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Variant effect predictions capture some
aspects of deep mutational scanning
experiments
Jonas Reeb1* , Theresa Wirth1 and Burkhard Rost1,2,3,4

Abstract

Background: Deep mutational scanning (DMS) studies exploit the mutational landscape of sequence variation by
systematically and comprehensively assaying the effect of single amino acid variants (SAVs; also referred to as missense
mutations, or non-synonymous Single Nucleotide Variants – missense SNVs or nsSNVs) for particular proteins. We
assembled SAV annotations from 22 different DMS experiments and normalized the effect scores to evaluate variant
effect prediction methods. Three trained on traditional variant effect data (PolyPhen-2, SIFT, SNAP2), a regression method
optimized on DMS data (Envision), and a naïve prediction using conservation information from homologs.

Results: On a set of 32,981 SAVs, all methods captured some aspects of the experimental effect scores, albeit not the
same. Traditional methods such as SNAP2 correlated slightly more with measurements and better classified binary states
(effect or neutral). Envision appeared to better estimate the precise degree of effect. Most surprising was that the simple
naïve conservation approach using PSI-BLAST in many cases outperformed other methods. All methods captured
beneficial effects (gain-of-function) significantly worse than deleterious (loss-of-function). For the few proteins with
multiple independent experimental measurements, experiments differed substantially, but agreed more with each other
than with predictions.

Conclusions: DMS provides a new powerful experimental means of understanding the dynamics of the protein
sequence space. As always, promising new beginnings have to overcome challenges. While our results demonstrated
that DMS will be crucial to improve variant effect prediction methods, data diversity hindered simplification and
generalization.

Keywords: Sequence variation, Variant effect prediction, Deep mutational scanning, Non-synonymous sequence variant,
Missense variant, Single nucleotide variant

Background
Recent human sequencing projects conclude that we all
carry about 10,000 single amino acid variants (SAVs;
also referred to as missense mutations, or non-
synonymous Single Nucleotide Variants: nsSNVs) with
respect to the “reference genome” and by 20,000 for

every pair of unrelated individuals [1, 2]. Many of these
SAVs are assumed to be neutral, while others might
change protein function, contributing to complex phe-
notypes and causing diseases. Unfortunately, the gap be-
tween SAVs with and without experimental characterization
continues to widen [3]: for only one in 10,000 of the known
SAVs some experimental information is available [4, 5]. On
top, many of those for which something is known may be
incorrect disease associations [6]. Without improving the
ability to interpret SAV effects, both on the level of the
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organism and the protein, the promise of precision medicine
will remain, importantly unmet [7–10].
Through the increased efficiency of sequencing, a pro-

cedure formerly used primarily in silico [11, 12] has be-
come feasible for experiments, namely assessing the effect
of all possible SAVs in a protein, i.e. all possible amino
acid mutations. In such deep mutational scanning (DMS)
studies [13, 14], a sequence library with all possible vari-
ants is subjected to selection. In the simplest case, the
(logarithmic) difference between sequence frequencies
with and without selection pressure yield an effect score
for individual or combinations of variants [8, 15–17]. Vari-
ants with beneficial and deleterious effect on protein func-
tion are discovered together with a quantification of how
much effect. Thus, DMS aims at measuring the landscape
of functional fitness for select proteins [18].
DMS also screens proteins for improved drug binding,

antibody affinity, using non-native chemical stresses, or
non-proteinogenic amino acids, and on synthetic pro-
teins [19–26]. Finally, DMS share objectives with di-
rected evolution, benefiting protein engineering [14].
One major challenge for DMS is the development of an

assay to measure effect. Evaluating proteins with multiple
functions requires multiple assays [8]. For instance, for the
Ubiquitin-60S ribosomal protein L40 variant effects have
been assessed through their direct impact on yeast growth
and through the impaired activation by the E1 enzyme
[27, 28]. Similarly, BRCA1 has been assayed through E3
ubiquitin ligase activity and through BARD1 binding and
transcript abundance [29, 30]. Even for the same assay,
specific experimental conditions might influence measure-
ments [31]. Recently, a protocol for measuring protein
abundance has been suggested as a proxy for function and
applicable to many proteins [32]. The conclusions from
DMS studies are limited by the validity of their functional
assays; inferences of more complex effect relationships
such as disease risk or clinically actionable pathogenicity
often remain too speculative [8, 17]. On top, variants
might affect molecular function as assayed by DMS al-
though being clinically benign, i.e. not causing disease.
Long before experimental DMS, prediction methods

