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Abstract

The edit distance between strings classically assigns unit cost to every character insertion, deletion,
and substitution, whereas the Hamming distance only allows substitutions. In many real-life
scenarios, insertions and deletions (abbreviated indels) appear frequently but significantly less so
than substitutions. To model this, we consider substitutions being cheaper than indels, with cost 1

a

for a parameter a ≥ 1. This basic variant, denoted EDa, bridges classical edit distance (a = 1) with
Hamming distance (a→∞), leading to interesting algorithmic challenges: Does the time complexity
of computing EDa interpolate between that of Hamming distance (linear time) and edit distance
(quadratic time)? What about approximating EDa?

We first present a simple deterministic exact algorithm for EDa and further prove that it is near-
optimal assuming the Orthogonal Vectors Conjecture. Our main result is a randomized algorithm
computing a (1 + ε)-approximation of EDa(X,Y ), given strings X,Y of total length n and a bound
k ≥ EDa(X,Y ). For simplicity, let us focus on k ≥ 1 and a constant ε > 0; then, our algorithm takes
Õ(n

a
+ ak3) time. Unless a = Õ(1), in which case EDa resembles the standard edit distance, and for

the most interesting regime of small enough k, this running time is sublinear in n.

We also consider a very natural version that asks to find a (kI , kS)-alignment, i.e., an alignment
with at most kI indels and kS substitutions. In this setting, we give an exact algorithm and, more
importantly, an Õ(nkI

kS
+kSk3

I )-time (1, 1+ε)-bicriteria approximation algorithm. The latter solution
is based on the techniques we develop for EDa for a = Θ( kS

kI
), and its running time is again sublinear

in n whenever kI � kS and the overall distance is small enough.

These bounds are in stark contrast to unit-cost edit distance, where state-of-the-art algorithms
are far from achieving (1 + ε)-approximation in sublinear time, even for a favorable choice of k.
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1 Introduction

Edit distance and Hamming distance are the two most fundamental measures of sequence
similarity. The (unit-cost) edit distance, also known as the Levenshtein distance, of two
strings X and Y is the minimum number of character insertions, deletions, and substitutions
required to convert one string to the other, whereas the Hamming distance allows only
substitutions (requiring |X| = |Y |). From an algorithmic perspective, these two measures
exhibit significantly different time complexity in terms of the input size n = |X|+ |Y |. The
Hamming distance can be computed exactly in linear time O(n), and it admits a randomized
εn-additive approximation in time O(ε−1), which implies a (1 + ε)-approximation in sublinear
time when the distance is not too small. In contrast, assuming the Orthogonal Vectors
Conjecture [32], no O(n2−Ω(1))-time algorithm can compute the edit distance exactly [5].
Recent developments in designing fast approximation algorithms [2, 4, 6, 9, 13, 19, 25]
culminated in an O(1)-approximation in near-linear time [3], but the existence of a truly
subquadratic-time 3-approximation still remains open. Furthermore, despite many efforts [7,
10, 11, 17, 18, 24], the best approximation ratio achievable in sublinear-time ranges from
polylogarithmic to polynomial in n (depending on how large the true edit distance is).

The contrasting complexity landscape between edit and Hamming distance clearly indi-
cates that substitutions are easier to handle than insertions and deletions (abbreviated indels).
Many real-world applications, for instance in computational biology, compare sequences based
on edit distance, but its value is often dominated by the number of substitutions, as indicated
by recent studies [15, 22, 29, 30, 33]. Is it possible to design significantly faster algorithms for
these scenarios with much more substitutions than indels? Such a bridge between Hamming
and edit distances could also provide an explanation for why many heuristics for string
comparison are fast on real-life examples. (For another applied perspective, see [28].)

This motivates our study of a basic variant of the edit distance, denoted EDa, where a
substitution is significantly cheaper than an insertion or a deletion, and its cost is 1

a for a
parameter a ≥ 1. This simple variant bridges unit-cost edit distance (a = 1) and Hamming
distance (a ≥ |X| = |Y |), raising basic algorithmic questions: Does the time complexity
of computing EDa interpolate between Hamming distance (linear time) and edit distance
(quadratic time)? How efficiently can one compute a (1 + ε)-approximation of EDa? What
speed-up is feasible as the parameter a grows? We present the first series of results to answer
these questions. As an illustrative example, if an intended application expects about k
indels and k2 substitutions between the two strings, then one should set a = k and use the
(1 + ε)-approximation algorithm that we devise, which runs in sublinear time Õ(nk + poly(k))
for this parameter setting. In contrast, the state-of-the-art sublinear-time algorithm for
unit-cost edit distance [10] only provides an O(polylog k)-factor approximation of the total
number of edits, so it will likely produce an alignment with ω(k2) indels, which blatantly
violates the structure of alignments arising in the considered application.

One can achieve a stricter control on the number of indels and substitutions by imposing
two independent bounds kI and kS on these quantities. Our techniques can be easily adapted
to the underlying problem, which we call the (kI , kS)-alignment problem; in particular, we
obtain a sublinear-time (1, 1 + ε)-bicriteria approximation of the combined cost (kI , kS).
For (kI , kS) = (k, k2) as in the example above, the running time of our algorithm is still
Õ(nk + poly(k)), albeit the poly(k) term is slightly larger.

The weighted edit distance problem and the complementary highest-score alignment
problem are widely used in applications and discussed in multiple textbooks; see e.g. [1, 20, 23].
The simplest version involves two costs (for indels and substitutions, respectively) and, up
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to scaling, is equivalent to EDa. Theoretical analysis usually focuses on the fundamental
unit-cost setting, but many results extend to the setting of constant costs, e.g., they admit
the same conditional lower bound [12] (and these problems are clearly equivalent from the
perspective of logarithmic approximation). We initiate a deeper investigation of how the
costs of edit operations affect the complexity of computing the edit distance (exactly and
approximately); going beyond the regime of a = O(1) reveals the gamut between Levenshtein
distance (a = 1) and Hamming distance (a = n, k < 1), providing a holistic perspective on
these two fundamental metrics.

1.1 Our Contribution
We provide multiple results for both the EDa and (kI , kS)-alignment problems. Even though
these are basic problems that seamlessly bridge the gap between Hamming and edit distances,
surprisingly little is known about them. Throughout, we assume that the algorithms are
given O(1)-time random access to characters of X,Y and know the lengths |X|, |Y |.

Our main results are approximation algorithms, but let us start with exact algorithms
for the two problems. We first observe that a simple adaptation of the approach of Landau
and Vishkin [26, 27] computes EDa(X,Y ) in time O(n+ kmin(n, ka)), where k ≥ EDa(X,Y ).
We then use similar techniques to derive an algorithm for the (kI , kS)-alignment problem.
For convenience, we state these results for decision-only problems; it is straightforward to
accompany every YES answer with a corresponding alignment.

I Proposition 1.1. Given two strings X,Y ∈ Σ∗ of total length n, a cost parameter a ∈ Z+,
and a threshold k ∈ R+, one can compute EDa(X,Y ) or report that EDa(X,Y ) > k in
deterministic time O(n+ kmin(n, ka)).

I Proposition 1.2. Given two strings X,Y ∈ Σ∗ of total length n and two integer thresholds
kS , kI > 0, one can decide whether there is a (kI , kS)-alignment or not (report YES or NO)
in deterministic time O(n+ kSk

2
I ).

The existing n2−Ω(1) lower bounds [5, 12] do not shed light as to whether these running
times are optimal. Interestingly, we strengthen the result of [12] significantly to show that the
bound of Proposition 1.1 is indeed tight for the entire range of parameters a, k ≥ 1, assuming
the Orthogonal Vectors Conjecture [32]. Proving such a lower bound for the bicriteria version
remains open.

Approximation Algorithm for EDa. Our main results are (1 + ε)-approximation algorithms
for the EDa and (kI , kS)-alignment problems. Let us first formally state the gap versions
(also known as the promise versions) of these problems.

I Problem 1.3 (Approximate Bounded EDa). Given two strings X,Y ∈ Σ∗ of total length n,
a cost parameter a ∈ Z+, a threshold k ∈ R+, and an accuracy parameter ε ∈ (0, 1), report
YES if EDa(X,Y ) ≤ k, NO if EDa(X,Y ) > (1 + ε)k, and an arbitrary answer otherwise.

I Problem 1.4 (Bicriteria Approximation). Given two strings X,Y ∈ Σ∗ of total length n,
two thresholds kI , kS > 0, and two approximation factors α, β ≥ 1, return YES if there
is a (kI , kS)-alignment, NO if there is no (αkI , βkS)-alignment, and an arbitrary answer
otherwise.

Our aim is to solve the above problems using algorithms whose running time is truly
sublinear for suitable parameter values. This is in stark contrast to unit-cost edit distance,
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where state-of-the-art algorithms are far from achieving (1 + ε)-approximation in sublinear
time, even for a favorable choice of parameters.1

I Theorem 1.5. One can solve Problem 1.3 correctly with high probability within time:
1. Õ( n

ε2ak ) if k < 1;
2. Õ( n

ε3a + ak3) if 1 ≤ k < n
εa ; and

3. O(1) if k ≥ n
εa .

Cases 1 and 3 are boundary cases; in the former, there are only substitutions (Hamming
distance), whereas, in the latter, |X| and |Y | must differ significantly when EDa(X,Y ) > k,
which results in a trivial (1 + ε)-factor approximation. Our main technical contribution is
Case 2, where we achieve sublinear running time for large enough a and small enough k.2
In the aforementioned applications [15, 22, 29, 30, 33], the indels are few in number and
must be estimated with high accuracy; in this case, a should be set proportionally to the
substitution-to-indel ratio, so that our (1 + ε)-approximation computes, in sublinear time, a
highly accurate estimate of both the indels and the substitutions.

It is straightforward to solve Problem 1.4 with α = β = 2 + ε, by simply applying
Theorem 1.5 with a = kS

kI
and threshold k = 2kI . However, the techniques we developed for

Theorem 1.5 allow for a much stronger guarantee of α = 1 and β = 1 + ε.

I Theorem 1.6. One can solve Problem 1.4 with α = 1 and β = 1 + ε (for any given
parameter ε ∈ (0, 1)) correctly with high probability in Õ( nkI

ε3kS
+ kSk

3
I ) time.

Again, the running time is sublinear whenever kI � kS and the overall distance is small.

1.2 Notation
A string X ∈ Σ∗ is a finite sequence of characters from an alphabet Σ. The length of X is
denoted by |X| and, for i ∈ [0 .. |X|),3 the ith character of X is denoted by X[i]. A string Y
is a substring of X if Y = X[i]X[i+ 1] · · ·X[j − 1] for some 0 ≤ i ≤ j ≤ |X|; this occurrence
of Y is denoted by X[i .. j) or X[i .. j − 1] and called a fragment of X. According to this
convention, the empty string has occurrences X[i .. i) for i ∈ [0 .. |X|]. We use HD to denote
the Hamming distance between two strings and ED to denote the standard edit distance.

A key notion in our work is that of Longest Common Extension (LCE) queries, defined
as follows for indices x ∈ [0 .. |X|] and y ∈ [0 .. |Y |] in strings X,Y ∈ Σ∗:4

LCE(x, y) = max{` : X[x .. x+ `) = Y [y .. y + `)}.

After O(|X|+ |Y |)-time preprocessing, LCE queries can be answered in O(1) time [16, 27].
This notion is often generalized to find the maximum length for which the corresponding
substrings still have a small Hamming distance; formally,

LCEd(x, y) = max{` : HD(X[x .. x+ `), Y [y .. y + `)) ≤ d}.

We further define LCEd,ε(x, y) as an arbitrary value between LCEd(x, y) and LCE(1+ε)d(x, y);
intuitively, this represents LCEd(x, y) up to a (1 + ε)-approximation of the value of d.

1 The smallest approximation ratio known to improve upon the running time O(n+ k2) of the exact and
conditionally optimal algorithm [27] stands at 3+o(1) [19]. The approximation ratio currently achievable
in sublinear time is polylogarithmic in k (if k < n1/4−Ω(1)) [10] or polynomial in k (otherwise) [17].

