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ABSTRACT

Bridging geometry and topology, curvature is a powerful and expressive invariant.
While the utility of curvature has been theoretically and empirically confirmed in
the context of manifolds and graphs, its generalization to the emerging domain of
hypergraphs has remained largely unexplored. On graphs, Ollivier-Ricci curva-
ture measures differences between random walks via Wasserstein distances, thus
grounding a geometric concept in ideas from probability and optimal transport.
We develop ORCHID, a flexible framework generalizing Ollivier-Ricci curvature
to hypergraphs, and prove that the resulting curvatures have favorable theoretical
properties. Through extensive experiments on synthetic and real-world hyper-
graphs from different domains, we demonstrate that ORCHID curvatures are both
scalable and useful to perform a variety of hypergraph tasks in practice.

1 INTRODUCTION

Hypergraphs generalize graphs by allowing any number of nodes to participate in an edge. They
allow us to faithfully represent complex relations, such as co-authorship of scientific papers, multi-
lateral interactions between chemicals, or group conversations, which cannot be adequately captured
by graphs. While hypergraphs are more expressive than graphs and other relational objects like sim-
plicial complexes, they are harder to analyze both theoretically and empirically, and many concepts
that have proven useful for understanding graphs have yet to be transferred to the hypergraph setting.

Curvature has established itself as a powerful characteristic of Riemannian manifolds, as it permits
the description of global properties through local measurements by harmonizing ideas from geome-
try and topology. For graphs, graph curvature measures to what extent the neighborhood of an edge
deviates from certain idealized model spaces, such as cliques, grids, or trees. It has proven helpful,
for example, in assessing differences between real-world networks (Samal et al., 2018), identifying
bottlenecks in real-world networks (Gosztolai & Arnaudon, 2021), and alleviating oversquashing in
graph neural networks (Topping et al., 2022). One prominent notion of graph curvature is Ollivier-
Ricci curvature (ORC). ORC compares random walks based at specific nodes, revealing differences
in the information diffusion behavior in the graph. As the sizes of edges and edge intersections can
vary in hypergraphs, there are many ways to generalize ORC to hypergraphs. While some notions
of hypergraph ORC have been previously studied in isolation (e.g., Asoodeh et al., 2018; Leal et al.,
2020; Eidi & Jost, 2020), a unified framework for their definition and computation is still lacking.

Contributions. We introduce ORCHID, a unified framework for Ollivier-Ricci curvature on hy-
pergraphs. ORCHID integrates and generalizes existing approaches to hypergraph ORC. Our work
is the first to identify the individual building blocks shared by all notions of hypergraph ORC, and
to perform a rigorous theoretical and empirical analysis of the resulting curvature formulations. We
develop hypergraph ORC notions that are aligned with our geometric intuition while still efficient to
compute, and we demonstrate the utility of these notions in practice through extensive experiments.

1

ar
X

iv
:2

21
0.

12
04

8v
1 

 [
cs

.L
G

] 
 2

1 
O

ct
 2

02
2



Preprint. Under review.

Structure. After providing the necessary background on graphs and hypergraphs and recalling the
definition of Ollivier-Ricci curvature for graphs in Section 2, we introduce ORCHID, our framework
for hypergraph ORC, and analyze the theoretical properties of ORCHID curvatures in Section 3.
We treat related work in Section 4, before assessing the empirical properties and practical utility of
ORCHID curvatures through extensive experiments in Section 5. Finally, we discuss the limitations
and possible extensions of ORCHID as well as potential directions for future work in Section 6.

2 PRELIMINARIES

Graphs and Hypergraphs A simple graph G = (V,E) is a tuple containing n nodes (ver-
tices) V = {v1, . . . , vn} and m edges E = {e1, . . . , em}, with ei ∈

(
V
2

)
for all i ∈ [m]. Here,

for a set S and a positive integer k ≤ |S|,
(
S
k

)
denotes the set of all k-element subsets of S, and for

x ∈ N with 0 /∈ N, [x] = {i ∈ N | i ≤ x}. In multi-graphs, edges can occur multiple times, and
hence, E = (e1, . . . , em) is an indexed family of sets, with ei ∈

(
V
2

)
for all i ∈ [m]. Generalizing

simple graphs, a simple hypergraph H = (V,E) is a tuple containing n nodes V and m hyperedges
E ⊆ P(V ) \ ∅, i.e., in contrast to edges, hyperedges can have any cardinality r ∈ [n]. In a multi-
hypergraph, E = (e1, . . . , em) is an indexed family of sets, with ei ⊆ V for all i ∈ [m]. We assume
that all our hypergraphs are multi-hypergraphs, and we drop the prefix hyper from hypergraph and
hyperedge where it is clear from context.

We denote the degree of node i, i.e., the number of edges containing i, by deg(i) = |{e ∈ E | i ∈
e}|, write i ∼ j if i is adjacent to j (i.e., there exists e ∈ E such that {i, j} ⊆ e), and use N (i)
(N (e)) for the neighborhood of i (e), i.e., the set of nodes adjacent to i (edges intersecting edge e).
While deg(i) = | N (i)| in simple graphs and deg(i) ≥ |N (i)| in multigraphs, these relations do
not generally hold for hypergraphs. Two nodes i 6= j are connected in H if there is a sequence of
nodes i = v1, v2, . . . , vk−1, vk = j such that vl ∼ vl+1 for all l ∈ [k]. Every such sequence is a path
in H , whose length is the cardinality of the set of edges used in the adjacency relation. We refer to
the length of a shortest path connecting nodes i, j as the distance between them, denoted as d(i, j).
We assume that all hypergraphs are connected, i.e., there exists a path between all pairs of vertices.
This turns H into a metric space (H,d) with diameter diam(H) := max{d(i, j) | i, j ∈ V }.
(Hyper)graphs in which all nodes have the same degree k (deg(i) = k for all i ∈ V ) are called
k-regular. Three properties of hypergraphs that distinguish them from graphs give rise to additional
(ir)regularities. First, hyperedges can vary in cardinality, and a hypergraph in which all hyperedges
have the same cardinality r (|e| = r for all e ∈ E) is called r-uniform. Second, hyperedge inter-
sections can have cardinality greater than 1, and we call a hypergraph s-intersecting if all nonempty
edge intersections have the same cardinality s (e ∩ f 6= ∅ ⇔ |e ∩ f | = s for all e, f ∈ E). Third,
nodes can cooccur in any number of hyperedges, and we call a hypergraph c-cooccurrent if each
node cooccurs c times with any of its neighbors (i ∼ j ⇔ |{e ∈ E | {i, j} ⊆ e}| = c for all
i, j ∈ V ). Using this terminology, graphs are 2-uniform, 1-intersecting, 1-cooccurrent hypergraphs.

Given a hypergraph H = (V,E), its unweighted clique expansion is G◦ = (V,E◦) with E◦ =
{{i, j} | {i, j} ⊆ e for some e ∈ E}, where two nodes are adjacent in G◦ if and only if they
are adjacent in H . The weighted clique expansion of H is G◦ endowed with a weighting function
w : E◦ → N, where w(e) = |{e ∈ E | {i, j} ⊆ e}| for each e ∈ E◦, i.e., an edge {i, j} is weighted
by how often i and j cooccur in edges from H . Both of these transformations are lossy, i.e., we
cannot uniquely reconstruct H from G◦. The unweighted star expansion of H is the bipartite graph
G′ = (V ′, E′) with V ′ = V ∪̇E and E′ = {{v, e} | v ∈ V, e ∈ E, v ∈ e}, and we can uniquely
reconstruct H from G′ if we know which of its parts corresponds to the original node set of H .

Ollivier-Ricci curvature for Graphs Ollivier-Ricci curvature (ORC) extends the notion of Ricci
curvature defined for Riemannian manifolds to metric spaces equipped with a probability measure
or, equivalently, a random walk (Ollivier, 2007; 2009). On graphs, which are metric spaces with the
shortest-path distance d(·, ·), the ORC κ of a pair of nodes {i, j} is defined as

κ(i, j) := 1− 1

d(i, j)
W1(µi, µj) , and hence, κ(i, j) = 1−W1(µi, µj) if i ∼ j , (1)

where µi is a probability measure associated with node i that depends measurably on i and has
finite first moment, and W1 is the Wasserstein distance of order 1, which captures the amount of
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work needed to transport the probability mass from µi to µj in an optimal coupling. The use of the
shortest-path distance is necessary to ensure that ORC is also well-defined for pairs of non-adjacent
vertices. This definition on edges or pairs of vertices alludes to the fact that Ricci curvature is
associated to tangent vectors of a manifold. A common strategy to measure curvature at a node i is
to average over the curvatures of all edges incident with i (Jost & Liu, 2014; Banerjee, 2021), i.e.,

κ(i) =
1

deg(i)

∑
{i,j}∈E

κ(i, j) . (2)

A popular probability measure that easily generalizes to weighted graphs and multigraphs is

µαi (j) :=


α j = i

(1− α) 1
deg(i) i ∼ j

0 otherwise ,
(3)

where α serves as a smoothing parameter (Lin et al., 2011). With this definition, stacking the
probability measures yields the transition matrix of an α-lazy random walk.

3 THEORY

Having introduced the concept of hypergraphs and the definition of Ollivier-Ricci curvature (ORC)
for graphs, we now develop our framework for ORC on hypergraphs, called ORCHID (Ollivier-
Ricci Curvature for Hypergraphs In Data). We focus our exposition on undirected, unweighted
multi-hypergraphs, but ORCHID straightforwardly generalizes to other hypergraph variants.

3.1 OLLIVIER-RICCI CURVATURES FOR HYPERGRAPHS (ORCHID CURVATURES)

As mentioned in Section 2, hypergraphs differ from graphs in that edges can have any cardinality,
and consequently, edges can intersect in more than one node, and nodes can co-occur in more than
one edge. When generalizing ORC as defined in Section 2 to hypergraphs, these peculiarities be-
come relevant in two places: first, in the generalization of the measure µ for nodes, and second, in
the generalization of the distance metric W1. Construing the distance metric as a function aggre-
gating measures (AGG), with AGG : V + → R, we can rewrite Eq. (1) for pairs of nodes {i, j} as

κ(i, j) := 1− AGG(µi, µj)

d(i, j)
, (4)

which facilitates its generalization; we will also use κ(e) for (hyper)edges as a shorthand notation
for Eq. (4). When defining probability measures and AGG functions on hypergraphs, we would like
to retain as much flexibility as possible while also ensuring the following conditions:

I. Mathematical generalization. For graphs, AGG is an instantiation of the original ORC on graphs.

II. Permutation invariance. AGG(e) = AGG(σ(e)) for edges e and all node index permutations σ.

III. Scalability. The probability measures and AGG functions should be efficiently computable.

Beyond these properties, we would also like to have the following interpretability features to ascer-
tain that a hypergraph curvature measure is a conceptual generalization of ORC:

A. Probabilistic intuition. The probability measures assigned to nodes should correspond to a
semantically sensible random walk on the hypergraph.

B. Optimal transport intuition. The generalization of the distance metric (AGG) should have a
semantically sensible interpretation in terms of optimal transport.

C. Geometric intuition. Edges in hypercliques should have positive curvature, edges in hypergrids
should have curvature zero, and edges in hypertrees should have negative curvature.

We now specify probability measures and AGG functions for which the conditions above hold.
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(a) Node 0 and its neighborhood
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(c) Equal-Edges Random Walk (EE)
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(d) Weighted-Edges Random Walk (WE)

Figure 1: ORCHID’s probability measures are based on random walks, depicted for the neighborhood
of a node 0. Arrows outgoing from the same node or edge are traversed with uniform probability.

Probability Measures (µ). In graphs, the most natural probability measures are induced by the
α-lazy random walk given in Eq. (3): With probability α, we stay at the current node i, and with
probability (1−α)/deg(i), we move to one of its neighbors. There are at least three direct extensions
of this formulation to hypergraphs that all retain this probabilistic intuition, thus fulfilling the re-
quirement of Feature A. These extensions, illustrated in Fig. 1, differ only in how they distribute the
(1−α) probability mass in Eq. (3) from node i to the nodes in i’s neighborhood. Given a hypergraph
H , for i and j with i ∼ j, first, we could define

µENi (j) := (1− α)
1

| N (i)| , (5)

by which we pick a neighbor j of node i uniformly at random. We call this the equal-nodes random
walk (EN), which is a random walk on the unweighted clique expansion of H . Second, we could set

µEEi (j) := (1− α)
1

deg(i)− |{e 3 i | |e| = 1}|
∑

e⊇{i,j}

1

|e| − 1
, (6)

which first picks an edge e 3 iwith |e| ≥ 2, then picks a node j ∈ e\{i}, both uniformly at random.
We call this the equal-edges random walk (EE), which is a two-step random walk on the unweighted
star expansion of H , starting at a node i ∈ V , and non-backtracking in the second step. It underlies
the curvatures studied by Asoodeh et al. (2018) and Banerjee (2021). Third, we could define

µWEi (j) := (1− α)
∑

e⊇{i,j}

|e| − 1∑
f3i

(
|f | − 1

) 1

|e| − 1
= (1− α)

|{e ∈ E | {i, j} ⊆ e}|∑
f3i

(
|f | − 1

) , (7)

first picking an edge e incident with i with probability proportional to its cardinality, then picking a
node j ∈ e\{i} uniformly at random. We call this the weighted-edges random walk (WE): a two-step
random walk from a node i ∈ V on a specific directed weighted star expansion of H whose second
step is non-backtracking—or equivalently, a random walk on a weighted clique expansion of H .