had addressed the same task in silico [33–41]. These
methods were developed on very limited data; many fo-
cused on disease-causing SAVs from OMIM [42], others
used databases such as PMD [43] cataloguing variants by
effect upon protein function or structure. CADD solved
the problems of data limitation and bias by considering all
mutations that have become fixed in the human popula-
tion as neutral and a simulated set of all other variants as
having an effect [35]. The training dataset determines the
type of effect methods can learn. Consequently, methods
differ and work only on the type of SAV used for develop-
ment. Given the limitations in today’s data, all methods
have been optimized on relatively small, unrepresentative

subsets: fewer than 85,000 of all possible 217 million hu-
man SAVs (< 0.04%) have some experimental annotations
[44, 45]. Methods agree much more with each other for
SAVs with than for those without annotations [46].
DMS datasets constitute a uniquely valuable resource

for the evaluation of current SAV effect prediction
methods [17, 47, 48], not the least, because most have not
used those data. The Fowler lab has, recently, published
an excellent analysis of prediction methods on DMS data-
sets and developed a new regression-based prediction
method, Envision, trained only on DMS data [49]. Here,
we focus on the analysis of a larger set of DMS studies
and present trends in their correlation with SAV effects
predicted by four variant effect prediction methods.

Results
DMS studies not complete yet
Our Deep Mutational Scanning (DMS) analyses began
with 22 separate experimental datasets from 18 unique
proteins, since some experiments were performed on the
same protein (Supplementary Online Material (SOM),
Fig. S1a, Table S1) [29, 30, 32, 50–65]. In total the set
contained 68,447 variants (Fig. S1); 2358 (3%) of these
were synonymous, the other 97% constituted SAVs (or
missense mutations).
Only ten of the 22 sets (45%) scored some variants for

at least 98% of the residues (Table S1). Four DMS stud-
ies provided functional scores for over 90% of all pos-
sible 19 non-native SAVs. On average, 66% of the
residues had SAVs with both deleterious and beneficial
effects (Table S2; those two could be seen as “disruptive
variants” arching over gain- and loss-of-function). Most
SAVs were beneficial for only 3 of 22 studies (14%), for
the other 19 studies deleterious outnumbered beneficial
SAVs by factors of 1.5–22.5 (Fig. S1b). Due to asymmet-
ries in numbers and experimental fidelity, deleterious
and beneficial SAVs were analyzed separately.

Some correlation achieved by all methods
SetCommon constituted a subset of all 22 datasets with
32,981 effect SAVs (17,781 deleterious) for which we
had predictions from each method (Table 1). Although
all predictions differed from the experiments, all corre-
lated slightly positively for deleterious SAVs (Spearman
ρ ≥ 0.1, Fig. 1a-c, Tables 2, S3). The 95% confidence in-
tervals (CIs) of methods did not overlap, and their differ-
ences were statistically significant (Table S4).
Both SIFT [39] and PolyPhen-2 [37] are optimized for

capturing binary effects, not correlations, as confirmed
by recent studies [47, 49]. Consequently, analysis for
these was confined to binary predictions. SNAP2 [38]
and Envision [49] scores appeared, overall, less binary
(Figs. 1a-b). SNAP2 distributions were skewed toward
high effect, while Envision also succeeded in detecting
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SAVs with less pronounced effects (Fig. 1a-b). Predic-
tions by Naïve Conservation, based on PSI-BLAST pro-
files, correlated more with the DMS experiments than
Envision (Fig. 1c).

