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platzhalter

Preface

This dissertation is a publication-based doctoral thesis. It is based on independent articles that
have been published in international peer-reviewed scientific journals.[1–3] The first chapters of
this dissertation primarily serve as an introduction to the motivation and related methodological
developments, followed by summaries of each published article in chapter 6. The majority of the
presented work was carried out at the Chair of Theoretical Chemistry of the Technical University
of Munich (TUM) between October 2018 and January 2021 and was completed between February
2021 and September 2022 at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin,
both times under the supervision of Prof. Dr. Karsten Reuter.
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Abstract

High-performing heterogeneous catalysts are key to a greener chemical industry and future
sustainability. In-silico catalyst screening and discovery provide efficient and cost-effective
solutions for finding suitable catalysts. Their implementations are commonly driven by the use of
quantum mechanical calculations (density functional theory, DFT) to predict catalytic properties.
Unfortunately, these calculations are prohibitively computationally demanding, thus incapable of
searching the huge chemical space. As an alternative, earlier developed data-driven approaches,
e.g., linear scaling relations (LSRs) that bypass fully explicit DFT calculations, have made notable
advancements to expedite catalyst discovery on simple catalyst systems, e.g., transition metals
(TMs) and monodentate adsorbates. However, given the intrinsic complexity of heterogeneous
catalysis, such oversimplified approaches are not applicable for complex catalyst materials and
reaction networks in terms of predictive accuracy. The emergence of machine learning (ML) has
opened the road to tackling more realistic models of heterogeneous catalysts.

In this publication-based thesis, we seek to develop physics-motivated machine learning models
to address the complexity of materials and adsorbates for screening heterogeneous catalysts
with a particular focus on transition metal oxides (TMOs) and larger adsorbates that may exhibit
mono-, bi- or higher-dentate adsorption motifs at TMs. The ML methods employed range from
the Compressed Sensing SISSO method, which seeks descriptors in the form of analytical func-
tions, to Gaussian Process Regression (GPR) with a physics-inspired graph representation. The
resulting predictive accuracy that is on par with quantum mechanical calculations, along with
great adaptability of these models, make them promising for finding high-performing catalysts
across a broad class of materials and complex reaction networks.
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Zusammenfassung

Leistungsstarke heterogene Katalysatoren sind der Schlüssel zu einer umweltfreundlicheren chemi-
schen Industrie und zu künftiger Nachhaltigkeit. Dabei bietet ein in-silico Katalysatoren Screening
eine effiziente und kostengünstige Lösung für die Suche nach geeigneten Katalysatoren. Ein
solches Screening wird in der Regel mit Hilfe von quantenmechanischen Berechnungen (Dichte-
funktionaltheorie, DFT) durchgeführt, wobei katalytische Eigenschaften vorhergesagt werden
können. Bedauerlicherweise sind diese quantenmechanischen Berechnungen sehr rechenintensiv
und daher meist nicht in der Lage, den riesigen vorherrschenden chemischen Raum zu erkunden.
Als Alternative werden daher frühzeitig entwickelte datengesteuerte Ansätze, wie z. B. lineare Ska-
lierungsrelationen (LSR) verwendet, welche explizite DFT-Berechnungen umgehen. Diese haben
für einfache Katalysatorsysteme, wie z. B. Übergangsmetalle (TMs) und monodentate Adsorbate,
bemerkenswerte Fortschritte erzielt und somit die Entdeckung von Katalysatoren vereinfacht. An-
gesichts der inhärenten Komplexität der heterogenen Katalyse sind solche vereinfachten Ansätze
jedoch, im Hinblick auf die Vorhersagegenauigkeit, nicht für komplexe Katalysatormaterialien und
deren Reaktionsnetzwerke geeignet. Mit dem Aufkommen von Methoden des maschinellen Ler-
nens (ML) eröffneten sich Möglichkeiten, diese datengesteuerte Ansätze mit Bedacht anzupassen,
um realistische Modelle von heterogenen Katalysatoren in Angriff zu nehmen.

Diese publikationsbasierte Dissertation befasst sich daher mit der Entwicklung von physikalisch
motivierten Modellen des maschinellen Lernens, welche die Komplexität von Materialien und
Adsorbaten für das Screening heterogener Katalysatoren erfassen. Hierbei liegt der Schwerpunkt
auf Übergangsmetall Oxiden (TMOs) und größeren Adsorbaten, die ein-, zwei- oder mehrzähnige
Adsorptions-Motive an TMOs aufweisen können. Die verwendeten ML-Methoden reichen von der
SISSO-Methode (Compressed Sensing), die Deskriptoren in Form von analytischen Funktionen
sucht, bis zur Gauß Prozess Regression (GPR), die zusammen mit einer von der Physik inspirierten
Graphendarstellung verwendet wird. Die daraus resultierende Vorhersagegenauigkeit, welche
mit quantenmechanischen Berechnungen vergleichbar ist und deren große Anpassungsfähigkeit,
machen diese Methoden vielversprechend für die Suche nach hochleistungsfähigen Katalysatoren
für eine breite Klasse an Materialien und komplexen Reaktionsnetzwerken.
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1 Introduction

Enabling a sustainable energy future is one of the grand challenges that confront modern human
society.[4–6] The proposed sustainable energy system by Kutscher et al. states that "sustainable
development should meet the needs of the present without compromising the ability of future
generations to meet their own needs".[7] Among its definitions, environmental aspects such as
greenhouse gas (GHG) emissions, as well as social and economic aspects such as energy poverty,
must be addressed.[7, 8]

GHG emissions such as carbon dioxide are primarily caused by burning fossil fuels for electric-
ity, heat and chemical manufacturing. The resulting climate change has a significant effect on
the environment, agriculture and human health. Energy poverty refers to the situation where
households cannot access or afford essential energy services and products for day-to-day living
requirements. It is typically due to the lack of energy-saving techniques and lack of modern
energy infrastructure in rural areas, which drastically impacts economic development and public
health.
The efficient utilization of renewable energy can address both GHG emissions and energy

poverty problems through a sustainable fossil fuel-free path. As demonstrated in Fig. 1.1, such
a fossil fuel-free path can be enabled by an energy infrastructure consisting of synthetic fuels
and electro- and photo-powered chemical industry, both using plentiful feedstock offered from
Earth’s atmosphere such as H2O, CO2, and N2.[9–11] In contrast to fossil fuels, renewable energy
sources are replenishable, spread across large geographical areas and can reduce environmental
pollution while also resulting in significant energy security and economic benefits.[12] However,
one major drawback is that their generation time does not coincide with human energy demand,
and intermittent power is difficult to use persistently. Therefore, efficient energy conversion and
energy storage techniques are needed to enable transportation of, for example, electricity and
chemical energy via key vehicles such as batteries and fuel cells.
Improving thermal-driven catalytic processes can also alleviate energy poverty. For example,

Fischer-Tropsch chemical reactions[13–16] to synthesize higher alcohols and the Haber-Bosch
process[17–21] to generate ammonia fertilizer typically occur under harsh conditions.[22] Enabling
these processes under milder conditions makes them less energy intensive and more affordable.
This also offers the prospect for decentralization of energy infrastructure, where components
can be placed nearer to rural areas to meet local requirements of energy and food consumption.
Nevertheless, among most of these sustainable energy processes, the holy grail to providing
cost-effective and scalable solutions is undeniably high-performing heterogeneous catalysts. Their
importance lies in driving these sustainable energy processes with appropriate efficiency and
selectivity by reducing reaction barriers.

The development of high-performing catalysts can be achieved by a combination of theoretical
and experimental studies using the following approach.[9, 23] First, theoretical investigation
using ab initio methods such as density functional theory (DFT) coupled with thermodynamic
and microkinetic models can predict the properties of several promising catalyst candidates and
eliminate many other candidates. Second, experimental synthesis and performance tests are
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Fig. 1.1: Schematic of a sustainable energy landscape relevant to renewable energy utilization and climate

change based on heterogonous catalysis (primarily electrocatalysis). Figure reproduced with permission

from ref. [9]. Copyright 2017 Nature Publishing Group.

followed up on proposed promising catalysts. Third, the further optimization or next iteration
relies on the obtained insight to improve the catalyst’s composition or structure in a meaningful
way. It turns out that all steps in this feedback loop, close-coupling theoretical and experimental
studies, are important. However, such a protocol is only applicable for a small search space.
It becomes unfeasible when considering a huge chemical space across the compositional and
structural diversity, where the bottlenecks lie in computationally expensive DFT calculations at
the first stage.
Of course, this limitation has been recognized for a long time, so catalysis researchers have

started to utilize data-driven approaches by constructing descriptors to mitigate this increasing
computational demand. Notable examples are the𝑑−bandmodel (a descriptor-based approach)[24–
28] and linear scaling relations (LSRs).[29–37] These are based on the importance of only one or a
couple of physical quantities that have made notable advancements in many studies compared to
fully conducting explicit DFT calculations. However, these models are simplified and thus hard to
extend to more sophisticated scenarios with complex materials and adsorbates, which are needed
for many catalytic reactions in reality.
Constructing descriptors exclusively by hand and chemical intuition is a daunting task, and

they are typically restricted to conceivable low dimensionality, thus hindering the development
of potentially more accurate descriptors achieved in high-dimensional and non-linear forms.
Fortunately, the rise of machine learning (ML) algorithms opens up opportunities, providing
effective solutions to approximate sophisticated relationships, i.e., the map of input features to
properties of interest by automatically learning from data.

In this regard, a recent study by Andersen and co-workers[38] in our group has demonstrated the
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usefulness of the Compressed Sensing based approach, known as sure independence screening and
sparsifying operator (SISSO),[39, 40] for screening transition metal (TM) and TM alloy catalysts,
where the accuracy of predicted adsorption energies has been systematically improved relative
to standard LSRs by using identified high dimensional descriptors. Motivated by its success,
in this dissertation, we first attempt to extend this approach to address complex materials, i.e.,
doped rutile-type transition metal oxides (TMOs) (IrO2 and RuO2).[41, 42] Next to establishing a
systematic first-principles database for the SISSO training, we carefully compiled a list of primary
features for this class of materials. The resulting high-dimensional descriptors, identified by
means of SISSO, showed high accuracy and demonstrated significant advancements in a follow-up
screening study.[1] Since this SISSO-based work and most peer’s frontier ML/catalysis research
were limited to the scope of tackling small adsorbates, we were then asked if our method would
also work well for larger, more complex adsorbates that may bind to the surface in many possible
configurations. Deliberating on the important features missing from this problem, the connectivity
between molecule and catalyst surface, we strive to develop a graph-based ML approach while
using informative primary features.[2]
The predictive power reached and physical insights gained in these two works pave the way

for efficient catalyst screening and discovery moving towards more complicated materials and
reaction networks.[1, 2] Since these results have been published in peer-reviewed articles, this
publication-based dissertation serves as an informative storyline for the evolution of data-driven
approaches in heterogeneous catalysis and supplies a general guideline for developing and using
physics-based ML models for catalyst screening and discovery.
The chapters are arranged as follows: we begin by introducing catalytic modeling techniques

for predicting catalytic properties (chapter 2) and highlight adsorption enthalpies as their main
input. Then, we describe how conventional data-driven approaches help quickly predict this
quantity (chapter 3), followed by the intrinsic complexity in heterogeneous catalysis for which
these traditional methods are not applicable (chapter 4). A detailed discussion of ML solutions,
their key components and the useful toolkit for leveraging ML models are described in chapter 5.
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2 Catalysis modeling and density functional
theory

Modern modeling of heterogeneous catalysis relies heavily on density functional theory owing
to its high accuracy in calculating electronic structures and associated energetics for a given
atomic structure at a relatively low cost.[43, 44] In a dream scenario, a comprehensive theoretical
investigation should be carried out by exploring the whole (ground-state) potential energy surface
(PES)[45, 46] with the help of DFT calculations. Unfortunately, exploring the high-dimensional
(3N dimensions where N is the no. of atoms) PES is extremely difficult and resource-consuming.
Instead, one prefers to construct a whole new (reduced) PES for each elementary step in the
catalytic cycle, namely based on the critical features of a PES, e.g., lowest-lying local and global
minima and 1st order saddle points corresponding to (meta)stable configurations and transition
states. Focusing on such critical features or even fewer elementary steps like the rate-limiting
step enables efficient catalysis research on a high-throughput basis.

The fundamental responsibilities of catalyst screening and discovery include promptly assessing
the stability, activity and selectivity of possible candidate catalysts in a vast chemical space.
Stability will determine the active life of the catalyst, and activity and selectivity are of significant
importance ecologically and economically regarding the cost of the reaction. In catalysis research,
many thermodynamic- and microkinetic-based models have been used to screen these catalyst
performances for solid-gas thermocatalysis[47, 48] and solid-liquid electrocatalysis.[9, 49]

2.1 Thermodynamic models

Thermodynamic properties of a system can be predicted from its chemical potential or Gibbs free
energy that is in need of total (electronic) energy directly amenable to DFT calculations,[43, 50]
reflecting a state that had a sufficiently long time to equilibrate fully. By leveraging thermodynamic-
based models, intrinsic thermodynamic tendencies and criteria for certain chemical processes can
be assessed under varying environmental conditions, e.g., temperature, pressure, pH, and applied
voltage. These thermodynamic models have gained tremendous success in assessing catalytic
performance, e.g., stability, activity and selectivity on a wide range of reactions and a broad class
of materials.

In practice, stability of the configuration of central interest should be the property to estimate
in the first place. An illustrative example in thermochemistry is the surface phase diagram which
demonstrates the most stable surface structure as a function of temperature and pressure.[47, 51]
Figure 2.1 depicts a surface phase diagram for CO oxidation at Pd(100) surface, where Rogal and
co-workers assessed a set of 191 possible surface configurations and found only 11 to be most stable
in a certain range of (𝑇, 𝑝O2, 𝑝CO) gas phase conditions and most illustrated adsorption structures
have been observed in ultrahigh vacuum (UHV) experiments. The corresponding method has
also been applied to TMO (RuO2) surfaces.[48, 52] Likewise, in electrochemistry surface Pourbaix
diagram serves the equivalent purpose of expressing surface stability as a function of electrode
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Fig. 2.1: Ab initio thermodynamics: Surface phase diagram for the Pd(100) surface in "constrained" thermody-

namic equilibrium with an environment consisting of O2 and CO. The atomic structures underlying

the various stable (co-)adsorption phases on Pd(100) and the surface oxide, as well as a thick bulklike

oxide film (indicated by the bulk unit-cell), are also shown (Pd : large spheres, O : small spheres, C :

white spheres). Reprinted with permission from ref. [47]. Copyright 2007 American Physical Society.

voltage and pH. It has been used to understand many electrochemical landscapes such as TMs,[53]
transition-metal carbide[54] and Li-ion battery materials.[55, 56].

Further combining this class of approaches with Wulff constructions, one is able to determine
the equilibrium shape of nanoparticle shapes and dominant facets exposed.[57–59] Moreover,
various reconstructive/deactivating processes, such as surface segregation, island formation, metal
dissolution, and surface poisoning, can also be investigated, as exemplified in a high-throughput
screening study of a variety of surface alloys.[60] It is worth noting that such thermodynamic sta-
bility evolution can help us determine the realistic surface morphology and how synthesizable the
surface is, thus providing necessary information to establish an active site model for a subsequent
screening study.[61]

After establishing stability, one could turn to predict the activity and selectivity of the promising
candidates thermodynamically. For example, in electrochemistry, overpotential (or onset potential)
is one of the vital activity metrics, often well-described by purely thermodynamic models, which
can be experimentally determined by measuring the (typically small) current density as a function
of applied voltage between electrodes. In theory, there is a well-established protocol to obtain it
theoretically. First, one could construct a reaction free-energy diagram by including potential and
pH effects via the computational hydrogen electrode (CHE) model[62] and solvent stabilization
corrections to the key intermediates. Then the overpotential can be approximately gained via the
thermodynamic barrier of the potential-limiting step under various applied potentials. Figure
2.2a demonstrates oxygen evolution reaction (OER) overpotentials over a wide variety of TMO
surfaces from both theoretical and experimental data, and an appealing overlay can be observed,
indicating reasonable prediction from theoretical thermodynamic modeling. This approach can
be generalized to any electrochemical reaction with proton-coupled electron transfer (PCET)
processes and has been dominating contemporary first-principles-based works on reactions such
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Fig. 2.2: a) Descriptor-based activity plots: OER overpotential for a set of metal oxides combining theoretical and

experimental data. Figure reproduced with permission from ref. [9]. Copyright 2017 Nature Publishing

Group. b) Microkinetic modeling activity: the turnover frequency via MFA for the production of

methane from syngas on stepped TMs (211) surfaces. Reproduced with permission from ref. [43].

Copyright 2011 National Academy of Sciences

as hydrogen evolution reaction (HER),[49, 63–65] oxygen evolution reaction (OER),[1, 41, 42, 62]
oxygen reduction reaction (ORR),[66, 67] and carbon dioxide reaction (CO2RR)[68–70] on TMs
and their alloys, TMOs, sulfides, and carbides etc. Note that going beyond the CHE model to
include capacitative charging at the solid-liquid interface, there has been emerging interest in
developing implicit solvation models within the past few years.[71]
Moreover, the selectivity can also be qualitatively evaluated. E.g., in ORR the selectivity of

the two-electron pathway to produce H2O2 against four-electron pathways to produce H2O was
calculated based on the binding energy of key intermediates, Δ𝐺H2O2−Δ𝐺O∗, since catalysts should
have weak Δ𝐺O∗ as much as possible to maximize the H2O2 selectivity.[72] As also exemplified, the
selectivity of ethanol on a number of (211) surfaces can be estimated by means of Δ𝐸C, depicting
the different slopes of C-CO and C-H binds.[31] Despite the fact that they are not full-fledged
screening methods, they may aid in highlighting some trends and locating potential materials for
which more in-depth microkinetic models can be run subsequently.

2.2 Microkinetic models

Compared to thermodynamic models that are often only simplified screening studies, microkinetic
models go into greater detail by explicitly taking reaction barriers into account, giving a non-
equilibrium description of the reaction network, which can further be extended to include effects
of surface coverage and lateral adsorbate-adsorbate interaction. In the multi-scale modeling
framework, microkinetic models taking the input from quantum mechanical, electronic structure
theory (e.g., DFT), can achieve a quantitative description of the reactive chemistry or charge
transport at the large scale yielding first-principle microkinetic models (1pMK).[73] Such models
are able to provide straightforward theoretical predictions of experimental observation, such as
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the catalytic activity and selectivity in terms of the turnover frequencies (TOFs, product molecules
per time and site) as a function of partial pressure and temperature in thermocatalysis, or in
terms of current density (ampere per surface area) as a function of pH and applied voltage in
electrocatalysis.

The popular 1pMK methods in this field include Mean-field approximation microkinetic (MFA)
and spatially resolved kinetic Monte Carlo (kMC) that have shown great success in numerous
heterogeneous catalysis studies, such as single atom catalysis,[74] TMs and their alloys,[75, 76]
oxides[48, 77] etc. Figure 2.2b shows the output of such aMFAmodel for the generation of methane
on several stepped (211) TMs surfaces. This technique has the advantage of being computationally
efficient, but it cannot address spatial information and anisotropic systems since in MFA the
spatial distribution of the adsorbates is coarse-grained into a mean coverage, ignoring coverage
fluctuations, for which kMC is required. A comparison of MFA and kMC to the influence of
adsorbate-adsorbate interactions in CO hydrogenation on rhodium catalysts has been explored,
and it revealed that efficient modeling of lateral interactions in kMC is vital to capture subtle
mechanistic insights of complicated reaction networks.[78] Without the use of a fixed lattice,
adaptive kMC (on-the-fly) may be more effective at handling dynamic processes, but it is also
significantly more expensive, given the current computing power.[79] Readers are referred to a
recent survey and practical guidelines for the 1pMK models.[73, 80, 81]
It should be noted that in the scope of catalytic research, as a coarse-grained method, 1pMK

achieves an enormous speedup over molecular dynamic (MD) simulations by the explicit treatment
of the vibrational degrees of freedom of the system, and instead considering only the rare events
such as adsorption/desorption, diffusion or reaction steps. However, (accelerated) MD methods
could be used to gather the reaction mechanisms and rates, e.g., derived from the Arrhenius
equation,[79, 82] that are required to parameterize a 1pMK model.

2.3 At the core: adsorption enthalpies

The key ingredient of thermodynamic and microkinetic models mentioned above is adsorption
enthalpy. Its significance was earlier highlighted in the Sabatier principle,[83–85] a general
explanatory paradigm, which states that the adsorption strength should be neither too weak which
would prevent the reactants from being adsorbed and activated, nor too strong which makes the
products contaminate the catalyst surface. It is also later underpinned by awell-established volcano
plot,[86] a quantitative illustration of the Sabatier principle, taking the adsorption enthalpies
of key intermediates as descriptors, and the catalytic activity occurs in a volcano shape whose
peak presents optimal catalysts equipped with moderate binding strength. Most importantly,
Brønsted–Evans–Polanyi (BEP) relations (see chapter 3.2) leverage adsorption enthalpies in the
form of reaction energies that scale with kinetic barriers, thereby empowering good activity
prediction from thermodynamic descriptors. These basic principles behind catalyst discovery
provide key ideas on catalyst screening or design studies.

The way that adsorption enthalpies are incorporated in thermodynamics models, such as surface
Pourbaix/phase diagram (if referencing to clean surface), thermodynamic deduced overpotential
and selectivity, is through direct input to the calculations as introduced in chapter 2.1. However,
additional derivations are needed to obtain the kinetic barriers which are further fed into the mi-
crokinetic models. Typically, such derivations are through a simple linear fitting of the adsorption
enthalpies, that is BEP relations[87, 88] (as we will delineate later in chapter 3.2), which enables
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an enormous reduction of the computational cost and expedites catalyst screening substantially.
In contrast, an alternative explicit search of the lowest first-order saddle point on the PES at the
first-principles level to get kinetic barriers using the interpolation method (nudged elastic band,
NEB) [89, 90] or local method (dimer method)[91] is computationally intensive, but it is useful
to define a BEP relation. One catch that has to be paid more attention to is the quality of the
kinetic barrier fitted or calculated, whose error is crucial to the 1pMK models according to large
error propagation. In this regard, the calculation of electrochemical kinetic barriers (including
their potential dependence) is much more difficult with current techniques in comparison to the
non-electrochemical steps. Thus more research effort is needed to improve the fundamental theo-
retical modeling of electrochemistry, e.g., developing better models for the electrified solid-liquid
interface or developing constant-potential methods.

The conventional method of getting adsorption enthalpies is from explicit DFT calculations, as
elaborated in chapter 2.4. Despite the steeply increasing computational power and algorithmic
efficiency, this approach becomes infeasible in exploring vast chemical space in terms of the
complexity source from catalyst, adsorbate and environment (the complexity of various resources
will be discussed in chapter 4). To this end, the efficient prediction of adsorption enthalpies at about
comparable accuracy against the first-principle level is required. Great progress has been made in
the past couple of decades to get cheaper adsorption enthalpies from data-driven approaches to
more sophisticated machine learning methodologies. It is encouraging to see that more and more
bottlenecks have been addressed. However, some issues still persist in catalysis research in need
of a thoughtful model design to handle complexity sources. A full discussion regarding the earlier
employed data-driven techniques and cutting-edge machine learning is elaborated in chapters 3
and 5, respectively. This is at the heart of this thesis.

2.4 Density functional theory in a nutshell

Since the construction of data-driven/machine learning databases (including the calculations of
adsorption enthalpies) relies on DFT calculations, we will briefly recapitulate the most significant
ideas behind DFT in this section.
The use of conventional (electronic) wave-function-based techniques is hampered by a huge

number of variables. For instance, the N-particle Schrödinger equation must handle 3N spatial
coordinates where N is the number of electrons. To mitigate this issue, the Hohenberg–Kohn
theorems,[92] that is the basic foundation of DFT, guarantee that there exists a functional of the
(ground-state) electron density, 𝜌 (r), yielding the total energy. It therefore dramatically reduces
the number of variables from 3N to 3 spatial coordinates described as:

𝐸𝐻𝐾 [𝜌 (r)] = 𝑉𝑛𝑒 [𝜌 (r)] +𝑇 [𝜌 (r)] +𝑉𝑒𝑒 [𝜌 (r)] (2.1)

𝑉𝑛𝑒 [𝜌 (r)],𝑇 [𝜌 (r)], and𝑉𝑒𝑒 [𝜌 (r)] denote the potential between nuclei and electrons, the kinetic
energy functional, and the electron-electron interaction potential, respectively. Unfortunately,
exact expressions for the 𝑉𝑒𝑒 [𝜌 (r)] and 𝑇 [𝜌 (r)] functionals are unknown.

𝐸𝐾𝑆 [𝜌 (r)] = 𝑉𝑛𝑒 [𝜌 (r)] +𝑇𝐾𝑆 [𝜌 (r)] + 𝐽 [𝜌 (r)] + 𝐸𝑥𝑐 [𝜌 (r)] (2.2)
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Within this framework, the great breakthrough afterward was achieved by Kohn and Sham
(KS-DFT)[93] that leverages an imagined system of non-interacting electrons having the same
electron density as the real system. In this way, they can explicitly write out these two unknown
terms via classical electron-electron repulsion and non-interaction kinetic energy as shown in
equation 2.2, where the (ground-state) electron density can be constructed by summing together
all occupied KS orbitals (imagined), Φ𝑖 (r), as:

𝜌 (r) =
∑︁
𝑖

|Φ𝑖 (r) |2 (2.3)

The resulting corrections, i.e., (𝑉𝑒𝑒 [𝜌 (r)] − 𝐽 [𝜌 (r)]) and (𝑇 [𝜌 (r)] −𝑇𝐾𝑆 [𝜌 (r)]), were lumped
together into the exchange-correlation energy, 𝐸𝑥𝑐 [𝜌 (r)], which is the most problematic part
with unknown form, and its choice often depends on what types of physics and chemistry
should be described.[94, 95] Much effort has been devoted to improving this approximation
term, leading to a vast family of density functional methods that can be assigned to five rungs
of the "Jacob’s ladder".[96, 97] In terms of computational cost and complexity, these methods
range from local density approximation (LDA), generalized gradient approximation (GGA), meta-
GGA, hybrid functionals and random-phase approximation (RPA), among which GGA with
Perdew–Burke–Ernzerhof (PBE)[98] functional is one of the most popular and cost-effective
choices for many applications in condensed matter physics. However, the lack of van der Waals
(vdW) dispersion[99] in GGA-PBE and the self-interaction error[100, 101] can be crucial that
hinder the application in surface science. To this end, one notable development in general-purpose
surface reactions was the Bayesian error estimation with van der Waals correlation (BEEF-vdW)
functional designed by Wellendorff and co-workers.[102] The BEEF-vdW functional can provide
quantitatively accurate predictions and additional error estimation based on an ensemble of
functionals, making it highly popular in modern heterogeneous catalysis studies.

Next, how can we get adsorption enthalpies? By carrying out a single-point DFT calculation on
a given atomic configuration of a system, the electronic energy is obtained, and atomic forces
can be computed from the Hellmann-Feynman theorem.[103] The atomic force can further drive
structural relaxation with the help of optimization algorithms such as the conjugate gradient (CG)
method[104] and the Broyden–Fletcher–Goldfarb–Shanno (BFGS)[105] algorithm to iteratively
update atomic positions until the energy of the system reaches a local minimum (on the PES). Then,
the corresponding adsorption enthalpies can be routinely calculated by the energy difference
between the relaxed combined surface/adsorbate system and isolated systems (clean surface and
gas molecule). Unfortunately, the KS-DFT still scales as 𝑂 (N3) with N being the number of atoms
in the system, restricting its application to calculate a systemwith around one hundred atoms.[106]
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3 Conventional data-driven approaches in
heterogeneous catalysis

Data-driven approaches seek to infer some physical laws or surrogate models (hopefully simple)
from data so that the properties of interest (in this case, the adsorption enthalpy) can be directly
assessed through the efficient first-principles computation of only one or a few central energetic
or electronic quantities. These identified physical quantities are so-called descriptors. There
has been a long history of utilizing data-driven approaches in catalysis, where most works
attempt to extract chemical insight from descriptors to better understand the interplay between
electronic or structural effects and material properties. This chapter is primarily meant to survey
the conventional data-driven approaches in heterogeneous catalysis, some of which are still
frequently utilized in this field and lay the way for the discussion of advanced machine learning
methods (in chapter 5) and possible opportunities.