2 For small a, e.g., a = 1, using our exact algorithm would improve upon the bound in Case 2 and, in
particular, reduce the dependency on k from cubic to quadratic.

3 For i, j∈Z, denote [i .. j] = {k ∈ Z : i ≤ k ≤ j}, [i .. j) = {k ∈ Z : i ≤ k < j}, (i .. j] = {k ∈ Z : i < k ≤ j}.
4 Here and throughout, we implicitly assume the range ` ∈ [0 ..min(|X| − x, |Y | − y)] needed to guarantee

that X[x .. x+ `) and Y [y .. y + `) are well-defined.
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1.3 Technical Overview

Exact Algorithm for EDa. The algorithm behind Proposition 1.1 is rather straightforward,
but it serves as a foundation for subsequent results. The naive way of computing EDa(X,Y )
is to construct a dynamic-programming (DP) table T [x, y] = EDa(X[0 .. x), Y [0 .. y)). Consid-
ering only entries with |x− y| ≤ k (others clearly exceed k) easily yields an O(n+ nk)-time
algorithm. If ak ≤ n, we achieve a better running time of O(n+ ak2) by generalizing the
Landau–Vishkin algorithm [26, 27] to allow a > 1. As explained next, this involves answering
O(ak) LCE queries for each of (2k + 1) diagonals (which consist of entries T [x, y] with fixed
y − x). The table T is monotone along the diagonals, and thus one can construct “waves”
of entries with a common value v. This structure is conveniently described as another
table that, for every possible cost v ∈

{
0, 1

a , . . . , k −
1
a , k
}
and every possible shift (diagonal)

s ∈ [−k .. k], contains an entry Dv[s] defined as the furthest row x in T with T [x, x+ s] ≤ v,
or equivalently, the maximum index x such that EDa(X[0 .. x), Y [0 .. x+ s)) ≤ v. To compute
Dv[s], the algorithm uses three previously computed entries (for costs v′ < v) and then
performs a single LCE query. The running time of this algorithm is dominated by the
construction and usage of a data structure answering LCE queries; see Section 2 for details.

A Naive Sampling Algorithm. A natural way to speed up the previous algorithm at the
expense of accuracy is to use sampling. As a first attempt, let the algorithm sample positions
inX at some rate r ∈ (0, 1) and compare each sampledX[i] with Y [i+s] for every s ∈ [−k .. k].
The algorithm then reports the minimum-cost alignment of the samples (i.e., each sampled
X[i] is associated with exactly one shift s and is matched to Y [i+ s]), where shift changes
cost 1 per unit (i.e., changing s to s′ costs |s− s′|) and mismatches cost 1

ar each. At best,
we may hope to set r = Θ( 1

ka ), the minimum needed for an optimal alignment with Θ(ka)
substitutions and no indels.

This approach faces two serious obstacles. First, the query complexity is asymmetric:
the algorithm queries, in expectation, O(nr) positions in X and O(knr) positions in Y . The
query complexity into Y must be improved, ideally to O(nr) as well. Second, the hope for
sampling rate r = Θ( 1

ka ) is not realistic, because, in the case of a = 1 (i.e., the standard edit
distance), this would distinguish between ED(X,Y ) ≤ k and ED(X,Y ) > (1 + ε)k using Õ(nk )
samples, which is far beyond the reach of current techniques for edit distance estimation.

To overcome the first obstacle, we utilize approximate periodicity in our subroutine
for answering approximate LCE queries, described later in this overview. To tackle the
second obstacle, we make sure that every observed edit is charged against approximately 1

r

unobserved mismatches (substitutions), for a judicious choice of r = Õ( 1
εa ), as explained next.

Our (1+ε)-Approximation Algorithm for EDa. Let us modify our exact algorithm as follows.
Instead of considering all possible values of v, we enumerate only over v ∈ {0, ε, 2ε, . . . , k},
where ε ≥ 1

a (otherwise, the exact algorithm already meets the requirements of Theorem 1.5).
More precisely, for each diagonal s, we seek a value D̃v[s] that approximates Dv[s] up to a
(1 + ε)-factor slack in v. In other words, D̃v[s] is between Dv[s] and Dv(1+ε)[s];

Suppose that we have already computed D̃v′ [s] for all v′ < v. Then, we can compute
D̃v[s] using a single LCEεa,ε query. Intuitively, this works well because these queries (1 + ε)-
approximate the number of substitutions in the optimal alignment, except for up to εa
additional substitutions (of total cost ε) per indel (of cost 1) in the optimal alignment; see
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Section 3 for details. Thus, the main engine of our algorithm is the following new tool:5

I Problem 1.7 (Approximate LCE queries). Given strings X,Y of total length n, a threshold
d ∈ Z+, a parameter ε ∈ R+, and a width w ∈ Z+, build a data structure that efficiently
computes LCEd,ε(x, y) for any x ∈ [0 .. |X|] and y ∈ [0 .. |Y |] such that |x− y| ≤ w.

Answering LCEd,ε Queries. The following theorem captures our key technical innovation.

I Theorem 1.8. After Õ( n
ε2d )-time randomized preprocessing (successful w.h.p.), the queries

of Problem 1.7 can be answered deterministically (with no further randomness) in Õ(dw) time.

Previous work on edit distance [8, 10, 18, 19, 24] developed data structures for approximate
LCE queries in a weaker version allowing any value between LCE0(x, y) and LCEd(x, y). As
discussed in subsequent paragraphs, these results rely on identifying perfectly periodic
string fragments, whereas, in our case, periodicity is approximate and holds up to O(dw)
mismatches.

In this overview, we focus on a simplified problem that already necessitates the main
novel ideas behind Theorem 1.8. Namely, we consider the task of distinguishing, for any
given s ∈ [0 .. w) = [0 .. |Y |− |X|], whether HD(X,Y [s .. s+ |X|)) is ≤ d or > 1.1d. To see that
this is a special case of Problem 1.7, observe that an LCEd,0.1(0, s) query must return |X| if
HD(X,Y [s .. s+ |X|)) ≤ d and a value strictly smaller than |X| if HD(X,Y [s .. s+ |X|)) > 1.1d.

In this setting, our goal is to answer queries in Õ(dw) time after Õ(nd )-time preprocessing.
In particular, we want to answer all the w possible queries while probing Õ(nd + dw2)
characters in total. For comparison, let us consider as a baseline the guarantees achieved
using simple techniques. A very naive approach would be to answer each query independently
by sampling characters of X with rate Õ( 1

d ) and comparing each sampled character X[x]
with the aligned character Y [x+ s]; this solution probes Õ(nwd ) characters in total. Another
idea, employed in [8], could be to sample the characters of X and Y with the same rate
Õ( 1√

d
) and, for each s ∈ [0 .. w), compare X[x] with Y [x+ s] whenever both characters have

been sampled simultaneously, which happens with probability Õ( 1
d ); this solution probes

Õ( n√
d
) characters in total. Overall, we conclude that the simple techniques result in an

effective sampling rate much larger than 1
d , while our goal is to achieve the optimal rate

Õ( 1
d ) (necessary already to answer a single query) at the price of a moderate additive cost.
The first step of our solution is to eliminate shifts s ∈ [0 .. w) with very large distance

HD(X,Y [s .. s+ |X|)). For this, we use the naive approach to distinguish between Hamming
distances ≤ dw and > 2dw. This step costs Õ( n

dw ) time per query, which is Õ(nd ) in total. If
our filtering leaves us with at most one candidate shift s̃ ∈ [0 .. w), the answer for this shift
is precomputed naively by sampling.

The interesting case is when at least two shifts s̃1 6= s̃2 remain. A key observation is
that the strings X and Y are then almost periodic with period p := |s̃1 − s̃2|; formally,
X[x] = X[x− p] holds for all but O(dw) positions x ∈ [p .. |X|), and similarly for Y . In order
to streamline notation, in this overview, we show how to exploit this structure for p = 1.

In this case, most positions x in X have uniform contexts of any fixed length c, i.e.,
X[x .. x+ c) = Y [y .. y + c) = Ac holds for some A ∈ Σ and all y = x+ s across s ∈ [0 .. w).
Intuitively, our goal is to quickly process uniform regions and spend our additional budget of

5 To be precise, our algorithm makes O(ε−1k2) queries of Problem 1.7 with d = Θ(εa) and w = k. A single
LCEεa,ε(0, 0) query may already require accessing Ω( n

ε3a ) characters, so the best time we could hope for
is Õ( n

ε3a + ε−1k2). If ε = Θ( 1
a ), this cannot improve upon our exact algorithm of Proposition 1.1.
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Õ(dw) time per query on the O(cdw) positions with non-uniform contexts (each periodicity
violation affects O(c) contexts). Intuitively, uniform regions are much easier to handle due to
the following observation: If we sample two strings U, V ∈ Σm with an appropriate rate r =
Õ( 2

d ), and this sampling reveals only As, then HD(U, V ) ≤ HD(U, Am) + HD(V, Am) ≤ d
2 + d

2 ≤ d
holds with high probability. This argument does not require any synchronization between
samples, so we can reuse the same sample for all shifts.

The remaining challenge is that a rate-Õ( 1
d ) sample cannot perfectly identify uniform

and non-uniform regions. Thus, we need to design a sampling mechanism that provides an
unbiased estimate of HD(X,Y [s .. s+ |Y |)) yet allows skipping regions that look uniform from
the perspective of a rate-Õ( 1

d ) sampling. For this, we use two random subsets SX ⊆ [0 .. |X|)
and SY ⊆ [0 .. |Y |), where each index is picked independently with rate r = Õ( 1

d ). Every
mismatch X[x] 6= Y [y] is given two chances for detection: when x ∈ SX or y ∈ SY . In order
to avoid double counting, the mismatch at position x ∈ SX will be counted if and only if X[x]
has fewer occurrences than Y [y] within the contexts X[x .. x+ c) and Y [y .. y + c) of length
c = Õ( 1

r ). In this case, with high probability, the sampling reveals a character other than
X[x] within the contexts, and thus the algorithm classifies x as non-uniform. For positions
x ∈ SX classified as non-uniform, our query algorithm explicitly compares X[x] to Y [y]
(for y = s+ x) and, upon detecting a mismatch, reads the entire contexts X[x .. x+ c) and
Y [y .. y + c) to verify whether indeed X[x] is less frequent than Y [y] within these contexts.
We can afford both steps because the expected number of positions x ∈ SX with non-uniform
contexts is O(rcdw) = Õ(dw) and the expected number of detected mismatches X[x] 6= Y [y]
is O(rd).

For a complete proof of Theorem 1.8, without the simplifying assumptions, see Section 4.
The techniques employed to eliminate these assumptions build upon [24], where the simplified
problem involves deciding, for every s ∈ [0 .. w), whether HD(X,Y [s .. s+ |X|)) is 0 or > d.
Unlike in our setting, that auxiliary problem allows eliminating a shift s upon discovery of a
single mismatch X[x] 6= Y [x+ s]. This leads to a relatively straightforward Õ(nd + w)-time
solution [10, 24], which we sketch next to facilitate easy comparison with our new method.
First, exact pattern matching is used to filter out shifts s such that X[0 .. 2w) 6= Y [s .. s+ 2w)
If at most one shift s̃ remains, then a naive Õ(nd )-time solution can be used to estimate
HD(X,Y [s̃ .. s̃+ |X|)). On the other hand, if there are at least two shifts s̃1 6= s̃2 left, then
p := |s̃1−s̃2| is a period ofX[0 .. 2w). A naive rate-Õ( 1

d ) sampling is used to check whether this
period extends to the entireX and the relevant portion of Y . If this procedure does not identify
any violation of the period, then all the remaining shifts satisfy HD(X,Y [s .. s+ |X|)) ≤ d

with high probability. Otherwise, another call to exact pattern matching (for substrings near
the period violation) eliminates all but at most one of the remaining shifts.

