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Abstract
3D object detection is receiving increasing attention from both industry and academia thanks to its wide applications in
various fields. In this paper, we propose Point-Voxel Region-based Convolution Neural Networks (PV-RCNNs) for 3D object
detection on point clouds. First, we propose a novel 3D detector, PV-RCNN, which boosts the 3D detection performance
by deeply integrating the feature learning of both point-based set abstraction and voxel-based sparse convolution through
two novel steps, i.e., the voxel-to-keypoint scene encoding and the keypoint-to-grid RoI feature abstraction. Second, we
propose an advanced framework, PV-RCNN++, for more efficient and accurate 3D object detection. It consists of two major
improvements: sectorized proposal-centric sampling for efficiently producing more representative keypoints, and VectorPool
aggregation for better aggregating local point features with much less resource consumption. With these two strategies, our
PV-RCNN++ is about 3× faster than PV-RCNN, while also achieving better performance. The experiments demonstrate
that our proposed PV-RCNN++ framework achieves state-of-the-art 3D detection performance on the large-scale and highly-
competitive Waymo Open Dataset with 10 FPS inference speed on the detection range of 150m × 150m.
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1 Introduction

3D object detection on point clouds aims to localize and
recognize 3D objects from a set of 3D points, which is a
fundamental task of 3D scene understanding and is widely-
adopted in lots of real-world applications like autonomous
driving, intelligent traffic system and robotics. Compared to
2D detection methods on images (Girshick, 2015; Ren et al.,
2015; Liu et al., 2016; Redmon et al., 2016; Lin et al., 2017,
2018), the sparsity and irregularity of point clouds make it
challenging to directly apply 2D detection techniques to 3D
detection on point clouds.

To tackle these challenges, most of existing 3D detection
methods (Chen et al., 2017; Zhou and Tuzel, 2018; Yang et
al., 2018b; Lang et al., 2019; Yan et al., 2018) transform the
points into regular voxels that can be processed with conven-
tional 2D/3Dconvolutional neural networks andwell-studied
2D detection heads. But the voxelization operation inevitably
brings quantization errors, thus degrading their localization
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accuracy. In contrast, the point-based methods (Qi et al.,
2018; Shi et al., 2019; Wang and Jia, 2019) naturally pre-
serve accurate point locations in feature extraction but are
generally computationally-intensive on handling large-scale
points. There are also some existing approaches (Chen et
al., 2019b; Li et al., 2021) that simply combine these two
strategies by adopting the voxel-based methods for feature
extraction and 3D proposal generation in the first stage, but
introducing the raw point representation in a second stage
to compensate the quantization errors for fine-grained pro-
posal refinement. However, this simple stacked combination
ignores deep fusion of their basic operators (e.g., sparse con-
volution (Graham et al., 2018) and set abstraction (Qi et al.,
2017b)) and can not fully explore the feature intertwining of
both strategies to take the best of both worlds.

Therefore, we propose a unified framework, namely,
Point-Voxel Region-based Convolutional Neural Networks
(PV-RCNNs), to take the best of both voxel and point
representations by deeply integrating the feature learning
strategies from both of them. The principle lies in the fact that
the voxel-based strategy can more efficiently encode multi-
scale features and generate high-quality 3D proposals from
large-scale point clouds, while the point-based strategy can
preserve accurate location informationwithflexible receptive
fields for fine-grained proposal refinement. We demonstrate
that our proposed point-voxel intertwining framework can
effectively improve the 3D detection performance by deeply
fusing the feature learning of both point and voxel represen-
tations.

Firstly, we introduce our initial 3D detection framework,
PV-RCNN,which is a two-stage 3D detector on point clouds.
It consists of two novel steps for point-voxel feature aggre-
gation. The first step is voxel-to-keypoint scene encoding,
where a 3D voxel CNN with sparse convolutions is adopted
for feature learning and proposal generation. The multi-scale
voxel features are then summarized into a small set of key-
points by point-based set abstraction, where the keypoints
with accurate point locations are sampled by farthest point
sampling from the raw points. The second step is keypoint-
to-grid RoI feature abstraction, where we propose RoI-grid
pooling module to aggregate the above keypoint features
back to regular RoI grids of each proposal. It encodes multi-
scale contextual information to form regular grid features
for proposal refinement. These two steps establish feature
intertwining between point-based set abstraction and voxel-
based sparse convolution, which have been experimentally
evidenced to improve themodel representative ability as well
as the detection performance.

Secondly, we propose an advanced two-stage detection
network, PV-RCNN++, on top of PV-RCNN, for achieving
more accurate, efficient and practical 3D object detection.
The improvements of PV-RCNN++ lie in two aspects. The
first aspect is a novel sectorized proposal-centric keypoint

sampling strategy, where we concentrate the limited num-
ber of keypoints in and around the 3D proposals to encode
more effective scene features. Meanwhile, by considering
radial distribution of LiDAR points, we propose to conduct
point sampling parallelly in different sectors, which acceler-
ates keypoint sampling process, while also ensuring uniform
distribution of keypoints. Our proposed keypoint sampling
strategy is much faster and more effective than vanilla far-
thest point sampling that has a quadratic complexity. The
efficiency of the whole framework is thus greatly improved,
which is particularly important for large-scale 3D sceneswith
millions of points. The second aspect is a novel local fea-
ture aggregation module, VectorPool aggregation, for more
effective and efficient local feature encoding on point clouds.
We argue that the relative point locations in a local region
are robust, effective and discriminative features for describ-
ing local geometry. We propose to split 3D local space into
regular and compact sub-voxels, the features of which are
sequentially concatenated to form a hyper feature vector. The
sub-voxel features in different locations are encoded with
separate kernel weights to generate position-sensitive local
features. In this way, different local location information is
encoded with different feature channels in the hyper fea-
ture vector. Compared with set abstraction, our VectorPool
aggregation can efficiently handle a very large number of
centric points due to the compact local feature representation.
Equipped with VectorPool aggregation in both voxel-based
backbone and RoI-grid pooling module, our PV-RCNN++ is
more memory-friendly and faster than previous counterparts
with comparable or even better performance, which helps
in establishing a practical 3D detector for resource-limited
devices.

In a nutshell, our contributions are three-fold: 1) Our
PV-RCNN adopts two novel strategies, voxel-to-keypoint
scene encoding and keypoint-to-grid RoI feature abstraction,
to deeply integrate the advantages of both point-based and
voxel-based feature learning strategies. 2) Our PV-RCNN++
takes a step inmore practical 3D detection systemwith better
performance, less resource consumption and faster running
speed. This is enabled by our proposed sectorized proposal-
centric keypoint sampling to obtain more representative
keypoints with faster speed, and is also powered by our novel
VectorPool aggregation for achieving local aggregation on a
large number of central points with less resource consump-
tion and more effective representation. (3) Our proposed
3D detectors surpass all published methods with remark-
able margins on the challenging large-scale Waymo Open
Dataset. In particular, our PV-RCNN++ achieves state-of-
the-art results with 10 FPS inference speed for 150m×150m
detection range. The source code is available at https://github.
com/open-mmlab/OpenPCDet.
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2 RelatedWork

3D Object Detection with 2D images Image-based 3D
detection aims to estimate 3D bounding boxes from a
monocular image or stereo images. Mono3D (Chen et al.,
2016) generates 3D proposals with ground-plane assump-
tion, which are scored by exploiting semantic knowledge
from images. The following works (Mousavian et al., 2017;
Li et al., 2019a) incorporate the relations between 2D and
3D boxes as geometric constraint. M3D-RPN (Brazil and
Liu, 2019) introduces a 3D region proposal network with
depth-aware convolutions. (Chabot et al., 2017; Murthy et
al., 2017; Manhardt et al., 2019) predict 3D boxes based on
a wire-frame template obtained from CAD models. RTM3D
(Li et al., 2020) performs coarse keypoints detection to local-
ize 3d objects. On the stereo side, Stereo R-CNN (Li et al.,
2019b; Qian et al., 2020) capitalizes on a stereo RPN to asso-
ciate proposals from left and right images. DSGN (Chen et
al., 2020) introduces differentiable 3D volume to learn depth
information and semantic cues in an end-to-end optimized
pipelines. -LiDARs (Wang et al., 2019a; Qian et al., 2020;
You et al., 2020) propose to covert the image pixels to arti-
ficial point clouds, where the LiDAR-based detectors can
operate on them for 3D box estimation. These image-based
3D detection methods suffer from inaccurate depth estima-
tion and can only generate coarse 3D bounding boxes.

