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Abstract 

Background:  Necrotizing enterocolitis (NEC) is a common, potentially catastrophic 
intestinal disease among very low birthweight premature infants. Affecting up to 15% 
of neonates born weighing less than 1500 g, NEC causes sudden-onset, progressive 
intestinal inflammation and necrosis, which can lead to significant bowel loss, multi-
organ injury, or death. No unifying cause of NEC has been identified, nor is there any 
reliable biomarker that indicates an individual patient’s risk of the disease. Without 
a way to predict NEC in advance, the current medical strategy involves close clinical 
monitoring in an effort to treat babies with NEC as quickly as possible before irrecover‑
able intestinal damage occurs. In this report, we describe a novel machine learning 
application for generating dynamic, individualized NEC risk scores based on intesti‑
nal microbiota data, which can be determined from sequencing bacterial DNA from 
otherwise discarded infant stool. A central insight that differentiates our work from past 
efforts was the recognition that disease prediction from stool microbiota represents 
a specific subtype of machine learning problem known as multiple instance learning 
(MIL).

Results:  We used a neural network-based MIL architecture, which we tested on inde‑
pendent datasets from two cohorts encompassing 3595 stool samples from 261 at-risk 
infants. Our report also introduces a new concept called the “growing bag” analysis, 
which applies MIL over time, allowing incorporation of past data into each new risk 
calculation. This approach allowed early, accurate NEC prediction, with a mean sensitiv‑
ity of 86% and specificity of 90%. True-positive NEC predictions occurred an average of 
8 days before disease onset. We also demonstrate that an attention-gated mechanism 
incorporated into our MIL algorithm permits interpretation of NEC risk, identifying sev‑
eral bacterial taxa that past work has associated with NEC, and potentially pointing the 
way toward new hypotheses about NEC pathogenesis. Our system is flexible, accept‑
ing microbiota data generated from targeted 16S or “shotgun” whole-genome DNA 
sequencing. It performs well in the setting of common, potentially confounding pre‑
term neonatal clinical events such as perinatal cardiopulmonary depression, antibiotic 
administration, feeding disruptions, or transitions between breast feeding and formula.

Conclusions:  We have developed and validated a robust MIL-based system for NEC 
prediction from harmlessly collected premature infant stool. While this system was 
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developed for NEC prediction, our MIL approach may also be applicable to other dis‑
eases characterized by changes in the human microbiota.

Keywords:  Necrotizing enterocolitis, Multiple instance learning, Prematurity, 
Microbiome

Background
Premature infants are a high-risk medical population, subject to numerous complica-
tions of physiologic underdevelopment. Among premature infants, one of the most seri-
ous illnesses is necrotizing enterocolitis (NEC). Patients with NEC develop progressive 
inflammation and necrosis of the intestinal wall, which can quickly spread from an initial 
focus of injury to involve the entire intestine.

NEC is a common emergency in the neonatal intensive care unit (NICU), affecting 
5–15% of very low birth weight (<1500  g; VLBW) infants [1, 2], with peak incidence 
around 30 weeks corrected gestational age [3, 4]. Mortality rates from NEC are 18–53% 
[5–9]. Survivors are at risk for multiple serious, long-term complications such as nutri-
tional deficiencies, recurrent infections, liver failure, and cognitive and motor develop-
mental impairments [7, 10, 11].

There is no widely available, reliable biomarker or other clinical test for determining 
an individual patient’s risk of NEC. The current standard-of-care is to closely observe 
all preterm infants for clinical signs of NEC, which may include abdominal swelling, 
vomiting, bloody stools, and vital sign instability [12, 13]. Unfortunately, even with close 
clinical monitoring, some infants are diagnosed only after the disease has progressed 
significantly.

A preferable strategy would be to develop and apply a form of predictive monitoring to 
assign dynamic risk scores that could be followed over time. Such predictive monitoring 
could facilitate early identification of patients whose risk was increasing without wait-
ing for the disease to occur. Prompt, early initiation of therapy in response to a reliable 
indicator of rising risk could reduce rates of serious NEC complications, including death 
[2, 14–17].

The causes of NEC are multifactorial and not completely understood. One factor 
implicated in NEC pathophysiology is the intestinal microbiota. The intestinal lumen 
is sterile or nearly sterile at birth, but becomes colonized by bacteria during the first 
days of postnatal life [18–20]. Several groups have shown that there is a stereotyped suc-
cession of colonizing taxa in healthy infants [19, 21]. Intestinal colonization of preterm 
newborns is more complex, less predictable, and more easily disrupted due to various 
factors, however. Prolonged hospitalization, invasive instrumentation, and recurrent 
exposure to antenatal and postnatal antibiotics alter the trajectory of the preterm intesti-
nal microbiota [22–24].

Culture-free, sequence-based characterization of stool bacteria can serve as a nonin-
vasive proxy for classifying the intestinal microbiota [25, 26], and several previous stud-
ies have examined neonatal stool for patterns of bacterial colonization associated with 
NEC. These investigations have revealed correlations between microbiota characteristics 
and development of NEC, although the details have not been fully congruent. Several 
authors have identified a relative abundance of bacteria in the family Enterobacteriaceae 
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preceding NEC [27–29], which may in turn reflect the abundance of Enterobacteriaceae-
binding antibodies in breastmilk [30]. Others have shown that NEC correlates with 
below-average abundance of bacteria in the class Negativicutes [31] or phylum Firmi-
cutes [29]. More specific bacterial taxa, such as members of the genus Klebsiella have 
also been implicated as contributors to NEC pathophysiology [27, 28]. These correla-
tions, while informative to a fuller understanding of NEC risk factors, have not proven 
strong enough to establish reliable test characteristics that could be used to predict NEC 
in an individual patient.

We hypothesized that machine learning (ML) techniques applied to neonatal intes-
tinal microbiome data from otherwise discarded stool samples could generate a clini-
cally useful NEC risk score. We suspected that early changes in the microbiota might be 
detectable to certain ML algorithms, permitting delineation of high risk populations well 
before disease onset.

Other teams have used ML approaches to try to determine NEC risk factors. One 
group used a linear discriminant analysis on clinical, laboratory, and radiographic signs 
of NEC in order to develop a prognostic algorithm to predict disease outcomes [32]. 
Olm et al. applied a boosted gradient classifier to preterm microbiota data to identify 
bacterial taxa that precede NEC [27]. While these efforts have been productive, no pub-
lished report has systematically evaluated ML strategies for converting microbiota data 
into an actionable NEC risk score. This may be because of challenges inherent in micro-
biota data derived from next-generation sequencing. Such datasets are intrinsically 
sparse, non-normal, compositional, and have high dimensionality [33–36], all of which 
can obscure subtle signals and lead to suboptimal ML outcomes.

