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Abstract: The term “axial spondyloarthritis” (axSpA) refers to a group of chronic rheumatic diseases
that predominantly involve the axial skeleton and consist of ankylosing spondylitis, reactive arthritis,
arthritis/spondylitis associated with psoriasis (PsA) and arthritis/spondylitis associated with inflam-
matory bowel diseases (IBD). Moreover, pain is an important and common symptom of axSpA. It may
progress to chronic pain, a more complicated bio-psychosocial phenomena, leading to a significant
worsening of quality of life. The development of the axSpA inflammatory process is grounded in
the complex interaction between genetic (such as HLA B27), epigenetic, and environmental factors
associated with a dysregulated immune response. Considering the pivotal contribution of IL-23 and
IL-17 in axSpA inflammation, the inhibition of these cytokines has been evaluated as a potential ther-
apeutic strategy. With this context, here we discuss the main pathogenetic mechanisms, therapeutic
approaches and the role of pain in axSpA from the 2022 International GISEA/OEG Symposium.
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1. Introduction

The term “axial spondyloarthritis” (axSpA) refers to a group of chronic rheumatic
diseases that predominantly involve the axial skeleton and consists of ankylosing spondyli-
tis, reactive arthritis, arthritis/spondylitis associated with psoriasis (PsA) and arthri-
tis/spondylitis associated with inflammatory bowel diseases (IBD). AxSpA is classified
into two major subtypes: the radiographic axSpA (rx-axSpA), also known as ankylosing
spondylitis (AS), and non-radiographic axSpA (nr-axSpA), based on the presence or absence
of inflammatory involvement of sacroiliac joints and/or spine on X-rays evaluation.
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In both forms, active inflammation leads to pain, stiffness, and bone formation, and
causes spinal mobility limitation and, thus, functional impairment. The peripheral joints
and entheses, as well as skin bowel, and eyes, may also be involved [1,2]. Sacroiliitis is
the axSpA distinctive clinical sign, and advanced imaging techniques, namely high-field
magnetic resonance imaging (MRI), can obtain an early diagnosis and treatment.

2. Pathogenesis

The development of the AS inflammatory process is grounded in the complex interac-
tion between genetic, epigenetic, and environmental factors and a dysregulated immune
response, mainly involving the IL-23/IL-17 pathway [3–5]. The strongest association is
with the human leukocyte antigen B27 (HLA-B27) of the major histocompatibility complex
I (MHC-I), located on chromosome 6 [6]. The role of the MHC as a risk factor for several
diseases is well established. The presence of HLA-B27 correlates with AS susceptibility and
activity as it is positive in 80–90% of AS patients. The natural function of HLA-B27 is the
binding and presentation of intracellular antigenic peptides to cytotoxic T lymphocytes:
misfolding, the propensity to oligomerize and create complexes in the endoplasmic reticu-
lum (ER) with the chaperone BiP (HSPA5/GRP78), is a biochemic peculiarity of HLA-B27.
Together to other primary processes, misfolding has been hypothesized to explain the asso-
ciation between HLAB27 and AS. In fact, the growth of misfolded HLA-B27 may change
ER function and induce a stress in ER causing a higher IL-23 production [7]. Moreover,
alteration of the IL-23/IL-17 axis is the consequence of abnormal expression of HLA-B27
that could bind immunoglobulin-like receptor (KIR) of the Natural Killer (NK) cells, induc-
ing an increased production of IL-17 [8]. Finally, alterations of the ERAP enzymes should
provoke the formation of molecules defined as “arthritogenic peptide”. According to the
‘molecular mimicry’ theory a cross-reactive peptide, derived from an infecting pathogen,
may stimulate T cells, which subsequently respond to an HLAB27 associated ‘self-peptide’,
located in joints and entheses [9]. In the last few years, single nucleotide polymorphisms
(SNPs) have been detected among the genes encoding the endoplasmic reticulum amino
peptidase (ERAP) 1 and 2. These proteins are able to cut peptides in the endoplasmic
reticulum with a variable length between eight and ten amino acids, which is optimal for
binding to HLA-B27 [10]. The epistasis phenomenon links ERAP1 and HLA-B27, meaning
that ERAP1 mutations involve only HLA-B27 positive patients [11].