3.1 Descriptors

At the early stage, considerable research efforts have been put into the discovery of a single (one-
dimensional) descriptor. The first representative instance is the ingenious 𝑑−band model,[24–28]
where the binding energies of atomic species such as C and O on TM surfaces are found to be
correlated with the energetic position of the 𝑑−band of the corresponding bulk material, as shown
in Fig. 3.1a. This model links the intrinsic material property to the surface activity and underpins
the fundamental understanding from the electronic structure level. Later on, the 𝑑−band model
was extended to the active site of bare surfaces through the projected density of states (PDOS) to
capture the general trend of composition and motifs of active sites. This considerably translates
the catalyst design to the design of fine-tuned active sites.[1, 38, 61] It should be mentioned that
the 𝑑−band model originated from the pure TMs and their alloys, which seldom generalize to other
materials. In the case of 2D single-atom catalysts, instead, the number of electrons in the outmost
𝑑−shell of transition metal correlates with 𝐺OH∗,[110] and for metal nitride redox materials, the
number of electrons in the dopant 𝑑−states are found to be important.[21] Concerning TMOs,
different single descriptors are judged to be crucial in emphasizing the role of eg orbital filling
[107, 111, 112] shown in Fig. 3.1b or of the O2𝑝 band center[113] or of the charge transfer energy,
respectively.[114, 115] These simplest single descriptors mentioned above provide valuable insights
not only to the theoretical understanding but also to direct experimental synthesis.
Yet, a single descriptor maybe not necessarily dominate the catalytic performance. For com-

plicated materials with a more intricate electronic structure it is likely governed by multiple
geometric and electronic quantities. This naturally leads to the exploration of high-dimensional
descriptors with more predictive power. There are some attempts in the literature to search for
conceivably higher dimensional descriptors from heuristic or chemical intuition (see Fig.3.1c and
d), for example, the combined role of the number of electrons in the metal ground state and their
energies in metal nitride catalysts,[109] and the synergistic effect of both geometric and electronic
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Fig. 3.1: Single descriptor examples: a) the relation between metal 𝑑−band center and C binding energy.

Adapted with permission from ref. [26]. Copyright 2000 by Academic Press. b) The relation between

occupancy of the eg−symmetry electron of the transition metal and OER overpotential. Reproduced

with permission from ref. [107]. Copyright 2011 American Association for the Advancement of Science.

Multi-dimensional descriptor examples: c) the relation between bond-energy-integrated orbital-wise

coordination number and catalytic behavior of the 𝛽-MnO2 surface. Adapted with permission from

ref. [108]. Copyright 2018 American Chemical Society. d) The relation between 𝑁𝑑𝐸𝑑 (the number of

𝑑 electrons and their energies) and the free energy of the NH3 evolution via metal nitride. Adapted

with permission from ref. [109]. Copyright 2015 The Royal Society of Chemistry.

12



structures around the active site yielding the bond-energy-integrated orbital-wise coordination
number to the prediction of TMOs.[108] These approaches highly relying on human intuition
are apparently inefficient, when going for even higher dimensions to obtain better predictive
performance. In this regard, one could ask for the help of an advanced ML algorithm to construct
a huge descriptor space and identify sparse solutions or reduce the dimensionality through a
compressed sensing-based method or principle component analysis (PCA) as will be discussed in
detail in chapter 5.

It should be emphasized that descriptor-based methods belong to so-called discrete models, i.e.,
bypassing construction of the entire PES, not limited to predicting catalytic activity but also other
chemical properties. Due to the inclusion of more physics, thesemethodsmerit great generalization
across elements, giving somewhat of interpretability through mathematically analytic equations.

Fig. 3.2: Binding energy linear scaling relations: adsorption energies of CH𝑥 intermediates (crosses: x = 1;

circles: x = 2; triangles: x = 3), NH𝑥 intermediates (circles: x = 1; triangles: x = 2), OH, and SH

intermediates plotted against adsorption energies of C, N, O, and S, respectively. The adsorption

energy of molecule A is defined as the total energy of A adsorbed in the lowest energy position outside

the surface minus the sum of the total energies of A in vacuum and the clean surface. The data

points represent results for close-packed (black) and stepped (red) surfaces on various transition-metal

surfaces. In addition, data points for metals in the fcc(100) structure (blue) have been included for

OH𝑥 . Adapted with permission from ref. [29]. Copyright 2007 American Physical Society.
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3.2 Linear scaling relations

Another widely used subset of conventional data-driven techniques is linear scaling relations
(LSRs). Its primary input is adsorption enthalpies rather than fundamental physical quantities,
i.e., electronic and geometric properties. In terms of their goals, there are two classes of LSRs
used in catalysis research: a) extending the adsorption enthalpies of simple atomic species to
larger fragments, namely binding energy linear scaling relations (BELSRs) shown in Fig. 3.2 and
b) approximating the kinetic barrier by fitting the adsorption enthalpies of key intermediates,
that is Brønsted-Evans-Polanyi (BEP) relations displayed in Fig. 3.3b. In the former class, the
concept was initialized on reactions involving hydrogenation of rather inert species like the
Haber-Bosch process and methanation, where NH𝑥 and CH𝑥 binding energies are found to be
linearly correlated to that of their central atoms, N and C.[29, 116, 117] This can be attributed
to the valency considerations of the number of hydrogens relative to their atomic species being
a unique descriptor. Despite its simplicity, a similar linear trend has also been found for many
surface adsorbates like C2 hydrocarbon species, where the binding energy of C2H-type adsorbates
on Cu, Ag and Au surfaces show a scaling relation with their atomic C counterpart.[118] From
there, one could rapidly construct a reaction network including many intermediates by means of
exclusively calculating the simplest atomic species. This elegant protocol has been used extensively
in modern catalysis research to access favorable reaction thermochemistry. For instance, selective
hydrogenation of acetylene to ethylene on various transition metal alloy surfaces has been
investigated by leveraging merely the binding energy of CH,[37] and the conversion of synthesis
gas to higher alcohols on a number of 211 surfaces is studied by Medford and co-workers on the
basis of two parameters, binding energies of C and O.[31]
Despite the enormous success, it should be noted that BELSRs are likely to fail in a variety of

circumstances. Similar to the 𝑑−band model, which was first developed on pure TMs, BELSRs are
difficult to apply to other complex compound materials, and additional refinements are needed. A
notable example is TMOs[1, 41] with intricate electronic structures resulting in many outliers
of larger than 1 eV deviation by applying standard BELSRs. It has been found that additional
correction (features) related to local charge transfer to the adsorption energies could further refine
the predictive power of BELSRs. The binding geometry of adsorbates is another major factor
giving rise to non-linear behavior. It has been suggested that BELSRs are site-specific, e.g., the
association between the binding energy of C and CH3 depends on whether they were constructed
on optimal binding sites or on top sites,[29] and similarly, extraordinary adsorption geometry
of CH2O results in non-linear relations of CHO vs. CH2O on Mo2C(100) surfaces.[57] Yet, more
factors such as alloying,[119] strains[120] and external fields[121–123] are also able to break
scaling relations. This is a frontier in catalysis as it enables overcoming the inherent law, that
is, adsorption enthalpies of adsorbates with the same binding atoms to the surface are changing
proportionally to produce high-performance catalysts. The interested readers are recommended
to a recent review for in-depth discussion.[124]

In the latter class of LSRs, as its importance already mentioned in chapter 2.3, BEP relations serve
as a useful “glue” to closely tie together thermodynamics and kinetics, thus providing cheaper
rate constants to the microkinetic models as compared to calculating barriers and rates from first
principles. Its original idea is to express the activation energy of a given class of elementary steps as
a linear function of the reaction energy, ΔE, and the coefficient of ΔE is 0.5 for symmetric reactions
and approaches 0 or 1 depending on whether the transition state structure resembles initial or
final states respectively.[126–129] The subsequent development is to construct the transition state
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Fig. 3.3: (a) Nudged elastic band calculation of the minimum energy path for CO oxidation on Pd(111). The

figure shows the energy profile along the reaction coordinate and the geometries of initial, transition,

and final states in a (3 × 3) unit cell. (b) Linear fit of the dependence of the activation energy on the

reaction energy (based on BEP relations). Figure adapted with permission from ref. [125]. Copyright

2014 American Chemical Society.

energy as a function of initial (EIS) or final (EFS) states with the factors multiplying EIS or EFS to
be 1 to remain universal, namely independent on the chosen energy references.[130]

Coupling BEP relations with microkinetic modeling has shown great promise in many catalytic
reactions such as CO hydrogenation on rhodium,[78] CO methanation reaction on stepped TMs
and binary TM alloy catalysts,[75] as well as CO2 reduction to CO onAg.[131] On the downside, the
application of BEP relations is limited in that the parameters are, in principle, only transferable to
the site types similar to those used in the fitting. Recent work demonstrated a vast underestimation
of the TOF on layered FePd3 or FePd3 catalysts, as these surfaces exhibit a reversed energetic
ordering of step and terrace sites for OH adsorption. The latter happens because the step sites are
composed of the more noble metal (Pt or Pd), whereas the terrace sites are composed of a highly
reactive metal (Fe).[75] Thereby, all types of adsorption sites (step, terrace, top, bridge etc.) for all
adsorbates have to be considered. Moreover, a criterion for the application of BEP relations for
catalytic dissociation reactions has been developed and assessed, thus providing an estimation of
when to trust BEP relations in the exploration of complex reaction networks.[132]

As a whole, the introduced BELSRs and BEP relations, capable of quickly obtaining cheaper
thermodynamic and kinetic data, are undoubtedly invaluable tools in computational screening
that have been used up to now. Unfortunately, the internal error is inconsistent across catalytic
systems. Therefore, adopting hierarchical refinement, i.e., predicting maps using BELSRs and BEP
relations and refining the essential thermochemistry solely using DFT, is desired.[133] More effort
should be placed on the development of new methods with improved predictions.
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4 Complexity in heterogeneous catalysis

As discussed in chapter 3, conventional data-driven approaches in heterogeneous catalysis behave
well mostly for simple systems such as pure TM catalysts and monodentate adsorbates. Given
that real catalytic systems are usually far from simple, it is apparent that further methodological
development should account for such complexities that generally arise from three sources: the
catalyst, adsorbate and external environment, as sketched in Fig. 4.1. In the following, we will
briefly discuss each of these sources of complexity and underline challenges to the development
of new methodologies.

Fig. 4.1: Sources of complexity in heterogeneous catalysis at the levels of the material, the molecule, and the

external factors. Adapted with permission from ref. [134]. Copyright 2021 Wiley Periodicals LLC.

4.1 Catalyst complexity

The catalyst drives the catalytic process forward by effectively reducing the activation barrier
that converts reactants to products. Important solid heterogeneous catalysts include TMs and
their alloys,[38] TMOs,[1, 9] zeolites,[135] graphitic carbon,[136, 137] etc., which spans a broad
inorganic materials space. In general, the complexity of these catalysts can be categorized into
the electronic structure or geometric complexity.

Electronic structure complexity comes either from the intrinsic complicated electronic structure
arising from, e.g., composition, or additional modifications. Already a large variety of chemical
compositions spanning the entire periodic table are daunting at first glance, and the combination
of element species with largely different chemical natures is becoming more formidable. For
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instance, compared to TMs, TMOs have more localized and intricate electronic structures where
the intact 𝑑−orbital of the host metal is split up into T2g and Eg orbital based on crystal field
theory.[138] Furthermore, the O2p band of coordinated oxygen should also be carefully taken into
account, as its overlap with Eg could dramatically affect the local charge transfer between the host
metal and coordinated oxygen. TMOs could also be metallic or semiconductors in origin due to
the electron alignment around the Fermi level.[139, 140] The additional modifications through
dopants, host substrates or promoters can make things even more complicated.[1, 141] These
effects together reflect the difficulty of coming up with a single or a few physical quantities, that
is, the idea of conventional descriptor-based approaches to govern the behavior of such compound
materials.
Geometrical complexity can come from many aspects, such as the geometry of a catalyst,

the introduction of a vacancy, strain, defect etc., whose effects one can primarily understand
as the role of the active site motifs where the reaction actually happens.[61] Much evidence in
the literature has confirmed that changing the size of catalysts, e.g., nanoparticle, affects the
ratio of edge sites vs. corner sites that are introduced, therefore leading to variable catalytic
performance.[142, 143] The strain engineering technique[144, 145] might potentially build thin
films and nanostructured materials beyond their bulk or powder form in terms of coordination
numbers. The defect engineering[146] allows for the production of unsaturated active site motifs
giving rise to better activating chemical bonds. Therefore, many corresponding works aiming
to control surface morphology and active site exposure toward rational catalyst design can be
observed in this field. Of course, the size and geometry of catalysts may not be fixed. Realistic
catalyst materials are often not well-defined but exhibit an abundance of varied geometric shapes,
surface terminations, and non-regular forms, resulting in various active sites responsible for the
catalytic action.[147–152] Furthermore, geometric evolution is crucial during operating conditions.
For instance, previously unidentified surface reconstructing mechanisms of Pd islands on Ag
have been revealed under various temperatures by Lim and co-workers,[153] and recent work
suggested that IrO2 exhibits a dramatic surface reconstruction under different applied voltages.
Theoretical studies on a rigid lattice often ignore such operando response.[154]

It should be emphasized that geometric and electronic structures typically have strong rela-
tionships and do not change independently. Therefore, rather than focusing on just one of them,
it is important to carefully explore the synergistic effect of electronic structure and geometric
factors. In this regard, the goal is often to devise an advanced algorithm that can efficiently find
multi-dimensional descriptors of these different features.

4.2 Adsorbate complexity

The adsorbate complexity not only relates to the reactants and products but also includes all
possible intermediates that could potentially be engaged in reactions. The foremost aspect is the
chemical complexity of adsorbates, e.g., composition and functional group. Although there are
not many kinds of elements (typically, C, H, O and N) present in organic molecules, the nature of
chemical bonds such as C-H single bond, C-C double bond, and N-N triple bonds could be very
different to activate. In the presence of several alcohols and amines functional groups, the number
of conformations increases exponentially,[155] and the repelling between functional groups may
be mediated by the surface (similar results can be obtained due to the covering effect), breaking
the thermochemical additivity rule.
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The second aspect is underlying diverse binding motifs due to the inclusion of larger adsorbates,
which is more crucial. Even for the reaction yielding C2+ products, some larger fragments may
show a wide range of mono-, bi- and higher-dentate adsorption modes. As exemplified in a
pioneering case study, for syngas conversion on a pure Rh(211) surface, the C2 and oxygenated
C1 and C2 fragments prefer to adsorb on the surface in a bidentate and, in some cases, tridentate
manner, resulting in many thousands of possible intermediates per surface termination.[156]
Accordingly, the previously reported catalytic properties constructed by amultitude of, in principle,
conceivable intermediates are likely to be misestimated, and the intrinsic reaction mechanism is
elusive. We recall that LSRs developed for the oversimplified molecular system, i.e., monodentate,
rarely containing more than two central atoms. Thus deviation errors are exacerbated when
increasing the size of the adsorbate.[157, 158]
The difficulty of handling larger adsorbates is very often associated with the assembly of a

massive reaction network. An instance of a reaction network for the reaction of syngas with
intermediates with up to two carbons and two oxygens (C1/C2 chemistries) on Rh(111) surface
has already demonstrated that there are more than 100 species and 2000 pathways possible.[159]
Determining the dominant pathway requires calculations on all adsorbates involved. In this regard,
it is highly desirable to have an efficient method to treat these larger fragments and the tools for
generating better initial placement of adsorbates and reaction networks. For example, CatKit can
only provide adequate initial configurations up to conditioned bidentate motifs,[160] and hence
further improvements are needed.

4.3 Environment complexity

Apart from the internal catalyst and adsorbate complexity, the external environment is another
source of complexity, including but not limited to temperature, pressure, solvent effect and applied
voltage, that can change both catalyst and adsorbate in the course of a catalytic reaction.

High temperature and pressure drive the making and breaking of chemical bonds in thermo-
catalysis, but may also dynamically change the surface morphology. For instance, the Haber-Bosch
process does not proceed at a detectable rate at room temperature due to the high energy needed
for activating N−N triple bonds but becomes favorable at high pressure (200 - 400 bar) and tempera-
ture (400 - 650 °C). A recent study revisited this reaction using ML-accelerated MD simulations and
demonstrated a mobile surface morphology under operation conditions indicating an ensemble
effect of the polytropic active surfaces.[161] Moreover, for CO oxidation on RuO2(100) surfaces,
different oxidation states can be identified from both experiments and theoretical predictions.[48,
52]

In electrocatalysis, the effect of the solvent can be equally important. First of all, the presence
of solvent may change the diffusion of critical reactants and products, therefore changing their
local concentration around the surface and local pH.[162–164] Water solvent can also act as a
proton donor, stabilizing important reaction intermediates and thus e.g. tuning the resulting
electrocatalytic selectivity. Other solvents, such as ionic liquids, can promote catalytic reactions
like CO2 reduction by altering the saturation of CO2 and conductivity.[165, 166] The further
introduction of additives into solvent could also drastically impact the catalytic performance
through interaction with the adsorbate via a functional group or adjust the surface’s electronic
structure.[167, 168] Moreover, dissolution behavior can be observed on electrocatalyst surfaces
under applied voltage. The sum of all these effects makes it difficult to understand catalytic
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processes, some of which have simple stages that are either hardly perceptible or buried in
the surrounding environment. Therefore, the use of in-situ experiments to offer experimental
information to assist us in understanding the chemical process is a popular topic.
At this stage, it is not difficult to imagine that the real catalytic process takes place under a

mixed complexity from many of the aforementioned sources. That said, it is, however, also clear
that the conventional data-driven approaches necessarily have limitations in addressing these
complexities despite their current success. Thus it is our hope that the rise of ML methodologies
gives opportunities to circumvent this quandary.
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5 Machine learning in heterogeneous
catalysis

In the past decades, ML methods have witnessed unprecedented technological breakthroughs en-
abling a plethora of applications, such as natural language processing,[169] computer vision,[170]
automated driving[171] and drug design,[172] some of which have become daily companions
in our lives. In parallel, a transformative impact on modern computational chemistry research
has also been made by dramatically accelerating computational algorithms and amplifying the
available insights. As a result, atomic simulation nowadays is able to break the traditional trade-off
between accuracy and speed and can be extended to an unprecedented time and length scale.
Notably, one recent effort focusing on length scale has accomplished reactive molecular dynamics
of 0.5 trillion atoms concomitantly with quantum-mechanical accuracy for the heterogeneous
catalytic system of H2/Pt(111).[173]
Zooming in the field of heterogeneous catalysis, most predictive ML models are supervised

learning-based regression models, which strive to map the structural space or feature space, e.g.,
structural representation and fingerprint, to property space, e.g., energy (including adsorption
energies) and force. This class of predictive models is of great utility for catalyst screening and
material discovery.[174–178] Moreover, depending on the fact that whether the aim is to learn the
continuous (or entire) region of the PES or only the critical points, these models can be classified
into continuous and discrete ML models, respectively. Continuous ML models are generally
combined with molecular dynamic or structural relaxation to drive atomic simulation, while
discrete ML models can directly give predictions on properties of interest. In this chapter, we
will firstly elaborate in-depth on continuous and discrete ML models and then move on to their
key elements concerning database, representation and regression methods. Finally, to help ML
applications, useful tools will also be discussed.

This chapter is not only intended to introduce certain ML methods but rather serve as guidance
on how to use ML to solve scientific problems in heterogeneous catalysis, more specifically, how
to address the various levels of complexity discussed in chapter 4.

5.1 Continuous and discrete ML methods.

Continuous ML methods are also known as machine learning (interatomic) potentials (MLPs)
or ML force fields. The key idea is to learn a continuous statistical relation between chemical
structure and potential energy without relying on a preconceived notion of fixed chemical bonds
of knowledge about the relevant interactions, therefore driving molecular dynamic or structural
relaxation.[177, 187] As shown in equation 5.1, its general ansatz is to decompose the total energy
of the system (Etotal) as a sum of atomic contributions (Ei) which are based on the atoms’ local
environments (R𝑖 ) within a predefined cutoff. In this way, the resulting ML model is size-extensive
and readily extended to large length simulations.
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Tab. 5.1: Overview of recent literature works on the prediction of adsorption enthalpies using machine learning

methods.

Ref Material Adsorbatea Featuresb Methods Regressionc Dataset size
Andersen et al. (2019)[38] metals monodentate electronic, atomic discrete linear (CS) 884

Xu et al. (2021)[1] oxides monodentate electronic, geometry,
atomic discrete linear (CS) 684

Noh et al. (2018)[179] metals CO* electronic discrete kernel (KRR) 263

Xu et al. (2022)[2] metals multidentate electronic, geometry,
atomic, connectivity discrete kernel (GPR) 1,679

Mamun et al. (2020)[180] metals monodentate connectivity discrete kernel (GPR) 43,834
Li et al. (2017)[181] metals CO*, OH* electronic discrete NN (ANN) 1,032
Fung et al. (2021)[182] metals monodentate electronic discrete NN (CNN) 37,000
Back et al. (2019)[183] metals CO*, H* connectivity, atomic discrete NN (GCN) 43,247
Wang et al. (2021)[184] metals OH* connectivity, atomic discrete NN (GCN) 748
Chanussot et al. (2021)[185] intermetallics,

nonmetals
multidentate learned representation discrete NN (MPNN) 460,328

Chanussot et al. (2021)[185] intermetallics,
nonmetals

multidentate learned representation continuous NN (MPNN) 133,934,018

Tran et al. (2022)[186] oxides monodentate learned representation discrete NN (MPNN) 31,244
Tran et al. (2022)[186] oxides monodentate learned representation continuous NN (MPNN) 6,642,168

a Adsorbate type considered in the work. Apart from a couple of adsorbates specified, "monodentate" refers to many simple adsorbates with only
monodentate adsorption motifs, and "multidentate" refers to many simple and complex adsorbates with multidentate adsorption motifs included.
b Main type of features used as input to the model. "Electronic" is DFT-calculated electronic structure features related to surface and adsorbates. "Geometry"
is local environment-based descriptors, and "learned from geometry" is specific for message passing neural networks where features are randomly initialized
and updated based on geometry. "Atomic" covers features of atoms or ions in the material (physical constants). "Connectivity" covers (generalized)
coordination numbers and graphs.
c Machine learning abbreviations. CS: compressed sensing, KRR: kernel ridge regression, GPR: gaussian process regression, ANN: Artificial (basic) neural
networks, CNN: convolutional neural networks, GCN: graph convolutional neural networks, MPNN: message passing graph neural networks.

Etotal =
Natoms∑︁
i=1

Ei({Ri}) (5.1)

MLPs seek to narrow the gap between the accuracy of the ab initio method and the efficiency
of the classical force field to go beyond the traditional speed/accuracy trade-off. Unlike the
continuous ML methods, the discrete ML methods are devoted to exclusively learning critical
points instead of the entire PES, for example, local minima, global minima and 1st saddle point,
or to learning (discrete) property space. These methods have also been applied to many other
chemical property predictions, such as reaction mechanism,[188] protein structure,[189] band
gaps[190] etc.
In order to obtain cheaper adsorption enthalpies, whose importance in catalyst screening and

material discovery has already been highlighted in chapter 2, continuous ML methods require a
structural relaxation of the initial structure to the local minima, while discrete ML methods can
straightforwardly predict adsorption enthalpies of optimized structure (in some cases without the
need of initial structure). In this regard, discrete ML methods can largely tailor target space, thus
providing a quick assessment of possible reaction patterns and desirable catalyst compositions.
The development of both continuous and discrete ML models in computational chemistry is

a rapidly growing field with many new advances presented on a daily basis. A comprehensive
overview of recent literature aimed at predicting adsorption enthalpies using ML methods is
compiled in Tab. 5.1, with targeting materials, adsorbates, algorithms, as well as dataset size
underlined. According to these current methodological cornerstones, there is a tendency for ML
methods to undertake systems of increasing complexity, e.g., oxides materials and multidentate
adsorbates, and meanwhile, the size of datasets becomes larger and larger. Continuous ML models
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can handle cases where the adsorbate dissociates or the surface reconstructs after the adsorption
event. However, they are more expensive and data-hungry since less physical information is
included, e.g., electronic structure information is generally not included in the model, and they
have difficulty handling many elements. This can be observed in Open Catalyst (OC20)[185]
and OC22[186] projects, where the number of training data of continuous ML models is 200-300
times larger than discrete ML models (see Tab. 5.1). Discrete ML models, on the other hand,
have the advantage of extrapolation to different elements and are faster, but they are confined to
working with rigid systems. It is also worth noting that the traditional data-driven approaches in
heterogeneous catalysis, particularly 𝑑−band model, descriptors, and LSRs, all belong to the family
of discrete methods, which is one of the reasons why discrete models are popular in heterogeneous
catalysis.
Furthermore, from the standpoint of catalyst screening and discovery, discrete ML models

will benefit from rapid predictions, making this procedure considerably faster. They could also
be partially interpretable in terms of the solution in the form of analytic equations, e.g., SISSO
descriptors or the ranking of primary features, e.g., decision trees, thus providing further chemical
insights. We also note that continuous ML methods can validate these predicted properties of
discrete ML models and facilitate the construction of databases through ML-accelerated structure
optimization.[191]
In the following, we will briefly describe essential components of building ML models and

review the methodological cornerstones of existing approaches and ongoing developments.

5.2 Dataset and representations

In any data-driven approach, the assembly of a dataset is the first and vital task to conduct. For
constructing MLPs, suitably labeled data from ab initio calculations is needed to learn the relevant
structure-property interplay to perform ML-based atomic simulations. This could be the most
computationally expensive part. A representative database should ideally cover as many different
structures as possible, acting as a representative sample of all likely structures on a global PES.
In order to escape the local basin of the PES to exploit unknown regions, sampling strategies
such as basin hopping,[192] parallel tempering,[193] umbrella sampling,[194, 195] and stochastic
surface walking (SSW)[196, 197] method etc., are normally employed. The thorough descriptions
of any/all of these methods are not in the scope of this work, and the readers are referred to
corresponding literature. As to discrete ML models, the number of data points needed is often less
than the one for generating continuous ML models, partially since only discrete points on PES are
learned and partially due to the inclusion of more physics in primary features. Its great ability
to tackle databases comprising multiple elements makes it intriguing in the context of catalyst
screening.
There is no need to construct a database in a brute-force manner. Methods such as similarity

measurement and active learning enable to efficiently compile a database from scratch which can
reduce computational costs to a large extent. The exemplified similarity measurement such as
farthest point sampling,[198, 199] based on kernel distance calculated in smooth overlap of atomic
positions (SOAP), is able to detect relevant new structures with large dissimilarity to already
labeled datapoints. In comparison, the acquisition function in the active learning approach[200,
201] suggests a sample of interest on the fly (more discussion will be provided in chapter 5.4).
Once a good quality database has been established, the next step is to represent data points
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based on certain data structures and descriptors. Widely used data structures in computational
chemistry are vector- and graph-based representations. The former is most commonly used in
many ML and consists of a series of features relevant to the target properties encoded to a vector
representation [202]. In heterogeneous catalysis included features could be global quantities of the
entire surface and the molecule, e.g., work functions and frontier orbitals (HOMO/LUMO energy
levels), and local quantities concerning active site atoms by average or sum. It should be noted
that the vector-based representation does not contain any information about detailed connectivity.
In contrast, graph representation is a more versatile method for representing molecular structures
where every atom in the structure is a node with edges representing chemical bonds to neighboring
atoms, and their character can be further augmented by node and edges attributions, respectively.
Graph representation has detailed information on every atom, chemical bonds and how atoms are
connected and has been successfully applied in isolated molecules,[203] crystal structures[190]
or the combined surface-adsorbate systems.[160] Due to the constraints applied to the input
form, graph representation resorts to the use of graph neural networks or graph kernels and has
experienced a surge in interest in developing cutting-edge ML algorithms in many fields.

Fig. 5.1: Examples of structural descriptors considered in continuous ML models. Arrows indicate the rela-

tionship between different groups of features. Lists of names, in gray, indicate the most common

implementations for each class. Classes that appear as “leaves” of the tree are fully symmetric.

Reproduced with permission from ref. [202]. 2021 Copyright American Chemical Society.

Embedded in the data structure, the second essential component are the descriptors that are
relevant to properties of interest. There have been considerable research efforts devoted to devel-
oping physically motivated descriptors. In the scope of continuous ML models, the objective is to
represent the chemical structure, i.e., geometry, by transforming the Cartesian coordinates of the
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atoms.[202] It is highly important to incorporate physical symmetry with respect to translations,
rotations, inversion and atom permutation into the descriptors for the sake of data efficiency.
Further, the descriptors need to fulfill smoothness, locality and additivity, thus ensuring transfer-
ability and extensivity for large scale simulation. Fig.5.1 nicely displays a broad class of descriptors
for presenting local environments, such as atom-centered symmetry functions (ACSFs),[204]
many-body tensor representation (MBTR)[205] and SOAP, which have been extensively used
in many MLPs models.[202] Recently, some of the atom-centered environment descriptors have
been unified into the framework of atom-centered density correlations.[206] We refer readers
to the relevant literature cited above since understanding these structural descriptors is crucial
for building a model. Of course, it is also possible to include features from electronic structure
calculations, such as the charge density, the electron density of states or the elements of the Fock
matrix to increase the transferability and accuracy of the models.[207, 208] However, this may
greatly lead to additional computational efforts. We also note that reliable density-functional
tight-binding methods for the simultaneous treatment of many different adsorbates and/or alloy
surfaces are still difficult to obtain.[209]

Fig. 5.2: Examples of primary features considered in discrete ML models in the studies of TMs and TMOs

systems. Symmetry-inequivalent adsorption sites (top, bridge, and threefold- and fourfold-coordinated

sites) on the stepped metal alloy are marked in yellow. In case the adsorption site is made up of several

atoms (all but top sites), the primary features are averaged over these atoms. Reproduced with the

permission from ref. [210]. 2021 Copyright American Chemical Society.