In this report, we detail development, testing, and application of a system for sequen-
tial quantification of a preterm infant’s risk of NEC using information about the bacterial 
content of the stool. We developed and validated our approach using historical datasets 
from two large cohort-based studies of preterm infant stool microbiota. This work builds 
on a preliminary description of our efforts, which we reported in 2020 [37]. Significant 
advances reported here include refinement of our data pre-processing approach, devel-
opment of a quantitative risk score, further investigation of interpreting the major driv-
ers of NEC prediction, and addition of a second, independent patient database.

Our system is organized around a gated attention-based multiple instance learning 
(MIL) model. MIL is a framework for approaching problems where the goal is to learn 
to label sets of instances even when the individual instances themselves are not inher-
ently labeled [38]. We propose that MIL offers strategies well-suited for predicting a 
disease based on serial microbiota characteristics. To our knowledge, no prior research 
has investigated this strategy, which we show permits accurate risk discrimination 
from the high-dimensionality, low signal strength data generated by stool microbiota 
classification.

We also introduce a novel technique that we term the “growing bag” analysis to apply 
MIL to a longitudinal set of clinical samples. The growing bag analysis allows us to con-
vert confidence scores from our MIL model into a dynamic risk score that quantifies an 
individual patient’s likelihood of developing NEC.
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Finally, to interpret dynamic changes to NEC risk revealed through the growing bag 
analysis, we employ the gated attention mechanism within our system, which we use 
to identify individual stool samples from patients in our two cohorts that are maxi-
mally informative to NEC risk. We apply random forest analysis to these high-attention 
samples to identify a core set of colonizing bacterial taxa that inform our system’s risk 
assessment. This set of bacteria—which include taxa previously implicated by other 
researchers as well as novel taxa not previously reported to be associated with NEC 
risk—could be the basis for a future, ML-based bedside assay for identifying infants at 
elevated NEC risk in real time.

Results
Microbiome characterization of longitudinal preterm infant stool samples from two 

independent, historical NICU cohorts

We developed and validated our ML NEC risk assessment system using data from two 
large studies of preterm infants from which stool microbiota DNA sequences and basic 
clinical details—including NEC outcomes—were available [27, 31].

The designs of the two studies were conceptually similar. Warner et al. [31] prospec-
tively collected serial stool samples and recorded a panel of clinical data from VLBW 
preterm infants cared for at three U.S. hospitals. NEC cases were identified based on 
clinical and radiographic features, and were matched to between one and four control 
infants who did not develop NEC. Case-control matching was based on gestational age 
at delivery and the birth medical center. All stools from birth through disease onset were 
analyzed for NEC-affected cases, whereas stools between birth and 74 days of life were 
analyzed for controls (the majority of control patients had samples collected up to day of 
life 60, see Fig. 1A). To characterize the microbiota in collected stools, Warner et al. used 
Roche 545 sequencing of 16S ribosomal RNA variable region amplicons.

Olm et al. [27] also prospectively collected preterm infant stool and recorded clinical 
data over the first months of life, then performed post-hoc case-control matching based 
on gestational age at delivery and the calendar date at birth (to control for potential sea-
sonal fluctuation). Infants for this study were all cared for in the NICU at University 
of Pittsburgh Medical Center Magee-Womens Hospital. There was no overlap between 
patient populations for the two studies. As in the Warner et. al. study, NEC-affected 
infant stool was analyzed between birth and disease onset, with samples preferentially 
selected for sequencing if they were the last collected before NEC diagnosis (Fig. 1B). 
In this study, control stool samples selected for analysis were matched in time to case 
samples. Instead of targeted sequencing of the 16S ribosomal RNA coding region, Olm 
et  al. performed whole-genome sequencing on an Illumina HiSeq 2500 platform, per-
mitting reconstruction of complete or near-complete bacterial genomes. Whole-genome 
sequencing allows greater precision in bacterial taxonomic classification and recon-
struction of metabolic pathways present among the bacterial population than targeted 
16S sequencing, but requires more sequencing and bioinformatics resources [39, 40].

We obtained authorized access to Warner et  al. patient metadata through the 
National Center for Biotechnology Information’s database of genotypes and phenotypes 
(NCBI dbGAP accession phs000247.v5.p3) and used metadata published by Olm et al. 
Patient details, which included NEC outcomes, were matched with publicly available 
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next-generation sequencing files, which we downloaded from the NCBI’s Sequence Read 
Archive. Because the two studies used different sample collection protocols, next-gener-
ation sequencing strategies, and reported varying demographic and clinical information, 
we took several steps to ensure that data we used from the two sources were normalized 
and structured identically.

FASTQ files with 16S ribosomal RNA variable region sequences (Warner et al. data-
set) and whole genome shotgun sequences (Olm et al. dataset) were characterized with 
Kraken2, a flexible microbiota classification software package that aligns short genetic 
sequences (k-mers) to the lowest common ancestor in order to make a taxonomic assign-
ment [41]. We chose Kraken2 for its speed and resource-efficiency and the fact that it 
produces identically formatted microbiota classification files regardless of whether its 
input consists of 16S or whole genome sequences. This uniformity is well-suited for 
downstream ML analyses, permitting a single model to accept data from distinct study 
protocols.

After removing all non-bacterial taxa (fungi and archaea) from the two collections of 
Kraken2 output files, we were left with bacterial DNA fragment counts for stool micro-
biota from 3595 samples taken from 261 preterm infants (2895 samples from 161 infants 
from the Warner study, 700 samples from 100 infants from Olm et  al.), 75 of whom 
developed NEC. The taxonomic distribution of the bacteria identified through this anal-
ysis is presented in Fig. 1C. Trends identified in both source studies reemerged after our 
reclassification of the stool microbiota using Kraken2. Specifically, we found that infants 
from the Warner et al. cohort who developed NEC had a trend toward decreased Nega-
tivicutes abundance and increased Proteobacteria abundance relative to unaffected con-
trols. We also found an increase in Klebsiella pneumoniae strain 242_2 among the Olm 
et al. NEC cases preceding disease onset, which those authors described in their original 
report (Additional file 1: Fig. S1).

Both Warner et  al. and Olm et  al. reported demographic and clinical information 
about enrolled neonates and their families. These metadata ranged from maternal infor-
mation such as age, parity, and biometric data, to details about the birth—such as mode 
of delivery—to neonatal metadata such as birthweight, age at the time of each sample 
collection, and Apgar scores. The collected metadata categories differed between the 
two studies, however. For our ML analysis, we elected to use a limited metadata collec-
tion representing the intersection of the two studies (Table 1).

Pre‑processing of compositional microbiome feature counts normalizes data and prunes 

uninformative taxa

Microbiota classification data generated through next-generation sequencing have char-
acteristics that present challenges to ML-based analyses. First, stool microbiota data-
sets are sparse: the majority of potential bacteria will not be found in any given sample, 
resulting in large numbers of “zero count” organisms [36, 42]. Furthermore, microbiota 
classification data have a characteristic known as compositionality. Briefly, because 
the total number of DNA reads that can be generated by a next-generation sequenc-
ing instrument is finite, any next-generation sequencing-based taxonomic classification 
is necessarily based on a subsample of the total environmental diversity. As a result, a 
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microbiota community member characterized as absent (i.e. zero on the count table) 
may actually be present at a low density below the instrument’s limit of detection. Fur-
thermore, incorrect assumptions about correlations between microbiota member abun-
dances can result if the compositional nature of the data is not considered [34–36, 43, 
44].