Envision might approximate experimental values best
When evaluating methods by the numerical difference be-
tween experimental and predicted variant effect scores
(mean squared error, MSE), Envision appeared best,
followed at considerable distance by Naïve Conservation
and SNAP2 (Fig. 1, Table 2). However, its low MSE par-
tially originated from predicting no SAV with strong effect
(the highest Envision score was 61% of the possible max-
imum – 0.61). This resembled the experimental distribu-
tion skewed towards low effect (Fig. 1b, gray distributions
next to x- and y-axes). Indeed, shuffling the prediction
scores yielded the same MSE (Fig. S2a). Predicting a nor-
mal distribution around the experimental mean, per-
formed slightly worse but still better than all other
prediction methods (Fig. S2b). When considering each
DMS measurement separately, Envision also appeared to
perform best except for the transcriptional coactivator
YAP1 (YAP1) with the most uniform distribution of effect
scores (similar number of lowest, medium, and strongest
effects observed; Fig. S3b, Table S5).

All classification methods detect increasing effect
strength
Do methods work better for SAVs with stronger observed
effect? Toward this end, the experimental scores were
sorted into 20 bins of increasing effect strength, and the
effect predictions in each bin (here referred to as recall)
were monitored for all prediction methods. All classifica-
tion methods tended to reach higher recall levels for SAVs
with stronger effects (Fig. 2a, higher values toward the
right). Furthermore, all methods also show an increase
without a clear saturation point showing that the range of

Table 1 Number of SAVs in aggregated datasetsa

Number of SAVs

Total Neutral Deleterious Beneficial

SetAll 66,089 818 b 45,382 19,889

SetCommon 32,981 0 17,781 15,200

SetCommonSyn90 15,621 8926 4545 2150

SetCommonSyn95 15,621 10,587 3209 1825

SetCommonSyn99 15,621 13,506 1548 567
aSetAll depicts the total number of SAVs collected, while SetCommon contains
only SAVs with predictions from every analyzed method. SetCommonSyn
contains all SAVs with predictions where a thresholding scheme could be
applied to yield classification of SAVs into neutral and effect (see Methods).
The number of SAVs in every single DMS experiment are depicted in Fig. S1
and Table S1
bThe ccdB set classifies variant effect in categories and contains 818 non-
synonymous variants which fall in the same category as the wild-type. Hence
these SAVs could be considered neutral

Fig. 1 DMS experiments vs. variant effect predictions. In a hexbin
plot, 17,781 deleterious effect SAVs in SetCommon were compared
to normalized scores for three prediction methods (SNAP2 [38],
Envision [49], and Naïve Conservation). Values on both axes range
from 0 (neutral) to 1 (maximal effect) as denoted by the gradient
from white (neutral) to red (effect). Dashed red lines give linear
least-squared regressions. Marginals denote distributions of
experimental and predicted scores with a kernel density estimation
overlaid in blue. The footer denotes Spearman ρ, Pearson R and the
mean squared error together with the respective 95% confidence
intervals. The method scores are given on the y-axes and reveal the
method: a SNAP2, b Envision – the only method trained on DMS
data, c Naïve Conservation read off PSI-BLAST profiles
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Table 2 Pearson ρ and mean squared error (MSE) for methods on SetCommona

deleterious SAVs (n = 17,781) beneficial SAVs (n = 15,200)

ρ MSE ρ MSE

SNAP2 0.41 [0.40, 0.42] 0.3 [0.30, 0.30] 0.02 [0.01, 0.04] 0.23 [0.23, 0.24]

Envision 0.1 [0.08, 0.11] 0.06 [0.06, 0.07] −0.14 [−0.16, − 0.13] 0.05 [0.04, 0.05]

Naïve Conservation 0.29 [0.27, 0.30] 0.19 [0.19, 0.19] −0.08 [− 0.09, − 0.06] 0.19 [0.19, 0.20]
aSetCommon denotes the set of SAVs with predictions from every method (see Methods). ρ denotes Spearman ρ (higher is better), MSE the mean squared error
(lower is better, Methods, SOM_Note3). Values in brackets are 95% confidence intervals

