
Characterizing Molecular Dynamics Simulation on
Commodity Platforms

Francesco Peverelli1 Davide Conficconi1 Davide Basilio Bartolini2
Alberto Scolari2 Marco Domenico Santambrogio1

1DEIB, Politecnico di Milano, Italy
2Systems Laboratory, Zurich Research Center, Huawei Technologies, Switzerland

{francesco.peverelli, davide.conficconi, marco.santambrogio}@polimi.it
{davide.basilio.bartolini, alberto.scolari}@huawei.com

Abstract

Molecular Dynamics (MD) simulation is an essential
tool driving innovation in key scientific domains such as
physics, materials science, biochemistry, and drug discovery.
Enabling larger, longer, and more accurate MD simulations
can directly impact scientific discovery and innovation. While
domain-specific architectures for MD exist, they are not widely
accessible, and MD performance on commodity platforms (i.e.,
CPUs and GPUs) remains critical for supporting broad and
agile scientific progress.

This paper aims at characterizing MD simulation on
commodity platforms with a benchmark campaign on modern
systems available in public cloud offerings. We focus on
LAMMPS, one of the prevalent MD frameworks, and character-
ize several representative and diverse MD experiments. We find
that the benchmarked CPU instance provides good scalability
to many cores, while the reference LAMMPS GPU implemen-
tation struggles with scaling to multiple devices. Additionally,
we evaluate the performance impact of application-specific
parameters such as error threshold and arithmetic precision.

Our study indicates that key drivers for further im-
provement of LAMMPS performance on commodity systems
are: 1) improving scalability and offload efficiency in multi-
accelerator systems and 2) reducing work imbalance in the
CPU parallelization.

1. Introduction

Molecular Dynamics (MD) simulation is a crucial compu-
tational tool driving scientific discovery and innovation in
several domains such as physics, material science, biochem-
istry, and drug discovery [20]. The computational demands
of MD simulation restrict the duration, size, and accuracy
for which the evolution of a system can be simulated, even

. DOI: 10.1109/IISWC55918.2022.00016 © 2022 IEEE. Personal use of this
material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

on High-Performance Computing (HPC) systems. Cutting-
edge Domain-Specific Architectures (DSAs) designed for
MD simulation achieve up to hundreds of microseconds of
simulated time per day of real-time on a 512-node system
when simulating one million atoms [35]. Real applications,
however, are in strong demand for high performance.
For example, drug discovery would greatly benefit from
reducing the turnaround time of experiments simulating
several milliseconds of molecular system evolution [14].

Even DSAs fall short of modern application demands
and, additionally, this specialized hardware is not very ac-
cessible: despite public institutions offering access [8], only
limited compute time is available and requires submitting a
detailed proposal. For this reason, broad and agile scientific
progress hinges upon MD simulations being run on general-
purpose commodity platforms (i.e., CPUs and GPUs), which
are readily available in HPC-grade configurations from
cloud computing providers. However, commodity platforms
are currently up to 1000× slower than DSAs [35, 37].

While the performance gap with specialized hardware
can hardly be closed [15, 30, 35, 41, 42], detailed workload
analysis and characterization can still provide valuable
insights to drive performance improvement for MD on
commodity systems, thus expanding the experiments that
do not require a DSA for a reasonable turnaround time [34].
While previous work [3, 25, 28] focused on proving good
weak scaling properties and performance portability, the
goal of this paper is to provide a detailed characterization
of several representative and diverse MD experiments
on modern high-performance commodity platforms. We
construct our workloads with the widely used LAMMPS
simulator and benchmark them on modern HPC-grade CPUs
and GPUs, and we focus our analysis on performance and
scalability within a single compute node (i.e., a multi-socket
CPU and a multi-GPU server).
In summary, this paper makes the following contributions:

• We provide a concise illustration of the common
structure and computational steps of MD experiments
(Section 2).

• We construct a representative and diverse benchmark
suite of MD experiments using LAMMPS (Section 3).