A common approach for handling the uncertain zeros in a compositional dataset is to 
apply a pseudocount where zeros are replaced by a uniform small number, such as two-
thirds of the limit of detection [45, 46]. For our dataset, zeros were replaced with 0.66, 
which was two-thirds of the smallest possible read count of 1. Next, we applied a cen-
tered log-ratio transformation in order to adjust compositional data to make them more 
tractable to statistical analyses. In the centered log-ratio approach, each taxon within 
a sample is transformed by taking the log-ratio counts for that taxon within a sample 
divided by the geometric mean of the counts of all taxa [47, 48]. This transformation 
adjusts sparse datasets so that the frequency distributions are not tightly clustered close 
to zero; it shifts and widens narrow frequency distributions, accentuating subtle differ-
ences that may be lost in the non-transformed data (see Fig. 2).

Another special characteristic of microbiota data is its hierarchically structured fea-
ture space (bacteria can be classified at kingdom, phylum, class, order, family, genus, and 
species levels), which can be exploited for more efficient and accurate modeling through 

Table 1  Shared clinical features from the two studies included in the MIL model

P-value < 0.05 is in bold
aStudent’s t-test for mean value comparisons; Fisher’s exact test for percentage comparisons
bSingleton infants = 1; for multiple gestations, the number designates live-born birth order
cNPO = nothing per os (not being fed)

Warner et al. (n = 161) Olm et al. (n = 100)

Non-affected 
(116)

NEC affected 
(45)

P-valuea Non-affected 
(70)

NEC affected 
(30)

P-valuea

Mean gesta‑
tional age at 
birth (SD)

27.1 (2.3) 26.3 (2.5) 0.10 28.1 (2.3) 28.2 (2.3) 0.83

Percent male 0.45 0.62 0.05 0.47 0.4 0.66

Mean birth‑
weight (SD)

963.7 (268.7) 856.8 (243.1) 0.03 1092.6 (343.2) 1076.1 (341.6) 0.83

Percent vaginal 0.31 0.27 0.70 0.26 0.30 0.81

Percent multiple 
gestation

0.28 0.18 0.23 0.33 0.53 0.07

Number live-
bornb

1–3 1–3 N/A 1–3 1–3 N/A

Percent exclu‑
sively formula 
fed

0.03 0.02 > 0.99 0.11 0.10 > 0.99

Percent exclu‑
sively breast fed

0.21 0.33 0.10 0.30 0.37 0.64

Percent com‑
bination breast 
and formula fed

0.77 0.62 0.08 0.59 0.53 0.66

Percent NPOc 
throughout 
hospitalization

0.00 0.02 0.28 0.00 0.00 > 0.99
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taxonomy dimensionality reduction [49, 50]. To reduce the dimensionality of our taxo-
nomic microbiota data, we removed any node that was redundant with its parent, using 
a Pearson correlation threshold of 0.7. This reduced the the number of taxa from 3702 
to 2282 for the Warner et  al. dataset and from 9626 to 6221 for the Olm et  al. data-
set. Information gains were also calculated for each node of the taxonomy tree using the 
NEC target label. Any node with an information gain of zero was discarded. This pro-
cess allowed us to prune the number of features further to 362 taxa and 706 taxa for the 
Warner and Olm datasets, respectively. For a list of taxa included in the final analyses, 
after pre-processing, see Additional file 2: Data S1.

Fig. 1  Collection timing and microbiota characterization of neonatal stool samples from the two cohorts 
used for NEC prediction. Warner et al. [31] and Olm et al. [27] prospectively collected stool samples for 
subsequent sequence-based microbiota analysis from hospitalized preterm infants at variable timepoints 
throughout the first several months of life. A subset of enrolled infants eventually developed NEC. For this 
study, 2895 samples from Warner et al. and 700 from Olm et al. were used for development and retrospective 
application of a NEC prediction model (A, B). Kraken2 was used to perform microbiota member classifications 
for all available samples from both studies. Aligned bacterial classifications at all taxonomic levels are shown 
for both studies (C)
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Pre-processing highlighted inherent differences between the two datasets. The Warner 
et  al. study, which used relatively low-resolution 16S sequencing, generated a sparser, 
lower-complexity data landscape after centered log-ratio transformation than the Olm et al. 
study, in which whole genome sequencing generated greater phylogenetic differentiation 
and more nuances in the data landscape (Fig. 2). However, the hierarchical feature reduc-
tion step removed low-information taxa from both datasets, resulting in similar feature 
frequency landscapes from the two studies. A significant strength of the NEC prediction 
system we describe here is that it performed well with different degrees of data complexity, 
suggesting that it can be successfully paired with various technical strategies for microbiota 
characterization.

Fig. 2  Microbiota data pre-processing. Kraken2 bacterial taxa raw counts were processed in two steps 
before use as input for MIL NEC prediction. Centered log-ratio transformation (step 1) replaces absent taxa 
with a non-zero value (0.66) and accentuates differences between sparse data collections. This was followed 
by hierarchical feature reduction to reduce data dimensionality by algorithmically removing uninformative 
bacterial taxa (step 2). Hierarchical feature reduction involved pruning all branches of the taxonomic 
tree whose abundance showed > 0.7 Pearson correlation with their parent nodes or which yielded no 
information gain toward NEC classification. The same processes were applied to both the Warner et al. and 
the Olm et al. microbiota datasets. For each plot in the figure, the X axis describes a normalized frequency 
distribution while the Y axis describes the number of patient samples. The Z axis describes the bacterial taxa 
present at each stage of pre-processing (the total number decreases after step 2; see main text). Peaks are 
colored with a repeating, alternating pattern for ease of visualization. More abundant taxa are those with 
higher peaks toward the right side of the plot
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An attention‑based multiple instance learning paradigm permits discrimination 

between affected and unaffected infants using pre‑processed microbiome data and basic 

sample metadata

The field of ML offers a wide range of algorithms to build models from data. In most 
cases, ML requires training from a set of discrete data points, which are termed 
instances. Each instance is described by a set of feature values in some domain, such as 
text for emails, pixel intensity for images, or vital signs for patients. Often, each instance 
is tagged with its own label (for example, spam or non-spam email). For any new ML 
task, a crucial step is to identify the learning paradigm and the representation needed to 
formalize the problem. This will depend on the data and the goal.