Similarity Measures (AGG). In the original formulation of ORC, i.e., Eq. (1), when determining
the curvature of an edge {i, j}, the Wasserstein distance W1 is used to aggregate the probability
measures of i and j. There are at least three different extensions of this aggregation scheme to hy-
pergraphs that retain an optimal transport intuition, as required by Feature B. The simplest extension
is to leave the aggregation function unchanged: We continue determining the curvature for pairs of
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nodes, and account for the edges in H only in the definition of our probability measure. In this case,
we could derive a curvature for edge e as the average of all curvatures of node pairs contained in e,
i.e., we could define AGG as

AGGA(e) :=
2

|e|(|e| − 1)

∑
{i,j}⊆e

W1

(
µi, µj

)
. (8)

This is equivalent to computing the curvature of e based on the average over all W1 distances of
probability measures associated with nodes contained in e:

κA(e) := 1− AGGA(e) = 1− 2

|e|(|e| − 1)

∑
{i,j}⊆e

W1(µi, µj) =
2

|e|(|e| − 1)

∑
{i,j}⊆e

κ(i, j) . (9)

Intuitively, this definition assesses the mean amount of work needed to transport the probability
mass from one node in e to another node in e. Alternatively, and still keeping with the intuition from
optimal transport, we can define AGG as

AGGB(e) :=
1

|e| − 1

∑
i∈e

W1(µi, µ̄) , and consequently, κB(e) := 1− AGGB(e) , (10)

where µ̄ denotes the Wasserstein barycenter of the probability measures of nodes contained in e, and
the denominator generalizes the original d(i, j). Asoodeh et al. (2018) use this aggregation function.
Intuitively, AGGB is proportional to the minimum amount of work needed to transport all probability
mass from the probability measures of the nodes to one place, with the caveat that this place need not
correspond to a node in the underlying hypergraph. Finally, we can capture the maximum amount
of work needed to transport all probability mass from one node in e to another node in e as

AGGM(e) := max{W1(µi, µj) | {i, j} ⊆ e} , and consequently, κM(e) := 1− AGGM(e) . (11)

Independent of the choice of AGG, the curvature at a node i can be defined as the mean of all
curvatures of meaningful directions containing i, i.e.,

κN (i) :=
1

| N (i)|
∑

j∈N (i)

κ(i, j) , (12)

or it can be derived as the mean of all curvatures of edges containing i, i.e.,

κE(i) :=
1

deg(i)

∑
e3i

κ(e) . (13)

Finally, for connected H , we can define the curvature of an arbitrary subset of nodes s ⊆ V as

κ(s) := 1− AGG(s)

d(s)
, (14)

where d(s) := max{d(i, j) | {i, j} ⊆ s} refers to the extent of the subset s. Note that for s ∈ E,
d(s) = 1, and thus, Eq. (14) is consistent with our previous definitions of hyperedge curvatures.

3.2 PROPERTIES OF ORCHID CURVATURES

Having introduced our probability measures (µ) and aggregation functions (AGG), we now ana-
lyze their properties and the properties of the resulting curvatures. All proofs are deferred to Ap-
pendix A.1. First, we note that µEN, µEE, and µWE are equivalent for certain hypergraph classes, and
all aggregation functions coincide for graphs.
Lemma 1. For graphs and r-uniform, k-regular, c-cooccurrent hypergraphs, µEN = µEE = µWE.

Lemma 2. For graphs, i.e., 2-uniform hypergraphs, we have AGGA(e) = AGGB(e) = AGGM(e) for
all edges e ∈ E.

Taken together, Lemma 1 and Lemma 2 imply that for graphs, ORCHID simplifies to ORC, re-
gardless of the choice of probability measure and aggregation function. This fulfills Condition I.
Moreover, all our aggregation functions are permutation-invariant by construction, thus satisfying

5



Preprint. Under review.

Condition II. Concerning Condition III, κA and κM exhibit better scalability than κB, as Wasserstein
barycenters are harder to compute than individual distances (Cuturi & Doucet, 2014). Another rea-
son to prefer κA and κM over κB is the existence of upper and lower bounds that are easy to calculate.
To this end, let dmin(H) := min{d(u, v) | u 6= v ∈ V } be the smallest nonzero distance in H , and
let ‖·‖1 refer to the L1 norm of a vector. We then obtain the following bounds for κA and κM.
Theorem 3. For any probability measure µ and C(e) := 2/|e|(|e|−1), the curvature κA(e) of an edge
e ∈ E is bounded by

1− diam(H)C(e)
∑
{i,j}⊆e

‖µi − µj‖1 ≤ κA(e) ≤ 1− dmin(H)C(e)
∑
{i,j}⊆e

‖µi − µj‖1 . (15)

Theorem 4. For any probability measure µ, the curvature κM(e) of an edge e ∈ E is bounded by

1− diam(H) max
{i,j}⊆e

‖µi − µj‖1 ≤ κM(e) ≤ 1− dmin(H) max
{i,j}⊆e

‖µi − µj‖1 . (16)

Directly from our definitions, we further obtain the following relationships between κA, κB, and κM,
and between ORCHID curvatures on hypergraphs and ORC on their unweighted clique expansions.
Corollary 5. Given a hypergraph H = (V,E), κM(e) ≤ κA(e) and κM(e) ≤ κB(e) for all e ∈ E.

Corollary 6. Given a hypergraph H = (V,E) and its unweighted clique expansion G◦ = (V,E◦),
for {i, j} ∈ E◦, the ORC κ(i, j) in G◦ equals its ORCHID curvature κ(i, j) of direction {i, j} ⊆ V
in H withµEN, and the ORC κ(i) of i ∈ V inG◦ equals its ORCHID curvatureκN (i) in H withµEN.

The preceding corollary clarifies how exactly ORCHID curvatures generalize ORC on graphs. More-
over, ORCHID curvatures capture relations between global properties and local measurements, sim-
ilar to the Bonnet–Myers theorem in Riemannian geometry (Myers, 1941).
Theorem 7. Given a subset of nodes s ⊆ V and an arbitrary probability measure µ, let δi denote
a Dirac measure at node i, and let J(µi) := W1(δi, µi) denote the jump probability of µi. If
(i) all curvatures based on µ are strictly positive, i.e., κ(s) ≥ κ > 0 for all s ⊆ V , and (ii)
W1(µi, µj) ≤ AGG(s) for {i, j} = argmax(d(s)), then

d(s) ≤ J(i) + J(j)

κ(s)
. (17)

Note that condition (ii) of Theorem 7 is always satisfied by AGGM. Finally, in Appendix A.1, we
generalize the concepts of cliques, grids, and trees (prototypical positively curved, flat, and nega-
tively curved graphs) to hypergraphs, and we prove the following lemmas to ensure that ORCHID
curvatures respect our geometric intuition, as required by Feature C.
Theorem 8 (Hyperclique curvature). For an edge e in a hyperclique H = (V,E) on n nodes with
edges E =

(
V
r

)
for some r ≤ n, with α = 0,

κ(e) = 1− 1

n− 1
, i.e., lim

n→∞
κ(e) = 1, independent of r.

Theorem 9 (Hypergrid curvature). For an edge e in a r-uniform, k-regular hypergrid, with α = 0,
κ(e) = 0, independent of r and k.

Theorem 10 (Hypertree curvature). For an edge e in a r-uniform, k-regular, 1-intersecting hyper-
tree,

with α = 0, κ(e) = 1−
(

3(k − 1)

k
+

1

(r − 1)k

)
, i.e., lim

k→∞
κ(e) = −2, independent of r.

4 RELATED WORK

We restrict our exposition to the literature on hypergraph curvatures, which is most closely related
to our work. Further related work is discussed in Appendix A.2. Much of the hypergraph curvature
literature focuses on defining notions of ORC and Forman-Ricci Curvature (FRC) specifically for
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directed hypergraphs and studying some of their mathematical and empirical properties (e.g., Leal
et al., 2019; 2020; 2021; Saucan & Weber, 2018). Notably, the directed hypergraph ORC introduced
by Eidi & Jost (2020) is an instantiation of our framework with µEE and AGGA. Curvature notions for
undirected hypergraphs are comparatively less explored, and especially the literature generalizing
ORC is almost entirely theoretical. The generalization of ORC proposed by Asoodeh et al. (2018)
and the equivalent measure used by Banerjee (2021) are instantiations of our framework using µEE
and AGGB. Akamatsu (2022) propose (α, h)-ORC using cost functions based on structured optimal
transport, and Ikeda et al. (2021) define λ-coarse Ricci curvature using a λ-nonlinear Kantorovich
difference based on a submodular hypergraph Laplacian as a generalization of ORC as introduced
by Lin et al. (2011). Both of these works define curvature exclusively for pairs of nodes, rather than
for hyperedges. Beyond ORC, Yadav et al. (2022) study FRC for undirected hypergraphs defined
via poset representations, and Murgas et al. (2022) explore hypergraphs constructed from protein-
protein interactions using a different notion of FRC based on the Hodge Laplacian. To the best of
our knowledge, with ORCHID, we are the first to introduce a flexible framework generalizing ORC
to hypergraphs, and to demonstrate the utility of hypergraph ORC in practice.

5 EXPERIMENTS

Having established that ORCHID curvatures have our desired theoretical properties in Section 3, we
now seek to ascertain that they are also meaningful in practice. We ask the following questions:

Q1 Parametrization. How do our choices of α, µ, and AGG impact ORCHID curvatures?

Q2 Hypergraph exploration. How can ORCHID curvatures help us in exploring hypergraphs?

Q3 Hypergraph learning. How can ORCHID curvatures help us in hypergraph learning tasks?

To address these questions, we experiment with data from different domains, spanning several or-
ders of magnitude. We investigate four individual real-world hypergraphs in which edges represent
co-authorship (aps-a, dblp) and FDA-registered drugs (ndc-ai, ndc-pc), six collections of real-world
hypergraphs in which edges represent questions on Stack Exchange Sites (stex), co-authorship by
(groups of) venues (aps-av, dblp-v), co-citation by venues (aps-cv), chords in music pieces (mus),
and character cooccurrence on stage in Shakespeare’s plays (sha), as well as three collections of
synthetic hypergraphs based on different generative models (syn-c, syn-r, syn-s), for a total of 4 321
hypergraphs. We summarize their basic properties in Table 1, and give more details on their statis-
tics, semantics, and provenance in Appendix A.3. We implement ORCHID in Julia and Python.
Our experiments are run on AMD EPYC 7702 CPUs, utilizing up to 256 cores. We discuss our
implementation and results in more detail in Appendices A.4 and A.5.

Q1 Parametrization. To understand how our choices of α, µ, and AGG impact ORCHID curva-
tures, we first compute the pairwise mutual information between ORCHID edge curvatures with
36 different parametrizations. As illustrated in Fig. 2, while changing α for the same combination
of µ and AGG has similar effects across hypergraphs, there is no uniform pattern in the relationships
between different combinations of µ and AGG. This underscores the fact that the various notions of
ORCHID curvature are not redundant but rather emphasize distinct aspects of hypergraph structure.
For a fine-grained view of the differences between parametrizations, we inspect the distributions of
our four curvature types, (i) edge curvature κ(e), (ii) edge-averaged node curvature κE(i), (iii) di-
rectional curvature κ(i, j) for all {i, j} ⊆ e ∈ E, and (iv) direction-averaged node curvature κN (i),
for each of our 36 parametrizations. By construction, directional curvature and direction-averaged
node curvature do not vary with the choice of AGG, and κM lower-bounds κA for edge curvatures and
edge-averaged node curvatures. However, the differences between κM and κA vary across graphs,
while consistently, the larger α, the more concentrated our curvature distributions (Appendix A.5).

Q2 Hypergraph Exploration. To explore individual graphs, we perform case studies on graphs
from the aps-cv collection, leveraging that most nodes in these graphs also occur as edges. We scru-
tinize the relationships between node and edge curvatures, other local node and edge statistics, and
article metadata. We observe that curvature values span a considerable range even for articles with
otherwise comparable statistics, but the curvature distributions of influential papers appear to differ
systematically from those of less influential papers (Appendix A.5). Exploring graph collections,
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Table 1: Hypergraphs used in ORCHID experiments cover several domains and orders of magnitude.
n and m are node and edge counts, n/m is the aspect ratio, c is the number of filled cells in the node-
to-edge incidence matrix, c/nm is the density, and N is the number of hypergraphs in a collection.

