRP cohort.

The average age of the ciliopathy patients at the first visit
was 44 (± 16) years old, and thirteen (72%) patients were
male and five (28%) were female. Information regarding
age and gender of non-ciliopathy patients are shown in
Table 2. The 33 patients were followed for an average of
3.3 (± 2.3 sd) years. The 18 ciliopathy and 15 non-ciliopa-
thy patients were followed for an average of 3.42 (±2.65)
and 3.12 (±2.06) years respectively.
Reliability of the four measurements was analyzed

using descriptive statistics (Table 3) and intraclass
correlation. The 95th percentile of the absolute value
of the difference between the investigators’ measure-
ments was less than 344 μm for horizontal diameter,
329 μm for vertical diameter, 2.2mm2 for area and
176 μm for EZ-line width. The intraclass correlation
was 0.99 for each of the four measurements, and high
intraclass correlation indicates that the measurements
were highly reliable.
Hyperautofluorescent ring dimensions and EZ-line

width were obtained from FAF and SD-OCT images as
shown in Fig. 2. The structural measurements’ data
points were best fit with linear modeling, which pro-
vided an estimate of the progression rate of each patient.
Progression rate analysis for the right and left eyes of the
two groups are shown in Table 4. For the ciliopathy group,
the estimated mean shortening of the ellipsoid zone line
was 260 μm per year (SD = 162, p < 0.001), representing
approximately 0.87 degrees of visual field loss per year.
The horizontal and vertical diameters decreased at a rate
of 351 μm per year (SD = 239, p < 0.001) and 348 μm per
year (SD = 325, p < 0.001), respectively. The ring area
decreased at a rate of 2.46mm2 per year (SD = 2.64,
p = 0.001). Represented as a decrease from the mean
value of the initial visit, the cohort had a yearly progression
rate of 8.0% by EZ-line, 8.1% by horizontal diameter, 8.5% by
vertical diameter and 13% by ring area. For the non-ciliopa-
thy group, the estimated mean shortening of the ellipsoid
zone line was 84 μm per year (SD= 81, p = 0.001), represent-
ing approximately 0.3 degrees of visual field loss per year.
The horizontal and vertical diameters decreased at a rate of
117 μm per year (SD= 134, p = 0.005) and 163 μm per year
(SD= 312, p = 0.006), respectively. The ring area decreased
at a rate of 0.7mm2 per year (SD= 1.63, p = 0.11). Repre-
sented as a decrease from the mean value of the initial visit,
the cohort had a yearly progression rate of 4.5% by EZ-line,
4.0% by horizontal diameter, 7.0% by vertical diameter and
11% by ring area.
The correlation between the four parameters measured

at the initial visit for the 33 patients was calculated
(Table 5). The highest correlation coefficients observed
were between the vertical diameter and area (r = 0.95) and
between the horizontal diameter and vertical diameter
(r = 0.94). The lowest correlation coefficient observed was
between the area and the EZ line width (r = 0.82).
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Asymmetry between left and right eye disease severity
was seen at baseline [18], and asymmetric progression of
the four parameters between the two eyes was assessed
during follow-up. The difference in average progression
for the ciliopathy patients was 34 μm for the horizontal
diameter, 29 μm for the vertical diameter, 0.02mm2 for the
ring area, and 36 μm for the EZ line length. The non-cilio-
pathy patients presented a difference of 16 μm for the
horizontal diameter, 108 μm for the vertical diameter, 0.24
mm2 for the ring area, and 3 μm for the EZ line length.