MIL is a form of ML where the training instances are arranged in sets, called bags, and 
the label is provided for the entire bag [51, 52]. There are two main approaches to solve 
MIL problems. In instance level approaches, predictions are made for each instance 
and aggregated to obtain the bag level label. In embedding level approaches, instances 
are mapped to a vectorial embedded space and fed to a final classifier. Embedding level 
approaches are preferred when instance-level labels are unknown, which is the case for 
NEC prediction, where no single stool sample collected prior to disease onset can be 
definitively classified as NEC-affected or unaffected.

We recognized MIL as an appropriate framework for NEC prediction from serial stool 
sample microbiota analysis. In adapting a MIL approach to predicting NEC, we model 
each patient as a bag of clinical samples, which are the instances. The instances have fea-
ture values that consist of microbiota data and associated clinical details (Table 1). The 
task is to assign a NEC risk classification to the patient (Fig. 3A) based on the unlabeled 
instances.

Fig. 3  Multiple instance learning (MIL) approaches employed in this study. In bag-level MIL, each patient 
is represented as a bag of multi-feature instances, which are stool samples (the instances) that have been 
characterized by microbiota states and accompanying basic clinical data (the features). The instances are 
inherently unlabeled and the goal of the system is to determine a bag label (A). The NEC prediction model 
was trained on pre-processed microbiota frequency data and basic clinical data from training patient cohorts. 
This permitted development of a model for bag classification and quantifiable attention to key instances with 
highest contributions to bag labels (B). Test patients were assessed with the trained model, which was naïve 
to their data, using a growing bag approach where each new instance generated a new confidence score 
and attention distribution across all available instances. The changing confidence scores were algorithmically 
transformed into dynamic risk scores for each test patient (C). Attention scores were also used to identify 
key, highly informative instances. The feature distributions within these instances were subjected to random 
forest analysis to identify specific bacterial taxa that drove accurate NEC prediction (D)
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We used a recently developed embedding level strategy in which initial embedding 
of the features is performed by a neural network, which feeds into an attention-gated 
MIL pooling algorithm [53]. The embeddings are aggregated using the attention weights, 
which are then passed to a fully connected layer with a sigmoid activation function that 
produces a bag probability. This model assumes that a bag label X is distributed as a Ber-
noulli distribution θ(X) ∈ [0, 1] and trains it by optimizing the log likelihood function 
(see Additional file 3: Fig. S2).

The attention-based pooling module of our MIL system assigns attention weights to 
each instance in a bag. Those instances with the highest attention weights are the most 
significant contributors to the final bag label. This allows identification of maximally pre-
dictive stool samples (Fig. 3B). We used attention weight data to tune dynamic NEC risk 
scores and to interpret the microbiota taxonomic features that were most informative to 
our model.

We used stratified sampling to partition our two datasets into training and testing sets. 
We conducted five trials of this partitioning to avoid any sampling bias. We used a cross-
validation modeling strategy whereby we trained our system on a portion of the dataset, 
then repeatedly tested the resultant model on the data subset that was withheld dur-
ing training. The final model obtained was then applied to the test set. We averaged the 
results across all trials. We compared our system to two instance-level MIL approaches 
called mi-SVM and MI-SVM [54]. We also compared to MILboost, a MIL variant of Ada-
Boost that has been mostly used for object detection in images [55]. Finally, we com-
pared to logistic regression. The PyTorch Python package [56] was used to implement 
the attention-based MIL method. The Scikit-learn Python package was used to imple-
ment SVM and logistic regression analyses [57].

In repeated trials of our attention-based MIL approach, we demonstrated receiver-
operator curve (ROC) areas under the curve (AUC) of 0.86–0.92 for both datasets, sug-
gesting a good balance of sensitivity and specificity. Precision-recall characteristics of 
the experimental system also exceeded any of the alternative methods, with precision-
recall AUC values around 0.75 (Fig. 4). The majority of our model’s predictive perfor-
mance came from microbiome data. Exclusion of clinical and demographic details in 
Table  1 from the analysis resulted in AUC values that were not significantly different 
than when these metadata were included ( p ≥ 0.35 for Kolmogorov–Smirnov com-
parisons between ROC and precision-recall curves with and without clinical data). 
Pre-processing as described above was essential, however. Dimensionality reduction 
through hierarchical feature and information gain-based pruning allowed our models 
to converge, which was not possible when trained with the complete microbial dataset. 
Centered log-ratio transformation increased the ROC and precision-recall AUCs (Addi-
tional file 4: Fig. S3). By contrast, the predictive accuracy of the alternative approaches 
was barely above chance, with receiver-operator characteristics demonstrating only lim-
ited ability to differentiate NEC from non-NEC cases (Fig. 4).

A novel “growing bag” method permits determination of a NEC risk score from serial 

analysis of neonatal stool samples

When supplied with historical data spanning early infancy, our MIL-based system effec-
tively distinguishes unaffected preterm newborns from those who developed NEC. 
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Fig. 4  Receiver-operator and precision-recall curves for comparison methods and the multiple instance 
learning (MIL) model with and without clinical metadata. Curves are displayed for both clinical datasets using 
five comparison techniques (top panels) for which the average curves from five testing trials are displayed. 
The MIL microbiome and microbiome-plus-metadata panels show average curves from five testing trials with 
95% confidence intervals in parentheses. AUC, area under curve; SVM, support vector machine; LR, logistic 
regression
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However, a more useful clinical tool would be able to make dynamic predictions over 
time.

In order to generate dynamic NEC predictions using our system, we developed an 
approach that we call the growing bag analysis. Here, the model is initially trained on the 
full set of complete bags except for the bag of interest, representing the patient whose 
longitudinal NEC prediction is under study. That patient’s instances are then arranged 
in sequential order and the trained model is asked to generate iterative NEC predictions 
where each new prediction represents the previous bag to which one new instance has 
been added (i.e. the growing bag). The process can be repeated for every patient to pro-
duce NEC confidence scores as a function of time (Fig. 3C).

Plotting the confidence-over-time functions for patients in our historical datasets 
revealed an unexpected pattern. The system indicated that the majority of preterm new-
borns were predicted to be NEC-positive at birth. Over time, however, the two groups 
diverged, with NEC-negative patients showing a sudden drop in the system’s confidence 
that they would develop the disease. Meanwhile, most of the affected patients did not 
show this sudden inflection; their prediction remained NEC-positive throughout the 
observation period (Fig. 5).

We next developed a transformation that converts the MIL model’s confidence score 
into a risk score, which is also influenced by the attention weight assigned to each new 
instance. The algorithm incorporates the neonate’s age and any past risk scores, and pro-
duces a new score that could be tracked over time. Using this approach on each patient 
from the Warner et al. and Olm et al. datasets, we observed divergence of risk scores 
between the NEC-affected and unaffected patients (Fig. 6A). Importantly, we performed 
risk score calculations for each patient within the two datasets using a MIL model that 
had never encountered that patient’s data. In this way, we were able to simulate what the 
risk score would have been, over time, for each patient in our two datasets if our system 
had been used during the course of their NICU admission.