Nodes Edges n m n/m c c/nm

aps-a Authors APS Papers 505 827 688 707 0.7345 2 480 373 0.000007
dblp Authors DBLP Papers 3 108 658 6 011 388 0.5171 19 411 479 0.000001

ndc-ai Active Ingr. NDC Drugs 7 090 131 450 0.0539 224 084 0.000240
ndc-pc Pharm. Classes NDC Drugs 1 263 70 101 0.0180 273 088 0.003084

(a) Individual Hypergraphs

Nodes Edges Graphs N (n/m)max (c/nm)max

aps-va Authors APS Papers Journals 19 4.698182 0.005216
aps-vc APS Cited P. APS Citing P. Journals 19 1.396552 0.028430
dblp-v Authors DBLP Papers (Groups of) Venues 1 193 5.599424 0.002443

mus Frequencies Chords Music Pieces 1 944 1.454545 0.375000
stex Tags Questions StackExchange Sites 355 1.233449 0.121528
sha Characters Stage Groups Shakespeare’s Plays 37 0.554054 0.304688

syn-c Hypergraph Configuration Models 250 0.5 0.005
syn-r Erdős-Rényi Random Hypergraph Models 250 0.5 0.005
syn-s Hypergaph Stochastic Block Models 250 0.5 0.005

(b) Hypergraph Collections

EN-M EN-A EE-M EE-A WE-M WE-A

(a) (5,10)-regular syn-c

EN-M EN-A EE-M EE-A WE-M WE-A

(b) 2-community syn-s

EN-M EN-A EE-M EE-A WE-M WE-A

(c) ndc-ai

EN-M EN-A EE-M EE-A WE-M WE-A

NMI
0.0

0.2

0.4

0.6

0.8

1.0

(d) ndc-pc

Figure 2: ORCHID curvature notions are non-redundant. We show the Min-Max-Normalized Mu-
tual Information (NMI) between ORCHID edge curvatures with 36 different parametrizations, using
probability measures µEN (EN), µEE (EE), or µWE (WE), aggregations AGGM (M) or AGGA (A), and
α ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} (ordered→, ↓), for two synthetic and two real-world hypergraphs.

we run kernel PCA (kPCA) (Schölkopf et al., 1997) with a radial basis function kernel (RBF kernel)
and curvatures or other local features known to be powerful baselines (Cai & Wang, 2018), e.g., node
degrees and neighborhood sizes, as inputs to jointly embed graphs from a collection. We statistically
bootstrap the maximum mean discrepancy (MMD) (Gretton et al., 2006) to test the null hypothesis
that the feature distributions of two graphs are equal. As shown in Fig. 3, ORCHID curvatures result
in more interpretable embeddings and more discriminative tests than other local features.

Q3 Hypergraph Learning. To explore the utility of curvatures for learning on individual hyper-
graphs, we perform spectral clustering using either curvatures or other local node features. To eval-
uate the resulting node clusterings, we leverage that nodes in the aps-cv collection correspond to
APS papers, for which we consistently know the titles. Hence, even in the absence of a meaningful
ground truth, we can still check the sensibility of a clustering by statistically analyzing the titles
grouped together using tools from natural language processing. We find that node clusterings based
on curvatures correspond to thematically more coherent groupings (Appendix A.5). For learning on
hypergraph collections, we spectrally cluster the collection using RBF or exponential Wasserstein
kernel matrices, exp(−γW(µx, µy)) (Plaen et al., 2020), on node and edge curvatures or other local
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(a) kPCA (directional curvature) (b) kPCA (edge neighborhood size) (c) MMD (cardinality vs. curvature)

Figure 3: Curvatures carry more information than other local features. We show a 2-dimensional
embedding of graphs from the stex collection based on kPCA, using an RBF kernel with curvature
distributions computed using α = 0.1, µWE, and AGGA (3a) or edge neighborhood size distributions
(3b) as input features. We see that only curvatures yield a meaningful and discriminative grouping.
Corroborating this finding, we also depict Bonferroni (1936) adjusted p-values of testing for signif-
icant differences in feature distributions using MMD on distributions of edge curvature computed
with the same parameters as for (3a) (upper triangle) or edge cardinality (lower triangle), for the
subset of the dblp-v collection corresponding to top conferences grouped by areas of research (3c).

Table 2: ORCHID curvatures lead to better clusterings than other local features. We show WCCκ(i,j)
for collection clusterings computed using RBF or exp. Wasserstein kernels with edge curvatures,
edge neighborhood sizes, edge-averaged node curvatures, or node neighborhood sizes as inputs.

RBFκ(e) Wκ(e) RBF| N (e)| W| N (e)| RBFκE(i) WκE(i) RBF| N (i)| W| N (i)|

dblp-v 0.2151 0.1908 0.3309 0.2358 0.2273 0.0445 0.0910 0.1285
mus 0.1955 0.1758 0.2609 0.2723 0.2062 0.1606 0.2774 0.2458
stex 0.2651 0.2877 0.3018 0.2950 0.2393 0.2577 0.3067 0.2689
sha 0.5984 0.6390 0.6716 0.6597 0.5021 0.6526 0.6236 0.6641

features. As we do not have ground-truth labels, we evaluate the quality of the resulting clusterings
in an unsupervised manner, using what we call the Wasserstein Clustering Coefficient (WCC). This
measure compares averaged intra-cluster Wasserstein distances to averaged inter-cluster Wasser-
stein distances, such that a lower WCC corresponds to a higher-quality clustering. Given c clusters
X = {X1, . . . , Xc} of hypergraphs H represented by their feature distributions ~χH , we define

WCC(X ) :=

∑
X∈X ω(X)

1 +
∑
X 6=Y ∈X ω(X,Y )

, with

{
ω(X) :=

(|X|
2

)−1∑
x 6=y∈X W(~χx, ~χy) ,

ω(X,Y ) := (|X||Y |)−1∑x,y∈X×Y W(~χx, ~χy) .

As illustrated in Table 2, when evaluated using WCC with directional curvature distributions as ~χ,
i.e., WCCκ(i,j), ORCHID curvatures consistently yield better clusterings than other local features.

6 DISCUSSION AND CONCLUSION

We introduced ORCHID, the first unified framework for Ollivier-Ricci curvature on hypergraphs that
integrates and generalizes existing approaches to hypergraph ORC. ORCHID disentangles the indi-
vidual building blocks shared by all notions of hypergraph ORC and yields curvature notions that
are provably aligned with our geometric intuition. We performed a rigorous theoretical and empiri-
cal analysis of ORCHID curvatures, and demonstrated their utility and scalability in practice through
extensive experiments, covering both hypergraph exploration and hypergraph learning. While our
work paves the way towards future work seeking to leverage the power of Ollivier-Ricci curvature
for hypergraphs in hypergraph learning algorithms, it still has some limitations to be addressed.
First, ORC on graphs is defined for any probability measure, but we only consider measures corre-
sponding to a single step of a random walk. This leaves the investigation of higher-order random
walks or alternative probability measures to future work, where elucidating relationships between
specific probability measures and other structural properties of hypergraphs would be of particular
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interest. Second, hyperedge intersections can vary in cardinality, but this variation is not currently
reflected in our probability measures. This creates an opportunity to integrate ORCHID with the s-
walk framework proposed by Aksoy et al. (2020), or to define persistent ORCHID curvatures based
on hypergraph filtrations, extending work on persistent ORC for graphs (Wee & Xia, 2021b). Third,
like the original ORC, ORCHID curvatures are static, but many hypergraphs are inherently dynamic,
suggesting a need to develop dynamic curvature notions. Fourth, despite its unprecedentedly com-
prehensive scope, our study only scratches the surface regarding the theoretical and empirical anal-
ysis of ORCHID curvatures, and we believe that there are many more connections between ORCHID
curvatures and other hypergraph descriptors to be uncovered, and many more use cases to be ex-
plored. For instance, ORCHID generalizes ORC, but not Forman–Ricci curvature (FRC), and we
believe that a framework for FRC could help uncover new relations between combinatorial curva-
ture notions and hypergraph structure. Finally, we imagine that incorporating hypergraph curvature
into models as an additional inductive bias could prove useful in hypergraph learning more broadly.
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A APPENDIX

In this Appendix, we include the following materials.

A.1 Deferred Proofs.
All proofs for Section 3, along with supporting definitions, lemmas and corollaries.

A.2 Further Related Work.
Discussion of related work treating hypergraphs or curvatures, but not hypergraph curvatures.

A.3 Dataset Details.
Further information on the provenance, semantics, and statistics of our datasets.

A.4 Implementation Details.
Details on our implementation, including proofs showing the correctness of performance shortcuts.

A.5 Further Results.
Display and discussion of results not included in the main paper.

A.1 DEFERRED PROOFS

Lemma 1. For graphs and r-uniform, k-regular, c-cooccurrent hypergraphs, µEN = µEE = µWE.

Proof. For notational simplicity, w.l.o.g., we assume that α = 0. In an r-uniform, k-regular, c-
cooccurrent hypergraph H = (V,E), each node i has degree k and (r−1)k

c neighbors, and each edge
has cardinality r. Hence, for nodes i, j ∈ V with i ∼ j,

µENi (j) =
1

| N (i)| =
c

(r − 1)k
=

1

k
· c · 1

k − 1
=

1

deg(i)

∑
e3i,j

1

|e| − 1
= µEEi (j)

=
c

k(r − 1)
=
|{e ∈ E | {i, j} ⊆ e}|∑

f3i

(
|f | − 1

) = µWEi (j) .

Graphs are 2-uniform and 1-cooccurrent (but not generally regular), and hence, | N (i)| = deg(i).
Using this to simplify the probability measure expressions, the claim follows.

Lemma 2. For graphs, i.e., 2-uniform hypergraphs, we have AGGA(e) = AGGB(e) = AGGM(e) for
all edges e ∈ E.

Proof. Given probability distributions µ1, µ2, . . . , µn, their Wasserstein barycenter is defined as
the distribution µ̄ that minimizes f(µ̄) := 1

n

∑n
i=1 W1(µ̄, µi). Since |e| = 2, we minimize

W1(µ̄, µ1) + W1(µ̄, µ2). The Wasserstein distance is a metric, so it satisfies the triangle inequality.
Thus, W1(µ1, µ2) ≤W1(µ̄, µ1)+W1(µ̄, µ2) for all choices of µ̄. Hence, f is minimized by either µ1

or µ2. Evaluating both cases yields AGGA(e) = AGGB(e), and observing that AGGM(e) = W1(µi, µj)
for e = {i, j} by definition, the claim follows.

Theorem 3. For any probability measure µ and C(e) := 2/|e|(|e|−1), the curvature κA(e) of an edge
e ∈ E is bounded by

1− diam(H)C(e)
∑
{i,j}⊆e

‖µi − µj‖1 ≤ κA(e) ≤ 1− dmin(H)C(e)
∑
{i,j}⊆e

‖µi − µj‖1 . (15)

Proof. We bound each of the summands in the curvature calculation. Given probability measures
µi, µj , a result by Gibbs & Su (2002, Theorem 4) states that

dmin(H) dTV(µi, µj) ≤W1(µi, µj) ≤ diam(H) dTV(µi, µj) , (18)

where dTV refers to the total variation distance. The intuition behind this bound is that the total vari-
ation distance represents a specific type of transport plan between the two probability measures; the
factors arising from the minimum (maximum) distance in a space indicate the minimum (maximum)
distance that realizes this transport plan. Since all our measures are defined over a finite space, we
have dTV(µi, µj) = 1

2‖µi − µj‖1. The claim follows by considering that pairwise distances are
being subtracted to calculate our curvature measure.
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Theorem 4. For any probability measure µ, the curvature κM(e) of an edge e ∈ E is bounded by

1− diam(H) max
{i,j}⊆e

‖µi − µj‖1 ≤ κM(e) ≤ 1− dmin(H) max
{i,j}⊆e

‖µi − µj‖1 . (16)

Proof. For AGGM, Eq. (18) applies for a single pairwise distance only. We thus only obtain a single
bound based on the maximum total variation distance between two probability measures.

Theorem 7. Given a subset of nodes s ⊆ V and an arbitrary probability measure µ, let δi denote
a Dirac measure at node i, and let J(µi) := W1(δi, µi) denote the jump probability of µi. If (i) all
curvatures based on µ are strictly positive, i.e., κ(s) ≥ κ > 0 for all s ⊆ V , and (ii) W1(µi, µj) ≤
AGG(s) for {i, j} = argmax(d(s)), then

d(s) ≤ J(i) + J(j)

κ(s)
. (17)

Proof. Let {i, j} = argmax(d(s)) as required in the theorem. We then have following chain of
(in)equalities:

d(s) = d(i, j) = W1(δi, δj) ≤W1(δi, µi) + W1(µi, µj) + W1(µj , δj) . (19)

Rearranging Eq. (14), we have (1− κ(s)) d(s) = AGG(s). According to our assumptions,
W1(µi, µj) ≤ AGG(s) = (1− κ(s)) d(i, j). Inserting this into Eq. (19) yields

d(i, j) ≤ J(µi) + J(µj) + (1− κ(s)) d(i, j) (20)
⇔ d(i, j)− (1− κ(s)) d(i, j) ≤ J(µi) + J(µj) (21)

⇔ d(i, j) ≤ J(i) + J(j)

κ(s)
, (22)

where the last step is only valid since κ(s) ≥ κ > 0 by assumption.

Definition 11 (Hypercliques, hypergrids, hypertrees). A simple, connected hypergraph H =
(V,E) is

– a hyperclique if E =
(
V
r

)
for some r ≤ |V |,

– a hypergrid if H is an r-uniform hypergraph for which there exists a lattice L = (V,EL)

s.t. E = {e ∈
(
V
r

)
| e corresponds to a path of length r in L}, and

– a hypertree if there exists a tree T = (V,ET ) s.t. each edge e ∈ ET induces a subtree in T .

Corollary 12. Cliques are hypercliques, grids are hypergrids, and trees are hypertrees.