Recently, in addition to image-based 3D detection from
monocular image or stereo images, a comprehensive scene
understanding with surrounding cameras has drawn a lot of
attention, where the well-known bird’s-eye-view (BEV) rep-
resentation is generally adopted for better feature fusion from
multiple surrounding images. LSS (Philion and Fidler, 2020)
andCaDDN (Reading et al., 2021) predicts depth distribution
to “lift” the 2D image features to a BEV feature map for 3D
detection. Their follow-up works (Huang et al., 2021; Huang
and Huang, 2022; Li et al., 2022a; Xie et al., 2022) learn
a depth-based implicit projection to project image features
to BEV space. Some other works also explore transformer
structure to project image features from perspective view to
BEV space via cross attention, such as DETR3D (Wang et
al., 2022), PETR (Liu et al., 2022a, b), BEVFormer (Li et al.,
2022b), PolarFormer (Jiang et al., 2022), etc. Although these
works greatly improve the performance of image-based 3D
detection by projecting multi-view images to a unified BEV
space, the inaccurate depth estimation is still the main chal-
lenge for image-based 3D detection.
Representation Learning on Point Clouds Recently repre-
sentation learning on point clouds has drawn lots of attention
for improving the performance of 3D classification and seg-
mentation (Qi et al., 2017a, b; Wang et al., 2019b; Huang et
al., 2018; Zhao et al., 2019; Li et al., 2018; Su et al., 2018;
Wu et al., 2019; Jaritz et al., 2019; Jiang et al., 2019; Thomas
et al., 2019; Choy et al., 2019; Liu et al., 2020). In terms of

3D detection, previous methods generally project the points
to regular 2D pixels (Chen et al., 2017; Yang et al., 2018b)
or 3D voxels (Zhou and Tuzel, 2018; Chen et al., 2019b)
for processing them with 2D/3D CNN. Sparse convolution
(Graham et al., 2018) is adopted in (Yan et al., 2018; Shi
et al., 2020b) to effectively learn sparse voxel features from
point clouds. Qi et al. (Qi et al., 2017a, b) proposes PointNet
to directly learn point features from raw points, where set
abstraction enables flexible receptive fields by setting dif-
ferent search radii. (Liu et al., 2019) combines both voxel
CNN and point multi-layer percetron network for efficient
point feature learning. In comparison, our PV-RCNNs take
advantages from both voxel-based (i.e., 3D sparse convolu-
tion) andpoint-based (i.e., set abstraction) strategies to enable
both high-quality 3D proposal generation with dense BEV
detection heads and flexible receptive fields in 3D space for
improving 3D detection performance.
3D Object Detection with Point Clouds Most of existing
3D detection approaches can be roughly classified into three
categories in terms of different strategies to learn point cloud
features, i.e., the voxel-basedmethods, the point-basedmeth-
ods as well as themethods combining both points and voxels.

The voxel-based methods project point clouds to regu-
lar grids to tackle the irregular data format problem. MV3D
(Chen et al., 2017) projects points to 2D bird view grids
and places lots of predefined 3D anchors for generating 3D
boxes, and the following works (Ku et al., 2018; Liang et
al., 2018, 2019; Vora et al., 2020; Yoo et al., 2020; Huang et
al., 2020) develop better strategies for multi-sensor fusion.
(Yang et al., 2018b, a; Lang et al., 2019) introduce more effi-
cient frameworks with bird-eye view representation while
(Ye et al., 2020) proposes to fuse grid features of multiple
scales. MVF (Zhou et al., 2020) integrates 2D features from
bird-eye view and perspective view before projecting points
into pillar representations (Lang et al., 2019). Some other
works (Song and Xiao, 2016; Zhou and Tuzel, 2018) divide
the points into 3D voxels to be processed by 3D CNN. 3D
sparse convolution (Graham et al., 2018) is introduced by
(Yan et al., 2018) for efficient 3D voxel processing. (Kuang
et al., 2020) utilizes multiple detection heads for detecting
3D objects with different scales. In addition, (Wang et al.,
2020; Chen et al., 2019a) predicts bounding box parameters
following anchor-free paradigm. These grid-based methods
are generally efficient for accurate 3D proposal generation
but the receptive fields are constraint by the kernel size of
2D/3D convolutions.

The point-based methods directly detect 3D objects from
raw points. F-PointNet (Qi et al., 2018) applies PointNet (Qi
et al., 2017a, b) for 3D detection from the cropped points
based on 2D image boxes. PointRCNN (Shi et al., 2019)
generates 3D proposals directly from raw points by only
taking 3D points. (Qi et al., 2019) proposes hough voting
strategy for feature grouping. 3DSSD (Yang et al., 2020)
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Fig. 1 The overall architecture of our proposed PV-RCNN. The raw
point clouds are first voxelized to feed into the 3D sparse convolution
based encoder to learn multi-scale semantic features and generate 3D
object proposals. Then the learned voxel-wise feature volumes at mul-

tiple neural layers are summarized into a small set of key points via the
novel voxel set abstraction module. Finally the keypoint features are
aggregated to the RoI-grid points to learn proposal specific features for
fine-grained proposal refinement and confidence prediction

introduces hybrid feature-distance based farthest point sam-
pling on raw points. These point-based methods are mostly
based on PointNet series, especially set abstraction (Qi et
al., 2017b), which enables flexible receptive fields for point
cloud feature learning. However, it is challenging to extend
these point-based methods to large-scale point clouds since
they generally consume much more memory/computation
resources than the above voxel-based methods.

There are also someworks that utilize both the point-based
and voxel-based representations. STD (Yang et al., 2019)
transforms point-wise features to dense voxels for refining
the proposals. Fast Point R-CNN (Chen et al., 2019b) fuses
the deep voxel features with raw points for 3D detection.
Part-A2-Net (Shi et al., 2020b) aggregates the point-wise part
locations by the voxel-based RoI-aware pooling to improve
3D detection performance. However, these methods gener-
ally simply transform features between two representations
and do not fuse the deeper features from the specific basic
operations of these two representations. In contrast, our
PV-RCNN frameworks explore on how to deeply aggre-
gate features by learning with both point-based (i.e., set
abstraction) and voxel-based (i.e., sparse convolution) fea-
ture learningmodules to boost the 3D detection performance.

3 PV-RCNN: Point-Voxel Feature Set
Abstraction for 3D Object Detection

Most of state-of-the-art 3D detectors (Shi et al., 2020b; Yin
et al., 2021; Sheng et al., 2021) adopt 3D sparse convolu-
tion for learning representative features from irregular points
thanks to its efficiency and effectiveness on handling large-

scale point clouds. However, 3D sparse convolution network
suffers from losing accurate point information due to the
indispensable voxelization process. In contrast, the point-
based approaches (Qi et al., 2017a, b) naturally preserve
accurate point locations and can capture rich context infor-
mationwith flexible receptive fields, where the accurate point
locations are essential for estimating accurate 3D bounding
boxes.

In this section, we briefly review our initial 3D detec-
tion framework, PV-RCNN (Shi et al., 2020a), for 3D object
detection from point clouds. It deeply integrates the voxel-
based sparse convolution and point-based set abstraction
operations to take the best of both worlds.

As shown in Fig. 1, PV-RCNN is a two-stage 3D detec-
tion framework that adopts a 3D voxel CNN with sparse
convolution as the backbone for efficient feature encoding
and proposal generation (Sec. 3.1), and then we generate
the proposal-aligned features for predicting accurate 3D
bounding boxes by intertwining point-voxel features through
two novel steps, which are voxel-to-keypoint scene encod-
ing (Sec. 3.2) and keypoint-to-grid RoI feature abstraction
(Sec. 3.3).

3.1 Voxel Feature Encoding and Proposal Generation

In order to handle 3D object detection on the large-scale
point clouds, we adopt the 3D voxel CNN with sparse con-
volution (Graham et al., 2018) as the backbone network to
generate initial 3D proposals.

The input points P are first divided into small voxels with
spatial resolution of L × W × H , where non-empty voxel
features are directly calculated by averaging the coordinates
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of inside points. The network utilizes a series of 3D sparse
convolution to gradually convert the points into feature vol-
umes with 1×, 2×, 4×, 8× downsampled sizes. We follow
(Yan et al., 2018) to stack the 3D feature volumes along Z
axis to obtain the L

8 × W
8 bird-view feature maps, which

can be naturally combined with the 2D detection heads (Liu
et al., 2016; Yin et al., 2021) for high quality 3D proposal
generation.

It is worth noting that the sparse feature volumes at each
level can be viewed as a set of sparse voxel-wise feature
vectors, and these multi-scale semantic features are consid-
ered as the input of our following voxel-to-keypoint scene
encoding step.

3.2 Voxel-to-Keypoint Scene Encoding

Given the multi-scale scene features, we propose to summa-
rize these features into a small number of keypoints, which
serve as the courier to propagate features from the above 3D
voxel CNN to the refinement network.
Keypoint Sampling We simply adopt farthest point sam-
pling algorithm as in (Qi et al., 2017b) to sample a small
number of keypoints K = {

pi | pi ∈ R
3
}n
i=1 from the raw

points P , where n is a hyper-parameter (e.g., n=4,096 for
Waymo Open Dataset (Sun et al., 2020)). It encourages that
the keypoints are uniformly distributed around non-empty
voxels and can be representative to the overall scene.
Voxel Set AbstractionModule To aggregate the multi-scale
semantic features from 3D feature volumes to the keypoints,
we propose Voxel Set Abstraction (VSA) module. The set
abstraction (Qi et al., 2017b) is adopted for aggregating
voxel-wise feature volumes. The key difference is that the
surrounding local points are now regular voxel-wise semantic
features from 3D voxel CNN, instead of the neighboring raw
points with features learned by PointNet (Qi et al., 2017a).