In order to determine a maximally predictive risk score threshold, we evaluated a 
range of cutoff values, comparing their relative sensitivities and specificities for NEC. 
Results of this analysis are shown in Additional file 5: Fig. S4. We determined that a risk 
score of 0.35 had optimal performance when applied to our dataset, maximizing accu-
racy with an average lead-time (i.e. time before disease onset that the risk score rose 
above threshold) of 8.3 days. Figure 6B, C show cumulative correct predictions in each 
dataset as a function of time, demonstrating statistically significant differences in predic-
tion rates between affected and unaffected patients. Figure 6D shows the relative pro-
portion of true and false positives and negatives—as well as lead-times for risk scores 
>0.35—for all patients in this study. Figure 6E shows test characteristics for our system. 
Across the two studies, using a risk cutoff of 0.35, we found an overall sensitivity of 86% 
and a specificity of 90%.

Interpretation of the growing bag model reveals bacterial taxa that drive accurate NEC 

predictions

We sought to interpret the major drivers of the prediction inflections revealed 
through the growing bag analysis, reasoning that interpretability data from our model 
would add to the validity of our approach if it highlighted bacterial taxa that past 
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work has shown are correlative with NEC. We also speculated that interpretability 
data might indicate previously unstudied bacterial taxa that may play a role in NEC 
pathogenesis, and therefore be useful for generating new hypotheses about how NEC 
develops.

To interpret NEC predictions from our system, we took advantage of the attention 
weight module within the MIL architecture. We identified the highest attention weight 
instance from each positive bag in our two datasets. We extracted these instances and 
removed all clinical metadata, such that only microbiome data was left in the feature set. 
Next we performed random forest analysis on these high-attention instances in order to 
determine microbial covariants with attention weights (Fig. 3D). We analyzed each level 
of the bacterial taxonomic tree independently and performed five independent rounds 
of training and testing.

Using only the highest attention weight instances, random forest analysis was able to 
discriminate NEC-affected from non-affected patients, yielding ROC curve areas of 0.86 
and 0.79 for test sets from the Warner and Olm datasets, respectively (Additional file 6: 
Fig. S5).

Fig. 5  Confidence scores for all patients using the growing bag MIL technique. Confidences associated with 
MIL NEC prediction were calculated for all available samples using the growing bag technique as described 
in the main text. In this figure, a prediction of NEC where the confidence is high is colored red, while a 
prediction with low confidence is colored blue. Gaps between samples taken from the same patient were 
interpolated with the confidence of the previously obtained sample. The order of patients along the left side 
of this figure is the same as in Fig. 6D
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Ranked importance values for the highest-influence features, shown in Fig.  7, 
demonstrate congruence between our results (shown for bacterial phylum, class, and 
family levels) and those reported by Warner and Olm et al. As in those studies, we 
found that phyla Firmicutes and Proteobacteria, class Gammaproteobacteria, and 
family Enterobacteriaceae were at or near the top of the importance-ranked feature 

Fig. 6  NEC risk scores and test characteristics. Confidence scores from the growing bag were used to 
calculate dynamic NEC risk scores as described in the main text. Each patient in both clinical cohorts was 
analyzed individually, using a MIL model that was naïve to that patient’s data. Aggregate risk scores for 
all patients were binned by days preceding disease or study discharge, and are displayed with standard 
deviation. The trend lines were generated by LOWESS curve fitting (A). Separate survival curves were 
generated for patients in the Warner and Olm cohorts (B, C) where the outcome of interest was a risk score 
above 0.35 during hospitalization. Differences between affected and non-affected patient curves were 
statistically significant (****p < 0.001 ; Kolmogorov–Smirnov test) for both cohorts.Timelines for all patients 
from both cohorts are labeled with the last sample collected (D). For those who were predicted to have 
NEC based on a risk score >0.35, the first sample to cross the risk threshold is indicated, with dotted lines 
illustrating lead-time before disease onset (for true positives) or the last sample collected before aging out of 
the study (for false positives). Prediction outcomes for all patients used across both cohorts are displayed in 
the confusion matrix (E)
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lists for each taxonomic level we evaluated. Complete feature importance rankings 
from both studies are provided in Additional file 7: Data S2.

Interestingly, in our analysis some features emerged as important in one study 
dataset but not the other. For example, Flavobacteriaceae appeared on the list of 
important families from the Olm dataset, but not Warner (Fig. 7). This may reflect 
technical differences between how the two datasets were generated (for example, the 
divergent methods of next-generation sequencing), such that sensitivity for these 
taxa was higher in one study than the other. Alternatively, these differences may rep-
resent intrinsic aspects of the separate study populations. NEC pathogenesis may be 
geographically—as well as individually—heterogeneous, and interpretation differ-
ences between the two datasets may reflect this heterogeneity.

In addition to identifying previously suspected bacterial contributors to NEC 
pathogenesis, our analyses also highlight additional potentially important taxa. 
Classes Clostridia and Actinobacteria, for instance, were third- and fourth-highest 
importance (after Bacilli and Gammaproteobacteria), raising the possibility that 
these less-explored bacterial taxa may be worth further investigation in future 
studies.

Fig. 7  Feature importance based on analysis of high-attention weight instances. For each patient, the 
highest attention weight instance was identified and used to assess feature importance using random 
forest analysis. The 15 features with the highest scores are shown for the taxonomic levels of phylum, class, 
and family. Features that appeared in analyses from both studies are displayed as mean importance, while 
features that appeared in only one study are indicated with a superscript w for Warner et al. or o for Olm et al. 
For complete feature importance lists from both studies see Additional file 7: Data S2
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Discussion
We have developed and validated a ML system for converting serial measurements of 
bacterial taxa into a NEC risk score that could be tracked over time, potentially per-
mitting earlier interventions to prevent the worst complications of the disease.

Multiple prior studies have investigated the developing neonatal intestinal microbi-
ome, both in preterm and term populations, and several groups have focused on the 
preterm intestinal microbiota among patients who developed NEC [27–31, 58]. Most 
studies of the neonatal intestinal microbiota have relied on next-generation sequenc-
ing of bacterial DNA isolated or amplified from infant stool samples, while a subset 
have characterized bacteria from DNA isolated from surgical tissue samples [59–61].

These investigations have revealed a patterned progression in the establishment 
and subsequent evolution of the neonatal intestinal microbiota, while also demon-
strating that there is significant individual variability. An early study of the neonatal 
microbiota by Dominguez-Bello et al. used data from multiple neonatal and maternal 
anatomic swab sites to demonstrate that the bacterial population characteristics of 
the neonatal microbiome in the immediate newborn period was significantly depend-
ent on the mode of delivery, with patients born vaginally developing early microbiota 
resembling the maternal vaginal microbiome, while those delivered by Cesarean sec-
tion developing early microbiota more closely resembling the population of maternal 
skin colonizers [20]. Over time, however, the microbiome profiles of different ana-
tomic sites on the infant diverge and become increasingly site-dependent [25, 62, 
63]. Subsequent work by Chu et al. demonstrated this and also showed that there is a 
microbiota associated with meconium, suggesting that the fetal intestine may not be 
completely sterile [64].