Corollary 13. If H = (V,E) is a hyperclique, a hypergrid, or an r-uniform, k-regular, 1-
intersecting hypertree, for i, j ∈ V , the sets Si = {e ∈ E | i ∈ e} and Sj = {e ∈ E | j ∈ e} are
isomorphic, i.e., there exists ϕ : N (i) ∪ {i} → N (j) ∪ {j} such that {{ϕ(x) | x ∈ e} | e ∈ Si} =
Sj .

For hypercliques, hypergrids, and hypertrees with certain regularities, AGGA(e) and AGGM(e) are
constants.
Lemma 14 (Hypercliques, hypergrids, hypertrees). If H = (V,E) is a hyperclique, a hypergrid, or
an r-uniform, k-regular, 1-intersecting hypertree, we have AGGA(e) = AGGM(e) = W1(µi, µj) = w
for w ∈ R, e ∈ E, and i, j ∈ V with i ∼ j.

Proof. By Corollary 13, we have w := W1(µi, µj) = W1(µp, µq) for i, j, p, q ∈ V with
i ∼ j and p ∼ q. Hence AGGM(e) = w, and AGGA(e) = 2

|e|(|e|−1)
∑
{i,j}⊆e W1(µi, µj) =

2
|e|(|e|−1)

|e|(|e|−1)
2 w = w, for e ∈ E.

Corollary 15. If H = (V,E) is a hyperclique, a hypergrid, or an r-uniform, k-regular, 1-
intersecting hypertree, AGGA(e) = AGGM(e).
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Using Lemma 14, we now prove that under AGGA and AGGM, hypercliques are positively curved,
hypergrids are flat, and hypertrees are negatively curved, as desired.
Theorem 8 (Hyperclique curvature). For an edge e in a hyperclique H = (V,E) on n nodes with
edges E =

(
V
r

)
for some r ≤ n, with α = 0,

κ(e) = 1− 1

n− 1
, i.e., lim

n→∞
κ(e) = 1, independent of r.

Proof. A hyperclique is r-uniform, (n− 1)-regular, and (r − 2)-cooccurrent, so µENi = µEEi = µWEi
for each node i ∈ V by Lemma 1. Thus, considering µENi , each node i ∈ V has n− 1 neighbors to
which it distributes its probability mass equally, and we have W1(µi, µj) = 1

n−1 for i, j ∈ V with
i ∼ j. The claim now follows from Lemma 14.

Theorem 9 (Hypergrid curvature). For an edge e in a r-uniform, k-regular hypergrid, with α = 0,
κ(e) = 0, independent of r and k.

Proof. By Corollary 13, the sets Si = {e ∈ E | i ∈ e} and Sj = {e ∈ E | j ∈ e} are isomor-
phic, and due to the symmetries in the hypergrid, the isomorphism ϕ : N (i) ∪ {i} → N (j) ∪ {j}
minimizing the cost

∑
x∈N (i)∪{i} d (x, ϕ(x)) corresponds to the coupling minimizing W1(µi, µj).

The cost of ϕ equals the minimum cost of an isomorphism in H’s underlying lattice L between the
inclusive (r − 1)-hop neighborhoods of two nodes adjacent in L, which is | N (i) ∪ {i}|. Hence,
W1(µi, µj) = | N (i)∪{i}|

|N (i)∪{i}| = 1 for i, j ∈ V with i ∼ j and all choices of µ, and the claim then
follows from Lemma 14.

Theorem 10 (Hypertree curvature). For an edge e in a r-uniform, k-regular, 1-intersecting hyper-
tree,

with α = 0, κ(e) = 1−
(

3(k − 1)

k
+

1

(r − 1)k

)
, i.e., lim

k→∞
κ(e) = −2, independent of r.

Proof. An r-uniform, k-regular, 1-intersecting hypertree is 1-cooccurrent, so we have µENi = µEEi =
µWEi for each node i ∈ V by Lemma 1. Each node i ∈ V has (r − 1)k neighbors, such that µENi
distributes a fraction 1

(r−1)k of the probability mass to each of i’s neighbors. Nodes i, j ∈ V with
i ∼ j share (r − 2) neighbors (those in the unique edge e satisfying {i, j} ⊆ e), and the probability
mass allocated by µi to j can be matched with the probability mass allocated by µj to i at cost 1.
Because H is a hypertree, the remaining probability mass, (r− 1)(k− 1)/

(
(r− 1)k

)
= (k− 1)/k,

needs to be transported from the neighborhood of i to the neighborhood of j at cost 3. Hence,

W1(µi, µj) = 1 · 1

(r − 1)k
+ 3 · k − 1

k

for i, j ∈ V with i ∼ j. Again, the claim follows from Lemma 14.
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A.2 FURTHER RELATED WORK

In addition to the related work discussed in the paper, we here highlight existing work in the more
loosely related fields of graph curvature, hypergraph learning, and hypergraph mining and analysis.

Graph Curvature. Beyond the Ollivier-Ricci concepts, there are also curvature concepts based
on the contractivity of operators (Bakry & Émery, 1985), which could be considered a “spiritual
precursor” to Ollivier’s work. This perspective has been used to provide a predominantly spectral
perspective on curvature (Liu et al., 2019; Münch & Rose, 2020), whereas ORC can foremost be
seen as a probabilistic concept. Recently, Kempton et al. (2020) defined a hybrid between Ollivier
and Bakry-Émery curvature on graphs. A more combinatorial perspective is assumed by FRC,
which is motivated by defining equivalent formulations of curvature on structured spaces, such as
CW complexes or simplicial complexes. Originally described by Forman (2003), FRC has since
been improved in the context of explaining the learning behavior of graph neural networks (Topping
et al., 2022), with other recent work focusing on fusing it with topological graph properties (Roy
et al., 2020). ORC was first developed for general Markov chains (Ollivier, 2007; 2009), but has
quickly been adopted to characterize graphs (Jost & Liu, 2014) and networks (Weber et al., 2017).
With numerous follow-up publications elucidating the relationship between structural properties of a
graph and ORC (Bauer et al., 2017; Samal et al., 2018), the initial concept has also been substantially
updated (Bourne et al., 2018; Lin et al., 2011). As an emerging research direction, we identified the
combination of ORC (and FRC) with concepts from computational topology, leading to an inherent
multi-scale perspective on data. This has led to promising results for treating biomedical graph
data (Wee & Xia, 2021b;a).

Hypergraph Learning. Work tackling certain hypergraph learning tasks such as hypergraph clus-
tering (Amburg et al., 2020; Veldt et al., 2020) has existed for many years (Zhou et al., 2006; Wach-
man & Khardon, 2007). Some approaches make use of intrinsic structural properties of hyper-
graphs, leading to hypergraph neural network architectures (Huang & Yang, 2021) and message
passing formulations (Gao et al., 2019), whereas others focus on developing similarity measures,
i.e., kernels (Bai et al., 2014; Bloch & Bretto, 2013; Martino & Rizzi, 2020). Methods from the
rich literature on graph kernels can also be employed to address hypergraph learning tasks, namely,
by transforming the hypergraph into a graph, but most popular transformations are lossy and may
drastically increase the size of the object under study, such that the practicality and utility of this
approach is unclear.

Hypergraph Mining and Analysis. In recent years, there has been a renewed interest in hyper-
graph mining and analysis. Notably, there is work developing new hypergraph descriptors (Aksoy
et al., 2020), extending motif discovery to hypergraphs (Lee et al., 2020; Lee & Shin, 2021), solv-
ing classic graph mining tasks in the hypergraph setting (Macgregor & Sun, 2021), or identifying
patterns in real-world hypergraphs (Do et al., 2020). However, to the best of our knowledge, none
of this work draws on curvature concepts to solve the mining and analysis tasks of interest.
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A.3 DATASET DETAILS

At a high level, our workflow to produce and work with the datasets used in our experiments (Sec-
tion 5) was as follows:

1. Obtain raw data in a variety of different formats, e.g., CSV, JSON, or XML.
2. Transform the raw data into a hypergraph CSV that retains as much of the raw data semantics

as possible. This CSV is guaranteed to contain one row per edge, one column with unique
edge identifiers, and one column with the nodes contained in each edge. It may also contain
additional columns holding further metadata associated with individual edges. Column names
may differ between datasets to reflect dataset semantics.

3. Provide a unified loading interface to the datasets in Python.
4. Transform semantics-laden hypergraph CSV files into semantics-free one-based integer edge

lists and sparse matrices for curvature computations in Julia, compute curvatures in Julia, and
store the results in JSON files.

5. Map results back to original dataset semantics in Python for further examination.

In the following, we give more details on the provenance, semantics, and statistics of our datasets.
Unless if otherwise noted, we make our datasets publicly available with our online materials, along
with the raw data and all preprocessing code.

A.3.1 APS-A, APS-AV, APS-CV: AMERICAN PHYSICAL SOCIETY JOURNAL ARTICLES

The American Physical Society (APS), a nonprofit organization working to advance the knowledge
of physics, publishes several peer-reviewed research journals. The APS makes two datasets based
on its publications available to researchers: (i) an edge list containing (citing, cited) pairs of articles
contained in its collection, and (ii) a JSON dataset containing the metadata for each article in its
collection. These datasets are updated on a yearly basis, and researchers can request access by
filling out a web form located at https://journals.aps.org/datasets. We made a data
access request and were granted access to the 2021 versions of the APS datasets within two weeks.

From the APS datasets, we derived the following hypergraphs and hypergraph collections:

(i) aps-a: Each node corresponds to an author who published at least one article in an APS journal.
Each edge e corresponds to an article in an APS journal, and it contains as nodes all authors
of e. This hypergraph is derived from the JSON data.

(ii) aps-av: aps-a, split up by journal, for a total of 19 hypergraphs. For each journal j, the edge set
of aps-a is restricted to articles from j, and the node set of aps-a is restricted to nodes authoring
at least one article from j.

(iii) aps-cv: We derive one hypergraph for each of the 19 journals represented in the edge list data.
For each journal j, the edge set comprises articles from j citing at least one article in j, and the
node set consists of articles in j cited by at least one article in j.

Access. Due to the terms and conditions associated with data access, we cannot make the APS
datasets or the hypergraphs derived from them publicly available, and researchers seeking to work
with this data will have to request data access from APS directly as outlined above. However, we
make our preprocessing code publicly available, such that researchers who have obtained access to
the APS datasets can easily reproduce our hypergraphs from the raw data.

Caveats. When doing our case studies on the aps-cv dataset, we observed that some DOIs present
in the edge list had no associated metadata in the JSON files provided by APS. This does not affect
our curvature computations, but it might constrain the interpretability of results, e.g., when inspect-
ing node clustering results based on article categories present only in the metadata.

A.3.2 DBLP, DBLP-V: DBLP JOURNAL ARTICLES AND CONFERENCE PROCEEDINGS

The DBLP computer science library provides high-quality bibliographic information on computer
science publications. All DBLP data is released under a CC0 license and freely available in one
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XML file that is updated regularly. We obtained the XML dump dated September 1, 2022 from
https://dblp.org/xml/release/ and preprocessed it into a CSV file containing only en-
tries corresponding to the XML tags article and inproceedings, with one row per entry and
the following columns:

– key: unique identifier of the entry, e.g., conf/iclr/XuHLJ19 or
journals/cacm/Savage16c.

– tag: XML tag associated with the entry, one of {inproceedings, article}.
– crossref: cross-reference to a venue, e.g., conf/iclr/2019. Sometimes missing although a

venue should be present.
– author: semicolon-separated list of DBLP author names, e.g., Keyulu Xu;Weihua
Hu;Jure Leskovec;Stefanie Jegelka. Sometimes missing (we discard entries
without authors when loading the data).

– year: entry publication year, e.g., 2019.
– title: entry title, e.g., How Powerful are Graph Neural Networks?.
– publtype: if present, the type of publication, e.g., informal. Mostly missing.
– journal: for article entries, the name of the publishing journal, e.g., Commun. ACM.
– booktitle: for inproceedings entries, the name of the publishing venue, e.g., ICLR.
– volume: if present, the publication volume, e.g., 59.
– number: if present, the publication number, e.g., 7.
– pages: if present, the entry pages, e.g., 12-14.
– mdate: modification date, e.g., 2019-07-25.

This constitutes our individual hypergraph dblp, in which each edge represents a paper, and each
node represents an author. From this hypergraph, we additionally derived the dblp-v hypergraph
collection, which contains different subsets of dblp by venue or group of venues. More precisely,
we distinguish 1 193 hypergraphs as follows:

(i) dblp_journal-all, dblp_inproceedings-all: partition of dblp into entries pub-
lished in journals and entries published as part of proceedings.

(ii) dblp_journal-{journal}: one hypergraph per journal, for all journals with at least
1 000 articles in the DBLP dataset.

(iii) dblp_proceedings-{venue}: one hypergraph per venue (grouped by booktitle), for
all venues with at least 1 000 papers in the DBLP dataset.