Algorithms for the (kI , kS)-Alignment Problem. Our algorithms computing EDa (exactly
or approximately) can be easily adapted to solve the (kI , kS)-alignment problem. The
only modification required is to add another dimension to the D and D̃ tables so that the
algorithm separately keeps track of the number of indels and substitutions (as opposed
to their total weight). In particular, DvI ,vS

[s] is the maximum index x such that X[0 .. x)
and Y [0 .. x+ s) admit a (vI , vS)-alignment, and D̃vI ,vS

[s] approximates DvI ,vS
[s] up to a

small slack in the value vS . The exact algorithm uses O(kSkI) LCE queries for each of the
2kI + 1 main diagonals, whereas the approximation algorithm asks O(kSkI

d ) LCEd,ε queries
per diagonal for a carefully chosen parameter d = Θ( εkS

kI
); see Appendix A for details.
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Tight Lower Bound for Exact Computation of EDa. Our lower bound essentially proves
that the O(n+k ·min(n, ak)) running time in Proposition 1.1 is, up to subpolynomial factors,
point-wise optimal as a function of (n, a, k). We formalize this delicate statement as follows:

I Theorem 1.9. Consider sequences (an)∞n=1 and (kn)∞n=1 with entries an, kn ∈ [1 .. n]
computable in poly(n) time. Unless the Orthogonal Vectors Conjecture fails, there is no
algorithm that, for some fixed ε > 0, every n ∈ Z+, and all strings X,Y with |X|+ |Y | ≤ n,
in O((n+ kn ·min(n, ankn))1−ε) time computes EDan(X,Y ) or reports that EDan(X,Y ) > kn.

We prove our conditional lower bound in two steps. First, we show that, for any a ∈ [1 .. n],
Ω(n2−ε) time is necessary to compute EDa(X,Y ) with |X|+ |Y | ≤ n. We then build upon
this construction to prove a lower bound on computing EDa(X,Y ) under a guarantee that
EDa(X,Y ) ≤ k for a given k = o(n). In the first step, we follow the approach of Bringmann
and Künnemann [12], who proved the desired lower bound for a = O(1). Unfortunately,
when translated to larger a, their arguments only exclude O(n2−εa−6)-time algorithms. The
tool we adapt from [12] is a generic reduction from the Orthogonal Vectors problem to the
problem of computing an abstract string similarity measure. This framework is formulated
in terms of an alignment gadget that needs to be supplied for the measure in question.
Unlike [12], instead of working directly with EDa(X,Y ), we consider an asymmetric measure
D+(X,Y ) := EDa($|Y | ·X · $|Y |, Y )− |XY |, where $ is a character not present in Y . Even for
a = O(1), this trick greatly simplifies the proof in [12] at the cost of increasing the alphabet
size from 2 to 9. As a result, for each parameter a, every instance of the Orthogonal Vectors
problem produces a pair of strings (X,Y ) and a threshold k such that EDa(X,Y ) ≤ k if
and only if the instance is a YES instance. However, since EDa(X,Y ) = Θ(|X| + |Y |) for
instances obtained through D+(·, ·), this construction alone provides no information on how
the running time depends on k. For this, we express an instance of the Orthogonal Vectors
problem as an OR-composition of smaller instances, and, for each of them, we construct
a pair of strings (Xi, Yi) such that the original instance is a YES-instance if and only if
mini EDa(Xi, Yi) ≤ kmin. An appropriate gadget combines the pairs (Xi, Yi) into a single
pair (X,Y ) with mini EDa(Xi, Yi) ≤ kmin if and only if EDa(X,Y ) ≤ k for some k = Θ(na ),
yielding an Ω((nk)1−ε)-time lower bound for this case. The lower bound of Ω((ak2)1−ε) for
k = O(na ) follows because the problem in question does not get easier as we increase n while
preserving a and k; see Section 5 for details.

2 Computing EDa Exactly

I Proposition 1.1. Given two strings X,Y ∈ Σ∗ of total length n, a cost parameter a ∈ Z+,
and a threshold k ∈ R+, one can compute EDa(X,Y ) or report that EDa(X,Y ) > k in
deterministic time O(n+ kmin(n, ka)).

Define a DP table T with T [x, y] = EDa(X[0 .. x), Y [0 .. y)) for x ∈ [0 .. |X|] and y ∈
[0 .. |Y |]. Then, T [0, 0] = 0 and the other entries can be computed according to the following
formula (each argument of min is included only if the corresponding condition holds):

T [x, y] := min


T [x− 1, y] + 1 if x > 0
T [x, y − 1] + 1 if y > 0
T [x− 1, y − 1] + 1

a · 1X[x−1] 6=Y [y−1] if x > 0 and y > 0

 .

One algorithm runs in time O(n+nk) and follows [31]. It computes all entries T [x, y] that
satisfy T [x, y] ≤ k; this is correct because T [x, y] only depends on entries T [x′, y′] ≤ T [x, y].
As T [x, y] ≥ |x− y|, this algorithm considers O(n+ nk) entries, each computed in O(1) time.
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Another algorithm runs in time O(n+ ak2) and follows [27], as explained in Section 1.3.
It is implemented as Algorithm 1, where all values Dv[s] are implicitly initialized to −∞.

Algorithm 1 Exact algorithm for EDa

1 foreach v ∈ {0, 1
a ,

2
a , . . . ,

1
abakc} do

2 foreach s ∈ [−bvc .. bvc] do
3 D′v[s]← min(|X|, |Y | − s,max(Dv−1[s− 1],Dv− 1

a
[s] + 1,Dv−1[s+ 1] + 1));

4 if s = 0 then D′v[s]← max(D′v[s], 0);
5 Dv[s]← D′v[s] + LCE(D′v[s],D′v[s] + s);
6 if Dv[|Y | − |X|] = |X| then return v;
7 return “> k” ;

The correctness of Algorithm 1 follows from Lemma 2.1 and the running time is propor-
tional to the number of LCE queries, which is O(ak2), plus the O(n) construction time of an
LCE data structure [16, 27].

I Lemma 2.1. For every v ∈ {0, 1
a , . . . ,

1
abakc}, x ∈ [0 .. |X|], and y ∈ [0 .. |Y |], we have

T [x, y] ≤ v if and only if Dv[y − x] ≥ x.

Proof. Let us first prove, by induction on v, that Dv[y−x] ≥ x if T [x, y] ≤ v. Fix an optimal
EDa-alignment between X[0 .. x) and Y [0 .. y) and consider the longest suffixes X[x′ .. x) =
Y [y′ .. y) aligned without any edit. We shall prove that D′v[y − x] = D′v[y′ − x′] ≥ x′ by
considering four cases:

If x′ = y′ = 0, then D′v[y′ − x′] = D′v[0] ≥ 0.
If X[x′− 1] is deleted, then v ≥ T [x′, y′] = T [x′− 1, y′] + 1, and the inductive assumption
yields D′v[y′ − x′] ≥ Dv−1[y′ − x′ + 1] + 1 ≥ x′.
If Y [y′− 1] is inserted, then v ≥ T [x′, y′] = T [x′, y′− 1] + 1, and the inductive assumption
yields D′v[y′ − x′] ≥ Dv−1[y′ − x′ − 1] ≥ x′.
Otherwise, X[x′− 1] is substituted for Y [y′− 1]; then, v ≥ T [x′, y′] = T [x′− 1, y′− 1] + 1

a ,
and the inductive assumption yields D′v[y′ − x′] ≥ Dv− 1

a
[y′ − x′] + 1 ≥ x′.

Now, Dv[y − x] ≥ x follows from D′v[y′ − x′] ≥ x′ due to LCE(x′, y′) ≥ x− x′.
The converse implication is also proved by induction on v. We consider four cases

depending on x′ := D′v[y − x] and y′ := x′ + (y − x):
If x′ ≤ Dv−1[y′−x′+1]+1, then, by the inductive assumption, T [x′, y′] ≤ T [x′−1, y′]+1 ≤
(v − 1) + 1.
If x′ ≤ Dv−1[y′−x′− 1], then, by the inductive assumption, T [x′, y′] ≤ T [x′, y′− 1] + 1 ≤
(v − 1) + 1.
If x′ ≤ Dv− 1

a
[y′−x′]+1, then, by the inductive assumption, T [x′, y′] ≤ T [x′−1, y′−1]+ 1

a ≤
(v − 1

a ) + 1
a .

In the remaining case, we have x′ = y′ = 0, and thus T [x′, y′] = 0 ≤ v.
In all cases, T [x′, y′] ≤ v implies T [x, y] ≤ v because LCE(x′, y′) ≥ x− x′. J

3 Approximating EDa

In this section, we present our solution for Problem 1.3. Recall that the input consists of
strings X,Y , a cost parameter a ∈ Z+, a threshold k ∈ R+, and an accuracy parameter
ε ∈ (0, 1), and the task is to distinguish between EDa(X,Y ) ≤ k and EDa(X,Y ) > (1 + ε)k.
Our procedure mimics the behavior of Algorithm 1 with a coarser granularity of the costs.
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It is implemented as Algorithm 2, where we assume that all values D̃v[s] are implicitly
initialized to −∞ and that εa ∈ Z+ (we will fall back to Algorithm 1 whenever εa < 1).

Algorithm 2 Approximation Algorithm

1 foreach v ∈ {0, ε, 2ε, . . . , εdε−1ke} do
2 foreach s ∈ [−bvc .. bvc] do
3 D̃′v[s]← min(|X|, |Y | − s,max(D̃v−1[s− 1], D̃v−ε[s], D̃v−1[s+ 1] + 1));
4 if s = 0 then D̃′v[s]← max(D̃′v[s], 0);
5 D̃v[s]← D̃′v[s] + LCEεa,ε(D̃′v[s], D̃′v[s] + s);
6 if D̃v[|Y | − |X|] = |X| then return YES ;
7 return NO

The following lemma, justifying the correctness of Algorithm 2, is proved below through
an appropriate adaptation of the arguments behind Lemma 2.1.

I Lemma 3.1. For every v ∈ {0, ε, 2ε, . . . , εdε−1ke}, x ∈ [0 .. |X|], and y ∈ [0 .. |Y |], if
T [x, y] ≤ v, then D̃v[y − x] ≥ x, and if D̃v[y − x] ≥ x, then T [x, y] ≤ v(1 + ε+ ε2) + ε+ ε2.

Proof. We start by proving the first implication inductively on v. Let us fix an optimum EDa-
alignment of X[0 .. x) and Y [0 .. y) and consider the longest suffixes X[x′ .. x) and Y [y′ .. y)
aligned with at most εa substitutions and no indels. We shall prove that D̃′v[y − x] =
D̃′v[y′ − x′] ≥ x′ by considering four cases:

If x′ = y′ = 0, then D̃′v[y′ − x′] = D̃′v[0] ≥ 0.
If X[x′− 1] is deleted, then v ≥ T [x′, y′] = T [x′− 1, y′] + 1, and the inductive assumption
yields D̃′v[y′ − x′] ≥ D̃v−1[y′ − x′ + 1] + 1 ≥ x′.
If Y [y′ − 1] is inserted, then v ≥ T [x, y] = T [x′, y′ − 1] + 1, and the inductive assumption
yields D̃′v[y′ − x′] ≥ D̃v−1[y′ − x′ − 1] ≥ x′.
Otherwise, there are exactly εa substitutions between X[x′ .. x) and Y [y′ .. y) (recall
that εa ∈ Z). Thus, v ≥ T [x, y] = T [x′, y′] + ε, and the inductive assumption yields
D̃′v[y′ − x′] ≥ D̃v−ε[y′ − x′] ≥ x′.