Clinically, an overlap between the gut and joint inflammation has been well-documented.
In about 60% of axSpA patients, there is evidence of subclinical gut inflammatory involve-
ment, and 5–10% of them develop an inflammatory bowel disease (IBD). Several studies,
including two genome-wide association studies (GWAS), have showed the presence of
substantial genetic overlap between IBD and SpA. The composition of the extensive col-
lection of bacteria colonizing the gastrointestinal tract and termed the ‘gut microbiota’,
differs in healthy individuals or AS patients, along with an increase in IL-23 in the terminal
ileum [12]. The perturbed gut microbiota affects the intestinal barrier on the epithelial and
vascular side, as predicted by the gut-joint axis theory [13]. As a result of these processes,
bacterial peptides and immunity cells move towards the interstitium; subsequently, they
move into the circulation, inducing an abnormal systemic inflammatory response [14].
The bacterial dysbiosis theory suggests that the expression of similar receptors between
the synovial membrane and the gut epithelium may lead to joint inflammation, due to a
decrease in HLA-B27-mediated clearance of intracellular bacteria.

Pathogenesis of inflammation and bone formation in the entheses are complex, and
probably involve mechanical stress, as suggested by studies showing that the anterior
longitudinal ligament is the most affected in patients with AS, bearing a higher load [15].

Considering the pivotal role of IL-23 in AS, it is expected that the suppression of this
cytokine is an effective therapeutic approach. However, Ustekinumab failed to demonstrate
a significant efficacy on pain and inflammation in radiographic axSpA, in a phase III clinical
trial [16]. Accordingly, Risankizumab, a monoclonal antibody binding p19 to IL-23, did not
show significant differences when compared to placebo in a phase II study on axSpA [17].
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The Ineffectiveness of monoclonal antibodies against anti-IL-23 in AS patients prompted
a revaluation of the mechanisms of action supposed until then, based on in vitro data and
preclinical models. It was previously demonstrated that Th-17 cells may arise from both
IL-23-dependent and -independent pathways, and that different populations of T cells (γδ
T cells, type 3 innate lymphoid cells and mucosal-associated invariant T cells) produce
IL-17 [18]. These results allow us to hypothesize different mechanisms to explain the poor
efficacy of the IL-23 blockade in axSpA.

The interaction of mesenchymal and immune cells fosters the inflammation of synovia
in axSpA [19]. The possibility that the decoupling of IL-23 and IL-17 can be tissue specific
is supported by in vitro studies showing that skin mesenchymal cells trigger the release of
IL-17 through an IL-23-dependent pathway, while synovial mesenchymal cells trigger the
release of IL-17 by activated IL-23-independent T cells [20,21]. The effectiveness of IL-23
blockades for the treatment of peripheral and not for axial involvement could be due to the
low number of monocytes and dendritic cells in axial tissues, but a careful definition of
these cellular population has not yet been evaluated. Another possible explanation may be
that IL-17-producing cells reach the sacro-iliac level from other sites, already activated by
IL-23.

The presence of an axis between gut and joint may explain the link between dysbiosis
and inflammatory diseases of the spine, but not the lack of efficacy of anti-IL-23 in axSpA,
since this treatment should involve cellular lines in both bowel and spine.

As in rheumatoid arthritis [22], IL-23 appeared to promote the first phase of AS, but
not necessarily maintain the ongoing inflammation. Although the IL-23 axis alters the
glycosylation of self-reactive IgG antibodies, making them pathogenic, this is unlikely to
be the mechanism through which IL-23 promotes the onset of AS, probably triggered by
alternative pathways. Another explanation for the early involvement of IL-23 in AS patho-
genesis is that the IL-23/IL-23R complex may act on different effectors and transducers
that are not suppressed by anti-IL-23 antibodies [23].

The serum levels of IL-17A and IL-17F are significantly higher in axSpA patients than
in healthy subjects [24,25] and they are significantly related to disease activity [26,27].

Some studies have demonstrated that the terminal ileum of AS patients is a significant
source of IL-23 but not IL-17 [12], and that IL-23p19 (the unique subunit of the active
IL-23 cytokine) is overexpressed in the inflamed gut tissues. Accordingly, IL-17F is more
frequently observed and more expressed in the synovial tissue of patients with PsA than
with osteoarthritis [28,29].

IL-17A has a synergic effect in combination with other cytokines, leading to a higher
pro-inflammatory response, despite these effects have been poorly explored in axSpA
patients.

Although the role of IL-17F in the pathogenesis of axSpA has to be furtherly explored,
it is established that the inflammation process derives by a synergic effect of IL-17A and
IL-17F [30] and that the blockade of both IL-17A and IL-17F decreases the inflammatory
response better than the blockade of only IL-17A [30].