(iv) dblp_proceedings_area-{area}_{venues}: one hypergraph per each of the FoR
(field of research) areas 4601–4608, 4611–4613 as used in the CORE ranking (4609 and 4610
were not present in the ranking), where each area is represented by all conferences (grouped by
booktitle) with CORE rank A∗ and A that have at least 1 000 papers in the DBLP dataset.
These areas and associated top conferences are as follows:

– 4601: Applied computing – AIED, ICCS
– 4602: Artificial intelligence – AAAI, AAMAS, ACL, AISTATS, CADE, CIKM, COLING,

COLT, CP, CogSci, EACL, EC, ECAI, EMNLP, GECCO, ICAPS, IJCAI, IROS, KR, UAI
– 4603: Computer vision and multimedia computation – AAAI, CVPR, ECAI, ICCV, ICME,

IJCAI, IROS, WACV
– 4604: Cybersecurity and privacy – AsiaCCS, CCS, CRYPTO, DSN
– 4605: Data management and data science – CIKM, ECIR, EDBT, ICDAR, ICDE, ICDM,

ISWC, KDD, MSR, PODS, RecSys, SDM, SIGIR, VLDB, WSDM, WWW
– 4606: Distributed computing and systems software – ASPLOS, CCGRID, CLUSTER,

CONCUR, DISC, DSN, HPCA, HPDC, ICCAD, ICDCS, ICNP, ICPP, ICS, ICWS, IN-
FOCOM, IPDPS, IPSN, PODC, SC, SIGCOMM, SPAA, WWW

– 4607: Graphics, augmented reality and games – ISMAR, SIGGRAPH, VR, VRST
– 4608: Human-centred computing – ASSETS, CHI, CSCW, ITiCSE, IUI, SIGCSE, UIST
– 4611: Machine learning – AAAI, AISTATS, COLT, ECAI, ICDM, ICLR, ICML, IJCAI,

KDD, NeurIPS, PPSN, WSDM
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Table 3: Example record from the data underlying the ndc-ai and ndc-pc hypergraphs.

Column Name Record Value

product_ndc 71930-020
active_ingredients_names [ACETAMINOPHEN, HYDROCODONE BITARTRATE]
active_ingredients_strengths [325 mg/1, 7.5 mg/1]
pharm_class [Opioid Agonist [EPC], Opioid Agonists [MoA]]
marketing_category ANDA
dea_schedule CII
finished True
packaging [{’package_ndc’: ’71930-020-12’, ’description’: ’100 TABLET in 1

BOTTLE (71930-020-12)’, ’marketing_start_date’: ’20180713’, ’sample’:
False}, {’package_ndc’: ’71930-020-52’, ’description’: ’500 TABLET in 1
BOTTLE (71930-020-52)’, ’marketing_start_date’: ’20180713’, ’sample’:
False}]

dosage_form TABLET
product_type HUMAN PRESCRIPTION DRUG
spl_id 58b53a57-388e-40d0-9985-048e5af09b0d
route [ORAL]
product_id 71930-020_58b53a57-388e-40d0-9985-048e5af09b0d
application_number ANDA210211
labeler_name Eywa Pharma Inc
generic_name Hydrocodone Bitartrate and Acetaminophen
brand_name Hydrocodone Bitartrate and Acetaminophen
brand_name_base Hydrocodone Bitartrate and Acetaminophen
brand_name_suffix
listing_expiration_date 2022-12-31
marketing_start_date 2018-07-13
marketing_end_date
openfda {’manufacturer_name’: [’Eywa Pharma Inc’], ’rxcui’: [’856999’,

’857002’, ’857005’], ’spl_set_id’: [’fcd2b59e-8087-475e-9e6b-
911bd846ea96’], ’is_original_packager’: [True], ’upc’: [’0371930021121’,
’0371930020124’, ’0371930019128’], ’unii’: [’NO70W886KK’,
’362O9ITL9D’]}

– 4612: Software engineering – ASE, ASPLOS, CAV, ICSE, ICST, ISCA, ISSRE, MSR,
OOPSLA, PLDI, POPL, RE, SIGMETRICS

– 4613: Theory of computation – EC, ESA, FOCS, ICALP, ICLP, ISAAC, ISSAC, KR, LICS,
MFCS, SODA, STACS, STOC, WG

Caveats. For about 0.1% of all records, our XML parser failed, which originally resulted in
“None” as one of the authors of all problematic records. We then redid the preprocessing (and
all subsequent computations) excluding those records, but the records were still counted when de-
termining the venues to include in dblp-v.

A.3.3 NDC-AI, NDC-PC: DRUGS APPROVED BY THE U.S. FOOD & DRUG ADMINISTRATION

The U.S. Food and Drug Administration (FDA) collects information on all drugs manufactured,
prepared, propagated, compounded, or processed by registered drug establishments for commercial
distribution in the United States. The FDA maintains the National Drug Code (NDC) Directory,
which is updated daily and contains the listed NDC numbers and all information submitted as part
of a drug listing. We downloaded the NDC data from https://download.open.fda.gov/
drug/ndc/drug-ndc-0001-of-0001.json.zip on August 21, 2022, and transformed it
into a CSV file, an example record of which is shown in Table 3. From this CSV file, we derived
two hypergraphs. In both hypergraphs, edges correspond to FDA-registered drugs. In ndc-ai, nodes
correspond to the active ingredients used in these drugs, and in ndc-pc, nodes correspond to the
pharmaceutical classes assigned to these drugs. The edge cardinality distributions resulting from
both semantics are shown in Fig. 4.
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Figure 4: Edge cardinality distributions for hypergraphs derived from NDC data.

A.3.4 MUS: MUSIC PIECES

music21 is an open-source Python library for computer-aided musicology that comes with a corpus
of public-domain music in symbolic notation. Using the music21 library, we extracted a collection
of hypergraphs from the music21 corpus. In this collection, each hypergraph corresponds to a
music piece, each edge corresponds to a chord sounding for a specific duration at a particular offset
from the start of the piece, and each node corresponds to a sound frequency. Note that hypergraphs
in the mus collection are node-aligned, which distinguishes them from the hypergraphs in all other
collections. In Table 4, we show the cardinality decomposition of selected music hypergraphs that
include the largest edges. There, we include edges of cardinality 0 for completeness (they correspond
to pauses in the music), but they are discarded in our curvature computations.

Caveats. When constructing our hypergraph collection from the music21 corpus, we excluded
pieces that are primarily monophonic. After exploring the corpus manually and evaluating the chord
statistics of individual pieces, we decided to use only music with the following prefixes (correspond-
ing to names of composers or collections): bach, beethoven, chopin, haydn, handel, monteverdi,
mozart, palestrina, schumann, schubert, verdi, joplin, trecento, weber. Some pieces are included in
several editions (e.g., BWV 190.7, the chorale by Johann Sebastian Bach occupying the first two
lines of Table 4, which is included in both the original and an instrumental version).

A.3.5 STEX: STACKEXCHANGE SITES

StackExchange is a platform hosting Q&A communities also known as sites. Each question is
assigned at least one and at most five tags. In the second half of August 2022, we used the StackEx-
change API to download all questions asked on all StackExchange sites listed on the StackExchange
data explorer (https://data.stackexchange.com/), along with their associated tags and
other metadata (including question titles and, for smaller sites, also question bodies). From our
downloads, we created the stex hypergraph collection, in which each hypergraph corresponds to a
StackExchange site, each edge corresponds to a question asked on a site, and each node corresponds
to a tag used at least once on a site. Tables 5 to 11 list the basic statistics for each hypergraph from
the stex collection.

Caveats. While our curvature computations uniformly include only questions asked no later than
August 15, midnight GMT, the metadata associated with these questions stems from snapshots at
different times in the second half of August 2022. We also excluded stackoverflow.com and
math.stackexchange.com from our downloads because they could not be downloaded within
one day due to API quota limitations, and ru.stackoverflow.com because it was large but we
would not have been able to interpret our results.
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Table 4: Selection of hypergraphs from the mus collection. n is the number of nodes, m is the
number of edges, and the columns labeled i for i ∈ {0, 1, . . . , 12} record the number of edges
of cardinality i in the hypergraph. Identifiers correspond to abbreviated music21 identifiers and
generally have the shape {composer}-{work identifier}-{suffix}, where o stands for opus, m stands
for movement, and inst stands for instrumental.

n m 0 1 2 3 4 5 6 7 8 9 10 11 12

bach-bwv190.7-inst 38 233 1 0 0 4 25 60 56 72 9 6 0 0 0
bach-bwv190.7 38 233 1 0 0 4 25 60 56 72 9 6 0 0 0
bach-bwv248.23-2 35 155 1 0 0 12 45 90 0 3 1 2 1 0 0
bach-bwv248.42-4 38 386 3 1 11 42 147 106 54 14 7 1 0 0 0
beethoven-o133 88 5 140 236 565 828 1 515 1 758 168 42 21 5 2 0 0 0
beethoven-o18no1-m1 70 1 979 28 295 165 472 761 244 7 6 0 0 1 0 0
beethoven-o18no1-m4 77 2 669 13 338 438 678 1 032 134 33 1 1 1 0 0 0
beethoven-o18no4 81 4 730 95 465 674 977 1 940 521 50 3 3 1 1 0 0
beethoven-o59no1-m4 75 2 338 27 80 231 338 1467 168 18 4 4 0 1 0 0
beethoven-o59no2-m1 86 2 338 60 127 398 427 1 065 203 18 30 4 5 0 0 1
beethoven-o59no3-m4 81 3 292 19 381 529 734 1 219 255 139 14 1 1 0 0 0
beethoven-o74 82 6 492 112 440 922 1 448 2 886 538 119 21 5 1 0 0 0
monteverdi-madrigal.3.6 35 480 1 9 40 194 151 76 4 3 1 1 0 0 0
schumann-clara-o17-m3 63 819 5 12 133 208 151 108 83 74 25 13 5 2 0
schumann-o41no1-m5 72 2 410 51 130 208 592 919 366 117 18 2 4 0 2 1

A.3.6 SHA: SHAKESPEARE’S PLAYS

The sha collection is a subset of the HYPERBARD dataset recently introduced by Coupette et al.
(2022), based on the TEI-encoded XML files of Shakespeare’s plays provided by Folger Digital
Texts. Here, each hypergraph represents one of Shakespeare’s plays, which are categorized into
three types: comedy, history, and tragedy. In each hypergraph representing a play, nodes correspond
to named characters in the play, and edges correspond to groups of characters simultaneously present
on stage. These hypergraphs are documented extensively in the paper introducing the HYPERBARD
dataset (Coupette et al., 2022).

A.3.7 SYN-C, SYN-R, SYN-S: SYNTHETIC HYPERGRAPHS

To generate synthetic hypergraphs, we wrote hypergraph generators extending three well-known
graph models to hypergraphs.

(i) For syn-c, we extended the configuration model, which, for undirected graphs, is specified by a
degree sequence. Our hypergraph configuration model is specified by a node degree sequence
and an edge cardinality sequence.

(ii) For syn-r, we extended the Erdős-Rényi random graph model, which, for undirected graphs,
is specified by a number of nodes n and an edge existence probability p. Our Erdős-Rényi
random hypergraph model is specified by a number of nodes n, a number of edges m, and the
probability p of a one in any cell of the node-to-edge incidence matrix.

(iii) For syn-s, we extended the stochastic block model which, for undirected graphs, is specified
by a vector of c community sizes and a c× c affinity matrix specifying affiliation probabilities
between communities. Our hypergraph stochastic block model is specified by a vector of cV
node community sizes, a vector of cE edge community sizes, and a cV × cE affinity matrix
specifying affiliation probabilities between node communities and edge communities.

We used each of our generators to create 250 hypergraphs with identical node count n, edge count
m, and density c/nm, where c is the number of filled cells in the node-to-edge incidence matrix.

Caveats. Our generators work by pairing node and edge indices, and duplicated (node, edge) index
pairs are discarded to generate simple hypergraphs, which can lead to small deviations from the input
specification in practice.
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Table 5: Basic statistics of hypergraphs derived from StackExchange sites. n is the number of nodes,
m is the number of edges, and columns labeled i ∈ [5] count edges of cardinality i.