From the perspective of discrete ML models, adhering to the basic idea of well-established,
𝑑−band model and LSRs (see chapter 3), they invariably leverage readily obtained physical quan-
tities from bulk or isolated clean surface and gas phase molecules. As a demonstration, Fig. 5.2
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displays some physical quantities which can be key for the description of surface adsorption. These
include electronegativity (atomic or ionic property), coupling matrix element (bulk property),
work function and atom-projected band moments (surface property) and are capable of capturing
more information than geometric descriptors found in continuous ML models. We note that
adsorbate related features are not included in this example because they are less important for
simple adsorbates. Instead only the active site on the surface is crucial. One should also keep
in mind that the choice of these physical quantities is typically specific to the material, as the
adsorption is likely governed by a different part of the density of states (DOS). In this scenario,
one presumably would choose more and more primary features to train a model, but this could
be problematic for computationally intense codes. Alternatively, given the entire DOS[182] one
could let the ML model itself isolate and learn the important part of DOS by taking advantage of
feature extraction techniques like in conventional neural networks.

5.3 Regression models

With the dataset and representation having been constructed, the next stage is the regression
models, which capture relations via linear or non-linear functions between the dependent variable
(material properties) and the independent variable (structural space or feature space) inferred
from the dataset. In terms of model complexity, these models are typically ranging from linear
regressions, kernel methods, to neural networks. We note that decision tree-based methods such
as random forest[211] and XGboost[212] are another family of ML algorithms. However, they are
not topic of this dissertation and therefore not further addressed. In general, there is no way to
say which one is the best. The choice of ML models highly depends on the application in terms of
computational cost, accuracy, and interpretability.

5.3.1 Linear models

Linear regression is one of the most basic classes of regression models in machine learning in
which the target value, y, is expected to be a linear combination of the features, x, as shown in
equation 5.2, where (𝑤1, · · · ,𝑤𝑛) and𝑤0 denoted as coefficients and intercept, respectively.

𝑦 (w, x) = 𝑤0 +𝑤1𝑥1 + · · · +𝑤𝑛𝑥𝑛 (5.2)

In this formalism, the leading function form is linear, but the feature itself could be non-linear,
e.g., a non-linear combination of single features, resembling the case of polynomial regression
that uses linear models trained on non-linear functions of the data (1, 𝑥, 𝑥2, · · · , 𝑥𝑛).

The commonly used linear model is ordinary least squares that minimizes the residual sum of
squares between observed targets (Y) in the dataset and model predictions (Xw) as displayed in
equation 5.3. Furthermore, least absolute shrinkage and selection operator (LASSO)[213, 214] and
ridge regression[215] impose a penalty on the size of the coefficients through L1 (∥w∥1) and L2
(∥w∥22) regularization to overcome overfitting problem.

min
w

∥Xw − Y∥22 (5.3)
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It should be noted that L1 regularization favors solutions with fewer non-zero coefficients, hence
lowering the number of features. For this reason, LASSO is fundamental to the field of compressed
sensing. Hereby, we would like to introduce a recently developed compressed sensing-based
SISSO method that goes beyond LASSO, aiming to tackle huge feature space while retaining the
effectiveness of compressed sensing, providing some intrinsically interpretable descriptors, i.e.,
analytic formulas. As a linear model (specifically by the use of symbolic regression), SISSO makes
the ansatz that the property of interest P can be expressed as

P =

𝑀∑︁
𝑖

𝑐𝑖f𝑖 (5.4)

where 𝑐𝑖 are free parameters (coefficients) and f𝑖 are a small number of selected features, i.e.,
the sparse solution, constructed by a set of algebraic/functional operators to a list of predefined
primary features (see exemplified SISSO descriptor in Fig. 5.2). Two hyperparameters in SISSO,
dimensionality (𝑀) and rung (Φ𝑁 ), control the complexity of final descriptor and selected features,
f𝑖 . In contrast to chemical intuition-driven linear models,[30, 114, 126, 216] SISSO is able to
autonomously find the best high-dimensional descriptor from a huge feature space, e.g., 1012 can-
didates at Φ3, which is well-suited to find sophisticated descriptors to address material complexity
given many geometric and electronic structure quantities likely at play. Note that the predictive
performance of the resulting descriptor crucially depends on a set of initial primary features, and
they are typically different for various classes of materials. The readers are referred to our recent
work using the SISSO method to screen dopant TMOs electrocatalysts for water splitting.[1]

5.3.2 Kernel methods

In contrast to linear models, kernel methods provide an efficient way to achieve nonlinearity by
implicitly transforming the input space into higher dimensional space, and then the inner product
in high dimensional space equals the calculation of kernel function in the original low dimensional
space. The combination of a non-linear transformation and an implicit calculation through the
kernel function are the so-called "kernel trick", which alleviates the computational complexity
of dealing with high-dimensional feature spaces. As its ansatz demonstrated in equation 5.5, 𝜙
is the map: X → H, where X and H are the input space and high-dimensional feature space,
respectively.

𝑘 (x1, x2) =
〈
𝜙 (x1), 𝜙 (x2)

〉
,∀x1, x2 ∈ X (5.5)

There is no need to know 𝜙 and H, and their existence is sufficient. The key to the kernel
methods is the choice of the kernel function that must be positive definite. The leading kernel
values can be readily interpreted as a similarity measure over different input samples, e.g., the
value (kernel distance) of SOAP kernel offers the structural similarity measurement, and the value
of graph kernels indicates graph similarity.[217] Many kernel functions have been proposed up
until now. Scalar- and vector-valued data is routinely handled using, e.g., radial basis function
(RBF) kernel, linear kernel or Laplacian kernel, whereas graph-valued data requires a graph kernel,
e.g., message-passing graph kernel[218] or Weisfeiler-Lehman subtree kernel.[219, 220] The choice
of kernel function largely depends on the learning task and the form of the input and can therefore

27



dramatically affect the performance. The development of new kernel functions for emerging
applications is an ongoing topic in computer science.[221]

The use of kernel functions has to be coupled with suitable algorithms such as support vector
machine (SVM), kernel ridge regression (KRR) and gaussian processes regression (GPR). Among
them, GPR is one of the most popular methodologies in computational chemistry, as it provides
additional uncertainty estimates on the predictions, which is essential in the context of outlier
detection and active learning. The matured GPR-based methods include both continuous and
discrete ML methods proposed in literature. For continuous ML models, Gaussian approximation
potential (GAP) is a framework using SOAP descriptors which provides straightforward access to
scalable MLPs for atomic structures. FLARE is an on-the-fly training framework for molecular
dynamic simulations invoking the internal uncertainty of a GPR model to decide when to perform
first principle calculations.[222] Bayesian optimization structure search (BOSS)[223] is an active
learning technique for global exploration of energy and property phase space. Regarding discrete
ML models, the Bayesian framework is designed for the model selection and model averaging for
efficient and robust prediction of chemisorption energies of a few important multi-atom mono-
dentate adsorbates on a bimetallic alloy dataset.[180] WWL-GPR models utilize graph kernel and
GPR to address multi-dentate adsorbates on TMs and their alloys.[2]

5.3.3 Neural networks

Another approach to achieving nonlinearity is neural networks. Let’s consider a simple and special
case of a feedforward neural network that is a multilayer perceptron with only one hidden layer,
whose mathematical formulation is presented in equation 5.6:

𝑓 (x) = w2g(w1
Tx + b1) + b2, (5.6)

w1, w2, 𝑏1 and 𝑏2 are model parameters where the first two represent the weights of the input
layer and hidden layer, and the last two represent the bias added to the hidden layer and the
output layer. g(·) is the activation function which may be a non-linear function for the sake of
nonlinearity constructions. Furthermore, under the scope of deep neural networks, when many
multilayers exist between the input and output layers, the number of learnable parameters grows
exponentially, making its function much more flexible than linear models and kernel methods
which have stronger mathematical constraints. Beneficial from the recent algorithm advances,
many promising neural network architectures, including convolutional neural networks (CNN),
graph convolutional neural networks (GCN), and message passing neural networks (MPNN), have
been successfully adapted to computational chemistry.
Looking back, the first high-dimensional neural network potential (HDNNP) is the so-called

Behler-Parrinello neural network or 2G-HDNNP, proposed in 2007.[224] Due to the locality of the
MLPs in terms of their general definition (see equation 5.1) based on local environments, the lack of
long-range interaction can be crucial for certain materials and scenarios.[187] Later development
hence focuses on including long-range and nonlocal effects leading to 3G-HDNNP[225] in 2011 and
4G-HDNNP[226] in 2021. More specifically, 3G-HDNNP is designed by environment-dependent
electrostatic interactions using Coulomb’s law so that it cannot describe nonlocal charge transfer,
whereas 4G-HDNNP was built on a charge equilibration scheme, therefore taking the global
charge distribution into account. We note that these MLPs perfectly fall into descriptor-based
continuous ML models by leveraging ACSFs, which are analogous to GAP potentials in connection
with SOAP descriptors. Until recently, another family of MLPs emerged based on MPNN that
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does not require input descriptors, instead, learning representation during the training process,
thus substantially reducing human interaction.[227] MPNN is a specific graph neural network,
and the key components behind MPNN are the message functions defining how to propagate
messages between neighbor nodes and the update function defining how to update node attributes
accordingly. Furthermore, according to the different message passing schemes a variety of MPNNs
has been proposed with an early designed SchNet,[228] which is a purely invariant model and later
developed DimNet incorporating some angular information to achieve a directional message.[229]
The state-of-the-art MPNNs are equivariant-based models such as NequIP,[230] GemNet[231]
and PaiNN,[232] which have shown more data efficiency due to the inclusion of rotationally
equivariant representations. In the context of discrete ML methods, given various input features,
DOSnet is a convolutional neural network-based model taking the whole density of state as input
and does not need additional partitions.[182] CGCNN is graph convolutional neural network built
on some readily obtained atomic features.[183, 233] It is also possible to use MPNN based discrete
ML models, but the input would largely rely on the geometry.[185, 186]

With more and more databases being publically available, neural network models are likely to
be more effective because of the capabilities of handling large databases and readily adapted archi-
tectures. The representative databases such as Aflow,[234] Material Project,[235] NOMAD,[236]
QM9,[237] MD17,[198] catalysis hub,[238] and OC20[185] are motivated by specific domain usage
or database size and complexity, many of which have become standard baseline that allows consec-
utive improvement of the ML models. It should be underlined that OC20 is the largest dataset with
a particular focus on heterogeneous catalysis, having more than 400k relaxed structures and 200
million single-point calculations. The OC20 dataset reflects a daunting challenge with a goal of
creating universal MLPs. Last year, merging efforts from computational chemistry and computer
science fields achieved remarkable progress on OC20 in terms of the predictive accuracy of ML
models. Although it is still a far cry from the targeted accuracy, we can already observe that in
order to construct a universal ML model for heterogeneous catalysis, both the size of the database
and ML models with respect to the number of hyperparameters has expanded dramatically. This
trend can also be seen in the industry, where steeply rising computing demands have forced
training on tens of thousands of GPUs with trillions of parameters in ML models. Large-scale sim-
ulation and distributed training of large models will, therefore, undoubtedly become increasingly
significant in the coming years.

Now let’s recap current advances in both continuous and discrete ML models on how to incorpo-
rate physics, also known as "domain knowledge" and "bias inductive", behind ML algorithms. The
general strategies cover the design of physics-inspired representation, ML architectures and phys-
ical regularization. Specifically, the physics-inspired presentation includes symmetry descriptions
of the structure or electronic structure-based features, which can increase data efficiency.[202]
The ML architectures mainly refer to explicit physics modules such as Ewald summation, charge
equilibration, charge-dependent dispersion, and physically motivated hyperparameters.[2, 226,
239, 240] Ultimately, the loss function is the place to enforce physic constraints and get rid of
overfitting problems, e.g., introducing auxiliary tasks into the loss.[241]

Nevertheless, infusing physics into the ML model has demonstrated great indispensability for
addressing the problem of chemical domains. For instance, high-dimensional and non-linear ML
models made up of multiple electronic structures and geometrical descriptors can accurately de-
scribe complex materials.[1] The physics-inspired graph representation in connection with surface
adsorption-motivated hyperparameters can help treat complex adsorbates with numerous binding
motifs.[2] Moreover, there are very limited works aiming to address the external environment,
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for which a second neural network could help drive the convergence of external electric field
iteratively,[242] yet further development is required.

5.4 Useful tools towards ML applications

Many of the MLmodels mentioned above have demonstrated a satisfactory predictive performance
with root-mean-square errors (RMSE) around 0.1–0.2 eV for adsorption enthalpies. However, from
the perspective of ML application, it is also crucial to couple these models with some useful tools
in order to automate workflow, quantify uncertainty, and visualize data.

5.4.1 Automated workflow

An automated workflow is crucially important to assist many stages of ML applications covering
structure generation, database construction, and iterative on-the-fly training to considerably
reduce human interactions in heterogeneous catalysis. This allows us to go beyond chemical
intuition and tedious manual work to refine model predictions and accelerate catalyst screening.
Its underlying procedures can be described as follows:

First, initial structure generations resort to considering as many active sites and bindingmotifs of
a given adsorbate/surface as possible in order to end upwith a correct reactionmechanism. Current
structure construction tools such as Catkit can only provide reasonable initial configurations up to
bidentate adsorption motifs by enumerating the surface.[160] In this regard, further improvements
in this class of generation tools are needed, and ML-accelerated adsorbate replacement seems
promising to find global and local minima, which are useful for structure generations.
Second, regarding subsequent DFT calculations for the construction of database or on-the-fly

training, workflows should be able to connect to DFT code, MD code, and high-performance
computing (HPC) clusters for which the use of infrastructures tools such as FireWorks[243] and
AIIDA[244] seems straightforward.

Finally, in order to train ML models with iteratively enlarged databases and find optimal
catalysts, workflows need to communicate with advanced ML architecture like PyTorch,[245]
TensorFlow,[246] and GPyTorch[247] on GPU facility.

Some immediate instances are starting to become available.[222, 248] We noted that continuous
ML models typically need to be constructed for every material of interest. Therefore the use of
such workflows is much more rewarding without worthless repeating. Ultimately, extending to a
cloud-based research environment to enable sharing of databases and models from any device
immediately and cloud computing is promising.

5.4.2 Uncertainty quantification and active learning

Uncertainty quantification can provide valuable estimates of the residual error or uncertainty (e.g.,
standard deviation), associated with a certain input, to decide whether to trust the predictions. In
thermodynamic and microkinetic-based catalyst screening, large outliers give rise to significant
error propagation from unsatisfactory predicted adsorption enthalpies, so they need to be precisely
identified and followed up with explicit DFT calculations. Well-studied methods offering uncer-
tainty predictions are Bayesian methods and ensemble methods with various sampling strategies,
e.g., subsampling and bootstrapping. Bayesian methods include GPR, Bayesian neural network,
convolution-fed gaussian process regressions etc.[249] Bayesian methods demonstrated a great
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calibration ability. Unfortunately, they are not sensitive to large outliers.[2, 250] For detecting
large outliers, ensemble methods with bootstrapping sampling strategies are best-suited.
Apart from commonly used standard deviation, metrics such as calibration, sharpness and

dispersion are also proposed in the literature.[249] A useful uncertainty quantification method
should have a small miscalibration area (that is, a good match between the expected and observed
cumulative error distribution), a small sharpness value (small error estimates) and a large dispersion
value (dispersion error estimates). As a whole, next to accuracy metric (RMSE or MAE) and
uncertainty metric (standard deviation), it is also important to assess distribution-based metrics,
e.g., calibration and sharpness. Furthermore, a better uncertainty calibration can be obtained by
suitable recalibration methods, known as the postprocessing step of the uncertainty, as proposed
in recent papers, either by isotonic regression[251] or linear regression.[250]

On top of uncertainty prediction, active learning is known as the optimal experimental design, a
class of approaches to iteratively query a user to label new data points with the desired output.[169]
In the scope of catalyst screening, this entails iteratively performing DFT calculations on the
queried data to enlarge the database and find promising candidates. The usefulness of this approach
has been exemplified in the discovery of electrocatalysts for CO2 reduction and H2 evolution by
Tran and co-workers.[201] Candidate materials either are highly promising in terms of a predicted
target property (adsorption enthalpy) or exhibit a high uncertainty.
Since the emphasis herein is on the assistance to ML applications, we would like to draw

attention to the fact that active learning is often used to enlarge the database and search for optimal
hyperparameters intelligently. For the former, as discussed in chapter 5.2, efficient continuous ML
models require a database covering representative samples on PES that should span various local
basins. The acquisition function in active learning can control whether to explore or exploit, thus
possibly escaping local basins to search unknown regions. For the latter, given the fact that many
ML models are expensive or have no gradients to train, or their evaluations may be noisy, methods
like Bayesian optimization are rewarding to efficiently find optimal hyperparameters compared to
grid search and random search, which have been implemented in many toolkit packages for ease
of use.[252]

5.4.3 Data visualization

Data visualization typically uses dimensional reduction techniques such as PCA (kernel PCA),[253,
254] t-SNE,[255] and UMAP,[256] mapping the input high dimensional features space to typically
2D or 3D space while retaining the relations (for example, distance) among data points in high
dimensional space. Furthermore, depending on the choice of input features, they can be used
to reveal structure-property relations[257, 258] or the most relevant features to the targeted
property.[2, 201] Thus, it is of great utility for data analysis, pattern recognition, and providing
valuable insights for materials design.
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6 Publications

6.1 Data-Driven Descriptor Engineering and Refined Scaling
Relations for Predicting Transition Metal Oxide Reactivity

Wenbin Xu, Mie Andersen and Karsten Reuter
ACS Catal. 11, 2, 734–742 (2021)

Summary: For the sake of addressing the complexity at the level of the material, this project
aims to identify high-dimensional descriptors for transition metal oxides (TMOs). As already
discussed in chapter 4.1, although conventional descriptor-based and linear scaling relations (LSRs)
methods have made great progress on screening transition metals (TMs), they are ill-posed to
extend to more complicated compound materials. To this end, we follow a compressed sensing
approach that has been demonstrated to be of great usefulness for TM and TM alloy catalysts in
our recent work. The corresponding SISSO (sure independence screening and sparsifying operator)
approach allows for predicting the adsorption energies from descriptors that are expressed as
nonlinear functions of intrinsic properties of the clean catalyst surface (so-called primary features),
e.g., coordination numbers, 𝑑−band moments, and density of states at the Fermi level.

Given the promising rutile-type TMOs that are IrO2 and RuO2 electrocatalysts for water splitting
(i.e., oxygen evolution reaction), we are particularly interested in identifying descriptors for their
TM dopants and further screening them with enhanced activities. This work starts with a database
construction to include O*, OH* and OOH* adsorption enthalpies of all five low-index facts of
IrO2 and RuO2 when doping them with a variety of TMs (Ti, Mn, Fe, Co, Ni, Cu, Zn, Mo, Ru, Ag,
W, and Ir). Then, we carefully compile a list of primary features from general physicochemical
considerations as well as previously highlighted descriptors in the literature. By carrying out
systematic SISSO training, we are able to iteratively identify multidimensional descriptors with
a best-performance of root-mean-square error of 0.18 eV which is on par with DFT uncertainty,
and inferior primary features turn out to be significant when they are combined with the others,
thus can not be disregarded. Furthermore, the SISSO-refined LSRs study points out local charge
transfer as the missing ingredient in standard LSRs for this class of materials. Ultimately, we set
up a thermodynamic model to predict the theoretical overpotential through the computational
hydrogen electrode approach. The SISSO-based screening clearly identified Co- and Fe-doped
surface with the lowest overpotential in agreement with experimental works, but the LSRs-based
approach likely disregarded them. Thus, this approach provides a reliable computational screening
and general guideline to tailor complicated compound materials.

Individual contributions: The initial idea was conceived by Karsten Reuter and Mie Andersen.
I manually construct the oxides database via the quantum-espresso python interface. Compiling
primary features is a daunting task because it is crucial for predictive performance, and it is
unclear which features are important. Karsten Reuter kindly gave me many valuable suggestions
on possible features for trial-error tests. To systematically train a SISSO model, fruitful discussions
with Mie Andersen and Martin Deimel helped me arrive at a full-blown training protocol. The idea
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of SISSO-refined scaling relations originates from Karsten Reuter, and I perform a thermodynamic
model for catalyst screening. The manuscript was jointly written and edited by all authors.
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6.2 Predicting Binding Motifs of Complex Adsorbates Using
Machine Learning with a Physics-inspired Graph
Representation

Wenbin Xu, Karsten Reuter and Mie Andersen
Nat. Comput. Sci. 2, 443–450 (2022)

Summary: While finishing up the first SISSO project, several emerging ML approaches can
routinely achieve RMSE of 0.1 - 0.2 eV for predicting adsorption enthalpies of simple adsorbates
but are unfortunately not applicable to complex adsorbates. However, the handling of complex
adsorbates is highly important for many surface catalytic processes such as Fischer-Tropsch
reactions, higher oxygenate syntheses and CO2 reduction. Therefore, in this project, we aim to
address the complexity at the level of adsorbates, specifically to tackle numerous possible bonding
motifs relevant to the adsorption of larger adsorbates. We note that graph representations seem
promising due to the inclusion of more detailed information about each atom and how they
connect, while relying solely on connectivity-based features has exhibited poor data efficiency.

Accordingly, we developed a data-efficient graph ML model leveraging physics-inspired graph
representations, a customized Wasserstein Weisfeiler–Lehman graph kernel and Gaussian process
regression. The physics part of the developed WWL-GPR model lies on the physics-based primary
features related to𝑑−band moments (surfaces), HOMO/LUMO frontier orbital (adsorbate) and local
geometry. More importantly, we incorporate surface adsorption-motivated hyperparameters under
the graph kernel architecture to emphasize the role of various atom shells and chemical bonds.
This work considers 41 different small and large adsorbates on multiple TM and alloy surfaces
as they are of great interest for ethanol synthesis. Foremost, we realize that the construction
of a complex adsorbates dataset is non-trivial since as many multidentate adsorption motifs as
possible should be considered, for which an automated workflow has been developed to link
structure generation toolkit (CatKit), DFT code, and workflow manager altogether. Then, based
on this complex adsorbates dataset and another simple adsorbates dataset from our previous
works, we compare the WWL-GPR model with three vector-based ML models: SISSO, radial basis
function (RBF)-GPR, and XGBoost. As expected, we found no added value in using a graph model
for handling simple adsorbates since the averaged surface atom features already govern their
adsorption. However, the WWL-GPR model significantly outperforms other vector-based ML
models in handling complex adsorbates with an RMSE of about 0.2 eV. The insight gained from
KPCA analysis andML-learned hyperparameters tells us that graph representation is indispensable
for distinguishing binding motifs of complex adsorbates, and it is crucial to consider more atom
shells for the sake of better predictive performance. Ultimately, we show its good extrapolation
ability and uncertainty estimate based on an ensemble model to reliably capture outliers, which
makes it promising for exploring complex reaction networks.
Individual contributions: The question of how we can utilize ML to predict adsorption

enthalpies of complex adsorbate was initially proposed by Karsten Reuter and Mie Andersen.
Graph representations look promising, but it is unclear how to construct a data-efficient and
accurate graph model for this challenging problem. After brainstorming and surveying the
literature, we found kernelized ML methods and physics-enhanced graph representations are
possible solutions. I began by developing an automated workflow based on the Aiida-py plugin that
was initially made by Simeon Beinlich and Nicolas Bergmann in our group. With this workflow,
we can reduce human interaction and accelerate the training of ML models. Then, I developed
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methodological details of WWL-GPR and the ensemble model. Mie Andersen, Karsten Reuter and
me wrote the manuscript.
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6.3 Further work

The following article was published during my time working at the Chair of Theoretical Chemistry
as a side project. We collaborated with Prof. Jan Knudsen’s group at Lund University on oxygen
evolution reaction on graphene at room temperature, which is relevant to the chemical reaction
investigated in my first project. This work is only mentioned here for completeness and reference
because it is not forming a part of this dissertation.

Graphene as an Adsorption Template for Studying Double Bond Activation in Catalysis
Virginia Boix, Wenbin Xu, Giulio D’Acunto, Johannes Stubbe, Tamires Gallo, Marie Døvre
Strømsheim, Suyun Zhu, Mattia Scardamaglia, Andrey Shavorskiy, Karsten Reuter, Mie Andersen,
and Jan Knudsen
J. Phys. Chem. C 126, 33, 14116–14124 (2022)
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7 Summary, Conclusions and Outlook

Efficient heterogeneous catalysts are a key pillar of sustainable energy processes and their discovery
relies on combining theoretical and experimental insights. From the standing point of catalysis
modeling, remarkable progress has been made in the development of both thermodynamic and
microkinetic models that can provide accurate predictions of catalytic performance, e.g., stability,
activity and selectivity. Such models are therefore heavily relied upon for catalyst screening and
material discovery. However, merely depending on standard quantum mechanical calculations,
i.e., for the calculation of adsorption enthalpies, becomes a bottleneck if wanting to test hundreds
or even thousands of candidate structures in the vast chemical space available. We have seen
many conventional data-driven approaches, e.g., 𝑑−band model and linear scaling relations, help
alleviate some of these problems. However, the oversimplified physics involved cannot address
the complexity presented in realistic catalytic processes. With machine learning tools becoming
increasingly popular in computational chemistry, there is an opportunity to develop more flexible
models to fulfill predictive accuracy and computational efficiency simultaneously. Such models,
however, must be carefully designed or adapted to heterogeneous catalysis in order to really
address the different sources of existing complexity.
In this work, we have focused on developing data-efficient and physically motivated ML

models for the prediction of adsorption enthalpies on two strands of complexity relevant to the
computational screening of heterogeneous catalyst materials. One strand is the computational
screening of TMOs to address catalyst complexity, where we constructed a database of key OER
intermediates including O*, OH*, and OOH* at doped IrO2 and RuO2 electrocatalysts. In a second
step, we used the compressed sensing method SISSO to identify descriptors for the prediction of
adsorption enthalpies at these surfaces. The descriptors were constructed as algebraic formulations
of electronic and geometric primary features. By incorporating the O* adsorption enthalpy into
the training data, we identified so-called SISSO-refined scaling relations. Their compositions
help us to identify primary features related to the local charge transfer as the primary correction
(and thereby missing ingredient) to standard LSRs. For the showcased screening of dopants,
these corrections turn out as crucial to reliably identify Co and Fe in accordance with recent
experimental findings.[1]

The second strand is developing a graph ML model to address adsorbate complexity with their
mon-, bi-, and multi-dentate adsorption motifs that are likely at play. More specifically, next to
the construction of a database that includes 41 different small to large adsorbates on TM surfaces
relevant to ethanol synthesis, we develop a data-efficient and physics-inspired ML approach based
on a customized Wasserstein Weisfeiler-Lehman graph kernel (WWL) and GPR. The ML task
is to directly predict the relaxed adsorption enthalpies corresponding to a variety of plausible
initial guesses of the adsorption motif based on graph representation. Therefore, for a given
surface/adsorbate combination of interest, both the most stable and all meta-stable adsorption
motifs, as well as their concomitant adsorption enthalpies, can be predicted. Rather than relying
solely on graph representation, as is commonly done in more data-greedy approaches implemented
with deep neural networks, our WWL-GPR model is augmented with physically inspired node
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attributes representing local geometric or electronic information about each atom in the structure,
as well as surface adsorption motivated hyperparameters emphasizing the role of atoms near the
active site and the surface/adsorbate interface. The model achieves an in-domain prediction of
adsorption enthalpies with an RMSE of 0.18 eV on par with the expected inherent uncertainty in
DFT.[2]
The presented works in this dissertation only begin to scratch the enormous complexity of

heterogeneous catalysis to some extent. In practice, one can envision that a combined complexity
could come from catalysts, adsorbates and the external environment altogether. Furthermore,
dynamic changes in working catalysts are likely to happen during operating conditions, only
becoming observable with simulations of large length scales and long-term catalyst operation.[73]
On the one hand, fundamental theories need to be further developed. For example, in the context
of electrocatalysis, accurate calculation of potential-dependent adsorption enthalpies calls for
better models to describe the electrified solid-liquid interface.[71] In order to account for operando
evolution away from crystalline lattices,[73, 79] off-lattice adaptive kMC has to be implemented
in connection with ML interatomic potentials and recognition of local atomic environments. On
the other hand, ML methods should be developed that can account for these mixed complexities
introduced. Since the OC20 database was launched, containing many components of complexity,
we have observed consecutive advances for the time being. It may still be tough to conceive that
a universal ML model works for all materials, but pre-trained ML models based on this large
database could be helpful for training on a small database for specific domain materials through
transfer learning.[259] In the meantime, we cannot overlook simplified ML models constructed
on a small and homogeneous database as the reduced complexity may shed light on important
fundamental principles and provide crucial understanding for designing large ML models.