Specifically, we denote the number of non-empty voxels
in the k-th level of 3D voxel CNN as Nk , and the voxel-
wise features and 3D coordinates are denoted as F (lk) ={
[ f (lk )

i , v
(lk )
i ] | f (lk)

i ∈ R
C , v

(lk )
i ∈ R

3
}Nk

i=1
, where C indi-

cates the number of feature dimensions.
For each keypoint pi ∈ K, to retrieve the set of neigh-

boring voxel-wise feature vectors, we first identify its neigh-
boring non-empty voxels at the k-th level within a radius rk
as

S(lk )
i =

{[
f (lk )
j , v

(lk )
j − pi

] ∣∣∣∣
∥∥∥v

(lk )
j − pi

∥∥∥ < rk

}
, (1)

where [ f (lk )
j , v

(lk )
j ] ∈ F (lk), and the local relative position

v
(lk )
j −pi is concatenated to indicate the relative location

of f (lk)
j in this local area. The features within neighboring

set S(lk )
i are then aggregated by a PointNet-block (Qi et al.,

Fig. 2 Illustration of RoI-grid pooling module. Rich context informa-
tion of each 3D RoI is aggregated by set abstraction operation with
multiple receptive fields

2017a) to generate keypoint feature as

f
(pvk )
i = max

{
SharedMLP

(
S(lk )
i

)}
, (2)

where SharedMLP(·) denotes a shared multi-layer percep-
tron (MLP) network to encode voxel-wise features and
relative locations, and max{·} conducts permutation invari-
ant feature aggregation tomapdiverse number of neighboring

voxel features to a single keypoint feature f
(pvk )
i . Heremulti-

ple radii are utilized to capture richer contextual information.
The above voxel feature aggregation is performed at the

outputs of different levels of 3D voxel CNN, and the aggre-
gated features from different scales are concatenated to
obtain the multi-scale semantic feature for keypoint pi as

f (p)
i = Concat

({
f
(pvk )
i

}4

k=1
, f (raw)

i , f (bev)
i

)
, (3)

where i ∈ {1, . . . , n}, and k ∈ {1, . . . , 4} indicates that the
keypoint features are aggregated from four-level voxel-wise
features of 3Dvoxel CNN.Note that the keypoint features are
further enriched with two extra information sources, where
the raw point features f (raw)

i are aggregated as in Eq. (2) to
partially make up the quantization loss of point voxelization,
while 2D bird-view features f (bev)

i are obtained by bilinear
interpolation on the 8× downsampled 2D feature maps to
achieve larger receptive fields along the height axis.
Predicted Keypoint Weighting Intuitively, the keypoints
belonging to the foreground objects should contribute more
to the proposal refinement, while the keypoints from the
background regions should contribute less. Hence, we pro-
pose a Predicted Keypoint Weighting (PKW) module to
re-weight the keypoint features with extra supervisions from
point segmentation as

f (p)
i = MLP( f (p)

i ) · f (p)
i , (4)
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where MLP(·) is a three-layer MLP network with a sigmoid
function to predict foreground confidence. It is trained with
focal loss (Lin et al., 2018) by the default parameters and the
segmentation labels can be directly generated from the 3D
box annotations as in (Shi et al., 2019). Note that this PKW
module is optional for our framework as it only leads small
gains (see Table. 7).

The keypoint features F =
{
f (p)
i

}n

i=1
not only incor-

porate multi-scale semantic features from the 3D voxel
backbone network, but also naturally preserve accurate loca-
tion information through its 3D keypoint coordinates K =
{pi }ni=1, which provides strong capacity of preserving 3D
structural information of the entire scene for the following
fine-grained proposal refinement.

3.3 Keypoint-to-Grid RoI Feature Abstraction

Given the aggregated keypoint features and their 3d coordi-
nates, in this step, we propose keypoint-to-grid RoI feature
abstraction to generate accurate proposal-aligned features for
fine-grained proposal refinement.
RoI-grid Pooling via Set AbstractionWe propose the RoI-
grid pooling module to aggregate the keypoint features to
the RoI-grid points by adopting multi-scale local feature
grouping. For each given 3D proposal, we uniformly sam-
ple 6 × 6 × 6 grid points according to the 3D proposal box,
which are then flattened and denoted as G = {gi }6×6×6=216

i=1 .
To aggregate the features of keypoints to the RoI grid points,
we firstly identify the neighboring keypoints of a grid point
gi as

Ψ =
{[

f (p)
j , p j − gi

] ∣∣∣∣
∥∥p j − gi

∥∥ < r (g)
}

, (5)

where p j ∈ K and f (p)
j ∈ F . We concatenate p j − gi to

indicate the local relative location within the ball of radius
r (g). Then we adopt the similar process with Eq. (2) to sum-
marize the neighboring keypoint feature set Ψ to obtain the
features of grid point gi as

f (g)
i = max {SharedMLP (Ψ )} . (6)

Note that we set multiple radii r (g) and aggregate keypoint
features with different receptive fields, which are concate-
nated together for capturing richer multi-scale contextual
information.Next, all RoI-grid features { f (g)

i }216i=1 of the same
RoI can be vectorized and transformed by a two-layer MLP
with 256 feature dimensions to represent the overall features
of this proposal box.

Our proposed RoI-grid pooling operation can aggregate
much richer contextual information than the previous RoI-
pooling/RoI-align operation (Shi et al., 2019; Yang et al.,

2019; Shi et al., 2020b). It is because a single keypoint can
contribute to multiple RoI-grid points due to the overlapped
neighboringballs ofRoI-grid points, and their receptivefields
are even beyond the RoI boundaries by capturing the contex-
tual keypoint features outside the 3D RoI. In contrast, the
previous state-of-the-art methods either simply average all
point-wise features within the proposal as the RoI feature
(Shi et al., 2019), or pool many uninformative zeros as the
RoI features because of the very sparse point-wise features
(Shi et al., 2020b; Yang et al., 2019).
Proposal RefinementGiven the above RoI-aligned features,
the refinement network learns to predict the size and location
(i.e. center, size and orientation) residuals relative to the 3D
proposal box. Two sibling sub-networks are employed for
confidence prediction and proposal refinement. Each sub-
network consists of a two-layer MLP and a linear prediction
layer. We follow (Shi et al., 2020b) to conduct the IoU-
based confidence prediction. The binary cross-entropy loss
is adopted to optimize the IoU branch while the box residuals
are optimized with smooth-L1 loss.

4 PV-RCNN++: Faster and Better 3D
Detection with PV-RCNN Framework

Although our proposed PV-RCNN 3D detection framework
achieves state-of-the-art performance (Shi et al., 2020a), it
suffers from the efficiency problem when handling large-
scale point clouds. To make PV-RCNN framework more
practical for real-world applications,wepropose an advanced
3D detection framework, i.e., PV-RCNN++, for more accu-
rate and efficient 3D object detection with less resource
consumption.

As shown in Fig. 3, we present two novel modules to
improve both the accuracy and efficiency of PV-RCNN
framework. One is sectorized proposal-centric strategy for
much faster and better keypoint sampling, and the other one
is VectorPool aggregationmodule formore effective and effi-
cient local feature aggregation from large-scale point clouds.
These two modules are adopted to replace their counterparts
in PV-RCNN, which are introduced in Sec. 4.1 and Sec. 4.2,
respectively.

4.1 Sectorized Proposal-Centric Sampling for
Efficient and Representative Keypoint Sampling

The keypoint sampling is critical for PV-RCNN frame-
work as keypoints bridge the point-voxel representations
and heavily influence the performance of proposal refine-
ment. However, previous keypoint sampling algorithm (see
Sec. 3.2) has twomain drawbacks. (i) Farthest point sampling
is time-consuming due to its quadratic complexity, which
hinders the training and inference speed of PV-RCNN, espe-
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Fig. 3 The overall architecture of our proposed PV-RCNN++ frame-
work. We propose sectorized proposal-centric keypoint sampling mod-
ule to concentrate keypoints to the neighborhoods of 3Dproposalswhile
it can also accelerate the processwith sectorized farthest point sampling.

Moreover, our proposed VectorPool module is utilized in both voxel set
abstraction module and RoI-grid pooling module to improve the local
feature aggregation and save memory/computation resources

cially for keypoint sampling on large-scale point clouds. (ii)
It would generate a large number of background keypoints
that are generally useless to proposal refinement, since only
the keypoints around proposals can be retrieved by RoI-grid
pooling module.