As the infant develops, stereotyped changes occur in the intestinal microbiota. Broadly 
speaking, early colonization by predominately aerobic bacteria is gradually replaced by 
anaerobic colonizers, while overall diversity increases with time [19, 21]. These patterned 
population shifts involve significant variation from individual to individual, however. 
The intestinal microbiota of two infants might follow dramatically different pathways to 
evolve from an early, aerobe-heavy state to a more diverse and anaerobic mature state. 
Common early life events such as viral infections, dietary changes, and administration of 
antibiotics can cause sudden shifts in an infant’s microbiome profile, and may temporar-
ily perturb typical microbiota maturation [19]. Given time, however, most infants will 
reconstitute a normal microbiome and resume a generally predictable process of micro-
biome development.

Part of the challenge of trying to predict the occurrence of NEC in advance from 
microbiota data is that there does not seem to be a single common pathway to the dis-
ease. While the intestinal microbiota of infants affected by NEC show trends toward 
decreased overall diversity relative to unaffected controls [28], bacterial populations 
fluctuate over time and diversity can drop without signaling impending disease [19]. 
No single bacterial taxon nor group of taxa represents a necessary or sufficient cause of 
NEC. Instead, it is likely that different bacterial consortia can activate the inflammatory 
cascades necessary to trigger NEC under the proper conditions [27, 65].
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NEC likely has multiple interacting causes, among which intestinal dysbiosis is only 
one contributor. Other factors that contribute to the pathophysiology of NEC include 
intestinal immaturity, bowel stasis, imbalance in microvascular tone, and a highly immu-
noreactive intestinal mucosa in preterm infants [66].

NEC therefore develops within a context of numerous, simultaneous, variable, 
and often non-linear microbiota changes. Different patterns may be associated with 
increased disease risk, and certain features of the data space—such as the sparsity and 
skewed distribution of microbial populations—make identifying a reliable signal chal-
lenging using traditional statistics. It is even possible that, at a mechanistic level, NEC 
is not a single disease entity but actually represents a final common pathway originating 
from multiple, distinct forms of underlying bowel pathology. This degree of complex-
ity and uncertainty can stymie discovery approaches premised on a tight cause-and-
effect relationship between a specific patient risk factor or clinical finding and disease 
occurrence.

This type of challenge can often be resolved through semi-supervised ML. MIL, in 
particular, is a semi-supervised ML approach well-suited to disease prediction from 
serial stool microbiota analyses. In this case, the overall task of assigning a probability of 
NEC must be completed using individual, complex instances (the sample analyses) that 
are not inherently NEC-positive or NEC-negative. This describes a MIL problem, and 
our work has shown that MIL can outperform alternative statistical analyses, establish-
ing a reliable indicator of an infant’s NEC risk.

An advantage of our approach is that it can flexibly incorporate common events in a 
preterm infant’s NICU course that might present serious challenges to traditional statis-
tics. Although infants in both the Warner and Olm studies experienced a range of post-
natal cardiopulmonary depression (as indicated by their Apgar scores) and days exposed 
to antibiotics, received various forms of breathing support, and were fed breast milk and 
formula in differing proportions, none of these details were necessary as input into our 
MIL-based system, despite the fact that they all have the potential to disturb the pro-
gression of intestinal bacterial colonization. Instead, through ML training on adequate 
sample populations, the downstream effects of these clinical perturbations became 
incorporated into our model and did not affect its ability to determine an infant’s likeli-
hood of developing NEC.

Our work also contributes a new application of MIL: the growing bag analysis, which 
we developed to incorporate passing time into our predictions, permitting establishment 
of a dynamic confidence score—essentially a time-dependent prediction of whether or 
not the patient, represented as a bag of instances enlarging over time, will develop NEC.

The growing bag approach revealed unexpected, sudden probability inflections that 
distinguished infants who would go on to develop NEC from those who would remain 
unaffected. The MIL system apparently identified a sudden and distinct change in NEC 
probability during the interval where the inflection appeared. These inflection points, 
in turn, allowed us to identify moments of changing risk, which could be directly trans-
lated into an easily comprehensible, trackable risk score. We speculate that this approach 
might form the basis of a practical bedside or clinical laboratory test for real-time 
determination of NEC risk among premature infants. Future work will also be devoted 
toward ascertaining what underlying microbiota changes drive the sudden confidence 
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inflections among unaffected infants, as these factors may point the way toward better 
understanding of protective microbiome characteristics.

Our strategy also incorporated basic clinical and demographic metadata (Table  1). 
Certain traits, such as male gender and growth restriction, have been shown to be asso-
ciated with higher NEC risk [67–69]. Furthermore, basic details such as these are readily 
available to any neonatology team caring for a preterm infant. Incorporating them into a 
bedside test would not require significant additional effort. As shown in Fig. 4, however, 
the clinical details shared between the Warner and Olm studies add only incrementally 
to our system’s predictive accuracy, which rests mostly on analysis of the microbiota. 
Whether there is core set of demographic and clinical metadata that significantly boosts 
the accuracy of MIL NEC risk prediction remains a topic for additional future study. We 
also speculate that high-resolution, continuously-recorded physiologic data—such as is 
used for prediction of sepsis from heart rate variability [70]—might enhance the predic-
tive accuracy of our MIL system. Neither of the datasets we used for this study included 
this kind of physiologic tracing data. Similarly, it would potentially be informative to 
apply the machine learning strategies outlined here to metabolomic and proteomic data-
sets, either alone or in concert with microbiota data. Doing so might clarify underlying 
disease mechanisms and provide an avenue to novel biomarker discovery.

The attention-based pooling module within our system’s architecture adds an impor-
tant dimension to this work. The attention assignments allow identification of instances 
within each bag that contribute most to the final bag label. Early proof-of-concept exper-
iments with attention-based pooling demonstrated that it could be used to correctly 
identify target handwritten numerals. A similar algorithm has been used for cancer 
diagnosis from histopathology slides, a task that shares characteristics with microbiota 
analysis insofar as the key is often a subtle, variable change against a complex, noisy 
background. In this task, the highest attention went to regions of cellular dysplasia on 
the slides, indicating appropriate discrimination between high- and low-information 
components of the dataset [53]. Using attention weights in NEC prediction allowed us to 
proportionally amplify or suppress each stool sample’s influence on an infant’s risk score 
based on the system’s determination of that sample’s importance.