Fig. 2 Recall proportional to deleterious DMS effect scores. The continuous normalized DMS scores with deleterious effect in SetCommon were
split into 20 bins of equal size. a In each bin the fraction of SAVs predicted as having an effect by the binary classification methods (PolyPhen-2
[37], SIFT [39] and SNAP2 [38]) was shown. Naïve Conservation read off PSI-BLAST profiles was treated as an effect prediction when scores were
above 0. For all other methods the default score thresholds were applied. b shows the values adjusted for the amount of effect predicted in the
first bin

Reeb et al. BMC Bioinformatics          (2020) 21:107 Page 4 of 12



increasing effect strength is detected. For some methods
the difference between the least- and most-effect bins was
higher than for others, i.e. their predictions distinguished
more between high and low experimental scores (Fig. 2b).

Beneficial effects difficult to predict
Unlike for deleterious SAVs, no method correlated, on
average, with beneficial effect SAVs (− 0.14 ≤ ρ ≤ 0.02,
Tables 2, S6, Fig. S4). Furthermore, most methods essen-
tially predicted similar numbers or lower numbers of ef-
fect variants irrespective of the observed effect strength
with the exception of SNAP2 that detected some high
effect SAVs (Fig. S5). The conservation-based prediction
also decreased substantially from a Spearman ρ of 0.29
for deleterious to − 0.08 for beneficial SAVs (Table 2,
Fig. S4c). SNAP2 scores were shifted more toward lower
effect than for deleterious SAVs (Fig. 1a and Fig. S4a,
gray distributions). In contrast to Spearman ρ, the MSE
for beneficial effect SAVs was similar to that for deleteri-
ous SAVs. Envision again was by far best (MSE = 0.05,
Tables 2, S7, Fig. S6). However, although Envision used
25% beneficial effect SAVs for development (SOM_
Note1), the correlation was much lower for beneficial
than for deleterious SAVs (ρ = − 0.14 versus 0.1).

Experimental agreement sets the benchmark for
prediction methods
The above comparisons of experimental and predicted
SAV effects raise the question of what agreement can
realistically be obtained. One proxy for an answer is the
comparison of different DMS studies conducted on the
same protein. Such data were available for 11 measure-
ments on 4 proteins (Table S8, Fig. S7); unfortunately,
Envision predictions were available for only one of those
proteins (BRCA1). For deleterious SAVs, the lowest cor-
relation was that between two measurements on breast
cancer type 1 susceptibility protein, BRCA1 and
BRCA1_2015_E3 (ρ = 0.21, Fig. S7b). Rather than experi-
mental noise, the low correlation might also originate
from different experimental setups employed for multi-
functional proteins such as BRCA1. The strong correl-
ation (ρ = 0.93) between two experiments that measured
the same condition for bla (beta-lactamase TEM precur-
sor; bla and bla_2014, Fig. S7h) provided a single case in
strong support of such an explanation. To compare pre-
diction methods and experiments, we assessed the differ-
ence in ρ and MSE for each combination of the 11
measurements (Fig. 3). Experiments clearly agreed more
with each other than with SNAP2 and Naïve Conserva-
tion on the same datasets (Fig. 3: all values negative).

Fig. 3 Experimental agreement vs. predictions. For every pair of experimental measurements on the same protein (Table S1), the agreement
between two experiments and that between each experiment and the predictions of SNAP2 and Naïve Conservation are compared. a Δρ =
0.5*(ρ(× 1,p1) + ρ(× 2,p2)) - ρ(× 1,× 2), (b) ΔMSE =MSE(× 1,× 2) - 0.5*(MSE(× 1,p1) + MSE(× 2,p2)). Where × 1/× 2 are the experiments and p1/p2 the
predictions on the two experiments, all of which are calculated based on the largest possible set of SAVs. Negative values on the y-axes thus
imply that the agreement between experiments is higher than that between experiment and prediction, positive values that predictions
agree more
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Experiments did not correlate at all with each other
for beneficial effect (mean ρ = 0.03) although the MSE
remained low (mean MSE = 0.05, Table S8, Fig. S8). The
major issue for this comparison was the small number
of only 572 SAVs.