n m n/m 1 2 3 4 5

3dprinting 416 4 902 0.084863 1 003 1 617 1 367 649 266
3dprinting.meta 45 197 0.228426 65 85 38 5 4
academia 457 39 270 0.011637 6 428 11 831 11 360 6 294 3 357
academia.meta 91 1 237 0.073565 396 486 249 95 11
ai 980 10 204 0.096041 767 1 805 2 696 2 427 2 509
ai.meta 49 315 0.155556 100 132 67 11 5
alcohol 154 1 138 0.135325 415 406 229 56 32
alcohol.meta 28 94 0.297872 28 42 14 8 2
android 1 517 56 403 0.026896 12 890 18 313 14 406 6 996 3 798
android.meta 103 996 0.103414 159 447 281 97 12
anime 1 528 12 122 0.126052 9 510 2 215 348 43 6
anime.meta 83 900 0.092222 234 384 215 56 11
apple 969 121 999 0.007943 15 822 34 777 37 243 22 652 11 505
apple.meta 108 1 452 0.074380 354 601 393 90 14
arduino 445 23 616 0.018843 5 838 7 357 6 027 2 858 1 536
arduino.meta 50 255 0.196078 101 110 34 10 0
askubuntu 3 137 393 266 0.007977 68 310 104 529 105 601 68 907 45 919
astronomy 566 12 773 0.044312 2 781 3 812 3 284 1 777 1 119
astronomy.meta 63 339 0.185841 115 93 76 43 12
aviation 1 024 22 701 0.045108 4 294 7 193 6 384 3 231 1 599
aviation.meta 73 752 0.097074 247 295 155 46 9
bicycles 548 18 873 0.029036 4 884 6 267 4 652 2 097 973
bicycles.meta 74 442 0.167421 150 197 76 15 4
bioacoustics 354 287 1.233449 20 50 101 54 62
bioacoustics.meta 36 49 0.734694 4 24 16 5 0
bioinformatics 490 4 998 0.098039 922 1 420 1 335 782 539
bioinformatics.meta 29 112 0.258929 44 53 15 0 0
biology 745 27 348 0.027241 5 487 8 618 7 093 3 742 2 408
biology.meta 88 814 0.108108 280 331 145 44 14
bitcoin 936 28 882 0.032408 6 677 8 927 7 432 3 766 2 080
bitcoin.meta 58 434 0.133641 142 202 71 16 3
blender 371 98 724 0.003758 31 012 30 861 22 200 9 614 5 037
blender.meta 69 716 0.096369 273 291 108 35 9
boardgames 1 000 13 166 0.075953 9 800 2 779 500 75 12
boardgames.meta 75 659 0.113809 197 289 144 27 2
bricks 202 4 220 0.047867 1 391 1 669 805 266 89
bricks.meta 52 211 0.246445 45 95 51 17 3
buddhism 487 7 956 0.061212 2 381 2 357 1 730 896 592
buddhism.meta 59 491 0.120163 104 252 94 30 11
cardano 285 2 248 0.126779 585 664 548 277 174
cardano.meta 24 43 0.558140 18 15 10 0 0
chemistry 370 41 571 0.008900 9 725 14 183 10 803 4 790 2 070
chemistry.meta 90 1 034 0.087041 250 441 243 88 12
chess 387 7 864 0.049212 1 646 2 682 2 069 985 482
chess.meta 62 368 0.168478 102 183 72 9 2
chinese 166 10 298 0.016120 4 467 3 438 1 628 543 222
chinese.meta 60 349 0.171920 93 170 67 12 7
christianity 1 129 14 955 0.075493 1 739 3 571 4 205 2 967 2 473
christianity.meta 110 1 579 0.069664 593 589 285 88 24
civicrm 507 14 324 0.035395 4 639 5 150 3 085 1 083 367
civicrm.meta 18 69 0.260870 43 18 6 2 0
codegolf 257 13 228 0.019428 1 360 4 586 4 379 2 106 797
codegolf.meta 128 2 276 0.056239 559 848 549 245 75
codereview 1 114 76 105 0.014638 6 306 20 542 23 777 16 106 9 374
codereview.meta 133 1 947 0.068310 190 615 688 345 109
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Table 6: Basic statistics of hypergraphs derived from StackExchange sites (continued). n is the
number of nodes,m is the number of edges, and columns labeled i ∈ [5] count edges of cardinality i.

n m n/m 1 2 3 4 5

coffee 114 1 381 0.082549 492 524 260 78 27
coffee.meta 27 90 0.300000 45 30 13 2 0
communitybuilding 74 559 0.132379 148 219 112 55 25
communitybuilding.meta 27 132 0.204545 36 67 24 4 1
computergraphics 259 3 600 0.071944 883 1 024 877 489 327
computergraphics.meta 34 150 0.226667 55 66 27 2 0
conlang 96 448 0.214286 109 204 91 32 12
conlang.meta 21 61 0.344262 16 34 7 4 0
cooking 834 25 877 0.032229 6 568 9 266 6 344 2 682 1 017
cooking.meta 83 866 0.095843 241 410 178 34 3
craftcms 523 13 756 0.038020 3 738 4 912 3 410 1 263 433
craftcms.meta 20 50 0.400000 22 11 15 1 1
crafts 193 2 039 0.094654 706 828 397 84 24
crafts.meta 49 184 0.266304 40 88 45 11 0
crypto 506 27 447 0.018436 6 448 9 056 6 960 3 283 1 700
crypto.meta 74 542 0.136531 139 237 127 27 12
cs 656 44 794 0.014645 8 624 14 332 12 644 6 336 2 858
cs.meta 86 603 0.142620 90 247 185 68 13
cseducators 210 1 080 0.194444 297 378 252 116 37
cseducators.meta 29 146 0.198630 52 68 26 0 0
cstheory 498 11 959 0.041642 1 653 3 384 3 495 2 052 1 375
cstheory.meta 80 608 0.131579 157 262 156 30 3
datascience 663 33 997 0.019502 4 110 8 028 9 305 6 753 5 801
datascience.meta 51 237 0.215190 80 97 38 16 6
dba 1 197 96 887 0.012355 15 956 29 750 27 361 15 610 7 682
dba.meta 76 800 0.095000 280 334 140 38 8
devops 431 5 025 0.085771 1 070 1 647 1 340 616 352
devops.meta 40 144 0.277778 45 63 31 5 0
diy 919 71 007 0.012942 19 347 22 079 17 371 8 399 3 811
diy.meta 68 603 0.112769 227 233 118 21 4
drones 220 731 0.300958 114 240 193 115 69
drones.meta 28 62 0.451613 11 31 17 3 0
drupal 149 86 283 0.001727 25 218 37 599 18 867 4 075 524
drupal.meta 75 1 014 0.073964 361 432 186 35 0
dsp 509 24 850 0.020483 4 460 6 779 6 565 4 081 2 965
dsp.meta 48 307 0.156352 153 108 30 14 2
earthscience 424 6 329 0.066993 1 111 1 778 1 698 1 094 648
earthscience.meta 54 321 0.168224 100 145 63 12 1
ebooks 180 1 466 0.122783 364 489 339 163 111
ebooks.meta 39 99 0.393939 31 37 23 6 2
economics 494 13 690 0.036085 3 488 4 426 3 160 1 678 938
economics.meta 60 444 0.135135 241 151 40 7 5
electronics 2 318 175 731 0.013191 31 201 46 423 46 974 29 107 22 026
electronics.meta 107 1 685 0.063501 698 628 282 62 15
elementaryos 314 8 471 0.037068 3 043 2 910 1 669 619 230
elementaryos.meta 29 107 0.271028 60 28 17 2 0
ell 533 99 970 0.005332 46 764 31 310 14 644 5 147 2 105
ell.meta 93 1 224 0.075980 448 489 226 52 9
emacs 891 23 939 0.037220 7 561 9 371 4 980 1 590 437
emacs.meta 51 216 0.236111 34 112 59 10 1
engineering 468 13 867 0.033749 3 582 4 121 3 315 1 770 1 079
engineering.meta 47 217 0.216590 71 87 45 10 4
english 984 125 848 0.007819 48 232 38 850 23 112 10 111 5 543
english.meta 182 3 589 0.050711 1 224 1 305 733 249 78
eosio 241 2 422 0.099505 766 766 533 245 112
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Table 7: Basic statistics of hypergraphs derived from StackExchange sites (continued). n is the
number of nodes,m is the number of edges, and columns labeled i ∈ [5] count edges of cardinality i.

n m n/m 1 2 3 4 5

eosio.meta 19 27 0.703704 6 14 4 2 1
es.meta.stackoverflow 168 1 817 0.092460 310 665 568 230 44
es.stackoverflow 2 960 179 452 0.016495 38 027 58 218 47 343 23 415 12 449
esperanto 99 1 592 0.062186 1 050 422 96 16 8
esperanto.meta 20 84 0.238095 37 38 9 0 0
ethereum 891 46 678 0.019088 8 449 12 402 12 327 7 687 5 813
ethereum.meta 63 259 0.243243 98 71 59 26 5
expatriates 304 7 182 0.042328 1 068 2 178 2 163 1 156 617
expatriates.meta 48 157 0.305732 41 72 41 2 1
expressionengine 603 12 447 0.048445 3 724 4 239 2 901 1 150 433
expressionengine.meta 35 123 0.284553 59 49 15 0 0
fitness 402 9 667 0.041585 2 123 2 864 2 427 1 289 964
fitness.meta 54 315 0.171429 126 123 57 7 2
freelancing 125 1 946 0.064234 632 654 394 177 89
freelancing.meta 33 132 0.250000 36 64 25 5 2
french 324 12 413 0.026102 3 368 4 126 2 923 1 390 606
french.meta 73 290 0.251724 58 127 80 24 1
gamedev 1 096 54 182 0.020228 7 381 16 130 15 996 9 433 5 242
gamedev.meta 78 910 0.085714 300 430 148 27 5
gaming 5 883 98 355 0.059814 72 655 20 708 4 120 758 114
gaming.meta 177 4 062 0.043575 478 1 853 1 219 425 87
gardening 526 16 629 0.031631 3 725 5 390 4 122 2 097 1 295
gardening.meta 60 320 0.187500 95 157 49 17 2
genealogy 465 3 572 0.130179 421 742 1 037 902 470
genealogy.meta 56 485 0.115464 133 273 70 8 1
german 265 16 022 0.016540 6 003 5 915 2 914 927 263
german.meta 69 540 0.127778 177 224 107 30 2
gis 2 829 150 205 0.018834 13 868 36 527 45 339 32 527 21 944
gis.meta 91 1 016 0.089567 174 361 317 125 39
graphicdesign 612 34 820 0.017576 7 542 10 789 9 364 4 821 2 304
graphicdesign.meta 83 851 0.097532 253 338 187 58 15
ham 334 4 299 0.077692 927 1 287 1 199 610 276
ham.meta 45 156 0.288462 39 65 32 18 2
hardwarerecs 246 3 945 0.062357 1 201 1 366 823 378 177
hardwarerecs.meta 42 255 0.164706 81 100 58 16 0
hermeneutics 422 12 563 0.033591 2 819 3 720 3 074 1 772 1 178
hermeneutics.meta 63 581 0.108434 256 212 84 22 7
hinduism 825 15 771 0.052311 2 597 4 337 3 976 2 876 1 985
hinduism.meta 89 827 0.107618 196 295 200 98 38
history 843 13 784 0.061158 2 071 3 757 3 839 2 436 1 681
history.meta 68 746 0.091153 340 265 107 31 3
homebrew 415 6 113 0.067888 1 393 1 976 1 593 803 348
homebrew.meta 50 172 0.290698 67 63 35 4 3
hsm 252 3 898 0.064649 982 1 272 928 464 252
hsm.meta 32 146 0.219178 61 44 37 4 0
interpersonal 280 3 890 0.071979 342 1 030 1 307 790 421
interpersonal.meta 76 825 0.092121 214 328 205 62 16
iot 241 2 103 0.114598 560 754 504 193 92
iot.meta 36 136 0.264706 30 74 27 5 0
iota 148 1 023 0.144673 300 352 248 84 39
iota.meta 18 38 0.473684 10 20 8 0 0
islam 562 13 792 0.040748 3 018 4 990 3 557 1 519 708
islam.meta 103 864 0.119213 240 358 206 47 13
italian 94 3 590 0.026184 1 296 1 376 636 206 76
italian.meta 27 151 0.178808 77 57 14 2 1
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Table 8: Basic statistics of hypergraphs derived from StackExchange sites (continued). n is the
number of nodes,m is the number of edges, and columns labeled i ∈ [5] count edges of cardinality i.

n m n/m 1 2 3 4 5

ja.meta.stackoverflow 74 1 115 0.066368 193 386 306 204 26
ja.stackoverflow 1 145 28 785 0.039778 10 077 10 518 5 624 1 946 620
japanese 354 26 365 0.013427 9 325 8 869 5 191 2 020 960
japanese.meta 75 817 0.091799 270 351 147 43 6
joomla 374 7 190 0.052017 1 289 2 221 2 058 1 072 550
joomla.meta 41 150 0.273333 81 46 19 4 0
judaism 1 264 36 511 0.034620 3 753 8 116 10 854 8 042 5 746
judaism.meta 147 1 455 0.101031 108 576 489 222 60
korean 118 1 716 0.068765 767 596 264 69 20
korean.meta 30 80 0.375000 38 28 8 5 1
languagelearning 216 1 287 0.167832 225 466 354 176 66
languagelearning.meta 52 195 0.266667 31 103 48 12 1
latin 370 5 400 0.068519 1 223 1 603 1 371 797 406
latin.meta 46 192 0.239583 34 80 49 25 4
law 938 23 649 0.039663 4 483 7 573 6 329 3 381 1 883
law.meta 66 499 0.132265 117 216 120 36 10
lifehacks 140 2 928 0.047814 1 024 1 052 595 190 67
lifehacks.meta 59 268 0.220149 65 122 72 6 3
linguistics 605 10 003 0.060482 1 947 2 836 2 556 1 627 1 037
linguistics.meta 59 363 0.162534 118 159 58 23 5
literature 2 335 5 614 0.415924 703 1 621 2 249 830 211
literature.meta 63 462 0.136364 56 292 99 15 0
magento 1 811 110 316 0.016416 15 598 28 805 32 671 20 873 12 369
magento.meta 66 575 0.114783 251 227 78 17 2
martialarts 205 2 199 0.093224 461 696 529 326 187
martialarts.meta 40 218 0.183486 66 97 46 9 0
math.meta 232 9 169 0.025303 1 051 3 485 2 919 1 312 402
matheducators 225 3 360 0.066964 696 1 118 903 435 208
matheducators.meta 57 255 0.223529 64 119 61 8 3
mathematica 705 85 069 0.008287 25 896 31 653 18 182 6 542 2 796
mathematica.meta 75 914 0.082057 416 341 130 25 2
mathoverflow.net 1 530 137 735 0.011108 20 381 37 763 38 643 24 597 16 351
mattermodeling 449 2 422 0.185384 169 547 668 495 543
mattermodeling.meta 61 142 0.429577 25 41 29 37 10
mechanics 1 430 25 243 0.056649 4 196 6 245 7 592 4 673 2 537
mechanics.meta 52 387 0.134367 124 182 66 13 2
medicalsciences 1 435 7 586 0.189164 1 423 1 970 1 754 1 261 1 178
medicalsciences.meta 65 501 0.129741 171 191 102 27 10
meta.askubuntu 196 5 698 0.034398 1 625 2 308 1 257 397 111
meta 1 250 97 114 0.012871 4 599 25 289 34 007 23 233 9 986
meta.mathoverflow.net 133 1 687 0.078838 272 601 504 229 81
meta.serverfault 139 2 173 0.063967 767 799 463 119 25
meta.stackoverflow 622 47 387 0.013126 5 297 15 301 15 792 8 233 2 764
meta.superuser 207 5 000 0.041400 1 010 1 914 1 474 510 92
monero 400 4 285 0.093349 1 193 1 424 969 481 218
monero.meta 23 85 0.270588 40 26 19 0 0
money 1 002 36 187 0.027690 3 788 8 036 10 340 8 450 5 573
money.meta 67 672 0.099702 220 260 147 40 5
movies 4 537 21 829 0.207843 4 857 11 430 4 546 877 119
movies.meta 75 1 285 0.058366 302 519 391 63 10
music 516 23 424 0.022029 4 754 7 644 6 370 3 117 1 539
music.meta 81 992 0.081653 391 387 166 40 8
musicfans 237 2 990 0.079264 1 209 1 169 465 111 36
musicfans.meta 42 218 0.192661 62 95 38 18 5
mythology 303 1 953 0.155146 484 723 439 215 92
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Table 9: Basic statistics of hypergraphs derived from StackExchange sites (continued). n is the
number of nodes,m is the number of edges, and columns labeled i ∈ [5] count edges of cardinality i.