In the scope of catalyst discovery, the focused predictive MLmodels that go from initial structure
to property prediction in this dissertation are just one choice among data-driven methods. One
apparent drawback is that the search is limited by the user-selected library, either the experimental
database or computational database. Possible high-performing catalysts are thus likely to be missed
if not in the library, and the efficiency can be low since the screening is run over the database
blindly without directions to search. Alternatively, inverse design (here generative ML models)
is conceptually advanced in that taking the target property asks for the structure of interest by
learning their distribution in the continuous space so that it can generate new materials, not in
the existing database. There are already some promising deep generative architectures such as
variational autoencoders (VAEs),[260] generative adversarial networks (GANs),[261] invertible
neural networks (INNs)[262] at present. Their application to heterogeneous catalysis, however,
still faces many challenges such as the lack of invertible representation, diversity database, and
well-defined models, so that further methodological development is needed.

Nevertheless, with the advent of ML methods in heterogeneous catalysts, we do actually see a
theory-headed catalyst discovery becoming more mature. This is a new, exciting direction for
computational catalysis. It is my hope that my research work could provide guidelines on how to
incorporate domain knowledge in ML methods used in the context of heterogeneous catalysis
and pave the path toward accelerating catalyst discovery. Ultimately, identified catalysts could be
leveraged to improve everyone’s quality of life.

40



Acknowledgments / Danksagung

First and foremost, I would like to thank Prof. Karsten Reuter for giving me this opportunity
to conduct my Ph.D. in his group. I can’t express how lucky I am to pursue research in such a
wonderful family with a great working environment and many lovely colleagues. Prof. Karsten
Reuter supplies not only academic and strategic guidance but also influences my thoughts on how
to conduct self-motivated and high-quality research work. Particularly, I would like to thank his
support in extending my research experiences, covering my visit to Carnegie Mellon University,
external collaborations at Lund University, as well as the chances of attending many conferences,
from which I gained a lot of rewarding experiences to work and discuss with a diverse team of
other researchers.
Likewise, I would like to thank my direct supervisor and mentor, Prof. Mie Andersen, for her

tremendous efforts in my Ph.D. study, including scientific input, support and advice. Especially,
I sincerely appreciate her continuous concerns and patience during her pregnancy. Although,
at the last stage of my Ph.D., she moved to a new position at Aarhus University and performed
supervision remotely, she was always there whenever needed and very helpful to the progress of
my projects.
A big thank you to my colleagues who enabled the efficient work of my Ph.D. For example,

Simeon Beinlich, Nicolas Bergmann, and the IT team for their contribution to the group wiki
helped me initialize my Ph.D. and adjust to the IT infrastructure. I would like to thank my
officemates Simiam Ghan, Elias Diesen, Sina Stocker, Yonghyuk Lee and Alexandra Dudzinski
for all their support and friendship. I would also like to acknowledge fruitful discussions from
Johannes Margraf, Christian Kunkel, Frederic Felsen, Carsten Staacke, and Martin Deimel, for
which the progress of these challenging projects cannot happen within my endeavors alone. I
would also like to express gratitude to Vanessa Jane Bukas, Hendrik Heenen, Elias Diesen and Olga
Vinogradova for proofreading my thesis. In addition, much appreciation goes to our secretaries,
Julia Pach and Ruth Mösch, and the rest of the group for a pleasant atmosphere during my time
here.

Besides our group, I would like to thank our collaborators Prof. Zachary Ulissi, Adeesh Kolluru,
and Muhammed Shuabi at Carnegie Mellon University and Prof. Jan Knudsen, Virginia Boix at
Lund University, for invaluable discussion and help extend the breadth and depth of my research.
I would like to acknowledge the support from the China Scholarship Council and computing

time at the Jülich Supercomputing Centre, Max Planck Computing and Data Facility, as well as
Leibniz Supercomputing Centre. The financial support from the international graduate school of
the Technical University of Munich is further gratefully acknowledged.

Ultimately, I would like to thank my parents, who always give their unconditional support and
have helped me in every conceivable way. I would like to express my sincere appreciation to my
girlfriend Jun for her companionship and sacrifices, encouraging me to become better myself.
Without their care and love, this journey would have been much bumpy, not even possible.

41





Bibliography

[1] W. Xu, M. Andersen, and K. Reuter, Data-Driven Descriptor Engineering and Refined Scaling
Relations for Predicting Transition Metal Oxide Reactivity, ACS Catalysis 11, 734 (2021)
(cit. on pp. i, 3, 7, 11, 14, 17, 18, 22, 27, 29, 39).

[2] W. Xu, K. Reuter, and M. Andersen, Predicting binding motifs of complex adsorbates us-

ing machine learning with a physics-inspired graph representation, Nature Computational
Science 2, 443 (2022) (cit. on pp. i, 3, 22, 28, 29, 31, 40).

[3] V. Boix, W. Xu, G. D’Acunto, J. Stubbe, T. Gallo, M. Døvre Strømsheim, S. Zhu, M. Scar-
damaglia, A. Shavorskiy, K. Reuter, M. Andersen, and J. Knudsen,Graphene as an Adsorption
Template for Studying Double Bond Activation in Catalysis, The Journal of Physical Chem-
istry C 126, 14116 (2022) (cit. on p. i).

[4] J. A. Turner, Sustainable hydrogen production, Science 305, 972 (2004) (cit. on p. 1).
[5] S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future,

nature 488, 294 (2012) (cit. on p. 1).
[6] S. LewisN and N. G. Poweringtheplanet, Chemicalchallengesinsolarenergyutilization, Pro-

ceedingofthe NationalAcademyofSciences 103, 15729 (2006) (cit. on p. 1).
[7] C. F. Kutscher, J. B. Milford, and F. Kreith, Principles of sustainable energy systems (CRC

Press, 2018) (cit. on p. 1).
[8] I. Gunnarsdóttir, B. Davidsdottir, E. Worrell, and S. Sigurgeirsdóttir, Sustainable energy

development: history of the concept and emerging themes, Renewable and Sustainable Energy
Reviews 141, 110770 (2021) (cit. on p. 1).

[9] Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, and T. F. Jaramillo,
Combining theory and experiment in electrocatalysis: Insights into materials design, Science
355, eaad4998 (2017) (cit. on pp. 1, 2, 5, 7, 17).

[10] S. Chu, Y. Cui, and N. Liu, The path towards sustainable energy, Nature Materials 16, 16
(2017) (cit. on p. 1).

[11] S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future,
Nature 488, 294 (2012) (cit. on p. 1).

[12] J. Gong and R. Luque, Catalysis for production of renewable energy, Chemical Society
Reviews 43, 7466 (2014) (cit. on p. 1).

[13] O. O. James, B. Chowdhury, M. A. Mesubi, and S. Maity, Reflections on the chemistry of the

fischer–tropsch synthesis, Rsc Advances 2, 7347 (2012) (cit. on p. 1).
[14] Q. Zhang, J. Kang, and Y. Wang, Development of novel catalysts for fischer–tropsch synthesis:

tuning the product selectivity, ChemCatChem 2, 1030 (2010) (cit. on p. 1).
[15] N. E. Tsakoumis, M. Rønning, Ø. Borg, E. Rytter, and A. Holmen, Deactivation of cobalt

based fischer–tropsch catalysts: a review, Catalysis Today 154, 162 (2010) (cit. on p. 1).

43

https://doi.org/10.1021/acscatal.0c04170
https://doi.org/10.1038/s43588-022-00280-7
https://doi.org/10.1038/s43588-022-00280-7
https://doi.org/10.1021/acs.jpcc.2c02293
https://doi.org/10.1021/acs.jpcc.2c02293
https://doi.org/10.1126/science.aad4998
https://doi.org/10.1126/science.aad4998
https://doi.org/10.1038/nmat4834
https://doi.org/10.1038/nmat4834
https://doi.org/10.1038/nature11475


[16] R. G. dos Santos andA. C. Alencar, Biomass-derived syngas production via gasification process

and its catalytic conversion into fuels by fischer tropsch synthesis: a review, International
Journal of Hydrogen Energy 45, 18114 (2020) (cit. on p. 1).

[17] A. Vojvodic, A. J. Medford, F. Studt, F. Abild-Pedersen, T. S. Khan, T. Bligaard, and J. Nørskov,
Exploring the limits: a low-pressure, low-temperature haber–bosch process, Chemical Physics
Letters 598, 108 (2014) (cit. on p. 1).

[18] T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens, and R. Schlögl, The haber–bosch pro-
cess revisited: on the real structure and stability of “ammonia iron” under working conditions,
Angewandte Chemie International Edition 52, 12723 (2013) (cit. on p. 1).

[19] B. M. Hoffman, D. Lukoyanov, Z.-Y. Yang, D. R. Dean, and L. C. Seefeldt, Mechanism of

nitrogen fixation by nitrogenase: the next stage, Chemical reviews 114, 4041 (2014) (cit. on
p. 1).

[20] S. L. Foster, S. I. P. Bakovic, R. D. Duda, S. Maheshwari, R. D. Milton, S. D. Minteer, M. J.
Janik, J. N. Renner, and L. F. Greenlee, Catalysts for nitrogen reduction to ammonia, Nature
Catalysis 1, 490 (2018) (cit. on p. 1).

[21] R. Michalsky, P. H. Pfromm, and A. Steinfeld, Rational design of metal nitride redox materials

for solar-driven ammonia synthesis, Interface Focus 5, 20140084 (2015) (cit. on pp. 1, 11).
[22] X. Jia, W. Khan, Z. Wu, J. Choi, and A. C. Yip, Modern synthesis strategies for hierarchical

zeolites: bottom-up versus top-down strategies, Advanced Powder Technology 30, 467 (2019)
(cit. on p. 1).

[23] S. Hammes-Schiffer and G. Galli, Integration of theory and experiment in the modelling of

heterogeneous electrocatalysis, Nature Energy 6, 700 (2021) (cit. on p. 1).
[24] S. Bhattacharjee, U. V. Waghmare, and S.-C. Lee, An improved d-band model of the catalytic

activity of magnetic transition metal surfaces, Scientific Reports 6, 35916 (2016) (cit. on pp. 2,
11).

[25] B. Hammer and J. Nørskov, Electronic factors determining the reactivity of metal surfaces,
Surface Science 343, 211 (1995) (cit. on pp. 2, 11).

[26] B. Hammer and J. Nørskov, in Advances in Catalysis, Vol. 45 (Elsevier, 2000), pp. 71–129
(cit. on pp. 2, 11, 12).

[27] I. Takigawa, K.-i. Shimizu, K. Tsuda, and S. Takakusagi, Machine-learning prediction of the

d-band center for metals and bimetals, RSC Advances 6, 52587 (2016) (cit. on pp. 2, 11).
[28] A. Vojvodic, J. K. Nørskov, and F. Abild-Pedersen, Electronic Structure Effects in Transition

Metal Surface Chemistry, Topics in Catalysis 57, 25 (2014) (cit. on pp. 2, 11).
[29] F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T. R. Munter, P. G. Moses, E. Skúlason,

T. Bligaard, and J. K. Nørskov, Scaling Properties of Adsorption Energies for Hydrogen-

Containing Molecules on Transition-Metal Surfaces, Physical Review Letters 99, 016105
(2007) (cit. on pp. 2, 13, 14).

[30] E. M. Fernández, P. G. Moses, A. Toftelund, H. A. Hansen, J. I. Martínez, F. Abild-Pedersen,
J. Kleis, B. Hinnemann, J. Rossmeisl, T. Bligaard, and J. K. Nørskov, Scaling Relationships for
Adsorption Energies on Transition Metal Oxide, Sulfide, and Nitride Surfaces, Angewandte
Chemie International Edition 47, 4683 (2008) (cit. on pp. 2, 27).

44

https://doi.org/10.1098/rsfs.2014.0084
https://doi.org/10.1038/s41560-021-00827-4
https://doi.org/10.1038/srep35916
https://doi.org/10.1016/0039-6028(96)80007-0
https://doi.org/10.1016/S0360-0564(02)45013-4
https://doi.org/10.1039/C6RA04345C
https://doi.org/10.1007/s11244-013-0159-2
https://doi.org/10.1103/PhysRevLett.99.016105
https://doi.org/10.1103/PhysRevLett.99.016105
https://doi.org/10.1002/anie.200705739
https://doi.org/10.1002/anie.200705739


[31] A. J. Medford, A. C. Lausche, F. Abild-Pedersen, B. Temel, N. C. Schjødt, J. K. Nørskov, and
F. Studt, Activity and Selectivity Trends in Synthesis Gas Conversion to Higher Alcohols, Top
Catal, 8 (2014) (cit. on pp. 2, 7, 14).

[32] F. Calle-Vallejo, J. I. Martínez, and J. Rossmeisl, Density functional studies of functionalized

graphitic materials with late transition metals for oxygen reduction reactions, Physical
Chemistry Chemical Physics 13, 15639 (2011) (cit. on p. 2).

[33] A. O. Elnabawy, J. A. Herron, J. Scaranto, and M. Mavrikakis, Structure Sensitivity of Formic

Acid Electrooxidation on Transition Metal Surfaces: A First-Principles Study, Journal of The
Electrochemical Society 165, J3109 (2018) (cit. on p. 2).

[34] X. Hong, K. Chan, C. Tsai, and J. K. Nørskov, How Doped MoS 2 Breaks Transition-Metal

Scaling Relations for CO 2 Electrochemical Reduction, ACS Catalysis 6, 4428 (2016) (cit. on
p. 2).

[35] A. J. Medford, A. Vojvodic, J. S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard,
A. Nilsson, and J. K. Nørskov, From the Sabatier principle to a predictive theory of transition-

metal heterogeneous catalysis, Journal of Catalysis 328, 36 (2015) (cit. on p. 2).
[36] J. H. Montoya, C. Tsai, A. Vojvodic, and J. K. Nørskov, The Challenge of Electrochemical Am-

monia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations, ChemSusChem
8, 2180 (2015) (cit. on p. 2).

[37] F. Studt, F. Abild-Pedersen, T. Bligaard, R. Z. Sørensen, C. H. Christensen, and J. K. Nørskov,
Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene,
Science 320, 1320 (2008) (cit. on pp. 2, 14).

[38] M. Andersen, S. V. Levchenko, M. Scheffler, and K. Reuter, Beyond Scaling Relations for the
Description of Catalytic Materials, ACS Catalysis 9, 2752 (2019) (cit. on pp. 2, 11, 17, 22).

[39] R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, and L. M. Ghiringhelli, SISSO: A
compressed-sensing method for identifying the best low-dimensional descriptor in an immen-

sity of offered candidates, Physical Review Materials 2, 083802 (2018) (cit. on p. 3).
[40] R. Ouyang, E. Ahmetcik, C. Carbogno, M. Scheffler, and L. M. Ghiringhelli, Simultaneous

learning of several materials properties from incomplete databases with multi-task SISSO,
Journal of Physics: Materials 2, 024002 (2019) (cit. on p. 3).

[41] I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F.
Jaramillo, J. K. Nørskov, and J. Rossmeisl, Universality in Oxygen Evolution Electrocatalysis

on Oxide Surfaces, ChemCatChem 3, 1159 (2011) (cit. on pp. 3, 7, 14).
[42] J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes, and J. Nørskov, Electrolysis of water on oxide

surfaces, Journal of Electroanalytical Chemistry 607, 83 (2007) (cit. on pp. 3, 7).
[43] J. K. Nørskov, F. Abild-Pedersen, F. Studt, and T. Bligaard, Density functional theory in

surface chemistry and catalysis, Proceedings of the National Academy of Sciences 108, 937
(2011) (cit. on pp. 5, 7).

[44] B. W. J. Chen, L. Xu, and M. Mavrikakis, Computational Methods in Heterogeneous Catalysis,
Chemical Reviews 121, 1007 (2021) (cit. on p. 5).

[45] A. D. McNaught, A. Wilkinson, et al., Compendium of chemical terminology, Vol. 1669
(Blackwell Science Oxford, 1997) (cit. on p. 5).

45

https://doi.org/10.1039/c1cp21228a
https://doi.org/10.1039/c1cp21228a
https://doi.org/10.1149/2.0161815jes
https://doi.org/10.1149/2.0161815jes
https://doi.org/10.1021/acscatal.6b00619
https://doi.org/10.1016/j.jcat.2014.12.033
https://doi.org/10.1002/cssc.201500322
https://doi.org/10.1002/cssc.201500322
https://doi.org/10.1126/science.1156660
https://doi.org/10.1021/acscatal.8b04478
https://doi.org/10.1103/PhysRevMaterials.2.083802
https://doi.org/10.1088/2515-7639/ab077b
https://doi.org/10.1002/cctc.201000397
https://doi.org/10.1016/j.jelechem.2006.11.008
https://doi.org/10.1073/pnas.1006652108
https://doi.org/10.1073/pnas.1006652108
https://doi.org/10.1021/acs.chemrev.0c01060


[46] E. G. Lewars, in Computational chemistry (Springer, 2016), pp. 9–49 (cit. on p. 5).
[47] J. Rogal, K. Reuter, and M. Scheffler, First-Principles Statistical Mechanics Study of the

Stability of a Subnanometer Thin Surface Oxide in Reactive Environments: CO Oxidation at

Pd(100), Physical Review Letters 98, 046101 (2007) (cit. on pp. 5, 6).
[48] K. Reuter and M. Scheffler, First-principles kinetic Monte Carlo simulations for heterogeneous

catalysis: Application to the CO oxidation at Ru O 2 ( 110 ), Physical Review B 73, 045433
(2006) (cit. on pp. 5, 8, 19).

[49] Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, Design of electrocatalysts for oxygen- and

hydrogen-involving energy conversion reactions, Chemical Society Reviews 44, 2060 (2015)
(cit. on pp. 5, 7).

[50] J. Rogal and K. Reuter, Ab Initio Atomistic Thermodynamics for Surfaces: A Primer, 18 (cit. on
p. 5).

[51] T. Lee, Y. Lee, S. Piccinin, and A. Soon, Ab Initio Thermodynamics of Surface Oxide Structures

under Controlled Growth Conditions, The Journal of Physical Chemistry C 121, 2228 (2017)
(cit. on p. 5).

[52] K. Reuter and M. Scheffler, First-Principles Atomistic Thermodynamics for Oxidation Cataly-

sis: Surface Phase Diagrams and Catalytically Interesting Regions, Physical Review Letters
90, 046103 (2003) (cit. on pp. 5, 19).

[53] H. A. Hansen, J. Rossmeisl, and J. K. Nørskov, Surface Pourbaix diagrams and oxygen

reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT, Physical Chemistry Chemical
Physics 10, 3722 (2008) (cit. on p. 6).

[54] C. Griesser, H. Li, E.-M. Wernig, D. Winkler, N. Shakibi Nia, T. Mairegger, T. Götsch, T.
Schachinger, A. Steiger-Thirsfeld, S. Penner, D. Wielend, D. Egger, C. Scheurer, K. Reuter,
and J. Kunze-Liebhäuser, True Nature of the Transition-Metal Carbide/Liquid Interface

Determines Its Reactivity, ACS Catalysis 11, 4920 (2021) (cit. on p. 6).
[55] K. S. Exner, A short perspective of modeling electrode materials in lithium-ion batteries by

the ab initio atomistic thermodynamics approach, Journal of Solid State Electrochemistry
22, 3111 (2018) (cit. on p. 6).

[56] Constrained Ab Initio Thermodynamics: Transferring the Concept of Surface Pourbaix Di-

agrams in Electrocatalysis to Electrode Materials in Lithium-Ion Batteries, 7 (2017) (cit. on
p. 6).

[57] H. Li and K. Reuter, Active-Site Computational Screening: Role of Structural and Compo-

sitional Diversity for the Electrochemical CO 2 Reduction at Mo Carbide Catalysts, ACS
Catalysis 10, 11814 (2020) (cit. on pp. 6, 14).

[58] D. Opalka, C. Scheurer, and K. Reuter, Ab Initio Thermodynamics Insight into the Structural

Evolution of Working IrO 2 Catalysts in Proton-Exchange Membrane Electrolyzers, ACS
Catalysis 9, 4944 (2019) (cit. on p. 6).

[59] M. Bajdich, M. García-Mota, A. Vojvodic, J. K. Nørskov, and A. T. Bell, Theoretical Investi-
gation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water, Journal of
the American Chemical Society 135, 13521 (2013) (cit. on p. 6).

46

https://doi.org/10.1103/PhysRevLett.98.046101
https://doi.org/10.1103/PhysRevB.73.045433
https://doi.org/10.1103/PhysRevB.73.045433
https://doi.org/10.1039/C4CS00470A
https://doi.org/10.1021/acs.jpcc.6b11445
https://doi.org/10.1103/PhysRevLett.90.046103
https://doi.org/10.1103/PhysRevLett.90.046103
https://doi.org/10.1039/b803956a
https://doi.org/10.1039/b803956a
https://doi.org/10.1021/acscatal.1c00415
https://doi.org/10.1007/s10008-018-4017-9
https://doi.org/10.1007/s10008-018-4017-9
https://doi.org/10.1021/acscatal.0c03249
https://doi.org/10.1021/acscatal.0c03249
https://doi.org/10.1021/acscatal.9b00796
https://doi.org/10.1021/acscatal.9b00796
https://doi.org/10.1021/ja405997s
https://doi.org/10.1021/ja405997s


[60] J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Nørskov, Computational high-

throughput screening of electrocatalytic materials for hydrogen evolution, Nature Materials
5, 909 (2006) (cit. on p. 6).

[61] K. Reuter, C. P. Plaisance, H. Oberhofer, and M. Andersen, Perspective: On the active site

model in computational catalyst screening, The Journal of Chemical Physics 146, 040901
(2017) (cit. on pp. 6, 11, 18).

[62] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H.
Jónsson,Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, The Journal
of Physical Chemistry B 108, 17886 (2004) (cit. on pp. 6, 7).

[63] J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, and T. F. Jaramillo, Catalyzing the
Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials, ACS Catalysis
4, 3957 (2014) (cit. on p. 7).

[64] Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec, and S. Z. Qiao, Toward Design of

Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution, ACS
Nano 8, 5290 (2014) (cit. on p. 7).

[65] X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting,
Chemical Society Reviews 44, 5148 (2015) (cit. on p. 7).

[66] S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman,
M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I. Chorkendorff, I. E. L.
Stephens, and J. Rossmeisl, Enabling direct H2O2 production through rational electrocatalyst

design, Nature Materials 12, 1137 (2013) (cit. on p. 7).
[67] A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida, T. W.

Hansen, J. Rossmeisl, I. Chorkendorff, and I. E. L. Stephens, Trends in the Electrochemical

Synthesis of H 2 O 2 : Enhancing Activity and Selectivity by Electrocatalytic Site Engineering,
Nano Letters 14, 1603 (2014) (cit. on p. 7).

[68] K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard, and T. F. Jaramillo, Elec-
trocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal

Surfaces, Journal of the American Chemical Society 136, 14107 (2014) (cit. on p. 7).
[69] A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, and J. K. Nørskov, How copper cat-

alyzes the electroreduction of carbon dioxide into hydrocarbon fuels, Energy & Environmental
Science 3, 1311 (2010) (cit. on p. 7).

[70] C. Shi, H. A. Hansen, A. C. Lausche, and J. K. Nørskov, Trends in electrochemical CO2

reduction activity for open and close-packed metal surfaces, Physical Chemistry Chemical
Physics 16, 4720 (2014) (cit. on p. 7).

[71] S. Ringe, N. G. Hörmann, H. Oberhofer, and K. Reuter, Implicit Solvation Methods for

Catalysis at Electrified Interfaces, Chemical Reviews 122, 10777 (2022) (cit. on pp. 7, 40).
[72] S. Back, J. Na, and Z. W. Ulissi, Efficient Discovery of Active, Selective, and Stable Catalysts

for Electrochemical H 2 O 2 Synthesis through Active Motif Screening, ACS Catalysis 11, 2483
(2021) (cit. on p. 7).

[73] A. Bruix, J. T. Margraf, M. Andersen, and K. Reuter, First-principles-based multiscale mod-

elling of heterogeneous catalysis, Nature Catalysis 2, 659 (2019) (cit. on pp. 7, 8, 40).

47

https://doi.org/10.1038/nmat1752
https://doi.org/10.1038/nmat1752
https://doi.org/10.1063/1.4974931
https://doi.org/10.1063/1.4974931
https://doi.org/10.1021/jp047349j
https://doi.org/10.1021/jp047349j
https://doi.org/10.1021/cs500923c
https://doi.org/10.1021/cs500923c
https://doi.org/10.1021/nn501434a
https://doi.org/10.1021/nn501434a
https://doi.org/10.1039/C4CS00448E
https://doi.org/10.1038/nmat3795
https://doi.org/10.1021/nl500037x
https://doi.org/10.1021/ja505791r
https://doi.org/10.1039/c0ee00071j
https://doi.org/10.1039/c0ee00071j
https://doi.org/10.1039/c3cp54822h
https://doi.org/10.1039/c3cp54822h
https://doi.org/10.1021/acs.chemrev.1c00675
https://doi.org/10.1021/acscatal.0c05494
https://doi.org/10.1021/acscatal.0c05494
https://doi.org/10.1038/s41929-019-0298-3


[74] M. Rebarchik, S. Bhandari, T. Kropp, and M. Mavrikakis, How Noninnocent Spectator Species

Improve the Oxygen Reduction Activity of Single-Atom Catalysts: Microkinetic Models from

First-Principles Calculations, ACS Catalysis 10, 9129 (2020) (cit. on p. 8).
[75] M. Deimel, K. Reuter, and M. Andersen, Active Site Representation in First-Principles Microki-

netic Models: Data-Enhanced Computational Screening for Improved Methanation Catalysts,
ACS Catalysis 10, 13729 (2020) (cit. on pp. 8, 15).

[76] S. Linic, Construction of a reaction coordinate and a microkinetic model for ethylene epoxida-

tion on silver from DFT calculations and surface science experiments, Journal of Catalysis
214, 200 (2003) (cit. on p. 8).

[77] S. Pogodin and N. López, A More Accurate Kinetic Monte Carlo Approach to a Monodi-

mensional Surface Reaction: The Interaction of Oxygen with the RuO 2 (110) Surface, ACS
Catalysis 4, 2328 (2014) (cit. on p. 8).

[78] M. Deimel, H. Prats, M. Seibt, K. Reuter, and M. Andersen, Selectivity Trends and Role of
Adsorbate–Adsorbate Interactions in CO Hydrogenation on Rhodium Catalysts, ACS Catalysis
12, 7907 (2022) (cit. on pp. 8, 15).

[79] S. T. Chill and G. Henkelman, Molecular dynamics saddle search adaptive kinetic Monte

Carlo, The Journal of Chemical Physics 140, 214110 (2014) (cit. on pp. 8, 40).
[80] M. Andersen, C. Panosetti, and K. Reuter, A Practical Guide to Surface Kinetic Monte Carlo

Simulations, Frontiers in Chemistry 7, 202 (2019) (cit. on p. 8).
[81] S. Matera, W. F. Schneider, A. Heyden, and A. Savara, Progress in Accurate Chemical Kinetic

Modeling, Simulations, and Parameter Estimation for Heterogeneous Catalysis, ACS Catalysis
9, 6624 (2019) (cit. on p. 8).

[82] V. Dufour-Décieux, R. Freitas, and E. J. Reed, Atomic-Level Features for Kinetic Monte Carlo

Models of Complex Chemistry fromMolecular Dynamics Simulations, The Journal of Physical
Chemistry A 125, 4233 (2021) (cit. on p. 8).

[83] A. B. Laursen, A. S. Varela, F. Dionigi, H. Fanchiu, C. Miller, O. L. Trinhammer, J. Rossmeisl,
and S. Dahl, Electrochemical Hydrogen Evolution: Sabatier’s Principle and the Volcano Plot,
Journal of Chemical Education 89, 1595 (2012) (cit. on p. 8).

[84] J. K. Nørskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Towards the computational

design of solid catalysts, Nature Chemistry 1, 37 (2009) (cit. on p. 8).
[85] M. Che, Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis? Catalysis

Today 218–219, 162 (2013) (cit. on p. 8).
[86] A. J. Medford, A. Vojvodic, J. S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard,

A. Nilsson, and J. K. Nørskov, From the Sabatier principle to a predictive theory of transition-

metal heterogeneous catalysis, Journal of Catalysis 328, 36 (2015) (cit. on p. 8).
[87] J. N. Bbonsted, Acid and Basic Catalysis. 108 (cit. on p. 8).
[88] H. Eyring, INERTIAANDDRIVING FORCEOFCHEMICAL REACTIONS. BYM. G. EVANSAND

M. POLANYI. 14 (cit. on p. 8).
[89] G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged elastic band method

for finding minimum energy paths and saddle points, The Journal of Chemical Physics 113,
9978 (2000) (cit. on p. 9).