Assessment of binary classification (neutral/effect) similar
to regression
Scores from binary classification methods (neutral or ef-
fect) are often assessed through receiver operating char-
acteristic (ROC) curves avoiding to choose particular
thresholds to distinguish neutral and effect. Toward this
end, we assigned classes to SAVs through normalization
by experimental measurements of synonymous variants
[60] (Methods). Other solutions are feasible, each with
their own ad hoc parameter choices and flaws implying
that the following results provide one snapshot instead
of a sustained method ranking.
On the 3209 deleterious effect SAVs of SetCommonSyn95

(10,587 neutral, Table 1, Fig. S9), SNAP2 achieved the high-
est area under the curve (AUC, 0.76, 95% CI [0.75, 0.77]). It
was the only method statistically significantly better than
Naïve Conservation (0.73 [0.72, 0.74], Figs. 4, S10 Table
S9). Precision-recall curves also highlighted the smooth
transition of SNAP2 scores opposed to those for Naïve
Conservation although the peak performance was similar
for both (Fig. S11). Envision - not developed for this task -
performed better than random, but clearly worse than the
classification methods (AUC= 0.55 [0.54, 0.56]). However,
the four proteins considered here (BRCA1, PPARG, PTEN
and TPMT), also correlated above average for SNAP2,
PolyPhen-2 and SIFT (Table S3). Using different thresholds
in severity to classify SAVs did not qualitatively change
these major findings (SetCommonSyn90, SetCommonSyn99,
Fig. S12a-b).
At their default thresholds SIFT, PolyPhen-2, and

SNAP2 consider over two thirds of the neutral variants
to have an effect. Interestingly, the behavior of Envision
trained on DMS data was the reverse as previously illus-
trated by the maximal scores reaching only up to 61% of
the possible maximal values (and thereby contributing to
a seemingly low MSE).
Beneficial SAVs were also difficult to classify: PolyPhen-

2 and SNAP2 performed best with AUC = 0.62, followed
by SIFT, while Envision predictions were not better than
random (Fig. S13, Fig. S12c-d, Table S9). Naïve Conserva-
tion also performed significantly worse at a level of ran-
dom predictions.

Discussion
No clear winner in predicting effect variants
We compared the predictions of five methods with SAV
effects determined by DMS experiments. SNAP2 was
trained on binary classification data (effect or neutral).

Nevertheless, predictions have been shown to correlate
with effect strength [5, 66, 67]. To a degree, the Deep
Mutational Scanning (DMS) data replicated this finding,
highlighting that even methods trained for classification
capture aspects of effect strength.
Sorting DMS scores into 20 bins and including classifi-

cation methods SIFT and PolyPhen-2 in the analysis, all
methods indicated better recognition of high effect
SAVs. This finding might be attributed to the bias of
classifications methods towards high effect variants, a
common criticism in the field [68–71]. We observed the
same trend for Naïve Conservation exclusively using
PSI-BLAST profiles to predict SAV effects. This empha-
sized the importance of this signal but to some extend
also explained the traditional classification methods’ bias
since they all rely on this input.
The significantly better performance of Envision in es-

timating the precise degree of effect especially suggested
value in this approach. However, the low MSE was

Fig. 4 Classification performance of all prediction methods. Shown
are ROC curves for 13,796 deleterious effect SAVs which were
classified into either neutral, defined by the middle 95% of the
scores from synonymous variants, or effect (SetCommonSyn95).
Shaded areas around lines denote 95% confidence intervals. The
legend denotes the AUC for each of the five prediction methods,
along with the 95% confidence intervals. Horizontal dashed lines
denote the default score threshold used by SNAP2 (blue) and
SIFT (green)
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largely explained by that Envision correctly predicted the
overall distribution of experimental scores. Thus, the
definite distinction between ‘good prediction’ and ‘ad-
vantageous bias’ remained elusive.
When treating DMS effect scores as binary assign-

ments (neutral or effect), ROC curves highlighted the
high false positive rates of the evaluated classification
methods. A similar perspective on over-prediction has
recently been observed for ClinVar data [69]. Over-
prediction might be encouraged by the way many users
of prediction methods mistakenly chose their tools,
namely by testing a small set of SAVs they know have
an effect and valuing methods highest when they predict
effects for more of those.