Discussion
Ciliary gene mutations can result in an extensive range
of clinical features that manifest in the central nervous
system, eye, heart, liver, gonads, kidney, adipose tissue
and bones. Based on multiple clinical features that in-
volve these diverse organs, various syndromes have been

defined, such as Bardet-Biedl syndrome, Joubert syn-
drome, and McKusick-Kaufman syndrome [19, 20]. Ret-
inal dystrophy can present as one of the clinical features
of these syndromes, but it is more often an isolated dis-
ease that presents without additional features.
Hyperautofluorescent ring constriction is related to

visual loss in RP patients, and it could be used as a prog-
nostic for the retention of central vision [15]. Previous
studies have shown that the presence and rate of ring
constriction are likely to be genotype dependent [21]. In
this study, we compared the disease progression in auto-
somal recessive RP patients with and without ciliary
gene mutations by measuring four structural parameters
as markers of degeneration: EZ line width from SD-
OCT images, horizontal diameter, vertical diameter and
hyperautofluorescent ring area from FAF images. We re-
port that in the ciliopathy arRP patients, the EZ line

Fig. 1 Model of the localization of retinal ciliopathy proteins for each patient included in the study. Four ciliary compartments can be defined in
photoreceptors: the distal cilium, the connecting cilium or proximal cilium, the basal body and the periciliary complex. The distal cilium is
occupied by MAK. Proteins in the connecting cilium include CEP290and C2orf71. BBS1 is in the basal bodies domain. USH2A and CLRN1 protein
is located at the periciliary complex. FAM161A protein was found in the connecting cilium and basal body [3, 4]
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width decreases at a rate of 259 μm (0.8 degrees) per
year, 32.5% faster than the non-ciliopathy group. The
hyperautofluorescent ring also constricts over time, with
the horizontal and vertical diameters decreasing at a rate
of 351 μm and 347 per year, respectively. This represents
a progression rate that is 33 and 47% faster for the hori-
zontal and vertical diameter, respectively. The ring area
decreases at a rate of 2.46mm2 per year, which is 28%
faster than the non-ciliopathy patients. Out of the four
parameters, our results demonstrate that arRP patients
with the mutation in the ciliary-genes progress faster
than arRP patients with non-ciliary-genes.
A 2015 study analyzed 71 RP patients, 48 (67.6%) with

arRP but only 6 (8%) with ciliary gene mutations, and
the EZ line width was reported to decrease at an average
rate of 130 μm (0.45 degree) per year, while the horizon-
tal and vertical diameter decreased at a rate of 147 μm
per year and 121 μm per year [22].A more recent study

in 2017 analyzed 81 RP patients of which 41 (50.6%) had
arRP and only 2 (2.5%) had ciliary gene mutations. In this
study, the EZ line width was reported to decrease at a rate
of 140 μm (0.45 degree) per year, while the horizontal and
vertical diameters decreased by 149 μm and 120 μm per
year [23]. Traditionally, X-linked retinitis pigmentosa
(XLRP) is known to progress faster than arRP and adRP,
with adRP demonstrating the slowest progression [2, 24].
Mutations in the retinitis pigmentosa GTPase regulator
(RPGR) gene are associated with RP that is often transmit-
ted in an X-linked manner [25].RPGR mutations account
for the disease in over 70% of XLRP patients [26] and the
constitutive variant of RPGR is believed to be expressed in
a wide variety of tissues including the connecting cilia
of rods and cones, the transitional zone of cilia of the
respiratory epithelium, the epithelial lining of human
bronchial and sinus tissues, and the human fetal
cochlea [27].A more homogenous cohort was analyzed

Table 2 Patients in the ciliopathy group and non-ciliopathy group, with information regarding age and gender

Sex Age (years old)

Freq. (%) Quantiles

n M F Mean (sd) Minimum 25th Median 75th Maximum

Ciliopathy 18 13 (72) 5 (28) 44 (16) 17 30 45 58 71

Non-ciliopathy 15 9 (60) 6 (40) 40 (20) 13 23 40 59 68

Table 1 Characteristics of the 33 patients included in the study
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Fig. 2 Structural measurements of 6 patients. 3 ciliopathy (right column) and 3 non-ciliopathy (left column) patients. Fundus autofluorescence
(FAF) images (left panels) and optical coherence tomography (OCT) images (right panels) monitor progression over time. Dashed lines indicate
the initial width of the hyperautofluorescent ring area, and the initial width of the ellipsoid zone line in the OCT images. Yellow asterisks mark the
border of the ellipsoid zone lines in the OCT images. Progressive constrictions of the hyperautofluorescent ring and ellipsoid zone line are shown
by the constriction of the ring and shortening of the ellipsoid zone line width at 2 different times