To mitigate these drawbacks, we propose the Sector-
ized Proposal-Centric (SPC) keypoint sampling to uni-
formly sample keypoints from more concentrated neigh-
boring regions of proposals, while also being much faster
than the vanilla farthest point sampling algorithm. It mainly
consists of two novel steps, which are the proposal-centric
filtering and the sectorized sampling, which are illustrated in
the following paragraphs.
Proposal-Centric Filtering To better concentrate the key-
points on the more important areas and also reduce the
complexity of the next sampling process, we first adopt the
proposal-centric filtering step.

Specifically, we denote a number of Np 3D proposals as

D = {[ci , di ] | ci ∈ R
3, di ∈ R

3}Np
i=1, where ci and di are

the center and size of each proposal box, respectively. We
restrict the keypoint candidates P ′ to the neighboring point
sets of all proposals as

P ′ =
{
pi

∣∣∣∣
∥∥pi − c j

∥∥ <
1

2
· max

(
d j

) + r (s)
}

, (7)

where [c j , d j ] ∈ D, pi ∈ P indicates the raw point, and
max(·) obtains the maximum length of 3D box size. r (s) is a
hyperparameter indicating the maximum extended radius of
the proposals. Through this proposal-centric filtering pro-
cess, the number of candidate keypoints for sampling is
greatly reduced from |P| to |P ′|. For instance, for theWaymo
Open Dataset (Sun et al., 2020), generally P is about 180k
andP ′ can be smaller than 90k in most cases (the exact point
number depends on the number of proposal boxes in each
scene).

Hence, this step not only reduces the time complexity of
the follow-up keypoint sampling, but also concentrates the

123



International Journal of Computer Vision

Fig. 4 Illustration of Sectorized Proposal-Centric (SPC) keypoint sam-
pling. It contains two steps, where the first proposal filtering step
concentrates the limited number of keypoints to the neighborhoods

of proposals, and the following sectorized-FPS step divides the whole
scene into several sectors for accelerating the keypoint sampling process
while also keeping the keypoints uniformly distributed

limited number of keypoints to better encode the neighboring
regions of the proposals.
Sectorized Keypoint Sampling To further parallelize the
keypoint sampling process for acceleration, as shown in
Fig. 4, we propose the sectorized keypoint sampling strategy,
which takes advantage of radial distribution of the LiDAR
points to better parallelize and accelerate the keypoint sam-
pling process.

Specifically, we divide proposal-centric point setP ′ into s
sectors centered at the scene center, and the point set of k-th
sector can be represented as

S′
k =

{
pi

∣∣∣∣
⌊(
arctan

(
pyi , pxi

) + π
) · s

2π

⌋
= k − 1

}
, (8)

where k ∈ {1, . . . , s}, pi = (pxi , pyi , pzi ) ∈ P ′ , and arctan(
pyi , pxi ) ∈ (−π, π ] indicates the angle between the positive
X axis and the ray ended with (pxi , pyi ) in terms of the bird’s
eye view.

Through this process, we divide the task of sampling n
keypoints into s subtasks of sampling local keypoints, where

k-th sector samples
⌊ |S′

k ||P ′| × n
⌋
keypoints from the point set

S′
k . These subtasks are eligible to be executed in parallel

on GPUs, while the scale of keypoint sampling (i.e., time
complexity) is further reduced from |P ′| tomaxk∈{1,...,s} |S′

k |.
Note that we adopt farthest point sampling in each subtask
since both the qualitative and quantitative experiments in
Sec.?? demonstrate that farthest point sampling can gener-
ate more uniformly distributed keypoints to better cover the
whole regions, which is critical for the final detection perfor-
mance.

It is worth noting that our sector-based group partition
can roughly produce similar number of points in each group

by considering radial distribution of the points generated by
LiDAR sensors, which is essential to speed up the keypoint
sampling since the overall running time depends on the group
with the most points.

Therefore, our proposed keypoint sampling algorithm
greatly reduces the scale of keypoint sampling from |P| to
the much smaller maxk∈{1,...,s} |S′

k |, which not only effec-
tively accelerates the keypoint sampling process, but also
increases the capability of keypoint feature representation
by concentrating the keypoints to the more important neigh-
boring regions of 3D proposals.

Although the proposed sectorized keypoint sampling is
tailored for LiDAR sensors, the main idea behind it, that
is, conducting FPS in spatial groups to speed up the opera-
tion, is also effective with other types of sensors. It should be
noted that the point group generation should be based on spa-
tially partitioning to keep the overall uniform distribution. As
shown in Table 8, randomly dividing the points into groups,
while ensuring a balance in the number of points between
groups, harms the model performance.

4.2 Local Vector Representation for
Structure-Preserved Local Feature Learning

The local feature aggregation of point clouds plays an impor-
tant role in PV-RCNN framework as it is the fundamental
operation to deeply integrate the point-voxel features in
both voxel set abstraction and RoI-grid pooling modules.
However, we observe that set abstraction (see Eqs. (2) and
(6)) in PV-RCNN framework can be extremely time- and
resource-consuming on large-scale point clouds, since it
applies several shared-parameter MLP layers on the point-
wise features of each local point separately. Moreover, the
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Fig. 5 Illustration of VectorPool aggregation for local feature aggre-
gation from point clouds. The local 3D space around a center point is
divided into dense sub-voxels, where the inside point-wise features are
generated by interpolating from three nearest neighbors. The features
of each volume are encoded with position-specific kernels to gener-

ate position-sensitive features, which are sequentially concatenated to
generate the local vector representation to explicitly encode the spa-
tial structure information. Note that the notations in the figure follows
the same denition as in Sec. 4.2, except that we simplify the channel
definition of the kernels as: Ci = 9 + Cin, Co = Cmid

max-pooling operation in set abstraction abandons the spa-
tial distribution information of local points and harms the
representation capability of locally aggregated features from
point clouds.

Therefore, in this section, we propose VectorPool aggre-
gation module for local feature aggregation on the large-
scale point clouds, which can better preserve spatial point
distribution of local neighborhoods and also costs less
memory/computation resources than the commonly-used set
abstraction. Our PV-RCNN++ framework adopts it as a basic
module to enable more effective and efficient 3D object
detection.
Problem Statement The VectorPool aggregation module
aims to generate the informative local features for N target
center points (denoted as Q = {qk | qk ∈ R

3}Nk=1) by learn-
ing from M given support points and their features (denoted
as I = {[hi , ai ] | hi ∈ R

Cin , ai ∈ R
3}Mi=1), where Cin is the

input feature channels and we are going to extract N local
point-wise features with Cout channels for each point in Q.
VectorPool Aggregation on Point Clouds In our proposed
VectorPool aggregation module, we propose to generate
position-sensitive local features by encoding different spa-
tial regions with separate kernel weights and separate feature
channels, which are then concatenated as a single vector rep-
resentation to explicitly represent the spatial structures of
local point features.

Specifically, given a target center point qk , we first iden-
tify the support points that are within its cubic neighboring
region, which can be represented as

Yk =
{[

h j , a j
]
∣∣∣∣max(a j − qk) < 2 × δ

}
, (9)

where [h j , a j ] ∈ I, δ is the half length of this cubic space,
and max(a j − qk) ∈ R obtains the maximum axis-aligned
value of this 3D distance. Note that we double the half length
(e.g., 2×δ) of the original cubic space to containmore neigh-
boring points for local feature aggregation of this target point.

To generate position-sensitive features for this local cubic
neighborhood centered at qk , we split its neighboring cubic
space into nx × ny × nz small local sub-voxels. Inspired by
(Qi et al., 2017b), we utilize the inverse distance weighted
strategy to interpolate the features of the t th sub-voxel by
considering its three nearest neighbors from Yk , where t ∈
{1, . . . , nx ×ny ×nz} indicating the index of each sub-voxel
andwe denote its corresponding sub-voxel center as vt ∈ R

3.
Then we can generate the features of the t th sub-voxel as

h(v)
t =

∑
i∈Gt

(wi · hi )
∑

i∈Gt
wi

, wi = (||ai − vt ||)−1, (10)

where [hi , ai ] ∈ Yk , Gt is the index set indicating the three
nearest neighbors (i.e., (|Gt | = 3)) of vt in neighboring set
Yk . The results h

(v)
t encode the local features of the specific

t th local sub-voxel in this local cubic.
There are also two other alternative strategies to aggre-

gate the features of local sub-voxels by simply averaging
the features within each sub-voxel or by randomly choos-
ing one point within each sub-voxel. Both of them generate
lots of empty features in the empty sub-voxels, which may
degrade the performance. In contrast, our interpolation based
strategy can generate more effective features even on empty
local voxels.