Now, D̃v[y − x] ≥ x follows from D̃′v[y′ − x′] ≥ x′ due to LCEεa(x′, y′) ≥ x− x′.
The second implication is also proved by induction on v. We consider four cases depending

on x′ := D̃′v[y − x] and y′ := x′ + (y − x):
If x′ ≤ D̃v−1[y′−x′+1]+1, then, by the inductive assumption, T [x′, y′] ≤ T [x′−1, y′]+1 ≤
(v − 1)(1 + ε+ ε2) + ε+ ε2 + 1 = v(1 + ε+ ε2).
If x′ ≤ D̃v−1[y′−x′− 1], then, by the inductive assumption, T [x′, y′] ≤ T [x′, y′− 1] + 1 ≤
(v − 1)(1 + ε+ ε2) + ε+ ε2 + 1 = v(1 + ε+ ε2).
If x′ ≤ D̃v−ε[y′ − x′], then, by the inductive assumption, T [x′, y′] ≤ (v − ε)(1 + ε+ ε2) +
ε+ ε2 < v(1 + ε+ ε2).
In the remaining case, we have x′ = y′ = 0. Trivially, T [x′, y′] = 0 ≤ v(1 + ε+ ε2).

In all cases, T [x′, y′] ≤ v(1 + ε + ε2) implies T [x, y] ≤ v(1 + ε + ε2) + ε + ε2 because
LCE(1+ε)εa(x′, y′) ≥ x− x′. J

I Corollary 3.2. Algorithm 2 returns
YES if EDa(X,Y ) ≤ k, and
NO if EDa(X,Y ) > k(1 + ε+ ε2) + 2ε+ 2ε2 + ε3.

Moreover, it can be implemented in Õ( n
ε3a + ak3) time if k ≥ 1.
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Proof. If EDa(X,Y ) ≤ k, we apply Lemma 3.1 for v = εdε−1ke, x = |X|, and y = |Y |.
We conclude that D̃v[|X| − |Y |] ≥ |X|, which means that the algorithm returns YES. On
the other hand, if the algorithm returns YES, then D̃v[|X| − |Y |] ≥ |Y | holds for some
v ∈ {0, ε, 2ε, . . . , εdε−1ke}, which satisfies v < k + ε. In this case, Lemma 3.1 implies that

ED(X,Y ) ≤ v(1+ ε+ ε2)+ ε+ ε2 < (k+ ε)(1+ ε+ ε2)+ ε+ ε2 = k(1+ ε+ ε2)+2ε+2ε2 + ε3.

As for the running time, we observe that the number of LCEεa,ε(x, y) queries asked is
O((1 + k)(1 + ε−1k)) and that each of them satisfies |x− y| ≤ k. Consequently, the claimed
running time follows from Theorem 1.8. J

I Theorem 1.5. One can solve Problem 1.3 correctly with high probability within time:
1. Õ( n

ε2ak ) if k < 1;
2. Õ( n

ε3a + ak3) if 1 ≤ k < n
εa ; and

3. O(1) if k ≥ n
εa .

Proof. First, consider k < 1. If |X| 6= |Y |, then we can safely return NO due to EDa(X,Y ) ≥∣∣|X| − |Y |∣∣. Otherwise, we output YES if HD(X,Y ) ≤ ak (which implies EDa(X,Y ) ≤ k) and
NO if HD(X,Y ) > (1 + ε)ak (which implies EDa(X,Y ) ≥ min(1, (1 + ε)k)). Previous work for
Hamming distance (e.g., [21]) lets us distinguish these two possibilities in Õ( n

ε2ak ) time.
Next, consider 1 ≤ k < n

εa . If ε <
7
a , we use the algorithm of Proposition 1.1, which either

computes EDa(X,Y ) or reports that EDa(X,Y ) > k. This is clearly sufficient to distinguish
between EDa(X,Y ) ≤ k and EDa(X,Y ) > (1 + ε)k for any ε ≥ 0. The running time is
O(n+ak2) = O( nεa +ak2) = Õ( n

ε3a +ak3). The most interesting case is when ε ≥ 7
a . We then

run Algorithm 2 with the accuracy parameter decreased to ε̄ := 1
ab

εa
7 c; in particular, this

guarantees ε̄a ∈ Z+. By Corollary 3.2, the algorithm returns YES if EDa(X,Y ) ≤ k, and, due
to (1 + ε)k ≥ (1 + 7ε̄)k ≥ (1 + ε̄+ ε̄2)k+ 2ε̄+ 2ε̄2 + ε̄3, it returns NO if EDa(X,Y ) > (1 + ε)k.
The running time is Õ( n

ε̄3a + ak3) = Õ( n
ε3a + ak3) due to ε̄ ≥ ε

14 .
Finally, consider k ≥ n

εa . We return YES if
∣∣|X| − |Y |∣∣ ≤ k and NO otherwise. This is

correct due to
∣∣|X|− |Y |∣∣ ≤ EDa(X,Y ) ≤

∣∣|X|− |Y |∣∣+ 1
a min(|X|, |Y |) ≤

∣∣|X|− |Y |∣∣+ εk. J

4 Answering LCEd,ε Queries

In this section, we explain how to implement LCEd,ε queries. We focus on the decision version
of these queries, asking to distinguish whether HD(X[x .. x+`), Y [y .. y+`)) is ≤ d or > (1+ε)d.
A naive way of performing such a test would be to count mismatches X[x+ s] 6= Y [y + s] at
positions s ∈ S, where each s ∈ [0 .. `) is sampled into S independently with an appropriate
rate r. The resulting estimator, H := |{s ∈ S : X[x+ s] 6= Y [y + s]}|, follows the binomial
distribution Bin(h, r), where h = HD(X[x .. x + `), Y [y .. y + `)). Thus, we can compare H
against (1 + ε

3 )rd to distinguish between h ≤ d and h ≥ (1 + ε)d: By the Chernoff bound, if
h ≤ d, then

Pr[H ≥ (1 + ε
3 )rd] ≤ exp(− 1

27ε
2rd),

whereas if h ≥ (1 + ε)d, then

Pr[H < (1 + ε
3 )rd] ≤ Pr[H < (1− ε

3 )(1 + ε)rd] ≤ exp(− 1
18ε

2rd).

In particular, if r = Θ(ε−2d−1 logn), then w.h.p. the query algorithm is correct and costs
Õ(1 + r`) = Õ(1 + ε−2d−1`) time.

The same approach can be used in the setting resembling that of Theorem 1.8, where
queries need to be answered deterministically after randomized preprocessing.
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I Fact 4.1. There exists a data structure that, after randomized preprocessing of strings
X,Y ∈ Σ∗ and a rate r ∈ (0, 1), given positions x ∈ [0 .. |X|], y ∈ [0 .. |Y |] and a length ` ∈
[0 ..min(|X|−x, |Y |− y)], outputs a value distributed as Bin(HD(X[x .. x+ `), Y [y .. y+ `)), r).
Moreover, the answers are independent for queries with disjoint intervals [x .. x+ `). With
high probability, the preprocessing time is Õ(1 + r(|X|+ |Y |)) and the query time is Õ(1 + r`).

Proof. At preprocessing time, we draw SX ⊆ [0 .. |X|) with each position sampled indepen-
dently with rate r. At query time, the algorithm counts x′ ∈ SX ∩ [x .. x + `) such that
X[x′] 6= Y [y − x + x′]. It is easy to see that each mismatch X[x + s] 6= Y [y + s], with
s ∈ [0 .. `), is included with rate r, and these events are independent across the mismatches.
Moreover, the sets SX ∩ [x .. x+ `) across distinct ranges [x .. x+ `) are independent, so the
resulting estimators are independent as well. J

Our aim, however, is a query time that does not grow with `. As shown in Sections 4.1
and 4.2, Õ(dw) query time can be achieved after preprocessing X[x .. x+`) in Õ(w+r`)-time.6
While preprocessing each fragment X[x .. x+ `) is too costly, it suffices to focus on fragments
such that [x .. x+ `) is a dyadic interval (where log ` and x

` are both integers); this is because,
for any intermediate value m ∈ [0 .. `), the problem of estimating HD(X[x .. x+ `), Y [y .. y+ `))
naturally reduces to the problems of estimating both HD(X[x .. x + m), Y [y .. y + m)) and
HD(X[x + m.. x + `), Y [y + m.. y + `)). Estimators following binomial distribution are
particularly convenient within such a reduction: if B ∼ Bin(h, r) and B′ ∼ Bin(h′, r) are
independent, then B + B′ ∼ Bin(h + h′, r). Unfortunately, our techniques do not allow
estimating HD(X[x .. x + `), Y [y .. y + `)) when this value is much larger than d. Thus, we
formalize the outcome of our subroutines as capped binomial variables define below.

I Definition 4.2. An integer-valued random variable B is a d-capped binomial variable with
parameters h and r, denoted B ∈ Bind(h, r), if it satisfies the following conditions:

If h ≤ d, then B ∼ Bin(h, r), i.e., Pr[B ≥ x] = Pr[Bin(h, r) ≥ x] for all x ∈ Z.
Otherwise, B stochastically dominates Bin(h, r), i.e., Pr[B ≥ x] ≥ Pr[Bin(h, r) ≥ x] for
all x ∈ Z.

Moreover, to allow a small deviation from the desired distribution (e.g., in the unlikely
event the number of sampled positions is much larger than expected), for δ ∈ [0, 1], we write
B ∈ Bind,δ(h, r), if B is at total variation distance at most δ from a variable B′ ∈ Bind(h, r).
The capped binomial variables can be composed just like their uncapped counterparts.

IObservation 4.3. If B ∈ Bind,δ(h, r) and B′ ∈ Bind,δ′(h′, r) are independent, then B+B′ ∈
Bind,δ+δ′(h+ h′, r).

As indicated above, the main building block of our solution to Problem 1.7 is a component
for estimating HD(X[x .. x+`), Y [y .. y+`)) for fixed x, ` and varying y ∈ [x−w .. x+w]. This
task can be formalized as a problem of estimating text-to-pattern Hamming distances [14],
that is, the distances between a pattern X and length-|X| fragments of a text Y .

I Problem 4.4. Preprocess strings X,Y ∈ Σ∗, real numbers δ ∈ (0, 1
|X| ) and r ∈ (0, 1), and

an integer d ≥ r−1 into a data structure that, given a shift s ∈ [0 .. |Y | − |X|], outputs a value
distributed as Bind,δ(HD(X,Y [s .. s+ |X|)), r).

In Section 4.1, we study Problem 4.4 in an important special case when X,Y are almost
periodic. The general solution to Problem 4.4 is then presented in Section 4.2, and we derive
Theorem 1.8 in Section 4.3.

6 Recall the assumption in Problem 1.7 that |x− y| ≤ w holds for all queries.
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4.1 Text-to-Pattern Hamming Distances for Almost Periodic Strings

In this section, we consider the case when X and Y are almost periodic. Formally, this
means that the data structure is additionally given (at construction time) integers p and m
such that HD(X[0 .. |X| − p), X[p .. |X|)) + HD(Y [0 .. |Y | − p), Y [p .. |Y |)) ≤ m.

The presentation of our data structure comes in four parts. We start with an overview,
where we introduce some notation and provide intuition. This is followed by Algorithm 3,
which gives a precise mathematical definition of the values reported by our data struc-
ture. Then, in Lemma 4.5, we formalize the intuition and prove that the outputs of
Algorithm 3 satisfy the requirements of Problem 4.4, that is, their distributions follow
Bind,δ(HD(X,Y [s .. s+ |X|)), r). Finally, in Lemma 4.6, we provide an efficient implementa-
tion of Algorithm 3 and the complexity analysis of the resulting procedure.