Table 3 Descriptive statistics of the difference between the two graders for structural imaging parameters used to monitor retinitis
pigmentosa progression

Difference Absolute value of difference between two raters

Number of images Mean (sd) Mean (sd) Median (IQR) 95th percentile ICC

Horizontal diameter (μm) 66 31.3 (167) 131 (106) 113 (49, 181) 344 0.993

Vertical diameter (μm) 66 −9.8 (160) 118 (107) 92.5 (43, 161) 329 0.996

Area (mm2) 66 −0.02 (0.9) 0.56 (0.7) 0.31 (0.09, 0.72) 2.2 0.997

EZ line width (μm) 66 −7.9 (96) 77 (57) 66.5 (29, 116) 176 0.997
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by a study that compared progressive loss of the EZ
line in adRP and XLRP patients [28]. The study in-
cluded 26 XLRP patients, of which 25 had an RPGR
gene mutation and 1 had no available genetic testing
results. The study reported a faster rate of progres-
sion in XLRP with a EZ line width of 1 degree per
year. This result is very similar to our EZ line width
in the arRP ciliopathy group (0.87 degree/year), which
was expected since RPGR is a ciliopathy gene.
We believe that the more severe loss of EZ line

width and SW-AF ring constriction found in RP cilio-
pathy patients compared to non-ciliopathy patients is
related to the important function of cilia in photore-
ceptors. The outer segments of photoreceptors are
unable to synthesize essential proteins and lipids, and
all phototransduction proteins and disc membrane
lipids must be synthesized in the inner segment and
then transported to the outer segment through the cilia
system. With the constant turnover of rod outer seg-
ments, delivering cargo to the outer segments is essential
for maintenance of the outer segments [10–12].
In patients with two recessive mutations that create a

diseased phenotype, gene supplementation therapy uses
a viral vector to introduce a wild-type allele that would
allow the cells to have sufficient expression of the de-
sired normal gene product [29]. In gene therapy clinical
trials, one eye typically serves as a control while the
contralateral eye receives treatment. Assuming that dis-
ease progression is symmetric between the eyes, this
provides the opportunity to compare the treated eye to a
near-ideal control. In our study, we found that the right
and left eyes have symmetrical progression rates, sug-
gesting minimal asymmetry.
As a limitation to this study, only patients with high-

quality FAF and SD-OCT scans were analyzed in order
to produce an accurate analysis. This is a problem for
patients with advanced RP as these patients lack good
fixation due to poor vision. Thus, patients with ad-
vanced RP were excluded in order to acquire high-qual-
ity scans for analysis. This limits the possibility of

studying changes in the retina in patients with ad-
vanced RP. In addition, among of our cohort of 18
ciliopathy patients, 9 had USH2A mutations, and this
can cause an impressive rate of progression. The
USH2A gene is the most prevalent of all arRP genes, re-
sponsible for 9.5–13% of the cases [30].

Conclusion
In conclusion, our study was able to quantify and com-
pare the loss of EZ line width and SW-AF ring constric-
tion progression over time for patients with ciliopathy
and non-ciliopathy arRP mutations. These results may
serve as a basis for modeling RP disease progression,
and they could be useful as clinical trial endpoints for
studies seeking to promote cone and rod survival in RP
patients.