Those features in different local sub-voxels may represent
very different local features. Hence, instead of encoding the
local features with a shared-parameter MLP as in (Qi et al.,
2017b), we propose to encode different local sub-voxels with
separate local kernel weights for capturing position-sensitive
features as

Ut = Concat
(
{ai − vt }i∈Gt , h(v)

t

)
× Wt , (11)

where {ai − vt }i∈Gt ∈ R
(3×3=9) indicates the relative posi-

tions of its three nearest neighbors, Concat(·) is the concate-
nation operation to fuse the relative position and features.
Wt ∈ R

(9+Cin)×Cmid is the learnable kernelweights for encod-
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ing the specific features of t th local sub-voxel with feature
channelCmid, and different positions have different learnable
kernel weights for encoding position-sensitive local features.

Finally, we directly sort the local sub-voxel features Ut

according to their spatial order along each of 3D axis, and
their features are sequentially concatenated to generate the
final local vector representation as

U = MLP
(
Concat

(
U1,U2, . . . ,Unx×ny×nz

))
, (12)

where U ∈ R
Cout . The inner sequential concatenation

encodes the structure-preserved local features by simply
assigning the features of different locations to their corre-
sponding feature channels, which naturally preserves the
spatial structures of local features in the neighboring space
centered at qk , This local vector representation would be
finally processed with several MLPs to encode the local fea-
tures to Cout feature channels for the follow-up processing.

It is worth noting that our VectorPool aggregation mod-
ule can also be combined with channel reduction technique
as in (Sun et al., 2018) to further reduce the computa-
tion/memory resources by summarizing the input feature
channels before conducting VectorPool aggregation, and we
provide the detailed ablation experiments in Sec. 5.3 and
Table 10.

Compared with set abstraction, our VectorPool aggrega-
tion can greatly reduce the needed computations andmemory
resources by adopting channel summation and utilizing the
proposed local vector representation before MLPs. More-
over, instead of conducting max-pooling on local point-wise
features as in set abstraction, our proposed local vector rep-
resentation can encode the position-sensitive features with
different feature channels, to provide more effective repre-
sentation for local feature learning.
VectorPool Aggregation on PV-RCNN++ Our proposed
VectorPool aggregation is integrated in PV-RCNN++ detec-
tion framework, to replace set abstraction in both voxel set
abstraction module and RoI-grid pooling module. Thanks
to our VectorPool aggregation operation, the experiments
demonstrate that our PV-RCNN++ not only consumes much
less memory and computation resources than PV-RCNN
framework, but also achieves better 3D detection perfor-
mance.

5 Experiments

In this section, we first introduce our experimental setup and
implementation details in Sec. 5.1. Then we present the main
results of our PV-RCNN/PV-RCNN++ frameworks and com-
pare with state-of-the-art methods in Sec. 5.2. Finally, we
conduct extensive ablation experiments and analysis to inves-

tigate the individual components of our proposed frameworks
in Sec. 5.3.

5.1 Experimental Setup

Datasets and Evaluation Metrics1. We evaluate our meth-
ods on the Waymo Open Dataset (Sun et al., 2020), which
is currently the largest dataset with LiDAR point clouds for
3D object detection of autonomous driving scenarios. There
are totally 798 training sequences with around 160k LiDAR
samples, 202 validation sequences with 40k LiDAR samples
and 150 testing sequences with 30k LiDAR samples.

The evaluationmetrics are calculated by the official evalu-
ation tools, where the mean average precision (mAP) and the
mAP weighted by heading (mAPH) are used for evaluation.
The 3D IoU threshold is set as 0.7 for vehicle detection and
0.5 for pedestrian/cyclist detection. The comparison is con-
ducted in two difficulty levels, where the LEVEL 1 denotes
the ground-truth objects with at least 5 inside points while
the LEVEL 2 denotes the ground-truth objects with at least
1 inside points. As utilized by the official Waymo evalua-
tion server, the mAPH of LEVEL 2 difficulty is the most
important evaluate metric for all experiments.
Network Architecture For the PV-RCNN framework, the
3DvoxelCNNhas four levels (see Fig. 1)with feature dimen-
sions 16, 32, 64, 64, respectively. Their two neighboring radii
rk of each level in the voxel set abstraction module are set
as (0.4m, 0.8m), (0.8m, 1.2m), (1.2m, 2.4m), (2.4m, 4.8m),
and the neighborhood radii of set abstraction for raw points
are (0.4m, 0.8m). For the proposed RoI-grid pooling opera-
tion, we uniformly sample 6 × 6 × 6 grid points in each 3D
proposal and the two neighboring radii r̃ of each grid point
are (0.8m, 1.6m).

For the PV-RCNN++ framework, we set the maximum
extended radius r (s) = 1.6m for proposal-centric filtering,
and each scene is split into 6 sectors for parallel keypoint sam-
pling. Two VectorPool aggregation operations are adopted
to the 4× and 8× feature volumes of voxel set abstrac-
tion module with the half length δ = (1.2m, 2.4m) and
δ = (2.4m, 4.8m) respectively, and both of them have local
voxels nx = ny = nz = 3. The VectorPool aggregation
on raw points is set with nx = ny = nz = 2. For RoI-
grid pooling, we adopt the same number of RoI-grid points
(6× 6× 6) as PV-RCNN, and the utilized VectorPool aggre-
gation has local voxels nx = ny = nz = 3, and half length
δ = (0.8m, 1.6m).
Training and Inference Details Both two frameworks are
trained from scratch in an end-to-end manner with ADAM
optimizer, learning rate 0.01 and cosine annealing learning

1 The datasets generated during and/or analysed during the current
study are available on the officialwebsites ofWaymoOpenDataset (Sun
et al., 2020) and KITTI dataset (Geiger et al., 2012).
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rate decay. To train the proposal refinement stage, we ran-
domly sample 128 proposals with 1:1 ratio for positive and
negative proposals, where a proposal is considered as a posi-
tive sample if it has at least 0.55 3D IoUwith the ground-truth
boxes, otherwise it is treated as a negative sample. Both two
frameworks are trained with three losses with equal loss
weights (i.e., region proposal loss, keypoint segmentation
loss and proposal refinement loss), where the region proposal
loss is same as (Yin et al., 2021) and the proposal refinement
loss is same as (Shi et al., 2020b).

During training, we adopt the widely used data augmen-
tation strategies for 3D detection, including random scene
flipping, global scaling with a scaling factor sampled from
[0.95, 1.05], global rotation around Z axis with an angle
sampled from [−π

4 , π
4 ], and the ground-truth sampling aug-

mentation (Yan et al., 2018) to randomly ”paste” some new
objects from other scenes to current training scene for simu-
lating objects in various environments. The detection range
is set as [−75.2, 75.2]m for X and Y axes, and [−2, 4]m for
the Z axis, while the voxel size is set as (0.1m, 0.1m, 0.15m).
More training details can be found in our open source code-
base https://github.com/open-mmlab/OpenPCDet.

For the inference speed, our PV-RCNN++ framework can
achieve state-of-the-art performancewith 10 FPS for 150m×
150m detection range on Waymo Open Dataset (three times
faster than PV-RCNN), where a single TITAN RTX GPU
card is utilized for profiling.

5.2 Main Results

In this section, we demonstrate the main results of our pro-
posed PV-RCNN/PV-RCNN++ frameworks, and make the
comparison with state-of-the-art methods on the large-scale
WaymoOpenDataset (Sun et al., 2020). By default, we adopt
the center-based RPN head as in (Yin et al., 2021) to generate
3D proposals in the first stage, and we train a single model in
each setting for detecting the objects of all three categories.
Comparison with State-of-the-Art Methods As shown in
Table 1, for the 3D object detection setting of taking a single
frame point cloud as input, our PV-RCNN++ (i.e., “PV-
RCNN++”) outperforms previous state-of-the-artworks (Yin
et al., 2021; Shi et al., 2020b) on all three categories with
remarkable performance gains (+1.88% for vehicle, +2.40%
for pedestrian and +1.59% for cyclist in terms of mAPH of
LEVEL 2 difficulty). Moreover, following (Sun et al., 2021),
by simply concatenating an extra neighboring past frame as
input, our PV-RCNN framework can also be evaluated on the
multi-frame setting. Table 1 (i.e., “PV-RCNN++2f”) demon-
strates that the performance of our PV-RCNN++ framework
can be further boosted by using 2 frames, which outperforms
previous multi-frame method (Sun et al., 2021) with remark-
able margins (+2.60% for vehicle, +5.61% for pedestrian in
terms of mAPH of LEVEL 2).
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Table 3 Performance comparison of PV-RCNN and PV-RCNN++ on
the validation set of Waymo Open Dataset. We adopt two settings for
both two frameworks by equipping with different RPN heads for pro-
posal generation, which are the anchor-based RPN head as in (Shi et
al., 2020b) and the center-based RPN head as in (Yin et al., 2021). Note
that PV-RCNN++ adopts the same backbone network (without residual
connection) with PV-RCNN for fair comparison