The randomness in our data structure comes from two sets SX ⊆ [0 .. |X|) and SY ⊆
[0 .. |Y |) with each element sampled independently with probability r. At a first glance,
it may seem that SX would be sufficient because |{x ∈ SX : X[x] 6= Y [s + x]}| satisfies
the requirements of Problem 4.4 (as proved in Fact 4.1). However, these values cannot be
computed efficiently. To see this, suppose that X and Y consist only of the character A, except
for a single position y where Y [y] = B. In this case, we would need to return 1 if and only if
y − s ∈ SX ; this requires Ω(|Y |) preprocessing time (to discover y) or Ω(|SX |) query time
(to check if y = s+ x for some x ∈ SX). Thus, our strategy is more involved: we partition
the set of mismatches {(x, y) : X[x] 6= Y [y]} into two disjoint classes, MX and MY , and we
return |{(x, y) ∈MX : x ∈ SX and y− x = s}|+ |{(x, y) ∈MY : y ∈ SY and y− x = s}|. In
other words, depending on its class, a mismatch in X[x] 6= Y [y] is counted either if x ∈ SX
or if y ∈ SY . Our classification is determined by comparing the frequency of characters X[x]
and Y [y] in proximity to the two underlying positions. Intuitively, this is helpful because a
rare character is unlikely to be discovered unless it happens to be sampled. Formally, for
each position x ∈ [0 .. |X|), we define its context Cx = {x, x + p, x + 2p, . . . , x + (c − 1)p},
where c = Õ(r−1) is sufficiently large, and the context Cy of y ∈ [0 .. |Y |) is defined similarly.
Then, we count the occurrences of X[x] and Y [y] as X[x′] for x′ ∈ Cx and as Y [y′] for
y′ ∈ Cy, denoting the resulting numbers by mx and my, respectively (see Lines 11 and 12 of
Algorithm 3). We place the mismatch in MX if mx ≤ my and in MY otherwise.

Algorithm 3 Answering queries of Problem 4.4 in the almost periodic case.

1 H ← 0;
2 foreach x ∈ [0 .. |X|) do
3 y ← s+ x;
4 if x /∈ SX and y /∈ SY then continue;
5 c← dr−1 ln δ−2e;
6 Cx ← {x, x+ p, . . . , x+ (c− 1)p};
7 Cy ← {y, y + p, . . . , y + (c− 1)p};
8 if Cx ⊆ [0 .. |X|) and |{X[x′] : x′ ∈ Cx ∩ SX} ∪ {Y [y′] : y′ ∈ Cy ∩ SY }| = 1 then
9 continue;

10 if X[x] = Y [y] then continue;
11 mx ← |{x′ ∈ Cx ∩ [0 .. |X|) : X[x′] = X[x]}|+ |{y′ ∈ Cy ∩ [0 .. |Y |) : Y [y′] = X[x]}|;
12 my ← |{x′ ∈ Cx ∩ [0 .. |X|) : X[x′] = Y [y]}|+ |{y′ ∈ Cy ∩ [0 .. |Y |) : Y [y′] = Y [y]}|;
13 if (x ∈ SX and mx ≤ my) or (y ∈ SY and my < mx) then H ← H + 1;
14 return H;
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The benefit of this approach is that, if x ∈MX , then the contexts Cx and Cy (of total
size 2c) contain at least c occurrences of characters other than X[x]. In particular, at a small
loss of total variation distance, we may assume that the samples SX and SY have revealed
such a character distinct from X[x], and thus we need to read Y [y] only conditioned on that
event. At the same time, if X and Y are almost periodic and the sought Hamming distance
is small, then the contexts Cx and Cy are typically uniform (meaning that all the 2c positions
are occurrences of the same symbol). Hence, we can afford to investigate each location with
non-uniform contexts and, in case a mismatch X[x] 6= Y [y] is detected, to explicitly compute
mx and my in order to verify whether this mismatch indeed belongs to MX or MY .

I Lemma 4.5 (Correctness). Given s ∈ [0 .. |Y |−|X|], Algorithm 3 outputs a random variable
H at total variation distance at most δ from Bin(h, r), where h = HD(X,Y [s .. s+ |X|)).

Proof. We shall first prove that a modification of Algorithm 3 with Lines 8 and 9 removed
outputs H ∼ Bin(h, r). Let P ⊆ [0 .. |X|) be the set of positions for which H was incremented
in Line 13. We claim that P is a subset of M := {x ∈ [0 .. |X|) : X[x] 6= Y [s+ x]} with each
position sampled independently with rate r. Due to Line 10, we have P ⊆ M . For fixed
positions x ∈ M and y = s + x, let us consider the (deterministic) values mx and my as
defined in Lines 11 and 12. Observe that, for every x ∈ M , we have x ∈ P if and only if
(x ∈ SX and mx ≤ my) or (y ∈ SY and mx > my). Moreover, these are probability-r events
independent across x ∈M . Thus, in the modified version of the algorithm, we indeed have
H ∼ Bin(h, r).

Next, we shall prove that, for every x ∈ P , the probability of losing x due to Line 8 does
not exceed δ2. By the union bound, the total variation distance between H and Bin(h, r)
is then at most δ2|X| ≤ δ. Consider a multiset A := {X[x′] : x′ ∈ Cx ∩ [0 .. |X|)} ∪ {Y [y′] :
y′ ∈ Cy ∩ [0 .. |Y |)}. The filtering of Line 8 applies only if |A| = 2c and all the sampled
characters in A match. If mx ≤ my and x ∈ SX , then X[x] is sampled yet none of the at
least c elements of A distinct from X[x] is sampled. Similarly, if my < mx and y ∈ SY ,
then Y [y] is sampled yet none of the at least c elements of A distinct from Y [y] is sampled.
In either case, the probability of losing x ∈ P is bounded by (1− r)c ≤ exp(−rc) ≤ δ2, as
claimed. J

I Lemma 4.6 (Efficient implementation). Algorithm 3 can be implemented so that, after
Õ(|SX | + |SY |)-time preprocessing, the query time is Õ((m + p + h + r−1) log2 δ−1) with
probability 1−O(δ), where h = HD(X,Y [s .. s+ |X|)).

Proof. While preprocessing X, we construct a data structure that, given a position x ∈
[0 .. |X|) and a character a ∈ Σ, in Õ(1) time computes the smallest position x′ ∈ SX∩[x .. |X|)
such that X[x′] 6= a and x′ ≡ x (mod p) (if any such x′ exists). This preprocessing costs
Õ(|SX |) time (recall that all our model assumes oracle access to characters of the input
strings). The string Y is preprocessed in the same way in Õ(|SY |) time.

In the main loop of Line 2, we process x ∈ [0 .. |X|) grouped by the remainder x mod p,
starting from x ∈ [0 .. p) and y = s+ x. For each group, instead of increasing x and y by p
each time, we utilize the precomputed data structure to perform larger jumps. Specifically, if
an iteration terminates due to Line 4, we proceed directly to the subsequent state (x′, y′)
such that x′ ∈ SX or y′ ∈ SY (if any). Moreover, while executing Line 8, we compute
a = X[x] (if x ∈ SX) or a = Y [y] (otherwise) and determine the nearest sampled position
x′ ∈ [x .. |X|) ∩ SX with X[x′] 6= a and x′ ≡ x (mod p) and the nearest sampled position
y′ ∈ [y .. |Y |) ∩ SY with Y [y′] 6= a and y′ ≡ y (mod p). Then, the condition of Line 8 is
satisfied if and only if (c− 1)p < min(|X| − x, x′ − x, y′ − y). In that case, we can increase x
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and y by p · d 1
p min(|X| − x, x′ − x, y′ − y)− (c− 1)e; the number of such increases can be

bounded by O(p+m) in total across all the remainders modulo p.
It remains to count positions reaching Lines 10 and 11. The condition Cx ⊆ [0 .. |X|) is

not satisfied for at most pc positions x. The condition |{X[x′] : x′ ∈ Cx ∩ [0 .. |X|)} ∪ {Y [y′] :
y′ ∈ Cy ∩ [0 .. |Y |)}| = 1 is not satisfied for at most (m + h)c positions x. Hence, at most
(m + h + p)c positions may proceed to Line 10. However, due to the filtering of Line 4,
the actual number of positions reaching Line 10 can be bounded by Bin((m+ h+ p)c, 2r),
which is O((m+ h+ p) log δ−1) with probability at least 1− δ. Hence, Lines 3–10 can be
implemented in Õ((m+ h+ p) log δ−1) time with probability at least 1− δ.

Furthermore, X[x] = Y [y] is not satisfied for at most h positions, and, for these positions,
computing mx and my takes O(c) time. Due to the filtering of Line 4, the actual number of
positions reaching Line 11 is at most Bin(h, 2r), which is O(hr + log δ−1) with probability
at least 1− δ. Hence, Lines 11–13 cost O(h log δ−1 + r−1 log2 δ−1) time with probability at
least 1 − δ. Overall, the running time of any query is Õ((m + p + h + r−1) log2 δ−1) with
probability at least 1−O(δ). J

4.2 Text-to-Pattern Hamming Distances for Arbitrary Strings
In this section, we design an efficient solution to Problem 4.4 (in the general case):

I Proposition 4.7. Given an instance of Problem 4.4 with w := |Y |−|X|+1 and |X|r ≥ dw,
after Õ(|X|r log δ−1)-time randomized preprocessing, one can deterministically (with no
further randomness) answer the queries of Problem 4.4 in Õ(dw log2 δ−1) time.

Proof. In the preprocessing, for each shift s ∈ [0 .. w), we distinguish, correctly with probabil-
ity at least 1− δ

w , the case of HD(X,Y [s .. s+|X|)) ≤ dw from the case of HD(X,Y [s .. s+|X|)) >
2dw. This is implemented by sampling positions in X at rate Θ( log(wδ−1)

dw ) and comparing the
sampled characters of X against the aligned characters of Y . By the union bound, the tests
return correct values (for all s ∈ [0 .. w)) with probability at least 1− δ. The running time of
this preprocessing step is O(w · log(wδ−1)

dw · (|X|+ |Y |)) = Õ(|X|r log δ−1) with probability at
least 1− δ (if this step takes too much time, we terminate the underlying computation and
declare a preprocessing failure, which effectively means that |X| is returned for all queries).

If the test reports a small value HD(X,Y [s̃ .. s̃+ |X|)) for just one shift s̃ ∈ [0 .. w), then
we memorize this shift and compute a value distributed as Bin(HD(X,Y [s̃ .. s̃+ |X|)), r) by
sampling the characters X[x] and Y [x+ s̃] at rate r. This costs O(|X|r log δ−1) time with
probability at least 1− δ (otherwise, we declare a preprocessing failure). At query time, we
report the computed value for s̃. For each of the remaining shifts s 6= s̃, we are guaranteed
that (with probability at least 1− δ) HD(X,Y [s .. s+ |X|)) > dw ≥ d, and thus we can return
|X| as a value distributed according to Bind,δ(HD(X,Y [s .. s+ |X|)), r).

The interesting case is when we detect (at least) two shifts s̃1 6= s̃2 satisfying HD(X,Y [s ..
s+ |X|)) ≤ 2dw. We then conclude that X and Y are approximately periodic with period
p := |s̃1 − s̃2|. Formally, this means that HD(X[0 .. |X| − p), X[p .. |X|)) + HD(Y [0 .. |Y | − p),
Y [p .. |Y |)) ≤ 8dw + w = O(dw) holds with probability at least 1 − δ. In this case, at
preprocessing time, we draw sets SX ⊆ [0 .. |X|), SY ⊆ [0 .. |Y |) with each element sampled
independently with probability r. This costs O(|X|r log δ−1) time with probability at least
1 − δ (otherwise, we declare a preprocessing failure). We apply the query procedure of
Algorithm 3, described in Section 4.1, imposing a hard limit Õ(dw log2 δ−1) on the query
time. If the query algorithm exceeds the limit, we return a naive upper bound H = |X|. If
h ≤ d, the probability of exceeding the limit is O(δ) (this incorporates both X,Y violating
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the periodicity assumption and Algorithm 3 taking a long time due to an unlucky choice of
SX , SY ). Hence, imposing the limit increases the total variation distance of H and Bin(h, r)
by O(δ). Otherwise (if h > d), setting H := |X| in some states of the probability space
may only increase H in these states, and thus the resulting random variable stochastically
dominates the original one. In particular, H is at total variation distance at most δ from
a variable stochastically dominating Bin(h, r). Combining these two cases, we conclude
that, if we shrink δ by an appropriate constant factor, the resulting value H satisfies the
requirements of Problem 4.4 J

4.3 Proof of Theorem 1.8
In this section, we derive Theorem 1.8 from Proposition 4.7.

I Theorem 1.8. After Õ( n
ε2d )-time randomized preprocessing (successful w.h.p.), the queries

of Problem 1.7 can be answered deterministically (with no further randomness) in Õ(dw) time.