An interpretability analysis revealed that many of the taxa that had the greatest impact 
on our model’s predictions have been previously linked to NEC through metagenomic 
studies. Pammi et al. recompiled metagenomic data from a survey of methodologically 
sound investigations of the NEC-related intestinal microbiota. This group’s meta-anal-
ysis of these studies found significant NEC-related differences in the abundances of the 
Proteobacteria and Firmicutes phyla identified in our interpretability analysis [71]. This 
lends external validation to our approach and also supports the conclusions of other 
authors that these bacterial taxa contribute to development of NEC. It also suggests 
that by analyzing our ML model, we may be able to identify previously unrecognized 
bacterial taxa that contribute to NEC pathogenesis. This discovery approach might be 
hypothesis-generating for future basic and translational science studies to understand 
causes of NEC.

We believe the main contribution of this work to the fields of neonatology and 
machine learning is a MIL-based system that generates a longitudinal NEC risk score 
from a limited set of bacterial taxa and basic clinical metadata. The risk score algorithm 
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treats each infant as a bag of instances, growing over time, and incorporates the system’s 
current confidence that the infant will develop NEC based on shifting bacterial taxa 
abundances and clinical information to date. It also utilizes information about past states 
of the growing bag; the attention weight given to each sample; the time that has passed 
since the last prediction was made; and how much time has passed since the infant’s 
birth in order to generate a longitudinal NEC risk score. Other diseases whose onset or 
severity correlates with complex microbiota population changes might be amenable to 
the same basic approach. Possible examples include inflammatory bowel disease, irri-
table bowel syndrome, colon cancer, and psychiatric illnesses. We anticipate evaluating 
our system’s ability to predict these conditions in future studies. We are also considering 
possible technical approaches to implementing repeated microbiota characterization of 
neonatal stool samples. We hope to conduct prospective validation studies in the near 
future, sequencing a novel collection of patient samples to generate new microbiota data 
for ML analysis. New technologies have been developed for rapid DNA purification and 
sequencing that do not require large, complex instrumentation [72, 73]. These technolo-
gies, combined with our ML approach, may present an avenue toward practical, local, 
ongoing NEC risk assessment for premature infants.

If NEC risk could be assessed and tracked, what would be the appropriate response 
to an asymptomatic infant whose risk was found to be rising? Since no reliable form of 
NEC risk prediction has been widely used, there is not a definite answer to this ques-
tion; establishing an appropriate clinical response to a new diagnostic test takes time and 
experience, often in the form of additional clinical trials. A few plausible approaches to 
a rising NEC risk score include suspending enteral feeds (while giving supplementary 
IV nutrition), administering antibiotics, providing a prebiotic or a probiotic, or some 
combination of the above. None of these interventions are especially invasive, but would 
require further study and optimization in order to determine which (if any) has a ben-
eficial approach on NEC risk. Perhaps one of the most immediate benefits of having a 
trackable NEC risk score would be an avenue toward additional clinical research on any 
of these interventions where the risk score could serve both as a trigger for randomiza-
tion and as an outcome measure other than NEC or death. This would facilitate patient 
enrollment and potentially improve the statistical power of future studies.

Conclusion
We have developed a novel, interpretable, MIL-based system for predicting NEC risk 
in preterm infant populations using data that can be collected non-invasively from oth-
erwise discarded stool samples. Future work will involve prospective validation of this 
approach in hopes of developing a reliable method for predicting NEC before severe 
injury or death becomes unavoidable.

Methods
Data sources

After obtaining authorized access to clinical and demographic data through the National 
Center for Biotechnology Information (NCBI) Database of Genotypes and Phenotypes 
(dbGaP), we downloaded the raw sequence reads for 2,895 clinical samples from the 
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Warner et  al. study. For the Olm et  al. dataset, we used the supplementary data from 
reference [27] to identify and download 700 sequence files from the NCBI Sequence 
Read Archive that could be matched to patients from the study whose NEC outcome 
was known.

We also included ten clinical metadata features collected and reported in both of the 
two historical studies (see Table 1). Clinical metadata present in one but not the other 
studies were not utilized.

Kraken2 characterization of preterm infant stool microbiota

We used Kraken2 [41] to directly align the sequence reads to a database of microbiome 
DNA sequences (the miniKraken2 database), after which viral, fungal, and archaeal 
alignments were removed, leaving only bacterial matches.

Validation of bacterial classification by confirming key findings from the initial studies

We validated key findings from the initial studies by comparing the kernel density plots 
of specific taxa of interest between the affected and unaffected patients. We conducted 
Kolmogorov–Smirnov tests on the kernel density plots to determine whether taxa dis-
tribution differences were statistically significant. Let (x1, x2, ..., xn) be samples of taxa 
abundance drawn from some unknown probability density function f at any given point 
x. We estimate f with f̂  using kernel density estimator.

where the bandwidth h is a smoothing parameter and K is the kernel which is a non-
negative function. The kernel density estimator aims to smooth the population distribu-
tion curve given a finite set of samples. A histogram counts the number of data points at 
arbitrary regions; the kernel density estimator is the sum of the kernel function on every 
data point. For our analysis, we plotted kernel density estimator plots using the Gaussian 
kernel.

Hierarchical feature selection and center log‑ratio transformation

In order to reduce the dimensionality, sparseness, and to correct for the compositional 
nature of our microbiota data, we performed several pre-processing steps. First, we rep-
resented the list of bacterial classifications reported in each Kraken2 output file as a tax-
onomic tree where related nodes (children) are linked with a common node (parent). 
This tree follows the traditional kingdom, phylum, class, order, family, group, species, 
strain taxonomic structure.

We performed a centered log-ratio transformation on each level of the taxonomic tree. 
The presence of zeros is problematic in computing the centered log-ratio transformation. 
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Therefore, zeros were replaced with a uniform value: 0.66, which was 2/3 of the smallest 
possible read count of 1. Each taxon within a sample is transformed by taking the log-ratio 
counts for that taxon within a sample divided by the geometric mean of the counts of all 
taxa. Given an observation vector of D features in a sample, x = [x1, x2, ..., xD] , the formula-
tion for center log-ratio transformation xclr is as follows:

Finally, using a supervised feature selection approach similar to the hierarchical fea-
ture engineering (HFE) method [50], we reduced the dimensionality of our dataset by 
removing any node that was redundant with its parent node, using a Pearson correla-
tion threshold of 0.7. This threshold allows for maintaining around 65% of the original 
nodes for both datasets. We found 0.7 as an optimal threshold, since selecting a higher 
threshold would remove only a limited amount of nodes, while selecting a lower thresh-
old would remove many child nodes that might contain information that is not captured 
by the parent node. Information gains were also calculated for each node of the taxon-
omy tree using the NEC target label. Any nodes with an information gain of zero was 
discarded.

Development and benchmarking of the attention‑based MIL system

In our MIL system for predicting NEC, we have a set of labeled examples:
(X1, y1), (X2, y2), . . . , (Xn, yn)

where each bag Xi is a set of instances of the stool microbiota and clinical metadata fea-
tures of the form Xi = {xi1, xi2, ..., xik} . Note that k corresponding to the number of sam-
ples can vary from one patient (bag) to another. The overall label yi ∈ {0, 1} denotes the bag 
class label—that is, whether the baby developed NEC or not.