48

https://doi.org/10.1021/acscatal.0c01642
https://doi.org/10.1021/acscatal.0c04045
https://doi.org/10.1016/S0021-9517(02)00156-2
https://doi.org/10.1016/S0021-9517(02)00156-2
https://doi.org/10.1021/cs500414p
https://doi.org/10.1021/cs500414p
https://doi.org/10.1021/acscatal.2c02353
https://doi.org/10.1021/acscatal.2c02353
https://doi.org/10.1063/1.4880721
https://doi.org/10.3389/fchem.2019.00202
https://doi.org/10.1021/acscatal.9b01234
https://doi.org/10.1021/acscatal.9b01234
https://doi.org/10.1021/acs.jpca.1c00942
https://doi.org/10.1021/acs.jpca.1c00942
https://doi.org/10.1021/ed200818t
https://doi.org/10.1038/nchem.121
https://doi.org/10.1016/j.cattod.2013.07.006
https://doi.org/10.1016/j.cattod.2013.07.006
https://doi.org/10.1016/j.jcat.2014.12.033
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1323224


[90] H. Jónsson, G. Mills, and K.W. Jacobsen, “Nudged elastic band method for finding minimum
energy paths of transitions,” in Classical and Quantum Dynamics in Condensed Phase
Simulations (June 1998), pp. 385–404 (cit. on p. 9).

[91] G. Henkelman and H. Jónsson, A dimer method for finding saddle points on high dimensional

potential surfaces using only first derivatives, The Journal of Chemical Physics 111, 7010
(1999) (cit. on p. 9).

[92] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review 136, B864 (1964)
(cit. on p. 9).

[93] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation

Effects, Physical Review 140, A1133 (1965) (cit. on p. 10).
[94] A. J. Cohen, P. Mori-Sánchez, and W. Yang, Challenges for Density Functional Theory,

Chemical Reviews 112, 289 (2012) (cit. on p. 10).
[95] K. Burke and L. O. Wagner, DFT in a nutshell, International Journal of Quantum Chemistry

113, 96 (2013) (cit. on p. 10).
[96] J. P. Perdew, “Jacob’s ladder of density functional approximations for the exchange-

correlation energy,” in AIP Conference Proceedings, Vol. 577 (2001), pp. 1–20 (cit. on
p. 10).

[97] I. Y. Zhang and X. Xu, On the top rung of Jacob’s ladder of density functional theory:

Toward resolving the dilemma of SIE and NCE, WIREs Computational Molecular Science 11,
10.1002/wcms.1490 (2021) (cit. on p. 10).

[98] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple,
Physical Review Letters 77, 3865 (1996) (cit. on p. 10).

[99] C. D. Sherrill, Frontiers in electronic structure theory, The Journal of Chemical Physics 132,
110902 (2010) (cit. on p. 10).

[100] I. Dabo, A. Ferretti, N. Poilvert, Y. Li, N. Marzari, and M. Cococcioni, Koopmans’ condition

for density-functional theory, Physical Review B 82, 115121 (2010) (cit. on p. 10).
[101] O. A. Vydrov, G. E. Scuseria, and J. P. Perdew, Tests of functionals for systems with fractional

electron number, The Journal of Chemical Physics 126, 154109 (2007) (cit. on p. 10).
[102] J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T.

Bligaard, and K. W. Jacobsen, Density functionals for surface science: Exchange-correlation

model development with Bayesian error estimation, Physical Review B 85, 235149 (2012)
(cit. on p. 10).

[103] P. Politzer and J. S. Murray, The Hellmann-Feynman theorem: a perspective, Journal of
Molecular Modeling 24, 266 (2018) (cit. on p. 10).

[104] J. L. Nazareth, Conjugate gradient method, WIREs Computational Statistics 1, 348 (2009)
(cit. on p. 10).

[105] J. D. Head and M. C. Zerner, A BROYDEN-FLETCHER-GOLDFARB-SHANNO FOR MOLECU-

LAR GEOMETRIES, 122, 7 (1985) (cit. on p. 10).
[106] H. S. Yu, S. L. Li, and D. G. Truhlar, Perspective: Kohn-Sham density functional theory

descending a staircase, The Journal of Chemical Physics 145, 130901 (2016) (cit. on p. 10).

49

https://doi.org/10.1142/9789812839664_0016
https://doi.org/10.1142/9789812839664_0016
https://doi.org/10.1063/1.480097
https://doi.org/10.1063/1.480097
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1021/cr200107z
https://doi.org/10.1002/qua.24259
https://doi.org/10.1002/qua.24259
https://doi.org/10.1063/1.1390175
https://doi.org/10.1002/wcms.1490
https://doi.org/10.1002/wcms.1490
https://doi.org/10.1002/wcms.1490
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1063/1.3369628
https://doi.org/10.1063/1.3369628
https://doi.org/10.1103/PhysRevB.82.115121
https://doi.org/10.1063/1.2723119
https://doi.org/10.1103/PhysRevB.85.235149
https://doi.org/10.1007/s00894-018-3784-7
https://doi.org/10.1007/s00894-018-3784-7
https://doi.org/10.1002/wics.13
https://doi.org/10.1063/1.4963168


[107] J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, A Perovskite

Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles, Science
334, 1383 (2011) (cit. on pp. 11, 12).

[108] D. Wu, C. Dong, H. Zhan, and X.-W. Du, Bond-Energy-Integrated Descriptor for Oxygen

Electrocatalysis of Transition Metal Oxides, The Journal of Physical Chemistry Letters 9,
3387 (2018) (cit. on pp. 12, 13).

[109] R. Michalsky, A. M. Avram, B. A. Peterson, P. H. Pfromm, and A. A. Peterson, Chemi-

cal looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage,
Chemical Science 6, 3965 (2015) (cit. on pp. 11, 12).

[110] H. Yuan, Z. Li, X. C. Zeng, and J. Yang,Descriptor-Based Design Principle for Two-Dimensional

Single-Atom Catalysts: Carbon Dioxide Electroreduction, The Journal of Physical Chemistry
Letters 11, 3481 (2020) (cit. on p. 11).

[111] Y. Zhou, S. Sun, S. Xi, Y. Duan, T. Sritharan, Y. Du, and Z. J. Xu, Superexchange Effects on
Oxygen Reduction Activity of Edge-Sharing [Co x Mn 1 x O 6 ] Octahedra in Spinel Oxide,
Advanced Materials 30, 1705407 (2018) (cit. on p. 11).

[112] J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-
Horn, Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel

cells and metal–air batteries, Nature Chemistry 3, 546 (2011) (cit. on p. 11).
[113] C. F. Dickens, J. H. Montoya, A. R. Kulkarni, M. Bajdich, and J. K. Nørskov, An electronic

structure descriptor for oxygen reactivity at metal and metal-oxide surfaces, Surface Science
681, 122 (2019) (cit. on p. 11).

[114] W. T. Hong, K. A. Stoerzinger, Y.-L. Lee, L. Giordano, A. Grimaud, A. M. Johnson, J.
Hwang, E. J. Crumlin, W. Yang, and Y. Shao-Horn, Charge-transfer-energy-dependent oxygen
evolution reaction mechanisms for perovskite oxides, Energy & Environmental Science 10,
2190 (2017) (cit. on pp. 11, 27).

[115] I. Yamada, A. Takamatsu, K. Asai, T. Shirakawa, H. Ohzuku, A. Seno, T. Uchimura, H. Fujii,
S. Kawaguchi, K. Wada, H. Ikeno, and S. Yagi, Systematic Study of Descriptors for Oxygen

Evolution Reaction Catalysis in Perovskite Oxides, The Journal of Physical Chemistry C 122,
27885 (2018) (cit. on p. 11).

[116] E. Skúlason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T.
Vegge, H. Jónsson, and J. K. Nørskov, A theoretical evaluation of possible transition metal

electro-catalysts for N 2 reduction, Phys. Chem. Chem. Phys. 14, 1235 (2012) (cit. on p. 14).
[117] M. M. Montemore and J. W. Medlin, A Unified Picture of Adsorption on Transition Metals

through Different Atoms, J. Am. Chem. Soc., 4 (2014) (cit. on p. 14).
[118] G. Jones, Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal

surfaces, Chemical Engineering Science, 6 (2011) (cit. on p. 14).
[119] T. A. Batchelor, J. K. Pedersen, S. H. Winther, I. E. Castelli, K. W. Jacobsen, and J. Rossmeisl,

High-Entropy Alloys as a Discovery Platform for Electrocatalysis, Joule 3, 834 (2019) (cit. on
p. 14).

[120] A. Khorshidi, J. Violet, J. Hashemi, and A. A. Peterson, How strain can break the scaling

relations of catalysis, Nature Catalysis 1, 263 (2018) (cit. on p. 14).

50

https://doi.org/10.1126/science.1212858
https://doi.org/10.1126/science.1212858
https://doi.org/10.1021/acs.jpclett.8b01493
https://doi.org/10.1021/acs.jpclett.8b01493
https://doi.org/10.1039/C5SC00789E
https://doi.org/10.1021/acs.jpclett.0c00676
https://doi.org/10.1021/acs.jpclett.0c00676
https://doi.org/10.1002/adma.201705407
https://doi.org/10.1038/nchem.1069
https://doi.org/10.1016/j.susc.2018.11.019
https://doi.org/10.1016/j.susc.2018.11.019
https://doi.org/10.1039/C7EE02052J
https://doi.org/10.1039/C7EE02052J
https://doi.org/10.1021/acs.jpcc.8b09287
https://doi.org/10.1021/acs.jpcc.8b09287
https://doi.org/10.1039/C1CP22271F
https://doi.org/10.1016/j.joule.2018.12.015
https://doi.org/10.1038/s41929-018-0054-0


[121] F. A. Garcés-Pineda, M. Blasco-Ahicart, D. Nieto-Castro, N. López, and J. R. Galán-Mascarós,
Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media, Nature
Energy 4, 519 (2019) (cit. on p. 14).

[122] S. Linic, P. Christopher, and D. B. Ingram, Plasmonic-metal nanostructures for efficient

conversion of solar to chemical energy, Nature Materials 10, 911 (2011) (cit. on p. 14).
[123] J. C. Robertson, M. L. Coote, and A. C. Bissember, Synthetic applications of light, electricity,

mechanical force and flow, Nature Reviews Chemistry 3, 290 (2019) (cit. on p. 14).
[124] J. Pérez-Ramírez and N. López, Strategies to break linear scaling relationships, Nature

Catalysis 2, 971 (2019) (cit. on p. 14).
[125] S. Piccinin and M. Stamatakis, CO Oxidation on Pd(111): A First-Principles-Based Kinetic

Monte Carlo Study, ACS Catalysis 4, 2143 (2014) (cit. on p. 15).
[126] F. Calle-Vallejo, J. I. Martínez, J. M. García-Lastra, P. Sautet, and D. Loffreda, Fast Prediction

of Adsorption Properties for Platinum Nanocatalysts with Generalized Coordination Numbers,
Angewandte Chemie International Edition 53, 8316 (2014) (cit. on pp. 14, 27).

[127] R. Garcıa-Muelas, Q. Li, and N. López, Density Functional Theory Comparison of Methanol

Decomposition and Reverse Reactions on Metal Surfaces, ACS Catalysis 5, 1027 (2015) (cit. on
p. 14).

[128] J. E. Sutton, W. Guo, M. A. Katsoulakis, and D. G. Vlachos, Effects of correlated parameters

and uncertainty in electronic-structure-based chemical kinetic modelling, Nature Chemistry
8, 331 (2016) (cit. on p. 14).

[129] D. Loffreda, F. Delbecq, F. Vigné, and P. Sautet, Fast Prediction of Selectivity in Hetero-

geneous Catalysis from Extended Brønsted-Evans-Polanyi Relations: A Theoretical Insight,
Angewandte Chemie 121, 9140 (2009) (cit. on p. 14).

[130] Q. Li, R. García-Muelas, and N. López, Microkinetics of alcohol reforming for H2 production

from a FAIR density functional theory database, Nature Communications 9, 526 (2018)
(cit. on p. 15).

[131] X. Zhu, J. Huang, and M. Eikerling, Electrochemical CO 2 Reduction at Silver from a Local

Perspective, ACS Catalysis 11, 14521 (2021) (cit. on p. 15).
[132] Z.-B. Ding and M. Maestri, Development and Assessment of a Criterion for the Application of

Brønsted–Evans–Polanyi Relations for Dissociation Catalytic Reactions at Surfaces, Industrial
& Engineering Chemistry Research 58, 9864 (2019) (cit. on p. 15).

[133] J. E. Sutton andD. G. Vlachos, Effect of errors in linear scaling relations and Brønsted–Evans–Polanyi
relations on activity and selectivity maps, Journal of Catalysis 338, 273 (2016) (cit. on p. 15).

[134] S. Pablo-García, R. García-Muelas, A. Sabadell-Rendón, and N. López, Dimensionality

reduction of complex reaction networks in heterogeneous catalysis: From l inear-scaling

relationships to statistical learning techniques, WIREs Computational Molecular Science 11,
10.1002/wcms.1540 (2021) (cit. on p. 17).

[135] J. Li, H. Chang, L. Ma, J. Hao, and R. T. Yang, Low-temperature selective catalytic reduction

of NOx with NH3 over metal oxide and zeolite catalysts—A review, Catalysis Today 175, 147
(2011) (cit. on p. 17).

51

https://doi.org/10.1038/s41560-019-0404-4
https://doi.org/10.1038/s41560-019-0404-4
https://doi.org/10.1038/nmat3151
https://doi.org/10.1038/s41570-019-0094-2
https://doi.org/10.1038/s41929-019-0376-6
https://doi.org/10.1038/s41929-019-0376-6
https://doi.org/10.1021/cs500377j
https://doi.org/10.1002/anie.201402958
https://doi.org/10.1021/cs501698w
https://doi.org/10.1038/nchem.2454
https://doi.org/10.1038/nchem.2454
https://doi.org/10.1002/ange.200902800
https://doi.org/10.1038/s41467-018-02884-y
https://doi.org/10.1021/acscatal.1c04791
https://doi.org/10.1021/acs.iecr.9b01628
https://doi.org/10.1021/acs.iecr.9b01628
https://doi.org/10.1016/j.jcat.2016.03.013
https://doi.org/10.1002/wcms.1540
https://doi.org/10.1002/wcms.1540
https://doi.org/10.1002/wcms.1540
https://doi.org/10.1016/j.cattod.2011.03.034
https://doi.org/10.1016/j.cattod.2011.03.034


[136] T. O. Ajiboye, A. T. Kuvarega, and D. C. Onwudiwe, Graphitic carbon nitride-based catalysts
and their applications: A review, Nano-Structures & Nano-Objects 24, 100577 (2020) (cit. on
p. 17).

[137] J. Zhu, P. Xiao, H. Li, and S. A. C. Carabineiro,Graphitic Carbon Nitride: Synthesis, Properties,
and Applications in Catalysis, ACS Applied Materials & Interfaces 6, 16449 (2014) (cit. on
p. 17).

[138] H. Wang, K. H. L. Zhang, J. P. Hofmann, V. A. de la Peña O’Shea, and F. E. Oropeza,
The electronic structure of transition metal oxides for oxygen evolution reaction, Journal of
Materials Chemistry A 9, 19465 (2021) (cit. on p. 18).

[139] M. T. Greiner and Z.-H. Lu, Thin-film metal oxides in organic semiconductor devices: their

electronic structures, work functions and interfaces, NPG Asia Materials 5, e55 (2013) (cit. on
p. 18).

[140] Z. Zhang and J. T. Yates, Band Bending in Semiconductors: Chemical and Physical Conse-

quences at Surfaces and Interfaces, Chemical Reviews 112, 5520 (2012) (cit. on p. 18).
[141] Z. Yao and K. Reuter, First-Principles Computational Screening of Dopants to Improve the

Deacon Process over RuO 2, ChemCatChem 10, 465 (2018) (cit. on p. 18).
[142] X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, Turning Au Nanoclusters Catalytically

Active for Visible-Light-Driven CO 2 Reduction through Bridging Ligands, Journal of the
American Chemical Society 140, 16514 (2018) (cit. on p. 18).

[143] J.-X. Liu, I. A. W. Filot, Y. Su, B. Zijlstra, and E. J. M. Hensen, Optimum Particle Size for

Gold-Catalyzed CO Oxidation, The Journal of Physical Chemistry C 122, 8327 (2018) (cit. on
p. 18).

[144] M. Luo and S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials, Nature
Reviews Materials 2, 17059 (2017) (cit. on p. 18).

[145] M. Mavrikakis, B. Hammer, and J. K. Nørskov, Effect of Strain on the Reactivity of Metal

Surfaces, Physical Review Letters 81, 2819 (1998) (cit. on p. 18).
[146] M. Moser, I. Czekaj, N. López, and J. Pérez-Ramírez, Frontispiece: The Virtue of Defects:

Stable Bromine Production by Catalytic Oxidation of Hydrogen Bromide on Titanium Oxide,
Angewandte Chemie International Edition 53, 10.1002/anie.201483371 (2014) (cit. on
p. 18).

[147] C. T. Campbell, S. C. Parker, and D. E. Starr, The Effect of Size-Dependent Nanoparticle
Energetics on Catalyst Sintering, Science 298, 811 (2002) (cit. on p. 18).

[148] L. Foppa, T. Margossian, S. M. Kim, C. Müller, C. Copéret, K. Larmier, and A. Comas-Vives,
Contrasting the Role of Ni/Al 2 O 3 Interfaces in Water–Gas Shift and Dry Reforming of

Methane, Journal of the American Chemical Society 139, 17128 (2017) (cit. on p. 18).
[149] S. S. Grønborg, N. Salazar, A. Bruix, J. Rodríguez-Fernández, S. D. Thomsen, B. Hammer,

and J. V. Lauritsen, Visualizing hydrogen-induced reshaping and edge activation in MoS2 and

Co-promoted MoS2 catalyst clusters, Nature Communications 9, 2211 (2018) (cit. on p. 18).
[150] M. Jørgensen and H. Grönbeck, Scaling Relations and Kinetic Monte Carlo Simulations To

Bridge the Materials Gap in Heterogeneous Catalysis, ACS Catalysis 7, 5054 (2017) (cit. on
p. 18).

52

https://doi.org/10.1016/j.nanoso.2020.100577
https://doi.org/10.1021/am502925j
https://doi.org/10.1039/D1TA03732C
https://doi.org/10.1039/D1TA03732C
https://doi.org/10.1038/am.2013.29
https://doi.org/10.1021/cr3000626
https://doi.org/10.1002/cctc.201701313
https://doi.org/10.1021/jacs.8b06723
https://doi.org/10.1021/jacs.8b06723
https://doi.org/10.1021/acs.jpcc.7b12711
https://doi.org/10.1038/natrevmats.2017.59
https://doi.org/10.1038/natrevmats.2017.59
https://doi.org/10.1103/PhysRevLett.81.2819
https://doi.org/10.1002/anie.201483371
https://doi.org/10.1002/anie.201483371
https://doi.org/10.1126/science.1075094
https://doi.org/10.1021/jacs.7b08984
https://doi.org/10.1038/s41467-018-04615-9
https://doi.org/10.1021/acscatal.7b01194


[151] M.-C. Silaghi, A. Comas-Vives, and C. Copéret, CO 2 Activation on Ni/γ–Al 2 O 3 Catalysts by

First-Principles Calculations: From Ideal Surfaces to Supported Nanoparticles, ACS Catalysis
6, 4501 (2016) (cit. on p. 18).

[152] B. Zugic, L. Wang, C. Heine, D. N. Zakharov, B. A. J. Lechner, E. A. Stach, J. Biener, M.
Salmeron, R. J. Madix, and C. M. Friend, Dynamic restructuring drives catalytic activity on

nanoporous gold–silver alloy catalysts, Nature Materials 16, 558 (2017) (cit. on p. 18).
[153] J. S. Lim, J. Vandermause, M. A. van Spronsen, A. Musaelian, Y. Xie, L. Sun, C. R. O’Connor,

T. Egle, N. Molinari, J. Florian, K. Duanmu, R. J. Madix, P. Sautet, C. M. Friend, and B.
Kozinsky, Evolution of Metastable Structures at Bimetallic Surfaces from Microscopy and

Machine-Learning Molecular Dynamics, Journal of the American Chemical Society 142,
15907 (2020) (cit. on p. 18).

[154] J. Timmermann, F. Kraushofer, N. Resch, P. Li, Y. Wang, Z. Mao, M. Riva, Y. Lee, C. Staacke,
M. Schmid, C. Scheurer, G. S. Parkinson, U. Diebold, and K. Reuter, IrO 2 Surface Complexions

Identified through Machine Learning and Surface Investigations, Physical Review Letters
125, 206101 (2020) (cit. on p. 18).

[155] R. García-Muelas and N. López, Collective Descriptors for the Adsorption of Sugar Alcohols

on Pt and Pd(111), The Journal of Physical Chemistry C 118, 17531 (2014) (cit. on p. 18).
[156] I. A. W. Filot, R. J. P. Broos, J. P. M. van Rijn, G. J. H. A. van Heugten, R. A. van Santen, and

E. J. M. Hensen, First-Principles-Based Microkinetics Simulations of Synthesis Gas Conversion

on a Stepped Rhodium Surface, ACS Catalysis 5, 5453 (2015) (cit. on p. 19).
[157] A. Cao, J. Schumann, T. Wang, L. Zhang, J. Xiao, P. Bothra, Y. Liu, F. Abild-Pedersen, and

J. K. Nørskov, Mechanistic Insights into the Synthesis of Higher Alcohols from Syngas on

CuCo Alloys, ACS Catalysis 8, 10148 (2018) (cit. on p. 19).
[158] T. Gu, B. Wang, S. Chen, and B. Yang, Automated Generation and Analysis of the Complex

Catalytic Reaction Network of Ethanol Synthesis from Syngas on Rh(111), ACS Catalysis 10,
6346 (2020) (cit. on p. 19).

[159] Z. W. Ulissi, A. J. Medford, T. Bligaard, and J. K. Nørskov, To address surface reaction

network complexity using scaling relations machine learning and DFT calculations, Nature
Communications 8, 14621 (2017) (cit. on p. 19).

[160] J. R. Boes, O. Mamun, K. Winther, and T. Bligaard, Graph Theory Approach to High-

Throughput Surface Adsorption Structure Generation, The Journal of Physical Chemistry A
123, 2281 (2019) (cit. on pp. 19, 24, 30).

[161] M. Parrinello, Complex chemistry, https://www.youtube.com/watch?v=c0ouIW5lhRA,
May 2022 (cit. on p. 19).

[162] M. Garcia-Ratés, R. García-Muelas, and N. López, Solvation Effects on Methanol Decomposi-

tion on Pd(111), Pt(111), and Ru(0001), J. Phys. Chem. C, 7 (2017) (cit. on p. 19).
[163] M. Garcia-Ratés and N. López,Multigrid-Based Methodology for Implicit Solvation Models in

Periodic DFT, Journal of Chemical Theory and Computation 12, 1331 (2016) (cit. on p. 19).
[164] Q. Li, R. García-Muelas, and N. López, Microkinetics of alcohol reforming for H2 production

from a FAIR density functional theory database, Nature Communications 9, 526 (2018)
(cit. on p. 19).

53

https://doi.org/10.1021/acscatal.6b00822
https://doi.org/10.1021/acscatal.6b00822
https://doi.org/10.1038/nmat4824
https://doi.org/10.1021/jacs.0c06401
https://doi.org/10.1021/jacs.0c06401
https://doi.org/10.1103/PhysRevLett.125.206101
https://doi.org/10.1103/PhysRevLett.125.206101
https://doi.org/10.1021/jp502819s
https://doi.org/10.1021/acscatal.5b01391
https://doi.org/10.1021/acscatal.8b01596
https://doi.org/10.1021/acscatal.0c00630
https://doi.org/10.1021/acscatal.0c00630
https://doi.org/10.1038/ncomms14621
https://doi.org/10.1038/ncomms14621
https://doi.org/10.1021/acs.jpca.9b00311
https://doi.org/10.1021/acs.jpca.9b00311
https://www.youtube.com/watch?v=c0ouIW5lhRA
https://doi.org/10.1021/acs.jctc.5b00949
https://doi.org/10.1038/s41467-018-02884-y


[165] M. Alvarez-Guerra, J. Albo, E. Alvarez-Guerra, and A. Irabien, Ionic liquids in the elec-

trochemical valorisation of CO 2, Energy & Environmental Science 8, 2574 (2015) (cit. on
p. 19).

[166] Y. Oh and X. Hu, Ionic liquids enhance the electrochemical CO 2 reduction catalyzed by MoO

2, Chemical Communications 51, 13698 (2015) (cit. on p. 19).
[167] Y. Qiu, H. Zhong, W. Xu, T. Zhang, X. Li, and H. Zhang, Tuning the electrocatalytic properties

of a Cu electrode with organic additives containing amine group for CO 2 reduction, Journal
of Materials Chemistry A 7, 5453 (2019) (cit. on p. 19).

[168] W. Xu, Y. Qiu, T. Zhang, X. Li, and H. Zhang, The Effect of Organic Additives on the Activity

and Selectivity of CO 2 Electroreduction: The Role of Functional Groups, ChemSusChem 11,
2904 (2018) (cit. on p. 19).

[169] F. Olsson, A literature survey of active machine learning in the context of natural language

processing, 59 (cit. on pp. 21, 31).
[170] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, Deep Learning for

Computer Vision: A Brief Review, Computational Intelligence and Neuroscience 2018, 1
(2018) (cit. on p. 21).

[171] J. Stilgoe, Machine learning, social learning and the governance of self-driving cars, Social
Studies of Science, 32 (cit. on p. 21).

[172] L. Zhang, J. Tan, D. Han, and H. Zhu, From machine learning to deep learning: progress

in machine intelligence for rational drug discovery, Drug Discovery Today 22, 1680 (2017)
(cit. on p. 21).

[173] A. Johansson, Y. Xie, C. J. Owen, J. S. Lim, L. Sun, J. Vandermause, and B. Kozinsky,
Micron-scale heterogeneous catalysis with Bayesian force fields from first principles and active

learning, Apr. 26, 2022 (cit. on p. 21).
[174] B. R. Goldsmith, J. Esterhuizen, J.-X. Liu, C. J. Bartel, and C. Sutton, Machine learning for

heterogeneous catalyst design and discovery, AIChE Journal 64, 2311 (2018) (cit. on p. 21).
[175] O. T. Unke, S. Chmiela, H. E. Sauceda,M. Gastegger, I. Poltavsky, K. T. Schütt, A. Tkatchenko,

and K.-R. Müller,Machine Learning Force Fields, Chemical Reviews 121, 10142 (2021) (cit. on
p. 21).

[176] J. Xu, X.-M. Cao, and P. Hu, Perspective on computational reaction prediction using machine

learning methods in heterogeneous catalysis, Physical Chemistry Chemical Physics 23, 11155
(2021) (cit. on p. 21).

[177] E. Kocer, T. W. Ko, and J. Behler, Neural Network Potentials: A Concise Overview of Methods,
July 8, 2021 (cit. on p. 21).

[178] P. Schlexer Lamoureux, K. T. Winther, J. A. Garrido Torres, V. Streibel, M. Zhao, M. Bajdich,
F. Abild-Pedersen, and T. Bligaard, Machine Learning for Computational Heterogeneous

Catalysis, ChemCatChem 11, 3581 (2019) (cit. on p. 21).
[179] J. Noh, S. Back, J. Kim, and Y. Jung, Active learning with non- ab initio input features toward

efficient CO 2 reduction catalysts, Chemical Science 9, 5152 (2018) (cit. on p. 22).
[180] O. Mamun, K. T. Winther, J. R. Boes, and T. Bligaard, A Bayesian framework for adsorption

energy prediction on bimetallic alloy catalysts, npj Computational Materials 6, 177 (2020)
(cit. on pp. 22, 28).

54

https://doi.org/10.1039/C5EE01486G
https://doi.org/10.1039/C5CC05263G
https://doi.org/10.1039/C9TA00039A
https://doi.org/10.1039/C9TA00039A
https://doi.org/10.1002/cssc.201801458
https://doi.org/10.1002/cssc.201801458
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1016/j.drudis.2017.08.010
https://doi.org/10.1002/aic.16198
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1039/D1CP01349A
https://doi.org/10.1039/D1CP01349A
https://doi.org/10.1002/cctc.201900595
https://doi.org/10.1039/C7SC03422A
https://doi.org/10.1038/s41524-020-00447-8


[181] Z. Li, S. Wang, W. S. Chin, L. E. Achenie, and H. Xin, High-throughput screening of bimetallic

catalysts enabled by machine learning, Journal of Materials Chemistry A 5, 24131 (2017)
(cit. on p. 22).

[182] V. Fung, G. Hu, P. Ganesh, and B. G. Sumpter,Machine learned features from density of states

for accurate adsorption energy prediction, Nature Communications 12, 88 (2021) (cit. on
pp. 22, 26, 29).