n m n/m 1 2 3 4 5

mythology.meta 35 162 0.216049 43 87 31 1 0
networkengineering 453 15 624 0.028994 2 988 4 240 3 835 2 496 2 065
networkengineering.meta 53 375 0.141333 192 115 48 17 3
opendata 302 5 990 0.050417 1 562 2 002 1 492 670 264
opendata.meta 26 180 0.144444 73 76 30 1 0
opensource 203 4 226 0.048036 845 1 442 1 094 528 317
opensource.meta 53 225 0.235556 35 109 61 19 1
or 255 2 865 0.089005 351 809 848 496 361
or.meta 44 114 0.385965 21 61 23 5 4
outdoors 555 5 908 0.093940 934 2 017 1 791 806 360
outdoors.meta 52 512 0.101562 169 276 60 7 0
parenting 304 6 636 0.045811 1 182 2 175 1 873 1 004 402
parenting.meta 61 473 0.128964 96 217 125 31 4
patents 2 102 4 381 0.479799 1 421 1 211 879 481 389
patents.meta 46 167 0.275449 55 69 34 8 1
pets 289 7 874 0.036703 781 2 706 2 350 1 305 732
pets.meta 62 407 0.152334 60 194 112 26 15
philosophy 606 17 915 0.033826 4 898 5 399 4 079 2 089 1 450
philosophy.meta 61 793 0.076923 355 258 127 38 15
photo 1 156 25 961 0.044528 3 395 6 960 7 848 4 936 2 822
photo.meta 107 1 095 0.097717 289 500 239 60 7
physics 892 209 515 0.004257 21 914 42 808 53 150 45 705 45 938
physics.meta 114 3 228 0.035316 713 1 085 872 403 155
pm 283 6 198 0.045660 1 379 1 850 1 592 870 507
pm.meta 64 315 0.203175 81 129 73 27 5
poker 131 2 051 0.063871 763 659 372 181 76
poker.meta 29 122 0.237705 74 30 15 3 0
politics 793 14 628 0.054211 1 294 4 022 4 663 3 062 1 587
politics.meta 80 1 067 0.074977 249 436 259 103 20
portuguese 169 2 349 0.071946 703 898 509 174 65
portuguese.meta 35 137 0.255474 45 61 25 5 1
proofassistants 223 434 0.513825 80 175 116 42 21
proofassistants.meta 37 64 0.578125 11 26 18 7 2
psychology 401 7 641 0.052480 1 632 2 229 1 971 1 115 694
psychology.meta 62 557 0.111311 199 237 90 25 6
pt.meta.stackoverflow 140 2 986 0.046885 703 1 081 775 362 65
pt.stackoverflow 2 936 152 483 0.019255 28 143 50 055 42 386 21 287 10 612
puzzling 209 24 985 0.008365 6 912 9 471 5 731 2 020 851
puzzling.meta 98 1 365 0.071795 351 582 309 97 26
quant 693 20 283 0.034167 3 329 5 345 5 392 3 556 2 661
quant.meta 47 252 0.186508 95 115 37 3 2
quantumcomputing 306 7 823 0.039115 1 124 2 585 2 475 1 105 534
quantumcomputing.meta 50 187 0.267380 50 73 43 18 3
raspberrypi 598 35 872 0.016670 7 901 11 252 9 351 4 765 2 603
raspberrypi.meta 61 451 0.135255 213 169 58 8 3
retrocomputing 546 4 976 0.109727 925 1 694 1 366 692 299
retrocomputing.meta 70 304 0.230263 30 188 56 27 3
reverseengineering 347 8 754 0.039639 1 878 2 693 2 172 1 249 762
reverseengineering.meta 37 150 0.246667 56 62 28 3 1
robotics 276 6 261 0.044082 1 528 1 850 1 519 806 558
robotics.meta 39 159 0.245283 52 71 28 8 0
rpg 1 247 46 635 0.026740 4 236 12 463 15 431 9 542 4 963
rpg.meta 150 2 627 0.057099 310 986 844 379 108
ru.meta.stackoverflow 242 4 613 0.052460 445 1 312 1 574 979 303
rus 390 20 999 0.018572 12 276 5 131 2 341 840 411
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Table 10: Basic statistics of hypergraphs derived from StackExchange sites (continued). n is the
number of nodes,m is the number of edges, and columns labeled i ∈ [5] count edges of cardinality i.

n m n/m 1 2 3 4 5

rus.meta 30 214 0.140187 92 81 37 4 0
russian 166 4 516 0.036758 2 407 1 337 552 180 40
russian.meta 37 176 0.210227 80 61 25 7 3
salesforce 2 085 124 492 0.016748 22 537 37 977 33 635 19 220 11 123
salesforce.meta 79 795 0.099371 412 246 118 18 1
scicomp 346 10 381 0.033330 1 905 3 156 2 883 1 566 871
scicomp.meta 48 215 0.223256 75 90 42 8 0
scifi 3 693 69 344 0.053256 17 338 26 498 17 146 6 584 1 778
scifi.meta 149 3 265 0.045636 506 1 560 889 266 44
security 1 253 65 817 0.019038 11 950 19 799 18 266 9 809 5 993
security.meta 101 1 124 0.089858 311 507 242 52 12
serverfault 3 864 314 342 0.012292 40 967 83 417 92 763 60 560 36 635
sharepoint 1 722 99 911 0.017235 16 092 27 312 28 073 17 305 11 129
sharepoint.meta 78 581 0.134251 206 233 127 14 1
sitecore 362 11 395 0.031768 5 106 4 265 1 611 342 71
sitecore.meta 24 202 0.118812 40 60 99 3 0
skeptics 682 10 700 0.063738 2 227 4 165 2 952 1 042 314
skeptics.meta 100 1 529 0.065402 528 605 310 77 9
softwareengineering 1 674 61 392 0.027267 8 950 17 773 17 580 10 572 6 517
softwareengineering.meta 165 2 611 0.063194 421 1 023 776 310 81
softwarerecs 962 21 792 0.044145 3 090 6 533 6 199 3 723 2 247
softwarerecs.meta 85 654 0.129969 86 297 189 66 16
sound 1 224 9 786 0.125077 2 122 2 717 2 330 1 624 993
sound.meta 42 160 0.262500 65 66 25 1 3
space 1 203 17 392 0.069170 1 672 4 012 4 924 3 712 3 072
space.meta 74 682 0.108504 205 237 150 63 27
spanish 274 8 592 0.031890 2 276 2 722 2 140 1 010 444
spanish.meta 84 498 0.168675 94 216 135 42 11
sports 261 5 730 0.045550 926 2 371 1 637 609 187
sports.meta 57 350 0.162857 76 170 82 21 1
sqa 462 11 242 0.041096 2 263 3 250 2 881 1 705 1 143
sqa.meta 41 211 0.194313 115 71 17 7 1
stackapps 210 2 756 0.076197 277 858 883 514 224
stats 1 572 196 835 0.007986 19 622 47 967 57 502 41 443 30 301
stats.meta 132 1 685 0.078338 327 576 491 198 93
stellar 115 1 493 0.077026 585 438 298 109 63
stellar.meta 19 31 0.612903 9 14 8 0 0
substrate 512 1 814 0.282249 366 563 491 260 134
substrate.meta 40 44 0.909091 6 21 13 2 2
superuser 5 676 480 854 0.011804 64 273 127 561 135 549 91 137 62 334
sustainability 234 2 012 0.116302 431 713 536 235 97
sustainability.meta 37 151 0.245033 38 75 32 6 0
tex 2 035 237 763 0.008559 60 247 84 998 59 476 23 747 9 295
tex.meta 163 2 277 0.071585 389 921 671 235 61
tezos 210 1 828 0.114880 567 605 380 180 96
tezos.meta 18 32 0.562500 7 15 8 1 1
tor 218 5 636 0.038680 1 888 1 817 1 147 464 320
tor.meta 43 163 0.263804 57 76 25 4 1
travel 1 916 45 040 0.042540 2 985 8 914 13 809 11 528 7 804
travel.meta 99 1 379 0.071791 293 567 406 98 15
tridion 274 7 234 0.037877 1 471 2 758 1 915 818 272
tridion.meta 14 138 0.101449 93 39 6 0 0
ukrainian 124 2 094 0.059217 664 873 404 127 26
ukrainian.meta 33 104 0.317308 21 45 31 6 1
unix 2 777 220 644 0.012586 29 059 61 964 66 657 40 340 22 624
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Table 11: Basic statistics of hypergraphs derived from StackExchange sites (continued). n is the
number of nodes,m is the number of edges, and columns labeled i ∈ [5] count edges of cardinality i.

n m n/m 1 2 3 4 5

unix.meta 118 1 668 0.070743 367 727 407 144 23
ux 1 032 31 459 0.032805 4 660 8 934 8 823 5 530 3 512
ux.meta 94 899 0.104561 273 358 199 54 15
vegetarianism 115 677 0.169867 85 233 205 106 48
vegetarianism.meta 41 133 0.308271 26 62 32 13 0
vi 421 12 558 0.033524 4 494 4 802 2 358 694 210
vi.meta 35 201 0.174129 63 105 30 3 0
video 327 8 661 0.037755 2 705 2 693 1 831 882 550
video.meta 41 200 0.205000 63 96 32 8 1
webapps 951 33 202 0.028643 14 343 11 667 5 160 1 435 597
webapps.meta 106 937 0.113127 97 447 311 76 6
webmasters 1 078 36 840 0.029262 5 772 10 197 10 531 6 286 4 054
webmasters.meta 70 649 0.107858 202 258 135 45 9
windowsphone 287 3 440 0.083430 975 1 257 801 306 101
windowsphone.meta 44 148 0.297297 47 64 27 8 2
woodworking 244 3 739 0.065258 1 129 1 270 880 347 113
woodworking.meta 34 142 0.239437 69 46 25 2 0
wordpress 702 112 778 0.006225 27 669 37 039 28 491 13 228 6 351
wordpress.meta 82 866 0.094688 381 330 118 30 7
workplace 498 30 369 0.016398 6 371 9 325 8 103 4 221 2 349
workplace.meta 113 1 829 0.061782 506 699 447 150 27
worldbuilding 675 34 358 0.019646 2 958 8 284 10 839 7 267 5 010
worldbuilding.meta 120 2 032 0.059055 445 901 511 147 28
writing 391 11 699 0.033422 2 456 3 869 3 055 1 557 762
writing.meta 88 789 0.111534 145 415 173 49 7
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A.4 IMPLEMENTATION DETAILS

To simplify the computation of Wasserstein distances between adjacent nodes, we leverage the fol-
lowing fact about the relevant distances (i.e., transportation costs) between nodes.
Lemma 1. Given a hypergraphH = (V,E) and nodes i, j, k, ` ∈ V with i ∼ j as well as µi(k) > 0
and µj(`) > 0, d(k, `) ≤ 3.

Proof. By the triangle inequality and the definition of our probability measures, we have

d(k, `) ≤ d(k, i) + d(i, j) + d(j, `) = 3 .

Furthermore, we speed up the computation of Wasserstein distances by exploiting the following
observation to reduce each instance to its smallest equivalent instance.
Lemma 2. Given a hypergraph H = (V,E) and nodes i, j ∈ V with i ∼ j, if µi(k) = µj(k) for
some node k ∈ V , then W1(µi, µj) = W1(µ−ki , µ−kj ), where µ−ki is defined as

µ−ki (j) :=

{
0 j = k

µi(j) j 6= k .