Family conservation carries most important signal
Most surprising was the overall good performance of Naïve
Conservation. Disease causing SAVs from OMIM typically
affect the most conserved residues [46], and machine-
learning based predictions have been criticized to largely
capture conservation [17, 70, 72–74]. Furthermore, simple
conservation patterns can capture aspects of variant effects
[75]. Our findings partially validated this for DMS experi-
ments, although the effect distributions observed by DMS
and predicted by Naïve Conservation differed substantially
(Fig. 1c, gray distributions). Another recent analysis also
found a method heavily relying on evolutionary information
as one of the best performers on DMS data, although more
sophisticated than our naïve approach [48, 76].

Beneficial effects neither correctly predicted, nor
consistent between experiments
The bad correlation and classification performance of
beneficial effect SAVs by all methods suggested those to
have distinctly different signatures than deleterious
SAVs, missed by current approaches. Generally, SAVs
with neutral or beneficial effects are often not recog-
nized well [69, 77]. In part, this is attributable to the lack
of respective experimentally verified data useable for
training sets. For beneficial effect variants, the rise of
DMS studies could help to alleviate this problem and
lead to the development of less biased methods.
Agreement between experimental studies was particu-

larly low for beneficial effect SAVs. Maybe DMS assays
are still biased towards measuring deleterious effects.
These results put the seemingly poor predictions of
beneficial SAVs into perspective. Generally, the wide
variation of correlation between experiments for differ-
ent datasets/proteins has also been observed in another
recent DMS analysis [48].

Conclusions
Deep mutational scanning (DMS) studies set out to explore
the relation between protein sequence and molecular

function. We collected 22 DMS experiments and focused on
single amino acid variants (SAVs, also referred to as missense
mutations or non-synonymous SNVs). Most studies probe
only a small subset of all possible variants (for a protein with
N residues, there are 19*N non-native SAVs). Two experi-
ments probing the same protein tended to agree more with
each other than with predictions for deleterious effect (Fig.
3). Nonetheless, experiments also disagreed significantly
(Table S8). No single measure captured all aspects of the
comparison between experiments and predictions, e.g. the
ranking of methods changed crucially depending on the
measure used to compare (Table 2, SOM_Note2).
We analyzed five variant effect prediction methods:

Envision was trained on DMS data, PolyPhen-2, SIFT
and SNAP2 were methods developed to classify into ef-
fect/neutral, and Naïve Conservation (essentially using
PSI-Blast conservation to predict effect/neutral) was
added to gauge the importance of evolutionary conserva-
tion for the prediction. For deleterious SAVs, all
methods reached slightly positive Spearman ρ correla-
tions with the DMS experiments (Fig. 1). The classifica-
tion method SNAP2 correlated most with effect
strength, although most of the correlation was explained
by simple conservation. The lowest mean squared error
(MSE) was achieved by Envision. Its MSE was as low as
that between experiments, although most of the low
MSE could be explained by correctly predicting the dis-
tribution of scores (Fig. 1, Fig. S2a). All methods per-
formed better on SAVs with deleterious (akin to loss-of-
function) than with beneficial (gain-of-function) effect.
However, experimental agreement was also almost non-
existing for beneficial effects.
Although binary classification methods, surprisingly,

captured aspects of non-binary measurements, they per-
formed much better for the binary classification task
(projecting DMS results onto neutral vs. effect; Fig. 4).
Notably, Naïve Conservation captured effect better than
some more advanced tools. Methods performed better
for SAVs with stronger experimental effect scores (Fig.
2: higher toward right), although most classifiers tended
to substantially over-predict at their default scores (Fig.
4). Overall, our analyses confirm some of the trends
from other reviews of DMS data [48, 49].
The challenge for the next generation of prediction