[183] S. Back, J. Yoon, N. Tian, W. Zhong, K. Tran, and Z. W. Ulissi, Convolutional Neural Network
of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of

Catalysts, The Journal of Physical Chemistry Letters 10, 4401 (2019) (cit. on pp. 22, 29).
[184] S.-H. Wang, H. S. Pillai, S. Wang, L. E. K. Achenie, and H. Xin, Infusing theory into deep

learning for interpretable reactivity prediction, Nature Communications 12, 5288 (2021)
(cit. on p. 22).

[185] L. Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere, K. Tran, J. Heras-Domingo,
C. Ho, W. Hu, A. Palizhati, A. Sriram, B. Wood, J. Yoon, D. Parikh, C. L. Zitnick, and Z.
Ulissi, Open Catalyst 2020 (OC20) Dataset and Community Challenges, ACS Catalysis 11,
6059 (2021) (cit. on pp. 22, 23, 29).

[186] R. Tran, J. Lan, M. Shuaibi, S. Goyal, B. M. Wood, A. Das, J. Heras-Domingo, A. Kolluru,
A. Rizvi, N. Shoghi, A. Sriram, Z. Ulissi, and C. L. Zitnick, The Open Catalyst 2022 (OC22)

Dataset and Challenges for Oxide Electrocatalysis, June 17, 2022 (cit. on pp. 22, 23, 29).
[187] T. W. Ko, J. A. Finkler, S. Goedecker, and J. Behler, General-Purpose Machine Learning

Potentials Capturing Nonlocal Charge Transfer, Accounts of Chemical Research 54, 808
(2021) (cit. on pp. 21, 28).

[188] M. H. S. Segler, M. Preuss, and M. P. Waller, Planning chemical syntheses with deep neural

networks and symbolic AI, Nature 555, 604 (2018) (cit. on p. 22).
[189] Jianlin Cheng, A. Tegge, and P. Baldi, Machine Learning Methods for Protein Structure

Prediction, IEEE Reviews in Biomedical Engineering 1, 41 (2008) (cit. on p. 22).
[190] T. Xie and J. C. Grossman, Crystal Graph Convolutional Neural Networks for an Accurate

and Interpretable Prediction of Material Properties, Physical Review Letters 120, 145301
(2018) (cit. on pp. 22, 24).

[191] J. Musielewicz, X.Wang, T. Tian, and Z. Ulissi, FINETUNA: Fine-tuning AcceleratedMolecular

Simulations, July 1, 2022 (cit. on p. 23).
[192] D. J. Wales and J. P. K. Doye, Global Optimization by Basin-Hopping and the Lowest Energy

Structures of Lennard-Jones Clusters Containing up to 110 Atoms, The Journal of Physical
Chemistry A 101, 5111 (1997) (cit. on p. 23).

[193] M. Sambridge, A Parallel Tempering algorithm for probabilistic sampling and multimodal

optimization, Geophysical Journal International 196, 357 (2014) (cit. on p. 23).
[194] J. Kästner, Umbrella sampling: Umbrella sampling, Wiley Interdisciplinary Reviews: Com-

putational Molecular Science 1, 932 (2011) (cit. on p. 23).
[195] G. Torrie and J. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy

estimation: Umbrella sampling, Journal of Computational Physics 23, 187 (1977) (cit. on
p. 23).

55

https://doi.org/10.1039/C7TA01812F
https://doi.org/10.1038/s41467-020-20342-6
https://doi.org/10.1021/acs.jpclett.9b01428
https://doi.org/10.1038/s41467-021-25639-8
https://doi.org/10.1021/acscatal.0c04525
https://doi.org/10.1021/acscatal.0c04525
https://doi.org/10.1021/acs.accounts.0c00689
https://doi.org/10.1021/acs.accounts.0c00689
https://doi.org/10.1038/nature25978
https://doi.org/10.1109/RBME.2008.2008239
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1021/jp970984n
https://doi.org/10.1021/jp970984n
https://doi.org/10.1093/gji/ggt342
https://doi.org/10.1002/wcms.66
https://doi.org/10.1002/wcms.66
https://doi.org/10.1016/0021-9991(77)90121-8


[196] P.-L. Kang, C. Shang, and Z.-P. Liu, Large-Scale Atomic Simulation via Machine Learning

Potentials Constructed by Global Potential Energy Surface Exploration, Accounts of Chemical
Research 53, 2119 (2020) (cit. on p. 23).

[197] S. Ma, C. Shang, and Z.-P. Liu, Heterogeneous catalysis from structure to activity via SSW-NN

method, The Journal of Chemical Physics 151, 050901 (2019) (cit. on p. 23).
[198] A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Csányi, and M. Ceriotti,

Machine learning unifies the modeling of materials and molecules, Science Advances 3,
e1701816 (2017) (cit. on pp. 23, 29).

[199] S. Stocker, G. Csányi, K. Reuter, and J. T. Margraf, Machine learning in chemical reaction

space, Nature Communications 11, 5505 (2020) (cit. on p. 23).
[200] C. Kunkel, J. T. Margraf, K. Chen, H. Oberhofer, and K. Reuter, Active discovery of organic

semiconductors, Nature Communications 12, 2422 (2021) (cit. on p. 23).
[201] K. Tran and Z. W. Ulissi, Active learning across intermetallics to guide discovery of electro-

catalysts for CO2 reduction and H2 evolution, Nature Catalysis 1, 696 (2018) (cit. on pp. 23,
31).

[202] F. Musil, A. Grisafi, A. P. Bartók, C. Ortner, G. Csányi, and M. Ceriotti, Physics-Inspired
Structural Representations for Molecules and Materials, Chemical Reviews 121, 9759 (2021)
(cit. on pp. 24, 25, 29).

[203] M. Wen, S. M. Blau, E. W. C. Spotte-Smith, S. Dwaraknath, and K. A. Persson, BonDNet: a
graph neural network for the prediction of bond dissociation energies for charged molecules,
Chemical Science 12, 1858 (2021) (cit. on p. 24).

[204] J. Behler, Atom-centered symmetry functions for constructing high-dimensional neural net-

work potentials, The Journal of Chemical Physics 134, 074106 (2011) (cit. on p. 25).
[205] H. Huo and M. Rupp, Unified Representation of Molecules and Crystals for Machine Learning,

Jan. 2, 2018 (cit. on p. 25).
[206] J. Nigam, S. Pozdnyakov, G. Fraux, and M. Ceriotti, Unified theory of atom-centered repre-

sentations and message-passing machine-learning schemes, The Journal of Chemical Physics
156, 204115 (2022) (cit. on p. 25).

[207] Z. Qiao, M. Welborn, A. Anandkumar, F. R. Manby, and T. F. Miller, OrbNet: Deep learning
for quantum chemistry using symmetry-adapted atomic-orbital features, The Journal of
Chemical Physics 153, 124111 (2020) (cit. on p. 25).

[208] Z. Qiao, A. S. Christensen, M. Welborn, F. R. Manby, A. Anandkumar, and T. F. Miller III,
Informing Geometric Deep Learning with Electronic Interactions to Accelerate Quantum

Chemistry, Apr. 1, 2022 (cit. on p. 25).
[209] C. Chang and A. J. Medford, Application of Density Functional Tight Binding and Machine

Learning to Evaluate the Stability of Biomass Intermediates on the Rh(111) Surface, The
Journal of Physical Chemistry C 125, 18210 (2021) (cit. on p. 25).

[210] M. Andersen and K. Reuter, Adsorption Enthalpies for Catalysis Modeling through Machine-

Learned Descriptors, Accounts of Chemical Research 54, 2741 (2021) (cit. on p. 25).
[211] M. Pal, Random forest classifier for remote sensing classification, International Journal of

Remote Sensing 26, 217 (2005) (cit. on p. 26).

56

https://doi.org/10.1021/acs.accounts.0c00472
https://doi.org/10.1021/acs.accounts.0c00472
https://doi.org/10.1063/1.5113673
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1038/s41467-020-19267-x
https://doi.org/10.1038/s41467-021-22611-4
https://doi.org/10.1038/s41929-018-0142-1
https://doi.org/10.1021/acs.chemrev.1c00021
https://doi.org/10.1039/D0SC05251E
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/5.0087042
https://doi.org/10.1063/5.0087042
https://doi.org/10.1063/5.0021955
https://doi.org/10.1063/5.0021955
https://doi.org/10.1021/acs.jpcc.1c05715
https://doi.org/10.1021/acs.jpcc.1c05715
https://doi.org/10.1021/acs.accounts.1c00153
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1080/01431160412331269698


[212] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (Aug. 13, 2016), pp. 785–794 (cit. on p. 26).

[213] R. Muthukrishnan and R. Rohini, “LASSO: A feature selection technique in predictive
modeling for machine learning,” in 2016 IEEE International Conference on Advances in
Computer Applications (ICACA) (Oct. 2016), pp. 18–20 (cit. on p. 26).

[214] J. Ranstam and J. A. Cook, LASSO regression, British Journal of Surgery 105, 1348 (2018)
(cit. on p. 26).

[215] A. E. Hoerl and R. W. Kennard, Ridge Regression: Applications to Nonorthogonal Problems,
Technometrics 12, 69 (1970) (cit. on p. 26).

[216] F. Calle-Vallejo, N. G. Inoglu, H.-Y. Su, J. I. Martínez, I. C. Man, M. T. M. Koper, J. R. Kitchin,
and J. Rossmeisl, Number of outer electrons as descriptor for adsorption processes on transition

metals and their oxides, Chemical Science 4, 1245 (2013) (cit. on p. 27).
[217] M. Rupp, Machine learning for quantum mechanics in a nutshell, International Journal of

Quantum Chemistry 115, 1058 (2015) (cit. on p. 27).
[218] G. Nikolentzos and M. Vazirgiannis, Message Passing Graph Kernels, Aug. 7, 2018 (cit. on

p. 27).
[219] N. Shervashidze, Weisfeiler-Lehman Graph Kernels, 23 (cit. on p. 27).
[220] M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. Borgwardt,WassersteinWeisfeiler-

Lehman Graph Kernels, 11 (cit. on p. 27).
[221] G. Nikolentzos, G. Siglidis, and M. Vazirgiannis, Graph Kernels: A Survey, Journal of

Artificial Intelligence Research 72, 943 (2021) (cit. on p. 28).
[222] J. Vandermause, S. B. Torrisi, S. Batzner, Y. Xie, L. Sun, A. M. Kolpak, and B. Kozinsky,

On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events, npj
Computational Materials 6, 20 (2020) (cit. on pp. 28, 30).

[223] M. Todorović, M. U. Gutmann, J. Corander, and P. Rinke, Bayesian inference of atomistic

structure in functional materials, npj Computational Materials 5, 35 (2019) (cit. on p. 28).
[224] J. Behler and M. Parrinello, Generalized Neural-Network Representation of High-Dimensional

Potential-Energy Surfaces, Physical Review Letters 98, 146401 (2007) (cit. on p. 28).
[225] N. Artrith, T. Morawietz, and J. Behler, High-dimensional neural-network potentials for

multicomponent systems: Applications to zinc oxide, Physical Review B 83, 153101 (2011)
(cit. on p. 28).

[226] T. W. Ko, J. A. Finkler, S. Goedecker, and J. Behler, A fourth-generation high-dimensional

neural network potential with accurate electrostatics including non-local charge transfer,
Nature Communications 12, 398 (2021) (cit. on pp. 28, 29).

[227] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, Neural Message Passing

for Quantum Chemistry, June 12, 2017 (cit. on p. 29).
[228] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller, SchNet – A

deep learning architecture for molecules and materials, The Journal of Chemical Physics
148, 241722 (2018) (cit. on p. 29).

57

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/ICACA.2016.7887916
https://doi.org/10.1109/ICACA.2016.7887916
https://doi.org/10.1002/bjs.10895
https://doi.org/10.1080/00401706.1970.10488635
https://doi.org/10.1039/c2sc21601a
https://doi.org/10.1002/qua.24954
https://doi.org/10.1002/qua.24954
https://doi.org/10.1613/jair.1.13225
https://doi.org/10.1613/jair.1.13225
https://doi.org/10.1038/s41524-020-0283-z
https://doi.org/10.1038/s41524-020-0283-z
https://doi.org/10.1038/s41524-019-0175-2
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevB.83.153101
https://doi.org/10.1038/s41467-020-20427-2
https://doi.org/10.1063/1.5019779
https://doi.org/10.1063/1.5019779


[229] J. Gasteiger, J. Groß, and S. Günnemann, Directional Message Passing for Molecular Graphs,
Apr. 5, 2022 (cit. on p. 29).

[230] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari, T. E.
Smidt, and B. Kozinsky, E(3)-equivariant graph neural networks for data-efficient and accu-

rate interatomic potentials, Nature Communications 13, 2453 (2022) (cit. on p. 29).
[231] J. Gasteiger, F. Becker, and S. Günnemann, GemNet: Universal Directional Graph Neural

Networks for Molecules, Apr. 5, 2022 (cit. on p. 29).
[232] K. T. Schütt, O. T. Unke, and M. Gastegger, Equivariant Message Passing for the Prediction

of Tensorial Properties and Molecular Spectra, 12 (cit. on p. 29).
[233] G. H. Gu, J. Noh, S. Kim, S. Back, Z. Ulissi, and Y. Jung, Practical Deep-Learning Representation

for Fast Heterogeneous Catalyst Screening, The Journal of Physical Chemistry Letters 11,
3185 (2020) (cit. on p. 29).

[234] C. E. Calderon, J. J. Plata, C. Toher, C. Oses, O. Levy, M. Fornari, A. Natan, M. J. Mehl, G.
Hart, M. Buongiorno Nardelli, and S. Curtarolo, The AFLOW standard for high-throughput

materials science calculations, Computational Materials Science 108, 233 (2015) (cit. on
p. 29).

[235] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter,
D. Skinner, G. Ceder, and K. A. Persson, Commentary: The Materials Project: A materials

genome approach to accelerating materials innovation, APLMaterials 1, 011002 (2013) (cit. on
p. 29).

[236] C. Draxl and M. Scheffler, The NOMAD laboratory: from data sharing to artificial intelligence,
Journal of Physics: Materials 2, 036001 (2019) (cit. on p. 29).

[237] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld, Quantum chemistry

structures and properties of 134 kilo molecules, Scientific Data 1, 140022 (2014) (cit. on p. 29).
[238] K. T. Winther, M. J. Hoffmann, J. R. Boes, O. Mamun, M. Bajdich, and T. Bligaard, Catalysis-

Hub.org, an open electronic structure database for surface reactions, Scientific Data 6, 75
(2019) (cit. on p. 29).

[239] C. G. Staacke, S. Wengert, C. Kunkel, G. Csányi, K. Reuter, and J. T. Margraf, Kernel charge
equilibration: efficient and accurate prediction of molecular dipole moments with a machine-

learning enhanced electron density model, Machine Learning: Science and Technology 3,
015032 (2022) (cit. on p. 29).

[240] R. Zubatyuk, J. S. Smith, B. T. Nebgen, S. Tretiak, and O. Isayev, Teaching a neural network
to attach and detach electrons from molecules, Nature Communications 12, 4870 (2021)
(cit. on p. 29).

[241] Z. Liu, L. Lin, Q. Jia, Z. Cheng, Y. Jiang, Y. Guo, and J. Ma, Transferable Multilevel Attention

Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask

Learning, Journal of Chemical Information and Modeling 61, 1066 (2021) (cit. on p. 29).
[242] A. Gao and R. C. Remsing, Self-consistent determination of long-range electrostatics in neural

network potentials, Nature Communications 13, 1572 (2022) (cit. on p. 30).

58

https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1021/acs.jpclett.0c00634
https://doi.org/10.1021/acs.jpclett.0c00634
https://doi.org/10.1016/j.commatsci.2015.07.019
https://doi.org/10.1063/1.4812323
https://doi.org/10.1088/2515-7639/ab13bb
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1038/s41597-019-0081-y
https://doi.org/10.1038/s41597-019-0081-y
https://doi.org/10.1088/2632-2153/ac568d
https://doi.org/10.1088/2632-2153/ac568d
https://doi.org/10.1038/s41467-021-24904-0
https://doi.org/10.1021/acs.jcim.0c01224
https://doi.org/10.1038/s41467-022-29243-2


[243] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G. Petretto, G.-M.
Rignanese, G. Hautier, D. Gunter, and K. A. Persson, FireWorks: a dynamic workflow system

designed for high-throughput applications, Concurrency and Computation: Practice and
Experience 27, 5037 (2015) (cit. on p. 30).

[244] S. P. Huber, S. Zoupanos, M. Uhrin, L. Talirz, L. Kahle, R. Häuselmann, D. Gresch, T. Müller,
A. V. Yakutovich, C. W. Andersen, F. F. Ramirez, C. S. Adorf, F. Gargiulo, S. Kumbhar,
E. Passaro, C. Johnston, A. Merkys, A. Cepellotti, N. Mounet, N. Marzari, B. Kozinsky,
and G. Pizzi, AiiDA 1.0, a scalable computational infrastructure for automated reproducible

workflows and data provenance, Scientific Data 7, 300 (2020) (cit. on p. 30).
[245] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.

Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style,

High-Performance Deep Learning Library, Dec. 3, 2019 (cit. on p. 30).
[246] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R.
Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X.
Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,
Mar. 16, 2016 (cit. on p. 30).

[247] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson, GPyTorch: Blackbox
Matrix-Matrix Gaussian Process Inference with GPU Acceleration, June 29, 2021 (cit. on p. 30).

[248] J. Timmermann, Y. Lee, C. G. Staacke, J. T. Margraf, C. Scheurer, and K. Reuter,Data-efficient

iterative training of Gaussian approximation potentials: Application to surface structure

determination of rutile IrO 2 and RuO 2, The Journal of Chemical Physics 155, 244107 (2021)
(cit. on p. 30).

[249] K. Tran, W. Neiswanger, J. Yoon, Q. Zhang, E. Xing, and Z. W. Ulissi,Methods for comparing

uncertainty quantifications for material property predictions, Machine Learning: Science
and Technology 1, 025006 (2020) (cit. on pp. 30, 31).

[250] G. Palmer, S. Du, A. Politowicz, J. P. Emory, X. Yang, A. Gautam, G. Gupta, Z. Li, R.
Jacobs, and D. Morgan, Calibration after bootstrap for accurate uncertainty quantification in

regression models, npj Computational Materials 8, 115 (2022) (cit. on p. 31).
[251] V. Kuleshov, N. Fenner, and S. Ermon, Accurate Uncertainties for Deep Learning Using

Calibrated Regression, 9 (cit. on p. 31).
[252] T. Head, G. L. MechCoder, I. Shcherbatyi, et al., Scikit-optimize/scikit-optimize: v0. 5.2,

Zenodo (2018) (cit. on p. 31).
[253] H. Abdi and L. J. Williams, Principal component analysis: Principal component analysis,

Wiley Interdisciplinary Reviews: Computational Statistics 2, 433 (2010) (cit. on p. 31).
[254] B. Schölkopf, A. Smola, and K.-R. Müller, in Artificial Neural Networks — ICANN’97 ,

Vol. 1327, edited by W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, red. by G.
Goos, J. Hartmanis, and J. van Leeuwen, Lecture Notes in Computer Science (Springer
Berlin Heidelberg, Berlin, Heidelberg, 1997), pp. 583–588 (cit. on p. 31).

59

https://doi.org/10.1002/cpe.3505
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1063/5.0071249
https://doi.org/10.1088/2632-2153/ab7e1a
https://doi.org/10.1088/2632-2153/ab7e1a
https://doi.org/10.1038/s41524-022-00794-8
https://doi.org/10.1002/wics.101
https://doi.org/10.1007/BFb0020217


[255] A. Gisbrecht, A. Schulz, and B. Hammer, Parametric nonlinear dimensionality reduction

using kernel t-SNE, Neurocomputing 147, 71 (2015) (cit. on p. 31).
[256] L. McInnes, J. Healy, and J. Melville, UMAP: Uniform Manifold Approximation and Projection

for Dimension Reduction, Sept. 17, 2020 (cit. on p. 31).
[257] B. Cheng, R.-R. Griffiths, S. Wengert, C. Kunkel, T. Stenczel, B. Zhu, V. L. Deringer, N. Bern-

stein, J. T. Margraf, K. Reuter, and G. Csanyi, Mapping Materials and Molecules, Accounts
of Chemical Research 53, 1981 (2020) (cit. on p. 31).

[258] B. A. Helfrecht, R. K. Cersonsky, G. Fraux, and M. Ceriotti, Structure-property maps with

Kernel principal covariates regression, Machine Learning: Science and Technology 1, 045021
(2020) (cit. on p. 31).

[259] A. Kolluru, N. Shoghi, M. Shuaibi, S. Goyal, A. Das, C. L. Zitnick, and Z. Ulissi, Transfer
learning using attentions across atomic systems with graph neural networks (TAAG), The
Journal of Chemical Physics 156, 184702 (2022) (cit. on p. 40).

[260] D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes, May 1, 2014 (cit. on p. 40).
[261] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, Generative Adversarial Networks, June 10, 2014 (cit. on p. 40).
[262] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L. Maier-Hein,

C. Rother, and U. Köthe, Analyzing Inverse Problems with Invertible Neural Networks, Feb. 6,
2019 (cit. on p. 40).

60

https://doi.org/10.1016/j.neucom.2013.11.045
https://doi.org/10.1021/acs.accounts.0c00403
https://doi.org/10.1021/acs.accounts.0c00403
https://doi.org/10.1088/2632-2153/aba9ef
https://doi.org/10.1088/2632-2153/aba9ef
https://doi.org/10.1063/5.0088019
https://doi.org/10.1063/5.0088019


Appendix

61





A Paper # 1

Data-Driven Descriptor Engineering and Refined Scaling Relations for Predicting Tran-
sition Metal Oxide Reactivity
Wenbin Xu, Mie Andersen,* and Karsten Reuter
ACS Catal. 11, 734742 (2021).
DOI:10.1021/acscatal.0c04170
Reprinted with permission from Wenbin Xu, Mie Andersen, and Karsten Reuter, "Data-Driven
Descriptor Engineering and Refined Scaling Relations for Predicting Transition Metal Oxide
Reactivity", ACS Catal. 11, 734742 (2021). Copyright 2020 American Chemical Society.

63

https://doi.org/10.1021/acscatal.0c04170


Data-Driven Descriptor Engineering and Refined Scaling Relations
for Predicting Transition Metal Oxide Reactivity
Wenbin Xu, Mie Andersen,* and Karsten Reuter

Cite This: ACS Catal. 2021, 11, 734−742 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Computational screening of metal oxide catalysts is challenging due
to their more localized and intricate electronic structure as compared to metal
catalysts and the resulting lack of suitable activity descriptors to replace expensive
density functional theory (DFT) calculations. By using a compressed sensing
approach, we here identify descriptors in the form of algebraic expressions of surface-
derived features for predicting adsorption enthalpies of oxygen evolution reaction
(OER) intermediates at doped RuO2 and IrO2 electrocatalysts. Our descriptors
significantly outperform previously highlighted single descriptors both in terms of
accuracy and computational cost. Compared to standard scaling relations that employ the oxygen adsorption enthalpy as a unique
reactivity descriptor, our analysis reveals that the consideration of features related to the local charge transfer leads to significantly
improved refined scaling relations. These allow us to screen for improved OER electrocatalysts with an uncertainty in the theoretical
overpotential similar to the expected intrinsic DFT error of 0.2 V.

KEYWORDS: computational screening, heterogeneous catalysis, ab initio calculation, oxygen evolution reaction, transition metal oxides,
compressed sensing, machine learning

■ INTRODUCTION

Adsorption enthalpies are core quantities for the understanding
and modeling of numerous surface-related applications, not the
least including heterogeneous catalysis.1−6 Over the last
decades, density functional theory (DFT) has become the
prevalent approach to compute such adsorption enthalpies
with the required predictive quality.7 Thanks to steeply
increasing computational power and algorithmic efficiency,
these calculations can nowadays quite readily be performed.8

Nevertheless, this progress still cannot keep up with the
exploding demand, in particular, of computational screening or
design studies that need vast numbers of adsorption enthalpies
in their exploration of extensive materials or feature spaces.2−5

This fuels approaches that allow us to efficiently predict
adsorption enthalpies at about comparable accuracy from
simpler to compute quantities or from already calculated other
adsorption enthalpies. For transition metals (TMs) and their
alloys, the d-band model9 and related scaling relations10

constitute a highly successful such approach that has
dramatically impacted the capabilities especially of modern
catalysis research.11−13 Ultimately, this approach draws its
performance from the comparatively simple electronic
structure of extended TM surfaces, which allows us to describe
adsorption enthalpies to the largest extent through just one
base quantity: the energetic position of the d-band (εd).
Unfortunately, this simplicity does not extend to other
materials classes where scaling relations generally do not
hold that well or are completely broken. This concerns notably
TM oxides with their more localized, intricate electronic

structure.14,15 Multiple geometric and electronic quantities
could then in principle govern the adsorption enthalpies, with
recent work, e.g., emphasizing the role of the eg orbital
filling16,17 or of the charge transfer energy (CTE) as the
energetic difference between unoccupied metal d and filled
oxygen 2p bands. However, with multiple quantities likely at
play, it is unrealistic to expect that a final descriptor that allows
us to reliably predict adsorption enthalpies should be a linear
function of just a single one of them. In this work, we therefore
pursue a data-driven approach to identify the best-performing
descriptor in the form of the most general algebraic expression
of possible base quantities. Starting from an extensive list of
such quantities, we tackle the search for this best multidimen-
sional descriptor out of billions of possible candidates through
the compressed sensing method SISSO (sure independence
screening and sparsifying operator).20−22 As a showcase, we
focus on the simultaneous learning of dopant-dependent
adsorption enthalpies for key intermediates in the oxygen
evolution reaction (OER) at different facets of state-of-the-art
rutile-structured IrO2 and RuO2 electrocatalysts.23−26 The
SISSO analysis generates a descriptor that allows us to predict
all adsorption enthalpies with a root-mean-square error
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(RMSE) of 0.18 eV. This is on par with the best-performing
descriptor approaches for adsorption at the simpler TMs22,27

and suggests SISSO as a suitable and systematic avenue to
efficiently generate adsorption enthalpies for complex com-
pound materials. The analysis also reveals the primary
shortcoming of standard scaling relations in the form of
simple correction terms. It is only through these correction
terms that a number of dopants are correctly identified as
promising in the computational screening, for which recent
experiments have indeed indicated strong OER activity
increases.

■ METHODS

Structural Description. O*, OH*, and OOH* are
established key OER intermediates, and the linear scaling of
O* and OH* (or O* and OOH*) adsorption enthalpies on
TM oxide surfaces poses well-known limitations to OER
performance for this materials class.23,24 TM doping to further
enhance the activity of stable rutile IrO2 and RuO2
electrocatalysts is therefore of high interest and spans a typical
materials space for which efficient adsorption enthalpy
prediction would be of value. To generate a database for the
learning, we therefore use DFT (Quantum ESPRESSO code28

and BEEF-vdW functional29) to compute O*, OH*, and
OOH* adsorption enthalpies at the coordinatively unsaturated
(cus) sites of all five symmetry-inequivalent low-index facets of
both oxides (see Figure 1), when doping them with a wide
range of TMs (Ti, Mn, Fe, Co, Ni, Cu, Zn, Mo, Ru, Ag, W, and
Ir). The used criteria for selecting these specific dopant atoms
were (i) that they should cover a representative part of the
periodic table from early to late 3d, 4d, and 5d TMs in order to
increase the chance of finding a dopant that would lead to a
high activity and (ii) that they should be relatively cheap and
abundant in order to bring down the cost of state-of-the-art Ir-
and Ru-based electrocatalysts. Considering all symmetry-
inequivalent substitutional doping positions in the topmost
layers in surface unit cells, this yields a total of 684 cases with
stable cus site adsorption of the intact intermediate, cf. Section
S1 of the Supporting Information for all details. As shown in
the here constructed linear scaling relations in Figure 2, the
calculated adsorption enthalpies extend over a wide range of
∼5 eV (O*), ∼3 eV (OH*), and ∼2 eV (OOH*). More
importantly, they scatter widely around the scaling relation line
with multiple outliers deviating significantly from the linear
prediction. This reflects the tuning prospects of TM doping by
breaking the scaling-imposed OER performance limitations
(see below). Yet, it equally reflects the challenge for a reliable
adsorption enthalpy prediction with a targeted uncertainty not
exceeding typical DFT uncertainties of about ∼±0.2 eV.
Primary Features. The starting point for our SISSO search

for an optimum descriptor is an extensive list of 31 base
quantities that are potential factors determining the reactivity

of oxide surfaces and therewith the adsorption enthalpies. We
assemble this list of so-called primary features from general
physicochemical considerations, as well as from previously
emphasized descriptors in the literature.2,16−19,22,30−34 As
detailed in the Supporting Information, these features divide
into geometric and electronic properties and can be classified
into features characterizing the entire surface, the local
adsorption site, or the specific cus metal atom to which the
adsorbates coordinate to. We specifically refer to Sections S1.2
and S2 and Figure S3 of the Supporting Information for further
details on how the features are calculated. Since the primary
features considered crucially determine the predictive perform-
ance of the resulting descriptor, the most extensive initial list
appears desirable at first sight. On the other hand, additional
primary features that are highly correlated with other features
render the problem ill-posed. While SISSO is precisely
constructed to handle correlated features, it is still preferable
to filter out obvious correlations a priori to mitigate the steeply
increasing computational cost of SISSO approaches with the
number of primary features. We therefore evaluate the Pearson
correlation coefficient between every pair of primary features
for our database and cross out primary features that exhibit
more than around 90% correlation with one or more other
primary features. As further discussed in Section S2 of the
Supporting Information, this intriguingly eliminates prominent
base quantities like the tabulated adsorbate coupling matrix
element or the atomic radius of the cus atom, which are both
found to be highly correlated with the CTE.