Difficulty Method Veh. Ped. Cyc.
mAPH mAPH mAPH

LEVEL 1 PV-RCNN (anchor) 76.89 65.65 66.35

PV-RCNN++ (anchor) 78.64 69.26 70.86

PV-RCNN (center) 77.50 73.03 70.27

PV-RCNN++ (center) 78.63 74.62 72.38

LEVEL 2 PV-RCNN (anchor) 68.41 57.61 63.98

PV-RCNN++ (anchor) 69.95 60.94 68.22

PV-RCNN (center) 68.98 64.72 67.79

PV-RCNN++ (center) 69.91 66.30 69.62

Table 4 Performance comparison of PV-RCNN and PV-RCNN++ on
the test set ofKITTI dataset. The results are evaluated by themost impor-
tant moderate difficulty level of KITTI evaluation metric by submitting
to the official KITTI evaluation server

Method Car Pedestrian Cyclist Average

PV-RCNN 81.43 43.29 63.71 62.81

PV-RCNN++ 81.88 47.19 67.33 65.47

Meanwhile, we also evaluate our frameworks on the test
set by submitting to the official test server of Waymo Open
Dataset (Sun et al., 2020). As shown in Table 2, without bells
and whistles, in both single-frame and multi-frame settings,
our PV-RCNN++ framework consistently outperforms pre-
vious state-of-the-art (Yin et al., 2021) significantly in both
vehicle and pedestrian categories,where for single-frame set-
tingwe achieve a performance gain of +1.57% for vehicle and
+2.00% for pedestrian in terms of mAPH of LEVEL 2 diffi-
culty, and for multi-frame setting we achieve a performance
gain of +2.93% for vehicle detection and +2.03% for pedes-
trian detection. We also achieve comparable performance for
the cyclist category on both the single-frame andmulti-frame
settings. Note that we do not use any test-time augmenta-
tion or model ensemble tricks in the evaluation process. The
significant improvements on the large-scale Waymo Open
dataset manifest the effectiveness of our proposed frame-
work.
Comparison of PV-RCNN and PV-RCNN++ Table 3
demonstrates that no matter which type of RPN head is
adopted, our PV-RCNN++ framework consistently outper-
forms previous PV-RCNN framework on all three categories
of all difficulty levels. Specifically, for the anchor-based set-
ting, PV-RCNN++ surpasses PV-RCNN with a performance
gain of +1.54% for vehicle, +3.33% for pedestrian and 4.24%

for cyclist in terms of mAPH of LEVEL 2 difficulty. By tak-
ing the center-based head, PV-RCNN++ also outperforms
PV-RCNNwith a +0.93%mAPH gain for vehicle, a +1.58%
mAPH gain for pedestrian and a +1.83% mAPH gain for
cyclist in terms of LEVEL 2 difficulty.

The stable and consistent improvements prove the effec-
tiveness of our proposed sectorized proposal-centric sam-
pling algorithm and VectorPool aggregation module. More
importantly, our PV-RCNN++ consumes much less calcula-
tions and GPU memory than PV-RCNN framework, while
also increasing the processing speed from 3.3 FPS to 10 FPS
for the 3D detection of 150m×150m such a large area, which
further validates the efficiency and the effectiveness of our
PV-RCNN++.

As shown in Table 4, we also provide the performance
comparison of PV-RCNN and PV-RCNN++ on the KITTI
dataset (Geiger et al., 2012). Compared with Waymo Open
Dataset, KITTI dataset adopts different kinds of LiDAR sen-
sor and the scene in KITTI dataset is about four times smaller
than the scene in theWaymoOpenDataset. Table 3 shows that
PV-RCNN++ outperforms previous PV-RCNN on all three
categories of KITTI dataset with remarkable average perfor-
mance margin, demonstrating its effectiveness on handling
different kinds of scenes and different LiDAR sensors.

5.3 Ablation Study

In this section, we investigate the individual components of
our PV-RCNN++ framework with extensive ablation experi-
ments.We conduct all experiments on the large-scaleWaymo
Open Dataset (Sun et al., 2020). For efficiently conducting
the ablation experiments, we generate a small representative
training set by uniformly sampling 20% frames (about 32k
frames) from the training set2, and all results are evaluated
on the full validation set (about 40k frames) with the official
evaluation tool. All models are trained with 30 epochs and
batch size 16 on 8 GPUs.

We conduct all ablation experimentswith the center-based
RPN head (Yin et al., 2021) on three categories (vehicle,
pedestrian and cyclist) of Waymo Open Dataset (Sun et al.,
2020), and the mAPH of LEVEL 2 difficulty is adopted as
the evaluation metric.
Effects of Voxel-to-Keypoint Scene Encoding In Sec. 3.2,
we propose the voxel-to-keypoint scene encoding strategy to
encode the global scene features to a small set of keypoints,
which serves as a bridge between the backbone network
and the proposal refinement network. As shown in the 2nd

and 4th rows of Table 5, our proposed voxel-to-keypoint
scene encoding strategy achieves better performance than the
UNet-based decoderwhile summarizing the scene features to
much less point-wise features than the UNet-based decoder.

2 Reference:https://github.com/open-mmlab/OpenPCDet.
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Table 5 Effects of voxel set
abstraction (VSA) and RoI-grid
pooling modules, where the
UNet-decoder and RoI-aware
pooling are the same with (Shi
et al., 2020b). All experiments
are based on PV-RCNN++
framework with a center-based
RPN head

Point Feature Extraction RoI Pooling Module Veh. Ped. Cyc. Average

UNet-decoder RoI-aware Pooling 66.42 63.41 67.48 65.77

UNet-decoder RoI-grid Pooling 67.37 63.77 67.08 66.05

VSA RoI-aware Pooling 66.15 60.70 66.07 64.31

VSA RoI-grid Pooling 68.62 63.74 68.26 66.87

Table 6 Effects of different
feature components for voxel set
abstraction. “Frame Rate”
indicates frames per seconds in
terms of testing speed. All
experiments are conducted on
PV-RCNN++ framework with a
center-based RPN head. Note
that the default setting of
PV-RCNN++ does not use the
voxel features f

(pv1,2)
i by

considering its negligible gain
and higher latency

VSA Input Feature Frame Rate Veh. Ped. Cyc. Average

f
(pv1,2)
i f

(pv3,4)
i f (bev)

i f (raw)
i

� 16.3 67.01 61.23 66.54 64.93

� 13.2 68.02 62.73 66.80 65.85

� 12.3 68.13 63.24 67.37 66.25

� � 11.9 68.15 63.35 67.73 66.41

� � 10.3 68.46 63.59 67.58 66.54

� � � 10.0 68.62 63.74 68.26 66.87

� � � � 7.6 68.55 64.48 67.94 66.99

For instance, our voxel set abstraction module encodes the
whole scene to around 4k keypoints for feeding into the
RoI-grid poolingmodule, while the UNet-based decoder net-
work needs to summarize the scene features to around 80k
point-wise features in most cases, which validates the effec-
tiveness of our proposed voxel-to-keypoint scene encoding
strategy. We consider that it might benefit from the fact that
the keypoint features are aggregated from multi-scale fea-
ture volumes and raw point clouds with large receptive fields,
while also keeping the accurate point locations. Besides that,
we should also note that the feature dimension ofUNet-based
decoder is generally smaller than the feature dimensions of
our keypoints since the UNet-based decoder is limited to
its large memory consumption on large-scale point clouds,
which may degrade its performance.

We also notice that our voxel set abstraction module
achieves worse performance (the 1st and 3rd rows of Table 5)
than the UNet-decoder when it is combined with RoI-aware
pooling (Shi et al., 2020b). This is to be expected since RoI-
aware pooling module will generate lots of empty voxels
in each proposal by taking only 4k keypoints, which may
degrade the performance. In contrast, our voxel set abstrac-
tion module can be ideally combined with our RoI-grid
pooling module and they can benefit each other by taking
a small number of keypoints as the intermediate connection.
Effects of Different Features for Voxel Set Abstraction
The voxel set abstraction module incorporates multiple fea-
ture components (see Sec. 3.2 ), and their effects are explored
in Table 6. We can summarize the observations as follows:
(i) The performance drops a lot if we only aggregate fea-
tures from high level bird-view semantic features ( f (bev)

i ) or

accurate point locations ( f (raw)
i ), since neither 2D-semantic-

Table 7 Effects of Predicted Keypoint Weighting module. All exper-
iments are conducted on our PV-RCNN++ framework with a center-
based RPN head

Use PKW Vehicle Pedestrian Cyclist Average

× 68.48 63.90 67.62 66.66

� 68.62 63.74 68.26 66.87

only nor point-only are enough for the proposal refinement.