Proof. Our solution uses an auxiliary parameter r ∈ [ 1
d , 1] to be chosen later. At preprocess-

ing, we build the data structure of Fact 4.1 and, for each dyadic range [x .. x+ `) ⊆ [0 .. |X|)
of length ` ≥ dw

r , the component of Proposition 4.7 for X[x .. x+ `) and Y [x−w .. x+w+ `)
(with the latter fragment trimmed to fit within Y if necessary) and δ = n−c−1 for a sufficiently
large constant c. While doing so, we make sure that all these components use independent
randomness. The construction algorithm takes Õ(`r) time for each such dyadic range, which
sums up to Õ(nr) time across all considered ranges.

As a result, for x ∈ [0 .. |X|], y ∈ [0 .. |Y |], and ` ∈ [1 ..min(|X| − x, |Y | − y)], if [x .. x+ `)
is a dyadic range and |y − x| ≤ w, then we can in Õ(dw) time compute a value H ∈
Bind,n−c−1(h, r), where h = HD(X[x .. x + `), Y [y .. y + `)). For ` < dw

r , this follows from
Fact 4.1, whereas for ` ≥ dw

r , this is a consequence of Proposition 4.7. For an arbitrary range
[x .. x+ `), a value H ∈ Bind,n−c(h, r) can be derived by decomposing [x .. x+ `) into O(logn)
dyadic ranges and combining the results of the individual queries using Observation 4.3.

With an appropriate r, we can then use H to distinguish HD(X[x .. x+ `), Y [y .. y+ `]) ≤ d
and HD(X[x .. x+ `), Y [y .. y+ `]) ≥ (1 + ε)d. To see this, first suppose that H ∈ Bind(h, r). If
h ≤ d, then Pr[H ≥ (1 + ε

3 )rd] ≤ exp(− 1
27ε

2rd) holds by the multiplicative Chernoff bound.
Moreover, if h ≥ (1+ε)d, then Pr[H < (1+ ε

3 )rd] ≤ Pr[H < (1− ε
3 )(1+ε)rd] ≤ exp(− 1

18ε
2rd)

holds by the multiplicative Chernoff bound. Hence, by testing whether H < (1+ ε
3 )rd, we can

distinguish between h ≤ d and h ≥ (1 + ε)d with failure probability at most exp(− 1
27ε

2rd).
Setting r = Θ(ε−2d−1 logn), the failure probability can be bounded by n−c.

Since we are only guaranteed that H ∈ Bind,n−c(h, r), the failure probability increases to
2n−c. Nevertheless, this yields a data structure that can distinguish in Õ(dw) time between
HD(X[x .. x+ `), Y [y .. y + `]) ≤ d and HD(X[x .. x+ `), Y [y .. y + `]) ≥ (1 + ε)d correctly with
high probability. Since our query algorithm is deterministic, this means that, with high
probability, the randomized construction algorithm yields a data structure that produces
correct answers for all O(n3) possible queries. With binary search over `, we derive a data
structure answering LCEd,(1+ε)d(x, y) queries correctly w.h.p. and in Õ(dw) time. J

5 Lower Bound for Computing EDa Exactly

The lower bounds provided in this section are conditioned on the Orthogonal Vectors
Conjecture [32], which we state below.
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I Conjecture 5.1 (Orthogonal Vectors Conjecture [32]). In the OV problem, the input is a
set V ⊆ {0, 1}d of n vectors, and the goal is to decide if there exist u, v ∈ V with 〈u, v〉 = 0.7

The Orthogonal Vectors Conjecture asserts that, for every constant ε > 0, there exists a
constant c ≥ 1 such that OV cannot be solved in O(n2−ε)-time on instances with d = c logn.

5.1 Unbounded Distance
Here, we use the setting of [12] to prove that the following auxiliary similarity measures are
hard to compute exactly. This immediately yields analogous hardness for EDa.

I Definition 5.2. For strings X,Y ∈ Σ∗ and an integer a ∈ Z+, let Da(X,Y ) := EDa(X,Y )+
|Y | − |X|. Moreover, let D+

a (X,Y ) := Da($|Y | ·X · $|Y |, Y ), where $ /∈ Σ.

Intuitively, for an edit-distance alignment between strings X and Y , the measure Da

charges a character Y [y] with cost 0 if it is matched, cost 1
a if it is substituted, and cost 2

if it is inserted; deletions in X are free. The measure D+
a is justified by the following fact,

where alph(Z) ⊆ Σ denotes the set of letters occurring in Z ∈ Σ∗.

I Fact 5.3. Let X,Y, L,R ∈ Σ∗. If |L|, |R| ≥ |Y | and alph(Y ) ∩ alph(LR) = ∅, then
D+
a (X,Y ) = Da(LXR, Y ).

Proof. Due to alph(Y ) ∩ alph(LR) = ∅, we may assume without loss of generality that
L = $|L| and R = $|R|. Any edit-distance alignment between LXR and Y deletes at
least |L| − |Y | characters of L and at least |R| − |Y | characters of R, so Da(LXR, Y ) ≥
Da($|Y | ·X ·$|Y |, Y ). On the other hand, we have EDa(LXR, Y ) ≤ EDa(LXR, $|Y | ·X ·$|Y |) +
EDa($|Y | ·X ·$|Y |, Y ) = |L|−|Y |+|R|−|Y |+EDa($|Y | ·X ·$|Y |, Y ) by the triangle inequality, so
Da(LXR) = EDa(LXR, Y )+|Y |−|LXR| ≤ EDa($|Y |·X ·$|Y |, Y )+|LR|−2|Y |+|Y |−|LXR| =
EDa($|Y | ·X · $|Y |, Y ) + |Y | − (|X|+ 2|Y |) = D+

a (X,Y ). J

Bringmann and Künnemann [12] developed a generic scheme of reducing the Orthogonal
Vectors problem to the problem of computing a given string similarity measure.8 This
framework requires identifying types in the input space (which is Σ∗ here) and proving that
the similarity measure admits an alignment gadget and coordinate values.

In our construction, the types are of the form [0 .. σ)n for n, σ ∈ Z+ (we assume Σ ⊆ Z≥0).

I Lemma 5.4. The similarity measure D+
a admits coordinate values. That is, there exist

strings 0X ,1X (of some type tX) and 0Y ,1Y (of some type tY ) such that D+
a (1X ,1Y ) >

D+
a (0X ,0Y ) = D+

a (0X ,1Y ) = D+
a (1X ,0Y ).

Proof. We set 0X = 01,1X = 00 (of type [0 .. 2)2), and 0Y = 0,1Y = 1 (of type [0 .. 2)1). It is
easy to check that 1

a = D+
a (1X ,1Y ) > D+

a (0X ,0Y ) = D+
a (0X ,1Y ) = D+

a (1X ,0Y ) = 0. J

An alignment gadget is a pair of functions GAX and GAY parameterized by integers
n ≥ m and types tX , tY . The function GAX , given n strings X1, . . . , Xn of type tX , produces
a string X of some fixed type (that only depends on n,m, tX , tY ), whereas the function GAY ,
given m strings Y1, . . . , Ym of type tY , produces a string Y of some (other) fixed type. Both
functions must admit O((n+m)(`X + `Y ))-time algorithms, where `X is the common length
of strings in tX and `Y is the common length of strings in tY . The main requirement relates

7 Here, 〈u, v〉 =
∑d

i=1 ui · vi denotes the scalar product of u and v.
8 The authors wish to thank Marvin Künnemann for clarifying a few points about this framework.
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the value D+
a (X,Y ) to the values D+

a (Xi, Yj) for i ∈ [1 .. n] and j ∈ [1 ..m]. Specifically,
there must be a fixed value C (depending only on n,m, tX , tY ) that satisfies the following
conditions:
1. Each δ ∈ [0 .. n−m] satisfies D+

a (X,Y ) ≤ C +
∑m
j=1D

+
a (Xj+δ, Yj).

2. There is a set A = {(i1, j1), . . . , (ik, jk)} ⊆ [1 .. n] × [1 ..m] such that i1 < · · · < ik,
j1 < · · · < jk, and D+

a (X,Y ) ≥ C +
∑

(i,j)∈AD
+
a (Xi, Yj) + (m− |A|) maxi,j D+

a (Xi, Yj).

I Construction 5.5. Let n ≥ m be positive integers and tX = [0 .. σX)`X , tY = [0 .. σY )`Y

be input types. Denote A = σY , B = σY + 1, and ` = `Y . We set GAX and GAY so that

GAX(X1, . . . , Xn) := X :=
n⊙
i=1

(
A2` ·Xi · A` · B`

)
, and

GAY (Y1, . . . , Ym) := Y := Bn` ·
m⊙
j=1

(
A` · Yj · B`

)
· Bn`,

where
⊙

and · denote concatenation.

It is easy to check that both functions can be implemented in O((n + m)(`X + `Y )) time
and the output types are [0 ..max(σX , σY + 2))n(`X+4`Y ) and Y ∈ [0 .. σY + 2)(2n+3m)`Y ,
respectively. In the next two lemmas, we prove that Construction 5.5 satisfies the two
aforementioned conditions with C = 1

a (n+m)`.

I Lemma 5.6. Each δ ∈ [0 .. n−m] satisfies D+
a (X,Y ) ≤ 1

a (n+m)`+
∑m
j=1D

+
a (Xj+δ, Yj).

Proof. Let us construct an edit distance alignment between $|Y | ·X · $|Y | and Y so that the
total cost charged to characters of Y does not exceed the claimed upper bound.

The prefix B(n−δ)` is matched against the prefix $(n−δ)` (at cost 1
a (n− δ)`).

The subsequent δ blocks B` are matched against the B` blocks within the phrases A2` ·
Xi · A` · B` for i ∈ [0 .. δ) (at cost 0).
Each phrase A` · Yj · B` with j ∈ [1 ..m] is matched against the phrase A2` ·Xj+δ · A` · B`
so that:

The leading block A` is matched against the leading block A` (at cost 0).
The string Yj is matched against A`Xj+δA` (at cost D+

a (Xj+δ, Yj) by Fact 5.3).
The trailing block B` is matched against the trailing block B` (at cost 0).

The subsequent n−m− δ blocks B` are matched against the B` blocks within the phrases
A2` ·Xi · A` · B` for i ∈ (m+ δ .. n] (at cost 0).
The suffix B(m+δ)` is matched against the suffix $(m+δ)` (at cost 1

a (m+ δ)`). J

I Lemma 5.7. There exists a set A = {(i1, j1), . . . , (ik, jk)} ⊆ [1 .. n] × [1 ..m] such that
i1 < · · · < ik, j1 < · · · < jk, and D+

a (X,Y ) ≥ 1
a (n + m)` +

∑m
(i,j)∈AD

+
a (Xi, Yj) + (m −

|A|) maxi,j Da(Xi, Yj).

Proof. Let us fix an optimal alignment between $|Y | ·X · $|Y | and Y . We construct a set
A ⊆ [1 .. n]× [1 ..m] consisting of pairs (i, j) jointly satisfying the following conditions:

At least one character of Yj is aligned against a character of Xi.
No character of Yj is aligned against any character of Xi′ for any i′ 6= i.
No character of Xi is aligned against any character of Yj′ for any j′ < j.



E. Goldenberg, T. Kociumaka, R. Krauthgamer, and B. Saha 19

It is easy to see that A forms a non-crossing matching, i.e., ordering its elements by the first
coordinate is equivalent to ordering them by the second coordinate.