methods will be to learn from the diversity of DMS. To
give just one example: OMIM, a popular source of train-
ing data, contained ~ 11,000 SAVs referenced in dbSNP
(02/2019, [78]). This is a magnitude matched by a single
large DMS experiment. The generality of a single SAV
might not be comparable between the sets, yet DMS
opens up variant effect prediction to new methodologies,
possibly even to deep learning approaches [79, 80]. The
enriched data might also allow methods to distinguish
between toggle and rheostat positions [73]. Furthermore,
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DMS studies contain many beneficial effect SAVs that
have, so far, been underrepresented. Finally, DMS fo-
cuses on molecular function, i.e. some of the disruptive
SAVs (deleterious or beneficial) might correspond to
clinically benign SAVs. Nevertheless, DMS will likely
give rise to new methods better predicting SAV effects
upon molecular protein function and upon organisms.
In fact, growth-based DMS assays have been shown to
be predictive of human disease SAVs in a recent study
[48]. Therefore, a combination of experimental data with
new prediction methods might be what is needed to at-
tain the goals of precision medicine.

Methods
Dataset collection
Figure 5 sketches the basic workflow of this analysis. We
retrieved all DMS datasets available by June 2019 that
report over 100 SAVs available from the literature. Func-
tional effect scores were taken directly from the supple-
mental material published or requested from the authors
(Table S10). The data were formatted in a variety of for-
mats including Excel, and tab- or comma-separated files.
Scores were manually mapped either to the UniProtKB
identifier given in the publication or to its closest
BLAST match (Table S11) [44, 81]. Six of the 22 experi-
ments contained up to five substitutions (pairwise se-
quence identity ≥98%); those were maintained for
prediction. We refer to the combined data as SetAll (66,
089 SAVs) supplemented by SetCommon with 32,981
SAVs for which we had a prediction from every method
tested (Table 1). SetCommon contained SAVs from ten
of the 22 experiments: YAP1, MAPK1, BRCA1, CCR5,

CXCR4, GAL4, PPARG, PTEN, TPMT, and Ube4b
(Table S1). During completion of this manuscript,
MaveDB, a centralized resource of multiplexed assays of
variant effect has been published [8, 82]. MaveDB identi-
fiers exist for ten of our 22 datasets (November 2019,
Table S10).
SetAll contained several proteins with multiple inde-

pendent experimental measurements. Inclusion of add-
itional sets analyzed previously [49], yielded a total of
three measurements for Hsp82 and BRCA1 and two for
both beta-lactamase and ubiquitin (Table S1) [27, 28,
83]. Performance measures were calculated only on
SAVs and not between DMS measurements from the
same publication. For analysis of beneficial effect SAVs,
all studies on Hsp82 had to be excluded since the sets
contain only three of those SAVs each.

Processing functional effect scores
Several DMS studies provide multiple effect scores for the
same protein of which we decided on only one per set
(Table S12). In the following processing, effect scores were
left as provided by the authors as much as possible but ad-
justed such that the wild-type score for each measurement
(Table S13) became 0, and larger values denoted more ef-
fect. Next, scores were interpolated, separately for each of
the 22 DMS measurements, to lie between 0 and 1 (high-
est effect). This interpolation did not affect Spearman ρ or
the mean squared error within each dataset. Beneficial
and deleterious effects had to be analyzed separately be-
cause experimental assays were not symmetrical and fur-
ther normalization might over- or underrepresent effects.
The resulting score distributions differed significantly

Fig. 5 Concept of analysis. Experimental scores of variant effects (missense mutations, or single amino acid variants, labelled SAVs) from Deep
Mutational Scanning (DMS) experiments were compared to in silico prediction methods. Envision was the only method developed on DMS data;
it provides continuous scores mirroring the DMS data. SIFT, PolyPhen-2 can be evaluated as binary classification methods. SNAP2 is a classification
method but provides continuous scores that can also be used. Naïve Conservation is provided as a baseline for both cases
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between experiments (e.g. in contrast to the more homo-
geneous subset used previously [49]).
We also created sets with binary classifications (effect

vs. neutral) from all DMS studies with synonymous vari-
ants: The middle 95% of effect score values from syn-
onymous variants was used to define which SAVs were
considered neutral. All SAVs outside this range were
considered as effect. We applied the same procedure
using 90% or 99% of synonymous variants’ values and
refer to the thresholding schemes as syn90, syn95, and
syn99. Applying these schemes to the four experiments
in SetCommon which have synonymous variants
(BRCA1, PTEN, TPMT, PPARG) yields SetCommon-
Syn90|95|99. Again, deleterious and beneficial effect
SAVs were analyzed separately.