(i i) As shown in 6th row of Table 6, f
(pv3)
i and f

(pv4)
i con-

tain both 3D structure information and high level semantic
features, which can improve the performance a lot by com-
bining with the bird-view semantic features f (bev)

i and the

raw point locations f (raw)
i . (i i i) The shallow semantic fea-

tures f
(pv1)
i and f

(pv2)
i can slightly improve the performance

but also greatly increase the training cost. Hence, the pro-
posed PV-RCNN++ framework does not use such shallow
semantic features.
Effects of Predicted Keypoint Weighting The predicted
keypoint weighting is proposed in Sec. 3.2 to re-weight the
point-wise features of keypoints with extra keypoint segmen-
tation supervision. As shown in Table 7, the experiments
show that the performance slightly drops after removing
this module, which demonstrates that the predicted keypoint
weighting enables better multi-scale feature aggregation by
focusing more on the foreground keypoints, since they are
more important for the succeeding proposal refinement net-
work. Although this module only leads small additional cost
to our frameworks, we should also notice that it is optional
for our frameworks by considering its limited gains.
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Effects of RoI-grid PoolingModuleRoI-grid pooling mod-
ule is proposed in Sec. 3.3 for aggregating RoI features from
the very sparse keypoints. Here we investigate the effects
of RoI-grid pooling module by replacing it with the RoI-
aware pooling (Shi et al., 2020b) and keeping other modules
consistent. As shown in the 3rd and 4th rows Table 5, the
experiments show that the performance drops significantly
when replacing RoI-grid pooling. It validates that our pro-
posed RoI-grid pooling module can aggregate much richer
contextual information to generate more discriminative RoI
features.

Compared with the previous RoI-aware pooling mod-
ule (Shi et al., 2020b), our proposedRoI-grid poolingmodule
can generate denser grid-wise feature representation by sup-
porting different overlapped ball areas among different grid
points, while RoI-aware poolingmodulemay generate lots of
zeros due to the sparse inside points of RoIs. That means our
proposed RoI-grid pooling module is especially effective for
aggregating local features from the very sparse point-wise
features, such as in our PV-RCNN framework to aggregate
features from a very small number of keypoints.
Effects of Proposal-Centric Filtering In the 1st and 2nd

rows of Table 8, we investigate the effectiveness of our
proposal-centric keypoint filtering (see Sec. 4.1), where we
find that compared with the strong baseline PV-RCNN++
framework equipped with vanilla farthest point sampling,
our proposal-centric keypoint filtering further improves the
average detection performance by 1.12 mAPH in LEVEL 2
difficulty (65.87%vs. 66.99%). It validates our argument that
our proposed proposal-centric keypoint sampling strategy
can generate more representative keypoints by concentrat-
ing the small number of keypoints to the more informative
neighboring regions of proposals. Moreover, improved by
our proposal-centric keypoint filtering, our keypoint sam-
pling algorithm is about five times (133ms vs. 27ms) faster
than the vanilla farthest point sampling algorithm by reduc-
ing the number of candidate keypoints.
Effects of Sectorized Keypoint Sampling To investigate
the effects of sectorized farthest point sampling (Sec. 4.1),
we compare it with four alternative strategies for accelerat-
ing the keypoint sampling process: (i) Random Sampling:
the keypoints are randomly chosen from raw points. (i i)
Voxelized-FPS-Voxel: the raw points are firstly voxelized
to reduce the number of points (i.e., voxels), then farthest
point sampling is applied to sample keypoints from vox-
els by taking the voxel centers. (i i i) Voxelized-FPS-Point:
unlike Voxelized-FPS-Voxel, here a raw point is randomly
selected within the selected voxels as the keypoints. (iv)

RandomParallel-FPS: the raw points are randomly split into
several groups, then farthest point sampling is utilized to
these groups in parallel for faster keypoint sampling.

As shown in Table 8, compared with the vanilla farthest
point sampling (2nd row) algorithm, the detection perfor- Ta
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Fig. 6 Illustration of the keypoint distributions from different keypoint
sampling strategies. Some dashed circles are utilized to highlight the
missing parts and the clustered keypoints after using these keypoint
sampling strategies. We find that our Sectorized-FPS generates better

uniformly distributed keypoints that cover more input points to better
encode the scene features for proposal refinement, while other strategies
may miss some important regions or generate some clustered keypoints

mances of all four alternative strategies drop a lot. In contrast,
the performance of our proposed sectorized farthest point
sampling algorithm is on par with the vanilla farthest point
sampling (66.99%vs. 66.87%)while being three times (27ms
vs. 9ms) faster than the vanilla farthest point sampling algo-
rithm.
Analysis of the Coverage Rate of KeypointsWe argue that
the uniformly distributed keypoints are important for the pro-
posal refinement, where a better keypoint distribution should
cover more input points. Hence, to evaluate the quality of
different keypoint sampling strategies, we propose an evalu-
ation metric, coverage rate, which is defined as the ratio of
input points that are within the coverage region of any key-
points. Specifically, for a set of input pointsP = {pi }mi=1 and
a set of sampled keypoints K = {p′

j }nj=1, the coverage rate
C can be formulated as:

C = 1

m
·

m∑

i=1

min(1.0,
n∑

j=1

1(||pi − p′
j || < Rc)), (13)

where Rc is a scalar that denotes the coverage radius of each
keypoint, and 1 (·) ∈ {0, 1} is the indicator function to indi-
cate whether pi is covered by p′

j .
As shown in Table 8, we evaluate the coverage rate of

different keypoint sampling algorithms in terms of multi-
ple coverage radii. Our sectorized farthest point sampling
achieves similar average coverage rate (84.76%) with the
vanilla farthest point sampling (84.78%), which is much
better than other sampling algorithms. The higher average
coverage rate demonstrates that our proposed sectorized far-
thest point sampling can sample more uniformly distributed

keypoints to better cover the input points, which is consistent
with the qualitative results of different sampling strategies as
in Fig. 6.

In short, our sectorized farthest point sampling can gener-
ate uniformly distributed keypoints to better cover the input
points, by splitting raw points into different groups based
on the fact of radial distribution of LiDAR points. Although
there may still exist a very small number of clustered key-
points in the margins of different sectors, the experiments
show that they have negligible effect on the performance.
We consider the reason may be that the clustered keypoints
are mostly in the regions around the scene centers, where
the objects are generally easier to detect since the raw points
around scene centers are much denser than distant regions.
Effects of VectorPool Aggregation In Sec. 4.2, to tackle the
resource-consuming problem of set abstraction, we propose
VectorPool aggregation module to effectively and efficiently
summarize the structure-preserved local features from point
clouds. As shown in Table 9, by adopting VectorPool aggre-
gation in both voxel set abstraction module and RoI-grid
pooling module, PV-RCNN++ framework consumes much
less computations (i.e., a reduction of 4.679 GFLOPS) and
GPU memory (from 10.62GB to 7.58GB) than original
PV-RCNN framework, while the performance is also consis-
tently increased from 65.92% to 66.87% in terms of average
mAPH (LEVEL 2) of three categories. Note that the batch
size is only set as 2 in all of our settings and the reduction of
memory consumption / calculations can be more significant
with larger batch size.

The significant reductionof resource consumptiondemon-
strates the effectiveness of our VectorPool aggregation
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for feature learning from large-scale point clouds, which
makes our PV-RCNN++ framework a more practical 3D
detector to be used on resource-limited devices. Moreover,
PV-RCNN++ framework also benefits from the structure-
preserved spatial features from our VectorPool aggregation,
which is critical for the following fine-grained proposal
refinement.

We further analyze the effects of VectorPool aggregation
by removing channel reduction (Sun et al., 2018) in our Vec-
torPool aggregation. As shown in Table 10, our VectorPool
aggregation is effective in reducing memory consumption no
matter whether channel reduction is incorporated (by com-
paring the 1st / 3rd rows or the 2nd / 4th rows), since themodel
activations in our VectorPool aggregation modules consume
much lessmemory than those in set abstraction, by adopting a
single local vector representation before multi-layer percep-
tron networks. Meanwhile, Table 10 also demonstrates that
our VectorPool aggregation can achieve better performance
than set abstraction (Qi et al., 2017b) in both two cases (with
or without channel reduction). Meanwhile, we also notice
that VectorPool aggregation slightly improves the number of
parameters compared with previous set abstraction module
(e.g., from 13.05M to 14.11M for the setting with channel
reduction), which is generally negligible given the fact that
VectorPool aggregation consumes smaller GPU memory.
Effects of Different Feature Aggregation Strategies for
Local Sub-Voxels As mentioned in Sec. 4.2, in addition
to our adopted interpolation-based method, there are two
alternative strategies (average pooling and random selec-
tion) for aggregating features of local sub-voxels. Table 11
demonstrates that our interpolation based feature aggrega-
tion achieves much better performance than the other two
strategies, especially for the small objects like pedestrian
and cyclist. We consider that our strategy can generate more
effective features by interpolating from three nearest neigh-
bors (even beyond the sub-voxel), while both of the other two
methods might generate lots of zero features on the empty
sub-voxels, which may degrade the final performance.
Effects of Separate Local Kernel Weights in VectorPool
Aggregation We adopt separate local kernel weights (see
Eq. (11)) on different local sub-voxels to generate position-
sensitive features. The 1st and 2nd rows of Table 12 show that
the performance drops a bit if we remove the separate local
kernel weights and adopt shared kernel weights for relative
position encoding. It validates that the separate local kernel
weights are better than previous shared-parameter MLP for
local feature encoding, and it is important in our proposed
VectorPool aggregation module.
Effects of Dense Voxel Numbers in VectorPool Aggre-
gation Table 12 investigates the number of dense voxels
nx × ny × nz in VectorPool aggregation for voxel set
abstraction module and RoI-grid pooling module, where we
can see that VectorPool aggregation with 3 × 3 × 3 and
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Table 10 Effects of VectorPool aggregation with and without channel
reduction (Sun et al., 2018). “SA” denotes set abstraction, “VP” denotes
VectorPool aggregation module and “CR” denotes channel reduction.
“#Param.” indicates the number of parameters of the model. All exper-

iments are based on our PV-RCNN++ framework with a center-based
RPN head for proposal generation, and only the local feature extraction
modules are changed during the ablation experiments

Stra- tegy CR Veh. Ped. Cyc. Average GFLOPS Mem. (MB) #Param.