Let us analyze the contribution of each letter of Y to D+
a (X,Y ) with respect to any fixed

optimal alignment between $|Y | ·X · $|Y | and Y . Let cB denote the number of Bs in X that
are not matched with any B in Y . Since the number of Bs in X and Y is n` and (2n+m)`,
respectively, the contribution of Bs in Y to the total cost is at least 1

a ((n+m)`+ cB).
If (i, j) ∈ A, then Yj is aligned against a subsequence of X obtained by deleting Xi′ for

all i′ 6= i and (possibly) some further characters (recall that all deletions in X are free). In
this case, the contribution of Yj is at least D+

a (Xi, Yj) by Fact 5.3.
If no character of Yj is aligned against any character of any Xi, then all characters of Yj

are deleted or substituted, meaning that the contribution of Yj is at least 1
a`. If characters

of Yj are aligned against characters of Xi and Xi′ for two distinct i < i′, then all Bs between
Xi and Xi′ contribute to cB; this contribution is at least `, and it cannot be charged to
any Yj′ with j′ 6= j. Finally, if characters of both Yj′ and Yj (with j′ < j) are aligned to
characters of the same Xi, then the block A` preceding Yj contributes at least 1

a`. Overall,
we conclude that the total cost is at least 1

a` for each j ∈ [1 ..m] with no (i, j) ∈ A (this
contribution is either directly charged to A`Yj or via cB). Hence, the total cost D+

a (X,Y )
is at least 1

a (n+ 2m− |A|)`+
∑

(i,j)∈AD
+
a (Xi, Yj). Due to D+

a (Xi, Yj) ≤ 1
a |Yj | =

1
a`, this

yields the claimed lower bound. J

Consequently, the framework of [12] yields the following result. (An inspection of [12]
reveals that the strings are produced from the coordinate values composed by recursive
application of the alignment gadget. The tree of this recursion is of height 3, so the output
strings are over an alphabet of size 8.)

I Corollary 5.8. There is an O(nd)-time algorithm that, given two sets U, V ⊆ {0, 1}d of n
vectors each and an integer a ∈ Z+, constructs strings X,Y ∈ [0 .. 8)∗ and a threshold k such
that D+

a (X,Y ) ≤ k if and only if 〈u, v〉 = 0 for some u ∈ U and v ∈ V . Moreover, |X|, |Y |,
and k depend only on n, d, and a.

5.2 Bounded Distance
Our next goal is to derive a counterpart of Corollary 5.8 with k � |X|+ |Y | and EDa instead
of D+

a . The following construction is at the heart of our reduction.

I Construction 5.9. Let n, `X , `Y be positive integers and let ` = `X + `Y . For a sequence
of n pairs (Xi, Yi) ∈ Σ`X × Σ`Y , we define strings

X = A`Y ·
n⊙
j=1

(B` ·Xj · C` · A`Y ) and Y = Y1 ·
n⊙
j=2

(B` · D`X · C` · Yj).

I Lemma 5.10. If a ≥ n, then the strings X,Y of Construction 5.9 satisfy

Da(X,Y ) = (n−1)`
a +

n
min
i=1

D+
a (Xi, Yi).

Proof. First, we prove an upper bound on Da(X,Y ). Let us fix i ∈ [1 .. n]. We define an
edit distance alignment between

X =
i−1⊙
j=1

(A`Y · B` ·Xj · C`) · A`Y · B` ·Xi · C` · A`Y ·
n⊙

j=i+1
(B` ·Xj · C` · A`Y )
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and

Y =
i−1⊙
j=1

(Yj · B` · D`X · C`) · Yi ·
n⊙

j=i+1
(B` · D`X · C` · Yj)

so that the total cost charged to characters of Y does not exceed (n−1)`
a +D+

a (Xi, Yi).
For j ∈ [1 .. i), the phrase Yj · B` · D`X · C` is aligned with the phrase A`Y · B` ·Xj · C` using
substitutions only (at cost 1

a (`X + `Y )).
The block Yi is aligned against A`Y ·B` ·Xi · C` · A`Y (at cost D+

a (Xi, Yi) by Fact 5.3).
For j ∈ (i .. n], the phrase (B` · D`X · C` · Yj) is aligned with the phrase B` ·Xj · C` · A`Y

using substitutions only (at cost 1
a (`X + `Y )).

It remains to prove the lower bound on Da(X,Y ). Let us fix an arbitrary alignment of
X and Y ; we shall prove that its cost is at least as large as the claimed lower bound on
Da(X,Y ). First, suppose that, for some i 6= j, a character of Xi is aligned against a character
of Yj . Note that Xi = X[(3i− 2)`+ `Y .. (3i− 1)`) and Yj = Y [(3j − 3)` .. (3j − 3)`+ `Y ).
If i < j, then aligning a character of Xi against a character of Yj requires deleting at least
(3j − 3)`− (3i− 1)` = (3j − 3i− 2)` ≥ ` characters in the prefix Y [0 .. (3j − 3)`). Similarly,
if i > j, then aligning a character of Xi against a character of Yj requires deleting at least
(|Y |−((3j−3)`+`Y ))−((|X|−(3i−2)`+`Y )) = (3(n−j)`−(3n−3i+2)`) = (3i−3j−2)` ≥ `
characters in the suffix of Y [(3j − 3)` + `Y .. |Y |). In either case, the alignment cost is at
least ` ≥ n`

a ≥
(n−1)`
a + 1

a`Y ≥
(n−1)`
a + minni=1D

+
a (Xi, Yi).

Thus, we may assume that no character of Yj is aligned against a character of Xi for
i 6= j. In this case, we bound from below the total cost charged to characters of Y . Note
that the symbols D in Y contribute at least n−1

a `X (because there are no Ds in X). If, for
some i ∈ [1 .. n], no character of Yi is aligned against a character of Xi, then Yi is charged
at least 1

a`Y . Otherwise, Yi is charged at least D+
a (Xi, Yi) by Fact 5.3. However, if i < j

are subsequent indices such that a character of Yi is aligned against a character of Xi and
a character of Yj is aligned against a character Xj then, among the 2`(j − i) characters B
and C between Yi and Yj , at most LCS((B`C`)j−i, (C`B`)j−i) = `(2(j − i)− 1) are matched,
incurring a cost of at least 1

a` >
1
a`Y for the mismatched characters. Overall, Ds contribute

at least n−1
a `X , the smallest i such that a character of Xi is aligned against a character of Yi

(if there is any) contributes at least D+
a (Xi, Yi), each of the remaining i ∈ [1 .. n] contributes

at least 1
a`Y (either directly or via Bs and Cs), for a total of (n−1)`

a + minni=1D
+
a (Xi, Yi). J

These properties let us use Construction 5.9 to generalize Corollary 5.8 and finally prove
Theorem 1.9.

I Proposition 5.11. There is an O(nmd)-time algorithm that, given two sets U, V ⊆ {0, 1}d
of n vectors each and integers a ∈ Z+, m ∈ [1 .. n], constructs strings X,Y ∈ [0 .. 12)∗ and a
threshold K = O(max(ma ,

1
m )nd) such that EDa(X,Y ) ≤ K if and only if 〈u, v〉 = 0 for some

u ∈ U and v ∈ V .

Proof. We cover U and V with subsets U1, . . . , Um ⊆ U and V1, . . . , Vm ⊆ V of size d nme.
For any i, j ∈ [1 ..m], we construct an instance (Xi,j , Yi,j , ki,j) using Corollary 5.8 for
Ui, Vj ⊆ {0, 1}d. Note that |Xi,j | = `X , |Yi,j | = `Y , and ki,j depend only on n, m, and d. We
then apply Construction 5.9 to the collection of m2 pairs (Xi,j , Yi,j), resulting in strings X
and Y . The running time of this construction is O(m2(`X + `Y )) = O(m2 · d nmed) = O(mnd).
Moreover, we set k = m2−1

a (`X + `Y ) + ki,j (recall that ki,j is the same for all i, j ∈ [1 ..m]);
this value satisfies k ≤ m2

a (`X + `Y ) = O(a−1mnd). If 〈u, v〉 = 0 for some u ∈ U and v ∈ V ,
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then Corollary 5.8 implies that D+
a (Xi,j , Yi,j) ≤ ki,j for i, j ∈ [1 ..m] such that u ∈ Ui and

v ∈ Vj . Consequently, Da(X,Y ) ≤ k by Lemma 5.10. Symmetrically, if Da(X,Y ) ≤ k, then,
by Lemma 5.10, D+

a (Xi,j , Yi,j) ≤ ki,j holds for some i, j ∈ [1 ..m] and, by Corollary 5.8,
〈u, v〉 = 0 for some u ∈ Ui ⊆ U and v ∈ Vj ⊆ V . The threshold k for Da(X,Y ) translates to
a threshold K = k + |X| − |Y | = k +O(`) = O(max(a−1mnd, nd/m)) for EDa. J

I Theorem 1.9. Consider sequences (an)∞n=1 and (kn)∞n=1 with entries an, kn ∈ [1 .. n]
computable in poly(n) time. Unless the Orthogonal Vectors Conjecture fails, there is no
algorithm that, for some fixed ε > 0, every n ∈ Z+, and all strings X,Y with |X|+ |Y | ≤ n,
in O((n+ kn ·min(n, ankn))1−ε) time computes EDan

(X,Y ) or reports that EDan
(X,Y ) > kn.

Proof. For each n ∈ Z+, let tn = min(n, ankn)kn. Note that Ω(n) time is already needed
to check whether X = Y . Thus, the claim holds trivially if there are infinitely many pairs
(an, kn) with t1−εn < n. Consequently, we may assume without loss of generality that t1−εn ≥ n
for each n (any finite prefix of the sequence (an, kn) is irrelevant).

Let us choose a constant c′ so that (an, kn) can be constructed in O(nc′) time, a constant
c of Conjecture 5.1 for ε/(2c′), and a constant C so that Proposition 5.11 guarantees
|X|+ |Y | ≤ Cnmd and K ≤ C(max(m/a, 1/m)nd).

Given an instance V ⊆ {0, 1}d of the Orthogonal Vectors problem with d = c log |V |,
we set n := d|V |1/c′e and compute the values an, kn, and tn in O(nc) = O(|V |) time.
Next, we set N := b

√
tn/(Cd)c and cover V with v := d 1

N |V |e subsets V1, . . . , Vv of size N .
For any i, j ∈ [1 .. v], we construct an instance (Xi,j , Yi,j ,Ki,j) using Proposition 5.11 for
Vi, Vj ⊆ {0, 1}d, an, and mn := b

√
min(n/kn, an)c.

Note that |Xi,j | + |Yi,j | ≤ CmnNd ≤
√

min(n/kn, an)tn ≤
√
n/kn · nkn ≤ n and

Ki,j ≤ C · max(mn/an, 1/mn)Nd ≤ max(mn/an, 1/mn)
√
tn. If ankn ≤ n, then Ki,j ≤

max(√an/an, 1/
√
an) ·

√
ank2

n = kn. If ankn ≥ n, on the other hand, then Ki,j ≤
max(

√
n/kn/an,

√
kn/n) ·

√
nkn ≤ max(n/an, kn) ≤ kn. Thus, we can test EDa(Xi,j , Yi,j) ≤

Ki,j using an instance (Xi,j , Yi,j , an, kn) of the problem in question. By our hypothesis, this
costs O(n + t1−εn ) = O(t1−εn ) time (including construction of Proposition 5.11). Summing
up over i, j ∈ [1 .. v], the running time is O(v2t1−εn ) = O(|V |2/N2 · t1−εn ) = O(d2|V |2t−εn ) =
O(d2|V |2n−ε) = O(d2|V |2−ε/c′) = O(|V |2−ε/(2c′)). Overall, including the construction of
(an, kn) in O(|V |) time, the total time complexity of solving the OV instance is O(|V |2−ε/(2c′)),
contradicting Conjecture 5.1. J

A Bicriteria Algorithms

A.1 Exact Algorithm

I Proposition 1.2. Given two strings X,Y ∈ Σ∗ of total length n and two integer thresholds
kS , kI > 0, one can decide whether there is a (kI , kS)-alignment or not (report YES or NO)
in deterministic time O(n+ kSk

2
I ).

Our algorithm runs in time O(n+ kSk
2
I ) and is implemented as Algorithm 4, where all

uninitialized and out-of-bounds values DvI ,vS
[s] are implicitly set to −∞. Its correctness

follows from Lemma A.1 (see below), and the running time is proportional to the number of
LCE queries, which is O(kSk2

I ), plus the O(n) construction time of an LCE data structure.