Performance measures
Experiments and predictions were compared through
three measures (SOM_Note3, SOM_Note2): (1) mean
squared error (MSE) calculated with the scikit-learn
metrics module [84]; (2) Pearson R (pearsonr) and (3)
Spearman ρ (spearmanr) both calculated with the SciPy
stats module [85]. For convenience linear least-squares
regression lines (linregress) were added to the correl-
ation plots. Pearson R was added for ease of comparison
to others but not discussed as it is not robust and most
datasets violated both its validity assumptions (normal
distribution & absence of significant outliers [86]). We
further found no evidence to supplement MSE by a
measure more robust to outliers (SOM_Note2). 95%
confidence intervals (CIs) for R, ρ and MSE were esti-
mated using a percentile bootstrap with 1000 random
samples with replacement.
The performance of binary predictions (effect vs. neu-

tral) was measured through receiver operating character-
istic (ROC) curves and the area under those curves
(AUC) calculated through the pROC package in R,
which was also used to calculate 95% confidence inter-
vals of ROC (ci.se) and AUC (ci.auc) [87, 88]. Addition-
ally, precision-recall curves were created using scikit-
learn (precision-recall-curve). These are defined with TP
as true positives (predicted and observed as effect), FP as
false positives (predicted as effect, observed as neutral),
and FN as false negatives (predicted neutral, observed ef-
fect): Precision = TP/(TP + FP), Recall = True Positive
Rate = TP/(TP + FN) and False Positive Rate = FP/(FP +
TN).

Prediction methods
The sequences determined during dataset collection
were used as input to a set of commonly used variant ef-
fect prediction methods. Each method was run to pre-
dict the effect of all 19 non-native amino acids at every
position in the protein. SNAP2 [38] was run locally using

default parameters on UniProtKB (Release 2018_09).
SIFT version 6.2.1 [39] was run locally (UniProtKB/
TrEMBL Release 2018_10). PolyPhen-2 [37] predictions
were retrieved from the webserver in batch mode with
classification model humdiv on genome assembly
GRCh37/hg19 and default parameters [89]. Predictions
failed for all relevant residues of the three DMS studies
on Hsp82. Envision [49] predictions were retrieved on-
line which requires UniProtKB identifiers as input [90].
Therefore, Envision predictions could be analyzed only
for ten proteins (Table S14). While SNAP2 and SIFT
predicted all SAVs, PolyPhen-2 and Envision failed for
some residues, shrinking the size of the datasets. We al-
ways report performance on the largest common subset
of SAVs per dataset.
As a baseline, predictions were also created by running

PSI-BLAST with three iterations on UniProtKB (Release
2018_09). Scores from the resulting profile (position-
specific scoring matrix) had their signs flipped and were
then directly used as a measure of effect, i.e. less fre-
quent substitutions have a higher effect than conserved
ones. We refer to this method as Naïve Conservation.
The prediction was not intended to be the most accurate
conservation score possible but rather to represent a
suitable baseline since (PSI-)BLAST results are used in
some way as input feature by all methods analyzed here.
For SIFT, scores were reversed such that higher values

implied higher effect. The same was done for Envision
predictions of deleterious effect. Envision predictions of
beneficial effect were treated separately and mapped to
the range of [0,0.2]. This yielded the same performance
than scaling between [0,1] or no scaling (SOM_Note4).
Finally, prediction scores of all methods were adjusted to
lie between 0 (no effect) and 1 (highest effect) using the
theoretical maximum and minimum prediction value of
every method.
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