The mechanism that allows the synergistic effects of IL-17A and IL-17F remains unclear.
Some Authors has suggested that IL-17A might stabilize mRNA transcripts, and increase
gene expression and protein production [31]. Moreover, phospholipase D enzymes might
up-regulate the cytokine secretion. It is worth noting that despite the absence of evidence
concerning IL-17F, L-8 mRNA and other mRNA transcripts (including ACT1, MIP2 and
CSF2) may have a role in the synergy between IL-17A and TNF [32].

Many of the immunity cell populations capable of producing IL-17, (IL-17+ CD8+ T
cells, tissue-resident memory (TRM) T cells, MAIT cells, Invariant NKT cells, γδ T cells)
may secrete IL-17 in patients with axSpA [33–35].

3. Treatment

The recommendations of the Assessment of Spondyloarthritis International Soci-
ety/European League Against Rheumatism (ASAS/EULAR) and those of the American
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College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research
and Treatment Network (ACR/SAA/SPARTAN) [36] suggest therapy with non-steroidal
anti-inflammatory drugs (NSAIDs) and physical treatment as the first-line therapy of pain
and stiffness. Since conventional disease-modifying anti-rheumatic drugs (DMARDs) such
as methotrexate, sulfasalazine, and leflunomide are ineffective in treating the axial manifes-
tations of axSpA, their role is limited to the treatment of peripheral clinical manifestations
of axSpA.

The biological DMARDs (mainly TNF and IL-17 inhibitors) are strongly recommended
for patients who do not respond to NSAIDs or when NSAIDs are contraindicated. The
compound choice should be based on the interaction between safety and comorbidity,
taking into account the presence of extra-articular manifestations and patient preference, as
there is no indication that any available drug is more effective than the others. Clinical trials
are the gold standard to assess the new biological drug efficacy and safety. However, as the
clinical trials undergo rigorously standardized conditions and patient inclusion criteria,
their results may not be indicative of their prescription and use in real-world.

3.1. Anti-IL17

Until a few years ago, the TNF inhibitors were the only biological agents licensed to
treat AS and nr-axSpA. The introduction of the first two IL-17 inhibitors (secukinumab
[SEC] and ixekizumab [IXE]) has increased the opportunities for the treatment of patients
who do not respond to TNF inhibition or experiencing a secondary failure. Moreover, three
other compounds (bimekizumab, brodalumab and netakimab) are now in different stages
of clinical development and approval [37].

3.1.1. Secukinumab

A phase II [38] and five phase III trials (MEASURE 1 [39], MEASURE 2 [40], MEASURE
2-J [41], MEASURE 3 [42] and MEASURE 4 [43] and their extensions tested the efficacy
and safety of SEC, a fully human antibody against IL-17A that inhibits the interaction
between IL-17 and its receptors [44]. These studies demonstrated rapid and sustained
efficacy in clinical and radiologic endpoints in AS, without evidence of a reduced efficacy
and a favorable and significant safety profile over a 5-year period.

PREVENT is the first phase III trial of SEC in patients with active nr-axSpA [45] that
demonstrates an improvement of signs and symptoms during the 52-week study period
without significant safety findings in patients treated with SEC. The two studies met both
of their primary outcomes. Specifically, SEC 150 mg with loading doses than in those
receiving PBO demonstrated a higher ASAS40 response rate at 16-week (41.5% vs. 29.2%;
p = 0.0197), and a higher 52-week ASAS40 response rate also in patients receiving SEC
150 mg without loading doses (39.8% vs. 19.9%, respectively; p < 0.0021) [45].

In the multicenter, prospective, observational Spondyloarthritis Roman Group (STRONG)
study, SEC was able to improve all of the evaluated clinical features and patient-reported
outcomes after six and twelve months of therapy, in particular among male AS patients, in
the absence of significant side effects [46].

Another observation study, recruiting 1860 axSpA patients from 13 European registries
of the European Spondyloarthritis Research Collaboration Network [47], showed that the
SEC retention rates was 82% after 6 months and 72% after 12 months of treatment thus
similar to those reported in studies evaluating TNF inhibitors. The response rates observed
in observational studies were lower than those obtained in randomized clinical trials, but
they were usually better among biological drug-naïve patients. Recently, a systematic
review and meta-analysis of real-world data on biological therapies for the treatment of AS
showed a one-year drug survival rate of SEC of 0.77 (95% confidence interval 0.64–0.90) [48].