Proof. If µi(k) = µj(k) = 0, the claim holds trivially. Otherwise, µi(k) = µj(k) = β > 0. In
this case, let C∗ be an optimal coupling between µi and µj . If the probability mass allocated to k
by µi does not get moved at all in C∗, it contributes 0 to W1(µi, µj), and we are done. Therefore,
assume otherwise. Then there exist nodes p, q ∈ V such that probability mass gets moved from p to
k and from k to q in C∗. By the triangle inequality, d(p, q) ≤ d(p, k) + d(k, q), and as d(k, k) = 0,
the cost of moving that mass directly from p to q and keeping all mass at k cannot be larger than
the cost of moving the mass from p to k and from k to q. Hence, we can modify C∗ such that the
mass allocated to k by µi does not get moved at all without increasing the coupling cost. Thus, there
always exists an optimal coupling in which all mass at k remains at k, and the claim follows.
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A.5 FURTHER RESULTS

Here, we showcase further results to support and supplement the exposition in the main paper.

Q1 Parametrization. Expanding the discussion on ORCHID parametrizations, Fig. 5 shows the
distributions of edge curvatures and edge-averaged node curvatures for two hypergraphs from the
dblp-v collection, representing top conferences in machine learning and theoretical computer sci-
ence, respectively. The figure highlights once more the consistently concentrating effect of increas-
ing α, and it elucidates the differential effects of moving from maximum aggregation (left parts of
the split violins) to mean aggregation (right parts of the split violins), from almost no shifts to large
shifts in probability mass (compare, e.g., Fig. 5b, top right panel, with Fig. 5b, bottom left panel).
Fig. 5 might convey the impression that, other parameters being equal, the distributions of curva-
tures based on µEN and µWE are more similar to each other than to µEE. This does not hold in general,
however, as demonstrated for ndc-pc in Fig. 6a, where node curvature distributions based on µWE are
more similar to those based on µEE than to the node curvature distributions based on µEN. Compar-
ing Fig. 6a to Fig. 6b (ndc-ai), we further observe that rather similar distributions of edge curvature
and directional curvature can be accompanied by rather different distributions of edge-averaged and
direction-averaged node curvatures, even for hypergraphs originating from the same domain. Fi-
nally, when visualizing curvatures for hypergraphs in the same collection or across collections with
related semantics (Fig. 7), we can identify several distinct prototypical shapes of curvature distribu-
tions and relationships between curvatures based on different probability measures.
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(b) Top Conferences in Theoretical Computer Science

Figure 5: ORCHID curvatures are non-redundant. We show distributions of ORCHID edge curvatures
(top) and edge-averaged node curvatures (bottom) using probability measures µEN, µEE, and µWE
with smoothing α, for the aggregation functions AGGM (light blue) and AGGA (dark blue) on dblp-v
hypergraphs representing top conferences in machine learning and in theoretical computer science.

Q2 Hypergraph Exploration. Extending the discussion of individual hypergraph exploration in
the main paper, we focus on a case study of the citation hypergraph of the journal Physical Review
E (PRE), which regularly publishes, inter alia, interdisciplinary work on graphs and networks. This
hypergraph has 45 504 nodes and 52 574 edges. With curvatures computed using α = 0.1, µWE, and
AGGA, we find that for all 54 articles with at least 100 citations (top articles), the edge-averaged node
curvature is larger than the direction-averaged node curvature, which is always negative, although
only 36% of all PRE articles exhibit this feature combination. At the same time, curvatures span a
considerable range, even among top articles. In Table 12, we record the top articles with extreme
curvature values, and in Fig. 8, we display the pairwise relationships between curvature features and
other local features for all PRE articles.
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Figure 6: Hypergraphs with similar distributions of one curvature type may differ in their distribu-
tions of other curvature types. We show ORCHID curvatures computed using AGGA, for all curvature
types, probability measures, and α ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.
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Figure 7: ORCHID curvature distributions within the same collection and across semantically re-
lated collections exhibit several prototypical shapes, accompanied by varying types of relationships
between different probability measures. We show the distributions of ORCHID edge curvatures (top)
and edge-averaged node curvatures (bottom) computed using α = 0.1 and AGGA, for µEE (violet)
and µWE (blue), for all hypergraphs in aps-av and aps-cv. Recall that the edges in aps-av and aps-cv
as well as the nodes in aps-cv represent essentially the same set of APS papers, but in aps-av, they
connect co-authors, and in aps-cv, they connect co-cited papers (edges) or are connected by citing
papers (nodes).
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Table 12: Top articles display varying relationships between different curvature values. We list the
PRE articles that, out of all PRE articles cited at least 100 times, exhibit the most extreme curvature-
related values.

DOI κE(i) κN (i) ∆(κ(i)) κ(e) Title

maxκE(i),
maxκN (i)

10.1103/PhysRevE.70.066111 0.220092 -0.006001 0.226093 0.425336 Finding community structure in very large networks

minκE(i) 10.1103/PhysRevE.47.851 -0.319638 -0.555431 0.235793 0 Scale-invariant motion in intermittent chaotic systems
minκN (i) 10.1103/PhysRevE.48.R29 -0.241216 -0.704752 0.463536 0 Extended self-similarity in turbulent flows
max ∆(κ(i)) 10.1103/PhysRevE.64.056101 -0.131542 -0.668266 0.536724 0.038477 Determining the density of states for classical statistical

models: A random walk algorithm to produce a flat his-
togram

min ∆(κ(i)) 10.1103/PhysRevE.74.016118 -0.015495 -0.191193 0.175697 -0.156824 Amorphous systems in athermal, quasistatic shear
maxκ(e) 10.1103/PhysRevE.57.610 0.129557 -0.251635 0.381192 0.610123 Topological defects and interactions in nematic emul-

sions
minκ(e) 10.1103/PhysRevE.64.016706 -0.191094 -0.552908 0.361815 -0.644446 Fast Monte Carlo algorithm for site or bond percolation

Figure 8: Highly cited articles have distinct curvature distributions. Pairwise relationships between
(left-to-right, top-to-bottom) node neighborhood size, edge-averaged node curvature, direction-
averaged node curvature, curvature delta, node expansion := deg(i)/| N (i)|, edge cardinality, edge
neighborhood size, edge curvature, edge expansion := deg(e)/| N (e)|, and (as an additional metadata
feature) publication year, for all PRE articles cited at least once by another PRE article, colored by
node degree (number of citations within PRE), where brighter colors signal larger node degrees.
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Figure 9: Node clusterings based on curvature features differ radically from clusterings based on
other local features. We show the normalized mutual information (upper triangle) and the adjusted
rand score (lower triangle) of node clusterings based on different method/feature combinations,
computed on the citation hypergraph of PRB from the aps-cv collection, with curvatures computed
using α = 0.1, µWE, and AGGA.

Q3 Hypergraph Learning. Continuing the discussion of node clustering in hypergraphs abridged
in the main paper, we again focus on the citation hypergraph corresponding to articles from Physical
Review E (PRE). We experiment with a variety of features, clustering methods, and combinations
thereof, including both classic and recent clustering methods, such as SPONGE (Cucuringu et al.,
2019). We aim for 17 features, which is the number of “disciplines” present in the APS metadata (un-
fortunately, disciplines are only assigned to more recent articles, and hence, cannot serve as ground
truth). As depicted in Fig. 9, we find that clusterings generated using curvatures as features differ
radically from clusterings generated using other local features. To evaluate the semantic sensibility
of our clusterings in the absence of a suitable ground truth, we leverage the metadata associated with
PRE articles. In particular, we concatenate the titles of the articles grouped in each of our clusters
into “documents”, and consider the set of all clusters as our “document collection”, to then identify
characteristic terms for each cluster using TF-IDF feature extraction. We observe that clusterings
based on curvature features tend to be more thematically coherent than clusterings based on other
local features, and show the terms associated with the clusters resulting from a spectral clustering
using just the sign of our directional curvature in Table 13.

34



Preprint. Under review.

Table 13: ORCHID results in semantically coherent node clusterings. For a clustering of the PRE
citation hypergraph from the aps-cv collection based on the sign of directional curvatures, we show
the top terms, i.e., the terms associated with each cluster that have a TF-IDF score of at least 0.1,
along with their TF-IDF scores and their occurrence frequency oacross all clusters, in tuples of shape
(term, TF-IDF score, global occurrence frequency).

(smectic, 0.51, 1), (liquid, 0.39, 4), (crystals, 0.22, 4), (antiferroelectric, 0.21, 1), (crystal, 0.19, 2), (phase, 0.17, 4), (chiral, 0.17, 1), (cα, 0.15, 1), (paper, 0.15, 1),
(rock, 0.15, 1), (scissors, 0.15, 1), (electric, 0.14, 1), (phases, 0.14, 2), (ray, 0.13, 1), (cyclic, 0.13, 1), (species, 0.12, 1), (field, 0.11, 3), (games, 0.1, 2)

(resetting, 0.76, 1), (stochastic, 0.32, 1), (random, 0.24, 2), (walks, 0.18, 1), (diffusion, 0.17, 2), (brownian, 0.15, 1), (processes, 0.11, 1)

(nematic, 0.66, 2), (liquid, 0.41, 4), (crystal, 0.3, 2), (colloidal, 0.26, 1), (colloids, 0.18, 1), (crystals, 0.16, 4), (particles, 0.15, 1), (interaction, 0.14, 1)

(boltzmann, 0.75, 1), (lattice, 0.51, 1), (method, 0.2, 1), (flows, 0.15, 1), (model, 0.11, 5)

(quantum, 0.58, 3), (heat, 0.38, 1), (engine, 0.34, 1), (engines, 0.27, 1), (efficiency, 0.24, 1), (performance, 0.21, 1), (power, 0.17, 1), (maximum, 0.17, 1), (otto, 0.12,
1), (carnot, 0.12, 1), (refrigerators, 0.1, 1)

(granular, 0.85, 2), (gas, 0.17, 1), (gases, 0.16, 1), (inelastic, 0.13, 1), (driven, 0.13, 1)

(chimera, 0.7, 1), (states, 0.35, 1), (oscillators, 0.33, 1), (coupled, 0.31, 2), (networks, 0.2, 3), (nonlocally, 0.13, 1), (chimeras, 0.12, 1), (coupling, 0.1, 1)]

(dynamics, 0.19, 1), (model, 0.18, 5), (networks, 0.17, 3), (liquid, 0.16, 4), (diffusion, 0.13, 2), (phase, 0.13, 4), (quantum, 0.13, 3), (dimensional, 0.12, 1), (random,
0.12, 2), (flow, 0.11, 2), (systems, 0.11, 1), (plasma, 0.11, 1), (coupled, 0.1, 2), (time, 0.1, 1)

(dynamic, 0.41, 1), (ising, 0.35, 2), (phase, 0.34, 4), (oscillating, 0.34, 1), (field, 0.32, 3), (transition, 0.24, 1), (kinetic, 0.2, 1), (model, 0.2, 5), (magnetic, 0.15, 1),
(nonequilibrium, 0.13, 1), (blume, 0.12, 1), (capel, 0.12, 1), (transitions, 0.11, 1)

(passive, 0.47, 1), (scalar, 0.41, 1), (anomalous, 0.39, 1), (scaling, 0.29, 1), (advected, 0.24, 1), (turbulence, 0.22, 1), (turbulent, 0.18, 1), (advection, 0.15, 1), (loop,
0.12, 1), (anisotropy, 0.11, 1), (anisotropic, 0.11, 1), (renormalization, 0.11, 1), (vector, 0.11, 1), (field, 0.1, 3)

(quantum, 0.51, 3), (decay, 0.45, 1), (loschmidt, 0.33, 1), (echo, 0.33, 1), (fidelity, 0.25, 1), (chaotic, 0.23, 1), (semiclassical, 0.18, 1), (lyapunov, 0.13, 1), (perturbations,
0.11, 1)

(casimir, 0.69, 1), (critical, 0.37, 1), (forces, 0.27, 1), (films, 0.13, 1), (size, 0.13, 1), (force, 0.13, 1), (finite, 0.12, 1), (free, 0.11, 1), (ising, 0.11, 2), (thermodynamic,
0.1, 1), (model, 0.1, 5)

(traffic, 0.88, 1), (flow, 0.3, 2), (model, 0.13, 5), (car, 0.13, 1), (following, 0.11, 1)

(rogue, 0.62, 1), (schrödinger, 0.34, 1), (waves, 0.31, 2), (wave, 0.29, 2), (equation, 0.25, 1), (nonlinear, 0.21, 2), (solutions, 0.17, 1), (soliton, 0.12, 1), (solitons, 0.11,
1)

(cooperation, 0.6, 1), (dilemma, 0.38, 1), (prisoner, 0.34, 1), (game, 0.25, 1), (games, 0.24, 2), (evolutionary, 0.19, 1), (networks, 0.18, 3), (spatial, 0.17, 1), (social,
0.14, 1), (public, 0.12, 1), (goods, 0.1, 1)

(granular, 0.59, 2), (chains, 0.36, 1), (chain, 0.32, 1), (propagation, 0.22, 1), (waves, 0.21, 2), (nonlinear, 0.2, 2), (solitary, 0.2, 1), (wave, 0.17, 2), (pulse, 0.15, 1),
(crystals, 0.14, 4), (strongly, 0.12, 1)
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