Figure 1. (a−e) Perspective side views of oxygen-rich terminations of low-index facets of rutile-structured oxides. The TM atoms (Ru or Ir) are
shown in green, and O atoms are shown in red. The considered substitutional doping positions are indicated.

Figure 2. OOH* vs O* (top) and OH* vs O* (bottom) linear scaling
relations (fitted black lines). The data points (pluses for OOH* and
circles for OH*) are for adsorption at the cus site of the five low-index
facets of rutile-structured IrO2 and RuO2 shown in Figure 1 with
substitutional doping.
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After this initial filtering, we arrive at the set of the 24 least-
correlated primary features compiled in Table 1. Additionally

included in Table 1 is the correlation coefficient of each
primary feature with the calculated DFT adsorption enthalpies
of our database. Confirming previous works highlighting the
importance of these features for other oxide surfaces,16−19 the
CTE and the eg orbital filling indeed exhibit a very high
correlation. However, surprisingly, the width of the d-band
(Wd) at the cus site that to our knowledge has hitherto never
been emphasized as a reactivity descriptor shows an even
higher correlation. In contrast, the d-band center (εd) that so
much dominates adsorption enthalpies at TMs and their
alloys9 is only the ninth most correlated feature in our list. In
fact, with the continuous range of correlations seen in Table 1,
it is not possible to single out any of the primary features as
uniquely important. This corroborates our initial statement
that for oxides, adsorption enthalpies are unlikely to be a linear
function of just one elementary descriptor.
Compressed Sensing. SISSO is a compressed sensing-

based method for identifying the key features necessary to
describe and predict a property of interest (here adsorption
enthalpies).20−22 The features are constructed by applying a set

of algebraic/functional operators (detailed in Section S3 of the
Supporting Information) to a list of predefined primary
features (cf. discussion above and Table 1). The operators
are applied iteratively to the generated feature spaces, with the
number of iterations N performed being a hyperparameter of
the method (denoted the rung, ΦN). This leads to a rapidly
growing size of the total feature space, which in our case
reaches about 1012 features at rung Φ3. SISSO tackles the
challenge of identifying the best sparse solution (i.e., the
solution containing a small number of linearly combined
features) in two steps. First, sure independence screening (SIS)
is used to prescreen the vast feature space and select a smaller
subspace of top-ranking candidate features by evaluating the
correlation of features with the property of interest as well as
the correlation of features with the residual error from already
selected features. The size of the final subspace is controlled by
the SIS parameter, for which we used well-tested values from
our previous work22 as detailed in Section S3 of the Supporting
Information. In the second step, a sparsifying operator (SO,
here the 0 constraint) is used to find the best sparse solution.
The final desired M number of linearly combined features is
also called the descriptor, M being another hyperparameter
denoted as the dimensionality of the descriptor.
The target adsorption enthalpies in this work are those of

O*, OH*, and OOH*. This represents a multitask
optimization problem, which SISSO tackles by identifying
the best descriptor for the simultaneous learning of all tasks.21

The multitask SISSO model then differs for the different
adsorbates only in the M + 1 fitting coefficients (one for each
feature plus the constant offset). The advantage of this
multitask approach is a more stable learning since the entire
DFT database can be used as training data in the identification
of predictive models for each of the individual adsorbates, and
it also allows for capturing features that are mutually relevant
for the considered adsorbates.

■ RESULTS AND DISCUSSION
SISSO Descriptors. In this section, we will first discuss

some simple descriptors that are identified based on the entire
database and then move on to discuss the best-performing,
more complex descriptors and their predictive power for data
points not included in the training. In Table 2, we list the top

five one-dimensional (1D) descriptors identified after the first
iteration of the feature construction (Φ1). Astonishingly, these
results show that descriptors with an even better correlation
than the best primary feature (d-band width Wd, cf. Table 1)
can readily be obtained by simply combining primary features
that themselves have an inferior correlation. For example, the
third best descriptor in Table 2 is composed of the fourth best

Table 1. A Set of the 24 Least-Correlated Primary Features
Used for the Descriptor Constructiona

abbreviation correlation name class

Wd 0.744 width of the d-band (site projected) site
CTE 0.734 charge transfer energy (site projected) site
feg 0.643 filling of the eg d-band (site projected) site

Kd 0.604 kurtosis of the d-band (site projected) site
qBader 0.567 Bader charge (site projected) site
fd 0.521 filling of the d-band (site projected) site
εO2p

0.490 center of the O2p-band (coordinated
O atoms)

site

Sd 0.470 skewness of the d-band (site
projected)

site

εd 0.438 center of the d-band (site projected) site
FE 0.392 dopant formation energy site
DOSO2p

0.378 O2p density of states (DOS) at the
Fermi level (coordinated O atoms)

site

Q1 0.346 angular-resolved local order
parameter (l = 1)

site

EA 0.315 electron affinity (cus atom) atomic
Q5 0.255 angular-resolved local order

parameter (l = 5)
site

Q3 0.225 angular-resolved local order
parameter (l = 3)

site

DOS 0.219 total density of states (DOS) at the
Fermi level (site projected)

site

ME 0.218 Mulliken electronegativity (cus atom) atomic
WF 0.199 work function surface
Q4 0.182 angular-resolved local order

parameter (l = 4)
site

f O2p
0.164 filling of the O2p-band (coordinated O

atoms)
site

IP 0.145 ionization potential (cus atom) atomic
d1 0.139 distance to the first nearest-neighbor

metal atom
site

Q2 0.081 angular-resolved local order
parameter (l = 2)

site

d3 0.054 distance to the third nearest-neighbor
metal atom

site

aThe features are sorted according to their linear Pearson correlation
coefficient with the adsorption enthalpies in the database.

Table 2. Top Five 1D Φ1 Descriptors Trained on the Entire
Databasea

correlation descriptor

0.795 (Wd − εO2p
)

0.793 (Q4 × Wd)
0.786 (Q4/Kd)
0.786 (IP/Kd)
0.778 (Wd × εO2p

)
aThe features are sorted according to their linear Pearson correlation
coefficient with the adsorption enthalpies in the database.
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primary feature (d-band kurtosis, Kd) as well as Q4, the
angular-resolved local order parameter for l = 4, which is only
the nineteenth best primary feature with a very low individual
correlation coefficient of 0.182. This highlights that the
emphasis on single elementary features in the literature does
not necessarily reflect the real usefulness of these features as
descriptors, as it may lead one to discard features that only
become important in more complex descriptors where they are
combined with other features. It is also interesting to note that
the best 1D Φ1 descriptor (Wd − εO2p

) is essentially the CTE
where the center of the unoccupied d-band has been replaced
by the width of the entire d-band. The two descriptors are
highly correlated with each other (correlation of 0.892), which
makes good physical sense since a wider d-band is expected to
lead to a higher center of the unoccupied part of the d-band.
Thus, they capture similar physical insights. The increase in
correlation with our DFT database from 0.734 (CTE) to 0.795
(Wd − εO2p

) is significant as revealed by the finding that this
corresponds to a lowering of the training RMSE of almost 0.1
eV (from 0.43 to 0.35 eV). We speculate that the better
performance of the here identified descriptor could be related
to the fact that the d-band width captures more characteristics
of the relevant electronic structure since it is calculated over
both the occupied and the unoccupied d states. Of course,
even higher correlations can be achieved with more complex
combinations of primary features as exemplified in the list of
the top five 1D Φ2 descriptors in Table S5 in the Supporting
Information. On the other hand, one quickly reaches a
combinatorial explosion of possibilities, which is precisely the
motivation for employing a systematic compressed sensing
approach to identify the best-performing composite descrip-
tors.
In order to assess more generally the performance of these

SISSO descriptors, we systematically test all combinations of
hyperparameters up to the most complex 8D Φ3 descriptors.
We employ 5-fold cross validation, that is, the database is
shuffled and partitioned into five equal-sized subsamples,
where furthermore, each contains the same fraction of O*,
OH*, and OOH* data points. The training is then carried out
based on four of the subsamples while retaining the fifth
subsample for validation. This process is repeated five times so
that each data point is used for validation exactly once. Figure
3a shows the resulting training and validation RMSE averaged
over the five repetitions for each combination of hyper-
parameters. As seen, both the training and validation errors
generally improve drastically when employing more complex
descriptors of higher rungs. For Φ3, we already reach the target
corridor of ∼±0.2 eV in the prediction uncertainty when using
3D descriptors, i.e., for these descriptors, the validation RMSE
for the data not included in the training is 0.20 eV. The 4D and
5D descriptors offer additional slight improvements with the
RMSE reaching a minimum value of 0.18 eV at dimension 5.
Overfitting then sets in at the higher dimensions of these most
complex descriptors as evidenced by flat or even slightly
increasing validation curves.
For the best 5D Φ3 descriptors, we also show a violin plot of

the distribution of the absolute validation errors in Figure 3b.
The majority of the errors (75%) are below 0.21 eV, but a few
outliers are also observed with the maximum absolute error
(MAE) being 0.65 eV. For comparison, we also performed a
corresponding 5-fold cross validation for the two scaling
relations shown in Figure 2, resulting in an average validation

RMSE of 0.27 eV and a MAE of 1.26 eV, which is thus
significantly worse than the best SISSO descriptors. No
significant improvement can be obtained either by fitting the
different facets separately, which can also be observed from
their similar scatter around the fitted line in Figure 2 (the
corresponding Figure S2 in the Supporting Information instead
visualizes trends over doping atoms and their position). This
confirms the locality of the oxide binding, for which different
facets offer similar local geometric motives. Combined with the
fact that the scaling approach requires explicit calculation of
the O* adsorption enthalpy whereas the SISSO approach
requires only primary features calculated from the clean
surface, the SISSO descriptors are clearly superior in terms of
both accuracy and computational cost. The stable predictive
performance with the majority of errors located within the
target corridor of ∼±0.2 eV makes it a promising approach for
high-throughput screening. For this purpose, we identify the
single best descriptor, see Section S4.1 in the Supporting
Information, based on the entire database by fixing the
hyperparameters to those best values determined in the cross
validation (i.e., 5D Φ3).

Refined Scaling Relations. As also apparent from the
previous section, scaling relations are not that accurate for the
prediction of adsorption enthalpies at oxides. Even the training
MAE for the here constructed scaling relations is 0.22 eV,
which is significantly higher than for corresponding oxygenate
scaling relations at TMs (about 0.10 eV13). In this section, we
show how SISSO can be employed to unravel the underlying
reason for this different performance of scaling relations in the
two materials classes. Specifically, we elucidate the missing
ingredients (primary features) in the standard scaling
description by identifying SISSO-refined scaling relations. In
practice, this is done by explicitly including the O* adsorption
enthalpy itself among the primary features and retraining the
SISSO descriptors based on the database of OH* and OOH*
adsorption enthalpies alone. For this, we follow the same
approach as outlined in the previous section, but since we are
here mainly interested in simple, dominant correction terms,
we consider only the less complex rungs 0−2.

Figure 3. (a) Training and validation RMSE from 5-fold cross
validation (averaged over the 5 folds) for all tested SISSO
hyperparameters. (b) Violin plot of the distribution of the absolute
validation errors (combined from the 5 folds) for the 5D Φ3
descriptor. The internal solid line marks the median, the internal
dashed line marks the mean, the black box marks the 75% and 25%
percentiles, the whiskers mark the 95% and 5% percentiles, the red
star marks the MAE, and the blue region is the density plot.
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The predictive performance of the new descriptors as
evaluated by cross validation is shown in Figure 4, and the

composition of the simpler 1D and 2D descriptors (as
identified by ultimately training on the entire *OH and
*OOH database) is given in Table 3. Furthermore, the full

overview of the top five descriptors for the dimensions 1 and 2
and the rungs Φ0, Φ1, and Φ2 is given in Tables S8−S13 in the
Supporting Information. Note that the simplest 1D Φ0
descriptor corresponds to the standard OH* vs O* and
OOH* vs O* scaling relations from Figure 2. As seen in Figure
4, already the simplest refinements offer substantially improved
prediction errors over the standard scaling relations with the
validation RMSE (MAE) reaching 0.14 eV (0.56 eV) for the
2D Φ2 descriptor (see also the comparison of standard and
refined scaling relations in Figure S5 in the Supporting
Information). The 4D Φ2 descriptor even lowers the RMSE to
0.12 eV. This overall performance is even better than the
general SISSO one discussed in the last section because now,
the O* adsorption enthalpy is explicitly used. The learning task
is thus simpler than before, at the expense of having to
compute EO* with DFT for a new dopant in a potential
screening study (whereas only the clean surface DFT
calculation would be sufficient for the general SISSO
descriptors discussed before).

Considering the composition of the simplest 2D Φ0 and 1−
2D Φ1 descriptors (Table 3 and Tables S9−S11 in the
Supporting Information), we identify the ionization potential
(IP) or the Mulliken electronegativity (ME) of the cus atom to
which the adsorbates coordinate as the most important
corrections to the O* adsorption enthalpy. The only exception
is the best 2D Φ0 descriptor for which Q3 appears; however,
the 2D Φ0 descriptors involving the IP or ME have close to
identical performance, cf. Table S9 in the Supporting
Information. Interestingly, the IP and ME themselves do not
show any strong correlation (<0.22) with the adsorption
enthalpies in our database (cf. Table 1). On the other hand,
they are highly correlated with each other (see Figure S4 in the
Supporting Information) and are both related to how easily the
cus atom accepts or donates charge. We therefore interpret
their recurrent presence in the correction terms as an
indication that it is this physical information that is missing
in the standard scaling description and propose that this is the
principal reason why scaling relations do not work very well on
oxides. In fact, as we will show later on, it is precisely the
inclusion of these SISSO-identified charge correction terms
that is crucial to correctly capture promising dopants for OER
catalysis. Again, this backs up our initial reflections on the
difference between the reactivity of TMs and TM oxides and
underlines the generally accepted view that the local charge
transfer (among chemists also discussed in terms of the acid/
base properties of the sites) is much more important at the
oxides.35−38

In the 2D Φ1 (second term) and 1−2D Φ2 descriptors,
additional primary features appear, which are related to the
electronic structure (d-band center and kurtosis) and local
geometry (angular-resolved local order parameter and nearest
neighbor distance) of the cus atom. We therefore interpret
these properties as the second and third most important
missing ingredients.

Screening for OER Catalysts. A particularly interesting
application of the above-demonstrated possibilities for low-cost
and accurate prediction of adsorption enthalpies is the tailoring
of doped TM oxide catalysts for the OER through high-
throughput screening. From previous scaling relation-based
approaches, it was established that the existence of a universal
scaling relation between the critical OER intermediates OH*
and OOH* leads to a constraint on the lowest possible
theoretical overpotential.24 In Figure 5a, we plot the here
calculated DFT OOH* vs OH* adsorption enthalpies and
indicate both this universal scaling relation and the ideal
scaling relation that would allow for desirable catalyst
operation already at the equilibrium potential for OER of U
= 1.23 V vs the reversible hydrogen electrode (more precisely,
this is a necessary but not sufficient condition as detailed
below).24 Similar to the OH* vs O* and OOH* vs O* scaling
relations in Figure 2, a considerable scatter around the scaling
lines is seen. Among the here studied dopants, some clear
trends emerge, i.e., independently of the studied facet; the
dopants Ru, Ir (and thus also the undoped facets), W, Mo, and
Ti tend to lie close to the universal scaling line, whereas the
dopants Ni, Co, and Ag tend to lie closer to the ideal scaling
line. The remaining dopants Cu, Fe, Mn, and Zn are
intermediate cases. Test calculations excluding spin polar-
ization for Ni, Co, and Fe (not shown) do not cause any
significant changes to this picture. This is in agreement with a
recent study of other oxides that concluded that magnetism is
not a good descriptor for OER reactivity.33 Rather, we

Figure 4. Same as Figure 3 but here identifying SISSO-refined scaling
relations by including the O* adsorption enthalpy among the primary
features and training and validating only on the OH* and OOH*
adsorption enthalpies. Note the dramatic reduction in particular also
of the MAE between the standard scaling relations (denoted as Φ0 1D
in the SISSO hierarchy) and already the simple Φ2 2D refinement.

Table 3. RMSE (in eV) of Various Descriptors in Predicting
the OH* and OOH* Adsorption Enthalpies in the
Databasea

descriptor RMSE first term second term

1D Φ0 0.27 (EO*)
2D Φ0 0.23 (EO*) (Q3)
1D Φ1 0.25 (EO*/IP)
2D Φ1 0.18 (EO* − ME) (εd/Kd)
1D Φ2 0.20 (EO* − ME) − (εd/Kd)
2D Φ2 0.14 (EO* − ME)·(Q1 + Q4) (EA − εd)·(Kd/d1)

aThe 1D Φ0 descriptor corresponds to the standard scaling relation
(EOH* = C1 × EO* + C0 and analogous for EOOH*). The SISSO-refined
scaling relations have the form EOH* = C1 × first term + C2 × second
term + C0.
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speculate in light of the discussion below that the more
favorable scaling properties of some of these dopants are
related to local charge transfer specifics, e.g., that they generally
prefer lower oxidation states than the formal +4 oxidation state
of the Ir or Ru atoms in the host material.
Within the classic volcano picture of OER established by

Nørskov and coworkers,23−25,39 the ideal catalyst should not
only follow the ideal scaling line but also possess an ideal
absolute O* (or OH*) adsorption enthalpy to satisfy the
Sabatier principle. To get a quantitative estimate of the
theoretical overpotential of all materials in our database, we
carry out the corresponding thermodynamic analysis using the
computational hydrogen electrode (CHE) approach39 for the
peroxide OER reaction mechanism consisting of four proton-
coupled electron transfer steps23−25 and using free energy
corrections to the intermediates from ref 25. In this analysis,
the theoretical overpotential is equated with the potential
required to make all four reaction steps exergonic. The results
are presented in Figure 5b with further details given in Section
S5 of the Supporting Information (here, we also discuss an
alternative approach where the volcano is instead expressed as
a function of the difference between the O* and OH*
adsorption free energies,24 which is, however, less interesting in
our case). It is seen that the scatter of the points around the
scaling lines in Figure 5a translates into an uncertainty of about
±0.5 V in the theoretical overpotential as compared to the
known scaling-derived volcano curve with its top at the ideal
EO* = 2.46 eV. Some of the DFT data points that exhibit
particularly large deviations from the volcano are highlighted in
green in the figure. Intriguingly, already the quite simple 2D Φ2
SISSO-refined scaling relation (cf. Table 3) instead quite
reliably captures those data points that are outliers to the
volcano curve. Compared to the actual DFT-computed
theoretical overpotential, the remaining uncertainty of the
SISSO-derived overpotential is on average only around the
targeted 0.2 V, as visually reflected in Figure 5b by the
closeness of the green (DFT) and red (SISSO) data points.
The SISSO-refined scaling relations thus now allow us to

differentiate between materials, which, despite very similar O*
adsorption enthalpies, may in reality show up to an approx. 1 V
difference in the theoretical overpotential (explicit values are

provided in the Supporting Information). Indeed, this ability
turns out to be crucial for the correct identification of
promising dopants. As apparent from Figure 5b, it is in
particular Co and Fe that show a favorable deviation from the
scaling line and lead to catalysts that exhibit the lowest
theoretical overpotentials. This deviation is correctly captured
within SISSO, i.e., a SISSO-based computational screening
study would have correctly identified these doped systems. In
contrast, as their O* adsorption enthalpy does not match the
“ideal” value, these systems are located to the right or left of
the volcano maximum and therefore would likely have been
dismissed as suboptimal in a traditional scaling relation-based
screening. As discussed above, we attribute this superior SISSO
performance to its ability to appropriately capture the local
charge transfer properties of these dopants (with the vertical
distance of the red data points to the solid scaling relation line
reflecting the amount of this charge transfer). Our
interpretation is backed up by explicit comparison of primary
features related to charge transfer for materials with similar O*
adsorption enthalpy but vastly different theoretical over-
potential (see Table S16 in the Supporting Information).
This comparison shows that smaller overpotentials (for similar
O* adsorption enthalpy) are related to higher Mulliken
electronegativity and ionization potential and lower Bader
charge of the active metal atom.
Our independent theoretical results are furthermore

impressively backed up by experiments, where recent studies
have in particular highlighted the favorable electrocatalytic
OER activities for Co doping of RuO2 and IrO2,

40 Fe/Mn
doping of IrO2,

41 Mn doping of RuO2,
42 and Ni and Co

doping of IrO2.
43−45 We note that Mn and Ni are also present

in many of the here predicted good OER catalysts, even
though not exhibiting the lowest theoretical overpotentials. To
this end, we recall the approximate nature of the thermody-
namic CHE approach that is useful for computational
screening but cannot, of course, replace a detailed mechanistic
analysis.6,46 As discussed by Man et al., only trends, i.e., relative
differences between computed overpotentials, are in agreement
with experiments,24 which is why the approach is still useful for
screening. A more accurate prediction of selected promising
catalysts could already be achieved by refined free-energy

Figure 5. (a) OOH* vs OH* adsorption enthalpies from our DFT database. The solid (dashed) lines indicate the universal (ideal) scaling
relations.24 (b) Negative theoretical overpotential ηthe of all materials in our database as a function of the O* adsorption enthalpy. The black curve
is the volcano predicted from the standard OH* vs O* and OOH* vs O* scaling relations in Figure 2. Selected DFT data points (in green) and
corresponding SISSO predictions using refined scaling relations (2D Φ2, in red) are also indicated. All highlighted catalysts are for substitutional
doping in the topmost layer (“Pos1” in Figure 1) with the adsorbates coordinating directly to the dopant atom (“Site1” in Figure S1 in the
Supporting Information).
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corrections (i.e., by calculation of the adsorbate vibrational
frequencies for the given catalyst), by including implicit or
explicit solvation corrections, and by calculation of (solvation-
and potential-dependent) kinetic barriers for the OER reaction
steps at the given catalyst.47−49 Ultimately, a full evaluation of
the promising catalysts should also include an assessment of
their synthesizability and stability under OER reaction
conditions.50

■ CONCLUSIONS
In summary, we applied the compressed sensing method
SISSO to identify descriptors for the prediction of the
adsorption enthalpies of the OER intermediates O*, OH*,
and OOH* at the cus sites of various facets of doped IrO2 and
RuO2 electrocatalysts. The descriptors are constructed as
algebraic expressions of electronic and geometric primary
features, and their compositions reveal that no single primary
feature is uniquely important. Even primary features that
themselves show a very poor correlation with the adsorption
enthalpies may become important in correction terms that
allow for the high predictive performance of the final
descriptor. The best validation RMSE reached is 0.18 eV
when including only primary features derived from the clean
surface and 0.12 eV when additionally including the O*
adsorption enthalpy. In the latter case, we term the SISSO
descriptors refined scaling relations, as their compositions help
us to identify primary features related to the local charge
transfer to be the primary correction (and thereby missing
ingredient) to standard scaling relations. For the showcased
screening of dopants, these corrections turn out as crucial to
reliably identify Co and Fe in agreement with recent
experimental works. In general, SISSO thus provides a stepping
stone for a reliable computational screening of compound
materials by offering a systematic approach for the
identification of complex composite descriptors.
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Many surface catalytic reactions of vital importance to our 
society—such as Fischer–Tropsch, methanol or higher 
oxygenate syntheses—have complex reaction mecha-

nisms with numerous intermediates ranging from atoms and sim-
ple molecules to (possibly oxygenated) C1, C2 or larger fragments. 
It is well-known that modeling of these latter complex species at 
transition metal catalysts must account for their ability to exhibit a 
wide range of adsorption motifs, including mono-, bi- and higher-
dentate adsorption modes1–3. Density-functional theory (DFT) with 
van der Waals corrections can, in principle, provide the energetics of 
such adsorption motifs at moderate cost and satisfactory accuracy4. 
Nevertheless, the identification of the most stable adsorption motifs 
of adsorbates involved in ethanol synthesis on a simple monometal-
lic catalyst such as Rh(111) is already a formidable task5–8, and the 
investigation of broader classes of materials such as transition metal 
alloys is generally out of reach due to the combinatorial explosion of 
possible active sites and adsorption motifs.

Machine learning models have already shown their potential for 
replacing expensive DFT calculations to tackle the screening of large 
materials spaces for accelerated catalyst discovery9–13. However, 
most works so far have been limited in scope to the consideration of 
atoms or small molecules with monodentate adsorption motifs. For 
these simple species, models now routinely achieve the prediction 
of adsorption enthalpies with a root-mean-square error (r.m.s.e.) of 
around 0.1–0.2 eV, which is then comparable with the intrinsic DFT 
accuracy11,13–15.

Unfortunately, most of these methods cannot easily be extended 
to complex adsorbates with bi- or higher-dentate adsorption motifs. 
One notable attempt to treat complex adsorbates is provided in 
the Open Catalyst Project where the direct prediction of relaxed 
adsorption enthalpies is achieved by incorporating a graph repre-
sentation of the initial structure into a graph convolutional neural 
network16. However, approaches that rely purely on connectivity 
and geometry-based features have revealed poor data efficiency and 

thus cannot be used without excessively large training databases14–16. 
Moreover, the predictive performance for complex adsorbates 
in the Open Catalyst Database is still below practical usefulness 
with a mean absolute error for in-domain prediction of around  
0.6 eV (ref. 16).

In this work we develop and test a data-efficient, physics-
inspired machine learning model—based on graph representation, 
the Wasserstein Weisfeiler–Lehman (WWL) graph kernel17 and 
Gaussian process regression (GPR)—that is applicable for both 
simple and complex adsorbates. We abbreviate the model WWL-
GPR. For comparison, we show also results for predictions of simple 
and complex adsorbates using other popular, fundamentally differ-
ent machine learning approaches that employ input in vector form 
instead of graph representation, namely, the sure-independence 
screening and sparsifying operator (SISSO) approach18,19, GPR with 
a radial basis function kernel (RBF-GPR) and extreme gradient 
boosting (XGBoost)20. We train our machine learning models for 
complex adsorbates on a relatively small database (around 1,700 
data points) of DFT adsorption enthalpies calculated at the face-
centered cubic (fcc) (211) and (111) facets of four transition met-
als: copper (Cu), rhodium (Rh), palladium (Pd) and cobalt (Co). 
The chosen adsorbates and transition metals are of interest for  
ethanol synthesis21,22.

Our dataset is smaller than the Open Catalyst Dataset by about 
a factor of 300, and covers less diverse surfaces and adsorbates, but 
exhibits a much denser sampling of diverse adsorption motifs for 
each catalyst–adsorbate combination considered. More impor-
tantly, we do not rely on graph representation alone, but augment 
it with node attributes representing physically motivated proper-
ties, for example, d-band moments (surfaces), highest-occupied 
and lowest-unoccupied molecular orbital (HOMO/LUMO) energy 
levels (adsorbate molecules) and features of the local geometry, all 
derived from either the clean surfaces or the adsorbates in the gas 
phase. The model achieves an in-domain prediction of adsorption  

Predicting binding motifs of complex adsorbates 
using machine learning with a physics-inspired 
graph representation
Wenbin Xu1,2, Karsten Reuter   2 and Mie Andersen   3,4 ✉

Computational screening in heterogeneous catalysis relies increasingly on machine learning models for predicting key input 
parameters due to the high cost of computing these directly using first-principles methods. This becomes especially relevant 
when considering complex materials spaces such as alloys, or complex reaction mechanisms with adsorbates that may exhibit 
bi- or higher-dentate adsorption motifs. Here we present a data-efficient approach to the prediction of binding motifs and asso-
ciated adsorption enthalpies of complex adsorbates at transition metals and their alloys based on a customized Wasserstein 
Weisfeiler–Lehman graph kernel and Gaussian process regression. The model shows good predictive performance, not only for 
the elemental transition metals on which it was trained, but also for an alloy based on these transition metals. Furthermore, 
incorporation of minimal new training data allows for predicting an out-of-domain transition metal. We believe the model may 
be useful in active learning approaches, for which we present an ensemble uncertainty estimation approach.
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enthalpies with a r.m.s.e. of about 0.2 eV and also shows good 
extrapolative performance for two test cases; bimetallic alloys made 
from elements present in our training data and out-of-domain ele-
ments, the latter however only after incorporation of adsorption 
enthalpies of atomic species on the new element into the training 
database. Finally, we show that data points with large prediction 
errors can be quite reliably captured from an ensemble uncertainty 
estimation approach.