3.1.2. Ixekizumab

Two phase III RCTs (COAST-V and COAST-W) showed significant ASAS40 responses
after the administration every two or every four weeks of IXE, an IgG4 monoclonal anti-
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body binding the homodimer IL-17A and the heterodimer IL-17A/F, in the treatment of
radiographic axSpA [49,50].

3.1.3. Other IL-17 Inhibitors

Brodalumab is nowadays approved for the treatment of psoriasis [51]. It is an IL-
17A receptor antagonist also inhibiting IL-17F, the IL-17A/F heterodimer and IL-17E.
Unfortunately, because of concerns about suicidal behavior [52], despite the absence of a
demonstrated causal relationship, a phase III trial evaluating the efficacy of Brodalumab in
patients with PsA was suspended. Similarly, a placebo-controlled phase II trial evaluating
Brodalumab in axSpA patients (ClinicalTrials.gov ID NCT02429882) was interrupted and
withdrawn in 2015. During the 2019 EULAR meeting, the results of a phase III trial on
brodalumab in AS and nr-axSpA patients (ClinicalTrials.gov ID NCT02985983) performed
in Japan were reported [53]. The results of the study showed a significantly higher response
rate at week-16 ASAS40 in the brodalumab group (35/80, 43.8%, p = 0.018) when compared
to placebo (19/79, 24.1%). These results suggested a possible future role for brodalumab as
a therapeutic alternative for axSpA patients.

Bimekizumab is an antagonist of both IL-17A and IL-17F. A phase IIb trial recruiting AS
patients [54] demonstrated that patients treated bimekizumab every four weeks achieved a
significantly better week-12 ASAS40 response than patients receiving placebo (response
rate for bimekizumab 16 mg: 29.5%, bimekizumab 64 mg: 42.6%, bimekizumab 160 mg:
46.7%, while the response rate in PBO group was vs. 13.3%; p < 0.05) [55]. Phase II
trials involving AS patients (ClinicalTrials.gov ID NCT03355573 and NCT03215277) and
phase III trials including patients with AS (ClinicalTrials.gov ID NCT03928743), nr-axSpA
(ClinicalTrials.gov ID: NCT03928704), or both AS and nr-axSpA (ClinicalTrials.gov ID
NCT04436640) are currently ongoing.

Finally, Netakimab is a recombinant humanized IgG1 monoclonal antibody against
IL-17 with a modified Fc fragment and CDR regions. A phase III trial, placebo-controlled
(ClinicalTrials.gov ID NCT03447704) is currently ongoing to evaluate safety and efficacy of
a dose of 120 mg over one year in 228 patients with active AS [55].

3.2. IL-23 Inhibition

Despite post-hoc analyses of trials on PsA [56–58] suggested that Guselkumab and
Ustekinumab can improve back pain symptoms potentially induced by axial inflammation;
this is probably due to generic and non-specific effects [59]. Globally, the experimental data
suggest that IL-23 is not a relevant driver of the physiopathology and clinical features of
active axSpA [60].

3.2.1. Ustekinumab

In a prospective, open-label, proof-of-concept clinical trial, Ustekinumab treatment
reduced active AS signs and symptoms without significant adverse effects [61], but three
placebo-controlled trials fail to confirm its efficacy [16,62]. The first two studies evaluated
Ustekinumab treatment of radiographic axial SpA by including patients naïve to TNF
inhibitors and those that failed to respond or were intolerant to TNF inhibitors, respectively.
A third study included patients with nr-axSpA. For all three studies, all of the Ustekinumab
dose groups showed clinically significant improvement over placebo on key efficacy out-
comes. The percentage of patients that experienced adverse events in the Ustekinumab
groups was consistent with that one observed in previous studies [16].

3.2.2. Guselkumab

A study on subcutaneous Guselkumab in patients naïve to biologic drugs with active PsA
and axial involvement (STAR) is ongoing (ClinicalTrials.gov Identifier: NCT04929210) [62].
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3.2.3. Risankizumab

Risankizumab is a humanized IgG1 monoclonal antibody binding the p19 subunit of
IL-23 [62]. Efficacy and safety of Risankizumab in AS patients were evaluated in a random-
ized, double-blind, placebo-controlled, phase II study. A treatment with Risankizumab
failed to achieve the primary outcome of ASAS40 response at week 12 (obtained by 25.5%,
20.5%, and 15% of patients in the Risankizumab 18 mg, 90 mg, and 180 mg groups, respec-
tively, compared to 17.5% in the placebo group). Adverse events were similar comparing
Risankizumab and placebo groups [17]. These results do not make recommended the use
of Risankizumab in axSpA.