There is no access to the instance labels themselves. Therefore, the whole bag is labeled 
with yi = 1 , affected by NEC, if it includes at least one positive instance. The instances are 
considered weakly labeled because only a subset of them are the drivers of the prediction 
outcome. The bag label yi is given by:

where yik denotes the latent label of the kth instance of bag i. These yik labels are not 
available during training while the bag label yi is observed.

The attention-based pooling function is constructed as follows. Obtaining the embed-
ding H = {h1, ..., hk} through a neural network fψ(∗) , where hk = fψ(xk) , the embedding is 
aggregated by the weighted mean operator [53]:

(3)xclr =[log(x1/G(x)), log(x2/G(x)), ..., log(xD/G(x)), ]

(4)G(x) = D
√
x1 · x2 · · · · · xD

(5)yi =
{

1, iff
∑

k yik > 0
0, otherwise

(6)z =
k

∑

k=1

akhk
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where

where w ∈ R
L×1 and V ∈ R

L×M are parameters.
Our system also includes a gated mechanism that has been shown to enhance MIL 

performance [53, 74].

where U ∈ R
L×M are parameters and ⊙ is an element-wise multiplication. The sigm(·) 

is a sigmoid function that serves to introduce non-linearity to the attention-based MIL 
pooling, improving efficiency in learning complex relationships that may be significant 
in determining the bag label. An overview of the computational architecture of our sys-
tem is shown in Additional file 3: Fig. S2 inspired from [52].

Growing bag analysis

Each patient is represented by a set of instances Xi = {xi1, xi2, ..., xik} , where k is the 
number of instances for that specific patient. A subset of instances Xt

i ⊆ Xi where 
Xt
i = {xi1, xi2, ..., xit} can be used to represent the patient’s status at a fixed period in 

a patient’s life. We have xi1 represent the first sample that was collected for a specific 
patient and xit as the tth sample. We define Di = {di1, di2, ..., dik} as the set of day-of-life 
values for a specific patient i and Dt

i ⊆ Di , where Dt
i = {di1, di2, ..., dit} . Using Xt

i  and Dt
i  

as input into the MIL model, we can arrive at a scalar prediction confidence score cit and 
the attention weights At

i = {ai1, ai2, ..., ait} . Therefore, the set of prediction confidence 
Ct
i = {ci1, ci2, ..., cit) can be obtained by iteratively applying the MIL model from t = 1 to 

t = k by using inputs {(D1
i ,X

1
i ), (D

2
i ,X

2
i ), ..., (D

t
i ,X

t
i )} . We utilize the collection of predic-

tion confidences and the attention weights for computing the risk score and conducting 
the interpretabilty analysis.

Translating the growing bag into a trackable NEC risk score

For a specific patient i, the risk score is represented by Ri = {ri1, ri2, ..., rik} . The risk 
score calculated at each specific timepoint is dependent on the prior risk scores. We 
have noticed that for most non-affected patients the confidence score is high early in 
the patient’s life and then drops as more instances are added (see Fig. 5), while for the 
affected patients the confidence score stays close to 1. Based on this observation, our risk 
score formulation is constructed such that when there is a sharp decrease in the confi-
dence score (> 0.75) all subsequent instances’ contributions to the risk score become 
negative. We measure the contribution value using:

(7)ak =
exp{w⊤ tanh(Vh⊤k )}

∑k
j=1 exp{w⊤ tanh(Vh⊤j )}

(8)ak =
exp{w⊤(tanh(Vh⊤k )⊙ sigm(Uh

⊤
k ))}

∑k
j=1 exp{w⊤(tanh(Vh⊤k )⊙ sigm(Uh

⊤
k ))}

(9)(dit − di(t−1))(cit − 0.5) ∗ (ait − amin
it )
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Instances in our dataset are not collected at a fixed interval. Therefore, we adjust 
the contribution value with the difference in the day-of-life for instance t and t − 1 
( dit − di(t−1) ). Confidence scores from our predictive model range from [0, 1], where a 
score of 0.5 is an indication of a random prediction. Intuitively, we zero-centered the 
confidence score (cit − 0.5) to reflect the idea that a random prediction should have no 
contribution to the risk score while a confidence score greater or less than 0.5 should 
have a positive or negative impact on the risk score, respectively. Given that the atten-
tion-based model allows an understanding of the contribution of each instance to a spe-
cific prediction, we factor in the marginal impact of including a new instance by looking 
at the difference between the newly included instance attention weight ( at ) and the min-
imum attention weight ( amin

it  ) in the bag.

Interpretability analysis using highest attention instances

In order to better understand the key features driving accurate predictions from the 
MIL attention model, we used the attention scores generated for each bag, which 
were used to isolate the most informative instances for analysis through a random for-
est algorithm. In the MIL model, bag labels were assigned using an aggregate of all 
instances, which were weighted by their attention scores as defined in (6). In this sys-
tem, higher attention score instances contribute more to the final prediction. When 
the attention weight is zero the effect is essentially the same as removing the instance. 
Selecting the instance with the highest attention score to represent each patient sim-
plifies the process of quantifying the feature importance of bacterial taxa in the micro-
biota, which was not allowed in the MIL model. With each patient represented as the 
highest attention weight instance, we used a traditional ML method to analyze feature 
importance.
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We trained a random forest model with the highest attention weight instances and 
extracted the importance for each of the features. We used the Scikit-Learn package to 
implement the random forest model and extract feature importances [57].

Random forest prediction results were gathered for the same train and test sets as in the 
original cross-validation of the MIL model (Additional file 6: Fig. S5).

We summarized the feature importance within taxonomic levels of phylum, class, and 
family by summing the feature importances of descendent taxa with the same common 
ancestor.

The feature importance of a taxon at a specific taxonomic level (FI(c)) is calculated using 
Eq. (10).

c is a taxon on the taxonomic level of interest, D is the set of features generated after 
HFE selection and are descendants of c on the taxonomic tree.

The impurity-based feature importance ( FIRF (d) ) is calculated for a random forest model 
by taking the average of all feature importance values from all trees in a random forest 
model (T).

(10)FI(c) =
∑

d∈D
FIRF (d)

(11)FIRF (d) =
1

|T |
∑

t∈T
FIDT (d, t)
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Decision tree feature importance ( FIDT (d, t) ) for a feature is the sum of information gain 
from all nodes that split on that feature, which we denote as Md , divided by the total 
impurity reduction of all the nodes in tree t.

where F is the set of all features that was used to generate the random forest model.
Information gain is determined by impurity reduction achieved by splitting on fea-

tures. Information gain on a node m is denoted as IG(m). There are several ways to cal-
culate impurity (I(m)). The usual choice for classification is gini impurity, which is the 
method we used for our experiment.

Nm is the total number of samples in the current node, Nright
m  is the total number of sam-

ples is the right child node, and Nleft
m  is the number of samples in the left. mright denotes 

the right child and mleft denotes the left child.
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