SA × 68.03 62.43 67.29 65.92 -0 10617 13.07M

SA � 68.43 62.06 66.96 65.81 -3.467 9795 13.05M

VP × 68.82 64.06 67.96 66.95 -1.988 8549 14.32M

VP � 68.62 63.74 68.26 66.87 -4.679 7583 14.11M

Table 11 Effects of the feature
aggregation strategies to
generate the local sub-voxel
features of VectorPool
aggregation. All experiments are
based on our PV-RCNN++
framework with a center-based
RPN head for proposal
generation

Aggregation of Sub-Voxels Vehicle Pedestrian Cyclist Average

Average Pooling 68.35 62.33 67.50 66.06

Random Selection 68.36 62.82 67.68 66.29

Interpolation 68.62 63.74 68.26 66.87

Table 12 Effects of separate
local kernel weights and the
number of dense voxels in our
proposed VectorPool
aggregation module. All
experiments are based on our
PV-RCNN++ framework with a
center-based head for proposal
generation

Kernel Weights Number of Dense Voxels Vehicle Pedestrian Cyclist Average

Share 3 × 3 × 3 68.17 63.28 67.36 66.27

Separate 3 × 3 × 3 68.62 63.74 68.26 66.87

Separate 2 × 2 × 2 68.21 62.88 67.44 66.18

Separate 3 × 3 × 3 68.62 63.74 68.26 66.87

Separate 4 × 4 × 4 68.74 63.99 67.98 66.90

Table 13 Effects of the number of keypoints for encoding the global
scene. All experiments are based on our PV-RCNN++ framework with
a center-based head for proposal generation

Number of Keypoints Vehicle Pedestrian Cyclist Average

8192 68.85 64.11 67.88 66.95

4096 68.62 63.74 68.26 66.87

2048 67.99 62.14 67.41 65.85

1024 66.67 59.21 65.07 63.65

4 × 4 × 4 achieve similar performance while the perfor-
mance of 2 × 2 × 2 setting drops a lot. We consider that
our interpolation-based VectorPool aggregation can generate
effective voxel-wise features even with large dense voxels,
hence the setting with 4× 4× 4 achieves slightly better per-
formance than the setting with 3 × 3 × 3. However, since
the setting with 4 × 4 × 4 greatly improves the calculations
and memory consumption, we finally choose the setting of
3×3×3 dense voxel representation in both voxel set abstrac-
tionmodule (except the rawpoint layer) andRoI-grid pooling
module of our PV-RCNN++ framework.
Effects of the Number of Keypoints In Table 13, we inves-
tigate the effects of the number of keypoints for encoding the

Table 14 Effects of the grid size in RoI-grid poolingmodule. All exper-
iments are based on our PV-RCNN++ framework with a center-based
head for proposal generation

RoI-grid Size Vehicle Pedestrian Cyclist Average

8 × 8 × 8 68.88 63.74 67.84 66.82

7 × 7 × 7 68.76 63.81 68.00 66.85

6 × 6 × 6 68.62 63.74 68.26 66.87

5 × 5 × 5 68.28 63.54 67.69 66.50

4 × 4 × 4 68.21 63.58 67.56 66.45

3 × 3 × 3 67.33 62.93 67.22 65.83

scene features. Table 13 shows that larger number of key-
points achieves better performance, and similar performance
is observedwhen usingmore than 4,096 keypoints. Hence, to
balance the performance and computation cost, we empiri-
cally choose to encode thewhole scene to 4,096 keypoints for
the Waymo Open dataset. The above experiments show that
our method can effectively encode the whole scene to 4,096
keypoints while keeping similar performance with a large
number of keypoints, which demonstrates the effectiveness
of the keypoint feature encoding strategy of our proposed
PV-RCNN/PV-RCNN++ frameworks.
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Table 15 Comparison of PV-RCNN/PV-RCNN++ on different sizes
of scenes. “FoV” indicates the field of view of each scene, where for
each scene in Waymo Open Dataset, we crop a specific angle (e.g., 90◦,
180◦) of frontal view for training and testing, and 360◦ FoV indicates

the original scene. “#Points” indicates the average number of points
in each scene. “Frame Rate” indicates frames per seconds in terms of
testing speed

FoV #Points Method Frame Rate Veh. Ped. Cyc. Average

90◦ ∼45k PV-RCNN 10.5 66.50 59.33 65.96 63.93

90◦ ∼45k PV-RCNN++ 16.0 67.29 61.51 66.91 65.24

180◦ ∼90k PV-RCNN 6.8 65.34 60.20 61.70 62.41

180◦ ∼90k PV-RCNN++ 12.3 66.05 62.08 63.44 63.86

360◦ ∼180k PV-RCNN 3.3 67.54 61.62 66.57 65.24

360◦ ∼180k PV-RCNN++ 10.0 68.62 63.74 68.26 66.87

Effects of the Grid Size in RoI-grid Pooling. Table 14
shows the performance of adopting different RoI-grid sizes
for RoI-grid pooling module. We can see that the perfor-
mance increases along with the RoI-grid sizes from 3×3×3
to 6× 6× 6, and the settings with larger RoI-grid sizes than
6 × 6 × 6 achieve similar performance. Hence we finally
adopt RoI-grid size 6× 6× 6 for the RoI-grid pooling mod-
ule. Moreover, from Table 14 and Table 9, we also notice that
PV-RCNN++ with a much smaller RoI-grid size 4 × 4 × 4
(66.45% in terms of mAPH@L2) can also outperform PV-
RCNN with larger RoI-grid size 6× 6× 6 (65.24% in terms
of mAPH@L2), which further validates the effectiveness of
our proposed sectorized proposal-centric sampling strategy
and the VectorPool aggregation module.
Comparison on Different Sizes of Scenes. To investi-
gate the effects of our proposed PV-RCNN++ on handling
large-scale scenes, we further conduct ablation experiments
to compare the effectiveness and efficiency of PV-RCNN
and PV-RCNN++ frameworks on different sizes of scenes.
As shown in Table 15, we compare these two frameworks on
three sizes of scenes by cropping different angles of frontal
view of the scene in Waymo Open Dataset for training and
testing. PV-RCNN++ framework consistently outperforms
previous PV-RCNN framework on all three sizes of scenes
with large performancegains. Table 15 also demonstrates that
as the scales of the scenes get larger, PV-RCNN++ becomes
much more efficient than PV-RCNN. In particular, when the
comparison is conducted on the original scene of Waymo
Open Dataset, the running speed of PV-RCNN++ is about
three times faster than PV-RCNN, demonstrating the effi-
ciency of PV-RCNN++ on handling large-scale scenes.

6 Conclusion

In this paper, we present two novel frameworks, named PV-
RCNN and PV-RCNN++, for accurate 3D object detection
from point clouds. Our PV-RCNN framework adopts a novel
voxel set abstraction module to deeply integrates both the

multi-scale 3D voxel CNN features and the PointNet-based
features to a small set of keypoints, and the learned discrim-
inative keypoint features are then aggregated to the RoI-grid
points through our proposed RoI-grid pooling module to
capture much richer contextual information for proposal
refinement. Our PV-RCNN++ further improves PV-RCNN
framework by efficiently generatingmore representative key-
points with our novel sectorized proposal-centric keypoint
sampling strategy, and also by equipping with our proposed
VectorPool aggregation module to learn structure-preserved
local features in both the voxel set abstraction module and
RoI-grid pooling module. Thus, our PV-RCNN++ finally
achieves better performance with much faster running speed
than the original PV-RCNN framework.

Our final PV-RCNN++ framework significantly outper-
forms previous 3D detection methods and achieve state-of-
the-art performance on both the validation set and testing
set of the large-scale Waymo Open Dataset, and extensive
experiments have been designed and conducted to deeply
investigate the individual components of our proposed frame-
works.
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