3.2.4. Tildrakizumab

Tildrakizumab is a IgG1 subclass monoclonal antibody that binds to human IL-23.
The preliminary results of a randomized, placebo-controlled, double-blind, phase IIa study
on the treatment of active AS or non-radiographic axSpA (ClinicalTrials.gov Identifier:
NCT02980705) showed the ineffectiveness of Tildrakizumab, according to previous studies
on axSpA evaluating treatments with a similar mechanism of action [62].

3.3. Janus Kinases Inhibitors

In the last few years, several treatments have been investigated and approved for
treating patients with axSpA with different and controversial results. Today, the new class
of drugs called Janus kinases inhibitors (JAKi) have been approved for treating patients
with rheumatoid arthritis, PsA and recently for axSpA. Clinical trials in axSpA showed that
JAKi are effective and safe for treating these patients with a particular effect on pain.

4. The Impact of Pain in SpA Management

As in most rheumatic diseases, pain is an important and common symptom of axSpA,
and may include periods of both fluctuating and more persistent pain [63,64]. Additionally,
it may progress to chronic pain, a more complicated bio-psychosocial phenomena, com-
prised of chronic widespread pain (CWP) and chronic localized pain [65]. Chronic pain
is now recognized as a separate disease in and of itself, in addition to being the primary
symptom of rheumatic disorders. Central sensitization (CS) ensures the continuation of
chronic pain. CS is an atypical mechanism of pain control involving the central nervous
system [66]. CS synaptic plasticity is a condition characterized by an increase in neuronal
responsiveness in central pain pathways in response to painful stimuli. This is a signif-
icant non-nociceptive pain mechanism that results from altered central nervous system
pain processing and may occur in the absence of peripheral injury or inflammation [67].
According to current knowledge, CS is caused by peripheral and central nervous system
neuroinflammation. Consequently, cytokines and chemokines are released into the spinal
cord and brain. Cytokines and chemokines in the central nervous system are important
neuromodulators in the development of hyperalgesia and allodynia [68]. Additionally,
neuroimaging analysis revealed significant cortical thinning in a number of brain locations
(e.g., primary somatosensory cortex, insula, anterior middle cingulate cortex), but increased
gray matter volume in the putamen and thalamus [69]. These data strongly suggest that
the neuropathic component of AS may be related with central processes. Psychosocial
factors contributing to CS and somatosensory changes are depression, anxiety, stress, and
cognitive factors, including catastrophizing and maladaptive illness perception. Addi-
tionally, it has been shown that inflammatory and immune system processes in both the
peripheral and central nervous systems are unquestionably involved in neuropathic pain
(NP). Koca et al. [70] discovered a correlation between CS and NP scores and disease
activity ratings, and they recommended including central pain management techniques
into the diagnosis and follow-up of AS. Some researchers have identified widespread pain
in axSpA patients [71]. The occurrence of NP in various rheumatic diseases was explored
using the Pain Disability Questionnaire (PDQ) in a large study of 7.054 patients enrolled in
DANBIO (Denmark’s national registry of biological treatments) [72]. NP characteristics
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were seen in 20% of individuals with rheumatoid arthritis (RA). This trait was seen in 28%
and 21% of patients with PsA and axSpA, respectively. All patient-reported outcomes were
greater in this subgroup of patients, reporting increased pain, exhaustion, and disability,
as well as worse global health. In comparison, no variations in C-reactive protein (CRP),
serology, or current biological therapy were observed. The prevalence of a neuropathic
component in SpA has yet to be extensively studied and described in detail, with special
emphasis on the differentiation from nociplastic pain.

The current definition of NP, according to the International Association for the Study
of Pain (IASP), is “pain induced by a lesion or disease of the somatosensory nervous
system” [73]. Choi et al. found NP in 14.2% of 105 AS patients [74] using the Pain-
DETECT questionnaire, while Gok et al. found it in 33.5% of AS patients using the same
tool [75]. We ruled out NP and identified CS using the Central Sensitization Inventory (CSI)
questionnaire score. The CSI was designed and validated to detect chronic (nociplastic)
pain in individuals suffering from chronic pain (Table 1).

Table 1. Central sensitization inventory: part A.