Results
WWL-GPR model. The machine learning task in our work is to 
directly predict the relaxed adsorption enthalpies corresponding 
to a range of possible adsorption motifs represented as graphs. 
Thereby, for a given surface–adsorbate combination of interest, we 
obtain a spectrum of possible adsorption energies ranging from the 
most stable to metastable adsorption motifs. Microkinetic models 
used in catalyst screening often employ only the most stable adsorp-
tion energy obtained as input, however, distinct adsorption sites 
with less favorable adsorption energies could be included as well23. 
Our task is thus quite similar to the task denoted as initial state to 
relaxed energy (IS2RE) in the Open Catalyst Project, however, we 
do not directly use the initial state geometry, but only its graph rep-
resentation. We note that an entirely different approach to this task 
is to train a machine learning interatomic potential24,25 to relax the 
initial structure and thereby predict both the relaxed structure and 
adsorption enthalpy; however, such approaches are not a topic of 
this work.

Figure 1a depicts a schematic of our physics-inspired WWL-
GPR model. We rely on graph representation, which is a versatile 
method for representing isolated molecules26,27, crystal structures28 
or the combined surface–adsorbate system29–31 in which every atom 
in the structure is a node with edges representing chemical bonds 
to neighboring atoms. Graph representation can be used in con-
nection with neural networks14–16, which generally requires very 
large training databases. As we are here interested in developing a 
data-efficient method, we focus on a kernel-based method (GPR) 

in connection with a customized version of the recently developed 
WWL graph kernel17. Figure 1b illustrates the node embedding 
scheme, the calculation of the Wasserstein distance (distribution 
relationship) between the graphs, and the subsequent WWL graph 
kernel calculation. The WWL graph kernel allows for continuous 
node attributes, for which we use physically motivated electronic 
and geometric features calculated from the clean surface and iso-
lated adsorbate. Finally, we incorporate some surface adsorption-
motivated hyperparameters into the WWL kernel to learn better 
representations (see Fig. 1c): edge weights, which differentiate 
chemical bonds by three classes (adsorbate–adsorbate, surface–sur-
face and adsorbate–surface) as well as inner and outer cutoffs and 
weights. The cutoffs and weights are used during the computation 
of the Wasserstein distance to emphasize the importance of vari-
ous atomic shells around the active site for the adsorption energy 
prediction. We note that attention algorithms widely used in neural 
networks serve a similar purpose15.

Prediction of simple adsorbates. We begin by evaluating the per-
formance of the machine learning models for predicting a database 
of simple adsorbates with monodentate adsorption motifs (see 
Methods). We perform fivefold cross-validation, that is, the data-
base is shuffled and partitioned into five equal-sized subsamples 
stratified by adsorbates. The training is then performed based on 
four of the subsamples while retaining the fifth subsample for vali-
dation. This is repeated five times until all data points have been 
used once for validation. Figure 2 shows the resulting parity plot 
of DFT-calculated versus machine learning-predicted adsorption 
enthalpies for the combined validation set from the five folds as 
well as violin plots of the absolute error distributions for SISSO and 
the GPR models. It should be noted here that the SISSO results are 
obtained using similar hyperparameters to those from our previous 
work11,32 (eight-dimensional rung three descriptor). In principle, we 
would expect a better performance for even more complex models 
than the r.m.s.e. value of 0.24 eV presented here; see Supplementary 
Fig. 5. However, the identification of more complex models is  

Initial connectivity

Initial graph representation GPR ∆Eads

Node attributes:
d-band moments
LUMO
HOMO
Local geometry

a

b c

G2

f(G1)
KWWL(G1G2)

Node embedding Wasserstein distance

f(G2)

Outer cutoff

Inner cutoff

Inner weight

Outer weight

Ads.–sur. weight

Ads.–ads. weight

Sur.–sur. weight

G1

Input graphs

Gas molecule

Clean surface

WWL
Kernel

Fig. 1 | Schematic illustration of the WWL-GPR model. a, The adsorption enthalpy of the relaxed structure, ΔEads, is predicted from a graph representation 
of the initial structure with node attributes computed from the gas phase molecule and clean surface. The graph similarity is calculated from the WWL 
graph kernel and input to a GPR model. b, The similarity of two input graphs in the WWL kernel, KWWL, is calculated by first generating node embeddings 
and then computing the Wasserstein distance between their distributions. c, Surface adsorption motivated hyperparameters incorporated into the WWL 
kernel. Sur., surface; Ads., adsorbate.
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computationally intractable with the SISSO method. Rather than 
raw performance, the merit of the SISSO approach is that the iden-
tified descriptors are (somewhat simple) analytical functions of the 
features, which are thus easier to interpret than black-box machine 
learning models. We also note that the reason for the different per-
formance of the descriptors identified in the present work com-
pared with our previous work is that here we train a single model on 
the entire database (single-task learning) to be able to make a direct 
comparison to the GPR models, whereas in our previous work 
separate fitting coefficients were used for each adsorbate (multitask 
learning). More information about the identified SISSO descriptors 
is provided in Supplementary Section 3.2.

The model complexity can be more easily tailored for the GPR 
models, and, after optimization of the relevant hyperparameters 
(see Supplementary Section 3.5 and Supplementary Table 9), we 
obtain a r.m.s.e. of 0.13 eV independent of whether we use vector 
input (RBF-GPR) or graph representation (WWL-GPR). The maxi-
mum absolute error (maxAE) also decreases from 1.11 eV (SISSO) 
to around 0.60 eV in the GPR models. Based on the similar perfor-
mance of the two GPR models, we can conclude that there is no 
added value from employing graph representation for the simple 
adsorbates. The reactivity is apparently already captured by the 
averaged surface atom features and the adsorbate-specific features 
used in the RBF-GPR model.

Finally, the XGBoost method represents an ensemble-based 
machine learning method based on decision trees and gradient 
boosting, where trees are added one at a time to improve on the 
residuals of the previous model20. Here we find that it performs sim-
ilarly to the GPR models (see Supplementary Fig. 8), with an r.m.s.e 
of 0.12 eV. On the basis of this similar performance of state-of-the-
art methods, we believe that we are at the limit of the machine learn-
ing accuracy achievable for simple adsorbates with the available 
dataset and feature representation.

Prediction of complex adsorbates. We next turn to a database of 
complex adsorbates with 41 different adsorbates in mono-, bi- and 
higher-dentate adsorption motifs on surfaces of Cu, Co, Pd and Rh 
(see Methods). As we already concluded in the preceding section 
on simple adsorbates that single-task SISSO is not competitive in 
terms of performance, we focus here only on the GPR models and 
XGBoost. The fivefold cross-validation results presented in Fig. 3 
show that the graph-based WWL-GPR model has a superior per-
formance (r.m.s.e. of 0.18 eV) for this more challenging database 
compared with RBF-GPR (r.m.s.e. of 0.47 eV). The maxAE also 
decreases from 2.23 eV (RBF-GPR) to 0.92 eV in the WWL-GPR 
model. The XGBoost method clearly outperforms RBF-GPR, with 
a r.m.s.e. of 0.23 eV, which is possibly related to the advantages of 

its ensemble-based approach; however, it is still inferior to WWL-
GPR. We attribute this to the importance of the graph representa-
tion for complex adsorbates, which is present in the WWL-GPR 
model but missing in the vector-based models. A learning curve for 
the WWL-GPR model is presented in Supplementary Fig. 6, which 
shows that an r.m.s.e. of 0.3 eV can be achieved by only training on 
30% of the database (~500 data points) and a r.m.s.e. of 0.2 eV is 
achieved at 70% of the database (~1,200 data points). A visualiza-
tion of the prediction accuracy for adsorption motifs of one selected 
adsorbate (CHCO) on one selected surface (Cu(211)) is given in 
Supplementary Fig. 7.

To visualize what trends the WWL-GPR model has identified 
in the complex adsorbates database, we present in Fig. 4 a kernel 
principal component analysis, which is a non-linear dimensionality 
reduction technique. Specifically, we here present the two dimen-
sions that explain the largest fraction of the variance. Points that 
are close together in this space are similar in the feature space. 
The analysis of the entire complex adsorbate database in Fig. 4a 
shows that the different metals are distinguished as parallel clus-
ters, where for each cluster there is a similar distribution of sub-
clusters containing the individual adsorbates. In Fig. 4b the same 
analysis is presented for only one metal (here, Rh, but similar results 
are obtained for the other transition metals). Again, the different 
adsorbates form clusters, where each point in a cluster corresponds 
to a separate adsorption motif of the adsorbate. A similar clustering 
cannot be observed in KPCA plots for the RBF-GPR model (see 
Supplementary Fig. 9), which is probably related to the fact that this 
model does not have any structural information on the different 
adsorbates and their associated adsorption motifs due to the lack of  
graph representation.

Having established the excellent interpolation performance of 
the WWL-GPR model, we next assess the predictive performance 
of the model for extrapolation tasks concerning data that are dis-
similar to those in the training database, that is, an out-of-domain 
prediction. This is highly important for the practical application of 
the model to catalyst screening. The two tasks we consider are: (1) 
predictions for a bimetallic catalyst, that is, an alloy of elemental 
metals present in our database; and (2) predictions for an out-of-
domain element when merely incorporating the adsorption enthal-
pies of atomic species (C, H, and O) at the new element into the 
database. For these tasks we selected eight adsorbates compris-
ing atomic species and larger molecules, and including some with 
bidentate adsorption motifs (see Supplementary Table 4).

As it has previously been emphasized in the literature that a care-
ful choice of regularization can substantially improve the robustness 
of a model in extrapolative, data-poor regimes33,34, we reoptimized 
the hyperparameters for the extrapolation tasks. Specifically, we 

r.m.s.e. = 0.24 eV

6

4

0

Δ E
M

L (
eV

)

ΔEDFT
 (eV)

2

6420

a

r.m.s.e. = 0.13 eV

6

4

0

Δ E
M

L (
eV

)

ΔEDFT
 (eV)

2

6420

b

r.m.s.e. = 0.13 eV

6

4

0

Δ E
M

L (
eV

)

ΔEDFT
 (eV)

2

6420

c
A

bs. error

1

0.5

0

1

0.5

0

0.25

0.5

0

0.25

0.5

0

Fig. 2 | Parity plot of DFT-calculated versus machine learning-predicted adsorption enthalpies using SISSO, RBF-GPR and WWL-GPR. a–c, Parity plot 
of DFT-calculated versus machine learning-predicted adsorption enthalpies from the combined validation set in fivefold cross-validation using SISSO (a), 
RBF-GPR (b) and WWL-GPR (c) for the simple adsorbates database. The violin plots in the insets illustrate the absolute (Abs.) error distributions (in eV), 
and the internal dashed lines in the plots mark the mean absolute error. ML, machine learning.

Nature Computational Science | VOL 2 | JulY 2022 | 443–450 | www.nature.com/natcomputsci 445



Articles NaTure CompuTaTionaL Science

used data for one bimetallic alloy (CuCo) and one out-of-domain 
element (platinum, Pt) to optimize new hyperparameters by mini-
mizing the loss function (r.m.s.e.interpolation + 2 × r.m.s.e.extrapolation), 
where r.m.s.e.interpolation is the r.m.s.e. for the original complex adsor-
bates database (including atomic adsorption enthalpies for Pt) and 
r.m.s.e.extrapolation is the r.m.s.e. of the dataset for CuCo and Pt (only 
the complex adsorbates for Pt). As the aim is to find hyperparam-
eters well suited for extrapolation, this task was given a higher 
weight (two) in the loss function than that of the interpolation task 
(one). Comparing the hyperparameters obtained previously for the 
complex adsorbates database (see the base case in Supplementary 
Table 10) with the new hyperparameters optimized specifically 
for the extrapolation tasks (see the base case in Supplementary  
Table 11), we see that indeed both the length scale and the regu-
larization term increase for the extrapolation tasks, resulting in a 
smoother machine learning model, which is consistent with the 
previous literature observations. The r.m.s.e. values obtained for the 
new hyperparameters are 0.25 eV for interpolation within the com-
plex adsorbate database, 0.23 eV for the CuCo alloy and 0.30 eV for 
Pt. Finally, we carry out a true extrapolation test to assess whether 
the new hyperparameters would also be accurate for yet another 
bimetallic alloy (here we chose PdRh) and yet another out-of-
domain element (here we chose Ru); see Supplementary Table 4. 
We are able to obtain a very good extrapolation performance with 
a r.m.s.e. of 0.23 eV for PdRh and 0.23 eV for Ru. We note here 

that Ru is apparently easier to extrapolate to than Pt (on the basis 
of the lower r.m.s.e. obtained), which signifies that it must some-
how be more similar to the elements present in the complex alloys 
database. Our results also show that an out-of-domain element is 
generally harder to predict than an alloy of known elements, even 
when incorporating some minimal information about the unknown 
element into the training database through the atomic adsorption 
enthalpies. We would expect the performance for Pt to improve if 
more adsorbates were added to the training database.

Uncertainty quantification. Up till now we have demonstrated that 
our WWL-GPR model can be applied, with r.m.s.e. values of around 
0.2–0.3 eV, to flat and stepped metal and bimetallic catalysts, as long 
as some (at least minimal) training data involving the considered 
elemental metals are provided; however, apart from knowing which 
average r.m.s.e. value to expect, it is also useful to be able to directly 
assess the expected uncertainty on a single predicted data point. 
For example, uncertainty quantification combined with sensitiv-
ity analysis of microkinetic models35–37 can be used to assess error 
propagation and the extent to which conclusions drawn from a 
model are robust to input parameter uncertainty38,39. Furthermore, 
uncertainty quantification is used in active learning approaches, 
where the training database is iteratively updated through selected 
DFT calculations, for example, of data points with a high estimated 
uncertainty40,41.
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In view of these applications, we are here primarily interested in 
the extent to which a high estimated uncertainty correlates with a 
high actual error of the model predictions. To assess this point, we 
use a random 80/20% training/test split of the complex adsorbates 
database stratified by adsorbate. We compare the intrinsic uncer-
tainty quantification provided in a single GPR model trained on the 
training set through the standard deviation of the posterior distri-
bution with the uncertainty quantification provided by the stan-
dard deviation of an ensemble (100 in total) of GPR models with 
fixed hyperparameters optimized for interpolation. The ensemble is 
constructed through bootstrapping of the training set, that is, data 
points are drawn randomly with replacement. Note that the added 
computational cost of establishing the ensemble model is negligible 
because we use a fixed training/test split, and because the kernel 
between the training and test set only needs to be computed once.

As expected, the prediction accuracies obtained from the single 
and ensemble models are almost identical (r.m.s.e. of 0.17 eV versus 
0.18 eV, respectively). A plot of estimated uncertainties versus abso-
lute prediction errors of the two models is presented in Fig. 5a,b. 
For comparison, we show also in Fig. 5c–f some distribution-based 
measures of the quality of an uncertainty quantification that have 
recently been discussed in the literature: calibration, sharpness and 
dispersion42. A useful uncertainty quantification method should 
have a small miscalibration area (that is, a good match between 
the expected and observed cumulative error distribution), a small 
sharpness value (small error estimates) and a large dispersion value 
(disperse error estimates). For calibration, sharpness and disper-
sion, the performances of the single and ensemble models are quite 
similar, with the single model having a slightly better calibration 
and the ensemble model having a slightly better sharpness and dis-
persion. However, with our primary interest being active learning, 

it is much more intriguing to see that the ensemble model does a 
better job than the single model at assigning a high uncertainty to 
data points with a high actual prediction error. In particular, the 
group of points with an estimated uncertainty higher than 0.2 eV in 
the ensemble model includes the largest prediction errors, whereas 
this is not the case for the single model, which actually assigns 
quite a low uncertainty to some of the largest prediction errors. 
We therefore conclude that the ensemble model is best suited for 
active learning approaches. We note here that we do not expect any 
quantitative match between the absolute error and the uncertainty 
in Fig. 5, partly as these are not directly comparable quantities (one 
is a standard deviation and the other an absolute error), and partly 
because it has been shown that specific calibration measures43,44 are 
required for quantitatively accurate uncertainty quantification in 
both single and ensemble GPR models.

Discussion
We begin by discussing the origin of the superior performance of the 
WWL-GPR model over the vector-based RBF-GPR and XGBoost 
models. First of all, we note that it is not surprising that for com-
plex adsorbates, simply accounting for the surface and adsorbate in 
terms of features averaged over the atoms directly involved in the 
bonding, as well as the global features of the adsorbate (for example, 
HOMO/LUMO levels) and clean surface (for example work func-
tion), as done in the vector-based models, is insufficient. By con-
trast, the graph representation provides direct access to structural 
information on the system, that is, the number and types of atoms 
in the adsorbate and how these atoms connect to each other and 
to the surface, possibly in complex bi- or higher-dentate adsorp-
tion motifs. Atom-specific features related to the local electronic 
or geometric structure can be directly used as node attributes (for 
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example, through SOAP descriptors), and we can introduce surface 
adsorption-motivated hyperparameters as discussed above and 
illustrated in Fig. 1c. The main remaining limitation of our model is 
that it cannot be expected to handle cases where the adsorbate dis-
sociates or the surface reconstructs upon the adsorption event, as 
it—by contrast to machine learning force fields—does not predict 
the entire potential energy surface of the system, but only discrete 
minima corresponding to the adsorbed states. Furthermore, it relies 
on user-specified features, which would have to be adjusted for the 
consideration of other materials classes, for example, metal oxides32.

Based on the demonstrated extrapolation performance, we trust 
that our WWL-GPR model could be useful for catalyst screening 
purposes, for example, for exploring reactions with complex adsor-
bates on alloy surfaces. Here the complexity encountered from the 
many possible adsorption motifs of each adsorbate on each type 
of alloy surface makes direct DFT investigations computationally 
intractable, while reliable machine learning force fields or density-
functional tight-binding methods for the simultaneous treatment 
of many different adsorbates and/or alloy surfaces are still difficult  
to obtain2,16.

We envision that it could be particularly interesting to apply our 
model in the context of an active learning strategy, where the train-
ing database is iteratively expanded towards catalytically interest-
ing and/or previously poorly explored regions of the catalyst space. 
Key advantages of our data-efficient GPR model in this regard are 
the low training cost (compared to, for example, deep neural net-
works) and the demonstrated uncertainty quantification. For active 
learning purposes, we also recommend using the model with dif-
ferent hyperparameter settings depending on the exploitative or 
explorative nature of the task at hand. Specifically, we can confirm 
the findings from past literature reports that hyperparameters char-
acterized, among others, by larger length scale and regularization 
terms are beneficial for accurate predictions in data-poor regions of 
the catalyst space.

Methods
DFT databases. The machine learning models are trained and tested on two 
different databases, termed simple adsorbates and complex adsorbates. The former 
is taken from refs. 11,23. After a post-processing step, the database contains 1,422 
data points and includes the adsorption enthalpies of eight simple adsorbates with 
monodentate coordination; C, H, O, CO, OH, CH, CH2 and CH3. The considered 
surfaces include the fcc(100), fcc(110), fcc(111) and fcc(211) facets of pure Ni, 
Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au, the body-centered cubic (bcc) (210) facet of Fe 
as well as the stepped hexagonal close-packed (hcp) (0001) facet of Co. For alloy 
catalysts, the database contains the adsorbates on the four single-atom alloys Ag@
Cu, Pt@Rh, Pd@Ir and Au@Ni (that is, single-atom Ag, Pt, Pd or Au dispersed in 
the surface of another host metal), and the four AB bimetallic alloys AgPd, IrRu, 
PtRh and AgAu.

The complex adsorbates database contains 1,679 data points and includes 41 
different small and large adsorbates involved in ethanol synthesis on fcc(111) and 
fcc(211) facets of Cu, Rh, Pd and Co. Examples of complex adsorbates are CHCO, 
CCHOH, CH2CH2O and CH3CH2OH; the full list of adsorbates is provided in 
Supplementary Table 3. Furthermore, selected adsorbates are calculated at the 
CuCo(111), PdRh(111), Pt(111), Ru(111), Pt(211) and Ru(211) surfaces for model 
testing purposes. The adsorbates contain up to nine atoms and cover mono-, 
bi- and higher-dentate adsorption modes. The database is constructed using 
an automated workflow and DFT settings that are compatible with the simple 
adsorbates database (Quantum Espresso code45 and the Bayesian error estimation 
functional with van der Waals correlation (BEEF-vdW) functional46). Further 
computational details and overviews of both databases are given below and in 
Supplementary Section 1.

Database construction and workflow. The initial geometries of the surface–
adsorbate systems are generated using the CatKit software30. CatKit employs a 
graph representation of the surface atoms to enumerate mono- and bidentate 
adsorption sites, where the latter are defined by a neighboring node–edge pair 
of the graph. For each adsorbate, a manual tagging of the bonding atoms for 
mono- and bidentate adsorption motifs is required (see Supplementary Table 3). 
CatKit then adds the adsorbates at the enumerated adsorption sites by employing 
some simple geometric procedures to produce good estimates for the angles and 
bond lengths in the system. We note that CatKit does not generate all possible 
adsorption motifs (which would be computationally intractable), but only those 

that are judged as most plausible. This adds a human bias into the generation of the 
database. Furthermore, not all initial geometries generated are actually stable, but 
could transform into other structures during the DFT relaxation.

To overcome some of these limitations, we added the following steps to our 
computational workflow. During the DFT relaxation, we monitor the graph 
representation of the system and assign it to the following four cases: (1) if 
the graph representation is unchanged, the data point is simply added to our 
database (32.3% of cases); (2) if the structure transforms into another graph that 
is already covered in the CatKit-enumerated structures (28.4% of cases), only the 
calculation with the most favorable adsorption enthalpy is added to the database 
to avoid duplicates; (3) the calculation is discarded if the structure transforms 
into a non-valid graph, that is, a graph that is incompatible with our direct graph-
based machine learning model (for example, adsorbate dissociation, surface 
reconstruction) (23.4% of cases); (4) if the structure transforms into a valid graph 
that was not enumerated by CatKit (15.9% of cases), the data point is added to 
the database with updated initial graph representation and the new adsorption 
motif is tested also for the other surfaces of interest. The last case (4), as well as 
large adsorbates whose initial adsorption motifs cannot be well controlled by 
CatKit, are the source of all higher-dentate adsorption motifs in our database (see 
Supplementary Fig. 3 for examples). Our workflow is implemented with AIIDA47, 
which is a scalable computational infrastructure providing advanced automation 
to allow interfacing with external simulation software. In our case this entails 
customized python scripts48 interfacing with CatKit, the Atomic Simulation 
Environment software49 and the Quantum Espresso DFT code.

DFT computational details. For the DFT calculations of the complex adsorbates 
database, the following settings were used in full compliance with the simple 
adsorbates database. We used the Quantum ESPRESSO code45 with a plane-
wave basis set, the BEEF-vdW functional and ultrasoft pseudopotentials. 
Pseudopotentials for Cu, Rh, Pd and Pt were generated using the ‘atomic’ code by 
A. Dal Corso (v.5.0.2 svn rev. 9415)50, for Co using the Vanderbilt code version 
7.0.0 (ref. 51) and for Ru using the Vanderbilt code v.7.3.5. To relieve the interaction 
between the adsorbates, we modeled the fcc(211) slab in a (3 × 1) cell and the 
fcc(111) slab in a (3 × 3) cell. In both cases this corresponds to nine atoms per 
atomic layer. The CuCo(111) and PdRh(111) alloy surfaces were modeled in a 
(4 × 2) cell and contain 16 atoms per layer. We used a (4 × 4) k-point grid for the 
pure metal slabs and a (3 × 3) grid for the alloy slabs. All slabs contained four 
atomic layers, where the bottom two layers were kept fixed in their bulk-truncated 
positions, whereas the top layers and the adsorbates were relaxed until the 
maximum force on each atom fell below 0.05 eV Å–1 (see Supplementary Fig. 1  
for images of the used slab geometries). All DFT calculations were performed as 
periodic slab calculations employing a vacuum region of 20 Å perpendicular to 
the surface and a dipole correction. Spin polarization was taken into account for 
the calculations involving Co. The cutoff energy was set to 500 eV and 5,000 eV for 
the orbitals and charge density, respectively, and a Fermi-level smearing of 0.1 eV 
was used. The resulting adsorption enthalpies are formation energies referenced to 
gaseous CH3OH, CO and H2O.

The features that require DFT calculations were obtained as follows. For the 
clean surfaces involved in both the simple and complex adsorbate databases, we 
first performed a geometry relaxation as outlined above. The projected density of 
states (PDOS) was calculated using the smearing-free tetrahedron method and an 
energy spacing of 0.01 eV. We used a (14 × 14) k-point grid for the pure metal fcc 
and bcc slabs, a (7 × 21) grid for the SG225 fcc alloys, a (14 × 21) for the SG221 fcc 
alloys, a (7 × 14) grid for the Co hcp slab, and a (7 × 42) for the hcp alloy structures. 
We used a (12 × 12) k-point grid for the CuCo(111) and PdRh(111) alloy surfaces 
involved in the extrapolation tasks.

For the calculation of band moments, we integrated empty bands up to 
the energy above the Fermi level where the PDOS had fallen below a value of 
0.01 Å−3 eV−1. The features involving the density of states at the Fermi level were 
calculated using a smearing of 0.1 eV in the PDOS calculation, and the PDOS was 
averaged over the interval ±0.1 eV around the Fermi level. For the calculation of 
adsorbate-specific features, we carried out a structural optimization of the isolated 
adsorbate positioned in a cubic supercell with a side length of 15 Å. We used a 
Fermi-level smearing of 0.01 eV and the Brillouin zone integration was performed 
using the Gamma point only.

Further details on machine learning models. The WWL-GPR model is compared 
with three other machine learning models (SISSO, RBF-GPR and XGBoost) that 
do not use graph representation, but input in vector form with features of the 
clean surface and the isolated adsorbates. The features used in the vector-based 
models are specific to the surface, site or adsorbate considered, where site-specific 
features are calculated by averaging over the metal atoms to which the adsorbate 
coordinates (clean surface features) or the bonding atoms of the adsorbate (isolated 
adsorbate features). The WWL-GPR model also uses atom-specific features as 
node attributes, for example, electronic properties of individual surface atoms or 
features of the local geometry of the clean surface and isolated adsorbate through 
Smooth Overlap of Atomic Positions (SOAP) descriptors52. All of the details 
on the features used in the compared machine learning models are provided in 
Supplementary Section 2.
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Supplementary Section 3 provides more information about each of the models, 
including a more in-depth discussion on the hyperparameters. When comparing 
the RBF-GPR and WWL-GPR models, it is interesting to note that although the 
WWL-GPR model finds that the optimal cutoff values are one node distance for 
both inner and outer cutoff for the simple adsorbates database (that is, mostly 
the atoms directly involved in surface–adsorbate bonding are judged important), 
the optimal inner and outer cutoffs (weights) are one (0.60) and two (0.06) node 
distances, respectively, for the complex adsorbates database, see Supplementary 
Table 9 (that is, also atoms neighboring the immediately bonding atoms are  
judged important, although with smaller weights). The effect of more distant atoms 
is not taken into account in the vector-based models, which then possibly relates 
to their decreased performance for complex adsorbates. Note also that during the 
node embedding scheme of the WWL graph kernel, the node attribute of every 
atom is updated with information about the node attributes of the neighboring 
atoms, see Supplementary Section 3.3.1.2. That is, even if weights beyond the outer 
cutoff are zero, the atoms there can still have a non-negligible influence on the 
kernel value.

It should be emphasized that the WWL-GPR model leverages only features 
from the initial guess geometry, specifically, the graph connectivity, and electronic 
and geometric features calculated from the clean surface and isolated adsorbate. 
From a computational screening point of view this is essential for keeping the 
computational cost of model predictions low. The computationally most intensive 
part of the model prediction is the DFT calculation of the clean surface to obtain 
the node attributes (for example d-band moments) for the surface atoms. However, 
given that we target 41 different adsorbates in various possible adsorption motifs 
for each surface, this is still a low-cost-per-machine learning prediction.

For SISSO, we previously used an approach to target simple adsorbates 
where the free parameters of the identified models were fitted to each adsorbate 
separately11,32. A similar approach has been taken in most other works targeting 
simple adsorbates12,14,53,54. In the present work we instead fit a single model to all 
adsorbates, and the different adsorbates are then instead distinguished from each 
other via adsorbate-specific features such as HOMO/LUMO energy levels. Further 
information about SISSO is given in Supplementary Section 3.2.

Data availability
The DFT-calculated adsorption energies and relaxed coordinates of the simple 
and complex adsorbates databases as well as all calculated features are available 
at https://github.com/Wenbintum/WWL-GPR and Zenodo48. Source Data are 
provided with this paper.

Code availability
The source code of WWL-GPR is publicly available on GitHub at https://github.
com/Wenbintum/WWL-GPR and Zenodo48. We provide predefined tasks for 
tutorial purposes and for reproducing the results presented in this work. The RBF-
GPR is implemented with Scikit-learn55, which is available at https://scikit-learn.
org. The SISSO code18 is available at https://github.com/rouyang2017/SISSO, and 
the XGBoost code20 is available at https://github.com/dmlc/xgboost.
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