I Lemma A.1. For every vI ∈ [0 .. kI ], vS ∈ [0 .. kS ], x ∈ [0 .. |X|], and y ∈ [0 .. |Y |], we have
DvI ,vS

[y − x] ≥ x if and only if X[0 .. x) and Y [0 .. y) admit an (vI , vS)-alignment.
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Algorithm 4 Exact bicriteria algorithm

1 foreach vS ∈ [0 .. kS ] do
2 foreach vI ∈ [0 .. kI ] do
3 foreach s ∈ [−vI .. vI ] do
4 D′vI ,vS

[s]←
min(|X|, |Y | − s,max(DvI−1,vS

[s− 1],DvI ,vS−1[s] + 1,DvI−1,vS
[s+ 1] + 1));

5 if s = 0 then D′vI ,vS
[s]← max(D′vI ,vS

[s], 0);
6 DvI ,vS

[s]← D′vI ,vS
[s] + LCE(D′vI ,vS

[s],D′vI ,vS
[s] + s);

7 if DvI ,vS
[|Y | − |X|] = |X| then return YES ;

8 return NO;

Proof. Let us first prove, by induction on vI + vS , that DvI ,vS
[y − x] ≥ x if X[0 .. x) and

Y [0 .. y) admit a (vI , vS)-alignment. Let us fix such an alignment and consider the longest
suffixes X[x′ .. x) = Y [y′ .. y) aligned without any edit. We shall prove that D′vI ,vS

[y − x] =
D′vI ,vS

[y′ − x′] ≥ x′ by considering four cases:
If x′ = y′ = 0, then D′vI ,vS

[y′ − x′] = D′vI ,vS
[0] ≥ 0.

If X[x′ − 1] is deleted, then X[0 .. x′ − 1) and Y [0 .. y′) admit a (vI − 1, vS)-alignment.
By inductive assumption, D′vI ,vS

[y′ − x′] ≥ DvI−1,vS
[y′ − x′ + 1] + 1 ≥ x′.

If Y [y′ − 1] is inserted, then X[0 .. x′) and Y [0 .. y′ − 1) admit a (vI − 1, vS)-alignment.
By inductive assumption, D′vI ,vS

[y′ − x′] ≥ DvI−1,vS
[y′ − x′ − 1] ≥ x′.

Otherwise, X[x′−1] is substituted for Y [y′−1]; then, X[0 .. x′−1) and Y [0 .. y′−1) admit a
(vI , vS−1)-alignment. By inductive assumption, D′vI ,vS

[y′−x′] ≥ DvI ,vS−1[y′−x′]+1 ≥ x′.
Now, DvI ,vS

[y − x] ≥ x follows from D′vI ,vS
[y′ − x′] ≥ x′ due to LCE(x′, y′) ≥ x− x′.

The converse implication is also proved by induction on vI + vS . We consider four cases
depending on x′ := D′vI ,vS

[y − x] and y′ := x′ + (y − x):
If x′ ≤ DvI−1,vS

[y′ − x′ + 1] + 1, then, by the inductive assumption, X[0 .. x′ − 1) and
Y [0 .. y′) admit a (vI − 1, vS)-alignment, which can be extended to a (vI , vS)-alignment
of X[0 .. x′) and Y [0 .. y′) by deleting X[x′ − 1].
If x′ ≤ DvI−1,vS

[y′−x′−1], then, by the inductive assumption, X[0 .. x′) and Y [0 .. y′−1)
admit a (vI − 1, vS)-alignment, which can be extended to a (vI , vS)-alignment of X[0 .. x′)
and Y [0 .. y′) by inserting Y [y′ − 1].
If x′ ≤ DvI ,vS−1[y′ − x′] + 1, then, by the inductive assumption, X[0 .. x′ − 1) and
Y [0 .. y′−1) admit a (vI , vS−1)-alignment, which can be extended to a (vI , vS)-alignment
of X[0 .. x′) and Y [0 .. y′) by substituting X[x′ − 1] for Y [y′ − 1].
In the remaining case, we have x′ = y′ = 0. Trivially, X[0 .. x′) and Y [0 .. y′) admit a
(0, 0)-alignment, which is also a (vI , vS)-alignment.

In all cases, the (vI , vS)-alignment of X[0 .. x′) and Y [0 .. y′) yields a (vI , vS)-alignment of
X[0 .. x) and Y [0 .. y) because LCE(x′, y′) ≥ x− x′. J

A.2 Approximation algorithm
Given strings X,Y , integer thresholds kI , kS , and an accuracy parameter ε ∈ (0, 1), our next
algorithm reports YES and X and Y admit a (kI , kS)-alignment, NO if X and Y do not
admit a (kI , (1 + ε)kS)-alignment, and an arbitrary answer otherwise. The algorithm mimics
the behavior of Algorithm 4 with a coarser granularity of the substitution costs. We assume
that out-of-bounds and uninitialized values D̃vI ,vS

[s] are implicitly set to −∞.
The following lemma justifies the correctness of Algorithm 5.
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Algorithm 5 Approximate bicriteria algorithm

1 d := d εkS

2+kI
e;

2 foreach vS ∈ {0, d, 2d, . . . , d · dkS/de} do
3 foreach vI ∈ [0 .. kI ] do
4 foreach s ∈ [−vI .. vI ] do
5 D̃′vI ,vS

[s]←
min(|X|, |Y | − s,max(D̃vI−1,vS

[s− 1], D̃vI ,vS−d[s], D̃vI−1,vS
[s+ 1] + 1));

6 if s = 0 then D̃′vI ,vS
[s]← max(D̃′vI ,vS

[s], 0);
7 D̃vI ,vS

[s]← D̃′vI ,vS
[s] + LCEd,ε(D̃′vI ,vS

[s], D̃′vI ,vS
[s] + s);

8 if D̃vI ,vS
[|Y | − |X|] = |X| then return YES ;

9 return NO;

I Lemma A.2. Let d = d εkS

2+kI
e. For every vS ∈ {0, d, . . . , ddkS/de}, vI ∈ [0 .. kI ], x ∈

[0 .. |X|], and y ∈ [0 .. |Y |]:
If X[0 .. x) and Y [0 .. y) admit a (vI , vS)-alignment, then D̃vI ,vS

[y − x] ≥ x.
If D̃vI ,vS

[y − x] ≥ x, then X[0 .. x) and Y [0 .. y) admit a (vI , (1 + ε)(d + vId + vS))-
alignment.

Proof. We start by proving the first implication inductively on vI + vS . Let us fix a (vI , vS)-
alignment of X[0 .. x) and Y [0 .. y) and consider the longest suffixes X[x′ .. x) and Y [y′ .. y)
aligned with at most d substitutions and no indels. We shall prove that D̃′vI ,vS

[y − x] =
D̃′vI ,vS

[y′ − x′] ≥ x′ by considering four cases:
If x′ = y′ = 0, then D̃′vI ,vS

[y′ − x′] = D̃′vI ,vS
[0] ≥ 0.

If X[x′ − 1] is deleted, then X[0 .. x′ − 1) and Y [0 .. y′) admit a (vI − 1, vS)-alignment.
By the inductive assumption, D̃′vI ,vS

[y′ − x′] ≥ D̃vI−1,vS
[y′ − x′ + 1] + 1 ≥ x′.

If Y [y′ − 1] is inserted, then X[0 .. x′) and Y [0 .. y′ − 1) admit a (vI − 1, vS)-alignment.
By the inductive assumption, D̃′vI ,vS

[y′ − x′] ≥ D̃vI−1,vS
[y′ − x′ − 1] ≥ x′.

Otherwise, there are exactly d substitutions between X[x′ .. x) and Y [y′ .. y). Thus,
X[0 .. x′) and Y [0 .. y′) admit a (vI , vS − d)-alignment and, by the inductive assumption,
D̃′vI ,vS

[y′ − x′] ≥ D̃vI ,vS−d[y′ − x′] ≥ x′.
Now, D̃vI ,vS

[y − x] ≥ x follows from D̃′vI ,vS
[y′ − x′] ≥ x′ due to LCEd(x′, y′) ≥ x− x′.

The second implication is also proved by induction on vI + vS . We consider four cases
depending on x′ := D̃′vI ,vS

[y − x] and y′ := x′ + (y − x):
If x′ ≤ D̃vI−1,vS

[y′ − x′ + 1] + 1, then, by the inductive assumption, X[0 .. x′ − 1) and
Y [0 .. y′) admit a (vI − 1, (1 + ε)(vId + vS))-alignment, which can be extended to a
(vI , (1 + ε)(vId+ vS))-alignment of X[0 .. x′) and Y [0 .. y′) by deleting X[x′ − 1].
If x′ ≤ D̃vI−1,vS

[y′−x′−1], then, by the inductive assumption, X[0 .. x′) and Y [0 .. y′−1)
admit a (vI −1, (1 + ε)(vId+vS))-alignment, which can be extended to a (vI , (1 + ε)(vId+
vS))-alignment of X[0 .. x′) and Y [0 .. y′) by inserting Y [y′ − 1].
If x′ ≤ D̃vI ,vS−1[y′−x′], then, by the inductive assumption, X[0 .. x′) and Y [0 .. y′) admit
a (vI , (1 + ε)(vId+ vS))-alignment.
In the remaining case, we have x′ = y′ = 0. Trivially, X[0 .. x′) and Y [0 .. y′) admit a
(0, 0)-alignment, which is also a (vI , (1 + ε)(vId+ vS))-alignment.

In all cases, the (vI , (1 + ε)(vId + vS))-alignment of X[0 .. x′) and Y [0 .. y′) yields a (vI ,
(1+ε)(d+vId+vS))-alignment of X[0 .. x) and Y [0 .. y) because LCE(1+ε)d(x′, y′) ≥ x−x′. J
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I Corollary A.3. Algorithm 5 returns YES if X and Y admit a (kI , kS)-alignment, and NO
if X and Y do not admit a (kI , (1 + ε)(2 + kI + (1 + ε)kS))-alignment. Moreover, it can be
implemented in Õ( nkI

ε3kS
+ k3

IkS) time.

Proof. First, suppose that X and Y admit a (kI , kS)-alignment. Then, we apply Lemma A.2
for vS = ddkS/de, vI = kI , x = |X|, and y = |Y |. We conclude that D̃vI ,vS

[|X| − |Y |] ≥ |X|,
which means that the algorithm returns YES. On the other hand, if the algorithm returns
YES, then D̃vI ,vS

[|X| − |Y |] ≥ |X| holds for some vI ∈ [0 .. kI ] and vS ∈ {0, d, . . . , ddkS/de}.
In this case, Lemma A.2 implies that X and Y admit a (vI , (1 + ε)(d+ vId+ vS))-alignment,
which is also a (kI , (1+ε)(kS+kI+2+ε))-alignment because vI ≤ kI and (1+ε)(d+vId+vS) ≤
(1 + ε)(2d+ kI + kS)(1 + ε) ≤ (1 + ε)((2 + kI)d+ kS) ≤ (1 + ε)(2 + kI + (1 + ε)kS). As for
the running time, we observe that the number of LCEd,ε(x, y) queries is O(k2

I · kS/d) and
that each of them satisfies |x− y| ≤ kI . By Theorem 1.8, the total running time is therefore
Õ( nkI

ε3kS
+ k3

I · kS). J

I Theorem 1.6. One can solve Problem 1.4 with α = 1 and β = 1 + ε (for any given
parameter ε ∈ (0, 1)) correctly with high probability in Õ( nkI

ε3kS
+ kSk

3
I ) time.

Proof. If εkS

5 < 2 + kI , we use the algorithm of Proposition 1.2, which costs O(n+ kSk
2
I ) =

O(nkI

εkS
+ kSk

2
I ) = Õ( nkI

ε3kS
+ kSk

3
I ) time. Otherwise, we apply Corollary A.3 with the accuracy

parameter ε′ := ε
5 . This guarantees that (1 + ε′)(2 + kI + (1 + ε′)kS) ≤ (1 + ε′)(1 + 2ε′)kS ≤

(1 + 5ε′)kS = (1 + ε)kS . Thus, Algorithm 5 meets the requirements of Problem 1.4 with
α = 1 and β = 1 + ε. J
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