1 I feel tired and unrefreshed when I wake from sleeping.
2 My muscles feel stiff and achy.
3 I have anxiety attacks.
4 I grind or clench my teeth.
5 I have problems with diarrhea and/or constipation.
6 I need help in performing my daily activities.
7 I am sensitive to bright lights.
8 I get tired very easily when I am physically active.
9 I feel pain all over my body.
10 I have headaches.
11 I feel discomfort in my bladder and/or burning when I urinate.
12 I do not sleep well.
13 I have difficulty concentrating.
14 I have skin problems such as dryness, itchiness, or rashes.
15 Stress makes my physical symptoms get worse.
16 I feel sad or depressed.
17 I have low energy.
18 I have muscle tension in my neck and shoulders.
19 I have pain in my jaw.
20 Certain smells, such as perfumes, make me feel dizzy and nauseated.
21 I have to urinate frequently.
22 My legs feel uncomfortable and restless when I am trying to go to sleep at night.
23 I have difficulty remembering things.
24 I suffered trauma as a child.
25 I have pain in my pelvic area.

Part A of the Central Sensitization Inventory (CSI) assesses 25 health-related symptoms common to CSSs. Re-
sponses are recorded about the frequency of each symptom, with a Likert scale from 0 (never) to 4 (always),
resulting in a total possible score of 100. Higher overall scores indicate more CS symptoms. A cut-off point of 40
out of 100 is suggestive for the presence of CSS. CSS severity categories are classified as subclinical (0–29), mild
(30–39), moderate (40–49), severe (50–59), and extreme (60–100).

The CSI has previously been used in osteoarthritis, rheumatoid arthritis, SpA, In-
flammatory Bowel Disease (IBD) and fibromyalgia [76–79]. To differentiate predominant
nociceptive and CS pain, clinicians are advised to use the algorithm shown in the Figure 1,
guiding them through the screening of three major classification criteria. Although their
pathophysiological causes are distinct, nociplastic pain and NP have similar clinical features
and are difficult to distinguish using simply questionnaires.
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Algorithm for the classification of central sensitization (CS) pain in SpA

Figure 1. The classification of central sensitization (CS) pain requires two major steps: the exclusion
of neuropathic pain and the differential classification of nociceptive versus central sensitization pain.
The algorithm for CS pain categorization in SpA is described here.

To further understand the feature of CS-related pain in SpA, particularly the associa-
tion with CSI scores and disease activity evaluations, studies using methodologies such
as quantitative sensory testing (QST), including pressure pain thresholds and conditioned
pain modulation testing, are required.

In individuals with fibromyalgia (FM), Macfarlane et al. [80] discovered a strong
association between the two components (Symptom Severity Scale and Widespread Pain
Index). FM is a common condition that has been linked to CS [79,81]. FM is characterized
by widespread pain, fatigue, and sleep disturbances, similar to SpA. Patients with FM
can be identified using the 2016 revision of the American College of Rheumatology (ACR)
criteria [82], which include the presence of chronic pain for at least 3 months, a widespread
pain index (WPI) of 7 and a symptom severity scale (SSS) score of 5 or a WPI of 4–6 and an
SSS score of 9 or a WPI of 4–6 and an SSS score of 9 [81]. According to Kieskamp et al., 45%
scored 40 or above, suggesting a significant likelihood of CS [83]. As a result, people who
have had axSpA for a long time seem to have a higher risk of developing CS. This is in line
with a previous study of 200 axSpA patients with a mean symptom duration of 5.9 years
and a mean Ankylosing Spondylitis Disease Activity Score (ASDAS)-CRP of 3.2, in which a
disproportionate number of patients (24%) met the ACR criteria for FM [84]. The overall
prevalence of FM was 14.9% in the axSpA population, with women having a considerably
higher prevalence (p < 0.0001); the estimated prevalence in AS was 12.7%, and in axial PsA,
it was was 17.2% [81,85].

In conclusion, there are two fundamental processes in the categorization of CS pain:
the exclusion of NP and the differential classification of nociceptive vs. CS pain. Within
the classification algorithm (Figure 1), the criteria should be examined together [86]. The
existence of NP or vice versa does not rule out the possibility of CS. In patients complaining
of persistent pain, therapy of centrally sensitized diseases should be priority, particularly in
those whose condition has been managed with proper treatment. CS is a rather prevalent
disorder, and pain-coping strategies, in addition to pharmacological therapies, may help
individuals with SpA reduce pain and improve their quality of life. It’s critical to increase
awareness about the critical role that CS pain plays in these individuals’ lives.
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