Methods
Subjects
The study was conducted in accordance with the princi-
ples of the Declaration of Helsinki. All study procedures
were defined, and patient consent was obtained as speci-
fied by the protocol #AAAR0284 approved by the Insti-
tutional Review Board at Columbia University Medical
Center. None of the data presented in this study, includ-
ing images and genetic testing results, are identifiable to
individual patients. Longitudinal follow-up imaging of
141 patients with arRP was analyzed. The patients were
divided into two groups according to gene mutation: cil-
iary genes and non-ciliary genes. Patients were diag-
nosed with RP by an inherited retinal disease specialist
(SHT) based on their clinical history, symptoms, past
family history, fundus findings, and full-field electroreti-
nography (ffERG). The diagnosis was supported by clin-
ical imaging and/or genetic testing. In addition, each
patient was screened for a history of 2 visits in our office
at least 12 months apart consisting of a complete oph-
thalmic examination by a retinal physician (SHT). The
patients excluded were those who presented with unilat-
eral RP, no visible EZ line, no visible hyperautofluores-
cent ring or poor image quality. Because our clinic is an
international referral center for RP, after the initial diag-
nosis was made for a large number of patients using
ffERG and clinical imaging and/or genetic testing results,
care was transferred back to the primary provider, and
patients did not return for a second visit.

Fundus autofluorescence and spectral-domain optical
coherence tomography
The images were acquired at each visit after pupil dilation
with phenylephrine hydrochloride (2.5%) and tropicamide
(1%). The FAF (488 nm excitation) and SD-OCT imaging
were acquired with the Spectralis HRA+OCT (Heidelberg
Engineering, Heidelberg, Germany). FAF imaging was

Table 5 Correlations between the four different parameters, at
the initial visit for the 33 patients, were calculated: EZ line
width, horizontal, vertical diameters, and hyperautofluorescent
ring area of OD

Correlation between
parameters

Correlation
coefficient (r)

P-value*

Horizontal diameter Vertical diameter 0.94 <0.001

Horizontal diameter Area 0.84 <0.001

Horizontal diameter EZ line width 0.93 <0.001

Vertical diameter Area 0.95 <0.001

Vertical diameter EZ line width 0.91 <0.001

Area EZ line width 0.82 <0.001
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acquired with a 30-degree field of view and the 55-degree
field of view was used in cases where large rings could not
be fully captured with the 30-degree field of view.
Measurements were done on the SD-OCT and FAF

images documented at every patient visit by using a
built-in measurement tool in the Spectralis HRA +OCT
software. EZ line length, horizontal diameter, vertical
diameter, and area of hyperautofluorescent ring were
measured by two ophthalmologists (V.K.L.T and M.B.A).
The horizontal diameter was defined as the line posi-
tioned at the axis formed by the distance between the
center of the optic disc and foveal center. The vertical
diameter was positioned perpendicularly to the horizon-
tal diameter. The delineable edge of the hyperautofluor-
escent ring was used as the border to measure the area
of the ring (Fig. 1). On the SD-OCT, the nasal and tem-
poral edges of the EZ line were defined as the locations
where the EZ line met the RPE. The width of the EZ line
was defined as the distance between these two locations.

Statistical analysis
Statistical analyses were performed using Stata 12.1 (Sta-
taCorp, College Station, TX, USA) software. Analyses
were done separately for right eye and left eye. Where
results are similar, we present results for the right eye.
The reliability of test-retest measurements was assessed
using summary/descriptive statistics and intraclass cor-
relation coefficients (ICC). Given the high ICC coeffi-
cients of the two investigators’ measurements, an
average value was obtained from the two measured
values and used for further data analysis. The simple
Pearson correlation coefficient was calculated between
different structural measurements from the initial visit.
Change over time was calculated by taking the value of
an ophthalmologic outcome at follow-up minus the
value at baseline and then dividing by the time of
follow-up. To examine whether there was asymmetry
between right eye vs. left eye, we took the change over
time in the right eye and subtracted the change over
time in the left eye. Progression, change over time, was
examined for right and left eyes separately. A Student’s
t-test was performed to test for a difference of the pro-
gression rates from zero, within a specific group, ciliopa-
thy or non-ciliopathy. To compare mean change over
time between groups, two sample t tests were used.
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