• Based on a rigorous methodology (Section 4) [32] , we
characterize our benchmark suite on HPC-grade CPU-
based (Section 5) and GPU-based (Section 6) systems.

• We perform a sensitivity study to experiment-specific
input parameters (Section 7 and Section 8).

• We highlight directions for improving MD performance
on next-generation commodity platforms (Section 10).

2. Molecular Dynamics Simulation
A Molecular Dynamics (MD) simulation is a computa-

tional tool for analyzing the temporal evolution of a system
of particles [21]. This paper focuses on LAMMPS, an open-
source MD framework [3, 39], as a representative platform
for characterizing the workload. Before delving into our
analysis, we provide the relevant background information
on typical MD experiments and LAMMPS.

An MD experiment models a portion of space containing
the system of particles under study as a simulation box.
Within it the experiment simulates the evolution of the
system by iteratively computing interaction forces between
particles and consequently updating their velocities and po-
sitions. We call one iteration of this computation timestep.
Regardless of the timestep granularity (e.g., microseconds
or nanoseconds), which is specific to each experiment, we
evaluate performance in terms of timesteps/s or TS/s. This
standard metric reflects the execution time of the main
algorithmic steps, allowing us to compare experiments with
different timestep granularity.

Interaction forces between particles can be bonded, i.e.,
among few neighboring atoms linked by covalent bonds, and
non-bonded or long-range, i.e., affecting every particle in
the system. These interactions are computed based on molec-
ular mechanics force fields or inter-atomic potentials [22].
Examples of force fields used in our following experiments
are Lennard-Jones (LJ) [24], CHARMM [40] pairwise poten-
tials, and EAM many-body potential [13]. Additionally, one
of our experiments (Chute) uses a Hookean-style formula
for the friction between two granular particles [11].

Particle velocity and position are determined by nu-
merically solving Newton’s equations of motion, usually
through the Velocity Verlet algorithm [38] and, depending
on which quantities are assumed to remain constant during
the simulation, different integration strategies can be used.
All the experiments we analyze except one (Rhodopsin)
use the NVE LAMMPS command, which performs plain
time integration under the assumptions that 1) the number
of atoms (N ), volume (V ), and energy of the system (E)
remain constant, and 2) the simulation box has periodic
boundary conditions [23]. Conversely, Rhodopsin uses
the NPT command, which performs time integration via
Nose-Hoover style non-Hamiltonian equations of motion.

Computing pairwise interactions scales as O(N2), where
N is the number of particles, and becomes impractical
for large systems. One way to reduce this complexity is
to ignore the interaction forces caused by particles farther
away than a given cutoff threshold. However, introducing
a distance cutoff requires keeping track of which particles

are within the cutoff distance of each other particle at
each timestep. Particularly for non-bonded forces, which
apply across all space, interactions of particles within the
cutoff threshold are considered short-range, in contrast
to long-range interactions of particles beyond the cutoff
threshold.

LAMMPS supports a cutoff threshold with neighbor
lists, thus storing for each particle in the system an array
with its neighbors, i.e., all particles that are within the cutoff
distance. To avoid frequently updating the neighbor list for
particles moving across the cutoff distance, LAMMPS defines
a skin distance and additionally stores in the neighbor list
all particle pairs within the cutoff plus the skin distance:
a larger skin distance requires checking more particles for
possible interactions at each timestep, but allows rebuilding
neighbor lists less often.

In the case of non-bonded forces, e.g., with Coulomb and
dipolar potentials, truncating the contribution of particles
outside the cutoff range effectively disregards all long-range
interactions and may result in significant simulation errors.
For this reason, several methods have been developed to
approximate the long-range contribution of these forces. In
particular, LAMMPS implements the Ewald summation [16]
and Particle-particle Particle Mesh (PPPM) [19, 27] methods.
The Ewald summation method splits the summation of
the potentials into two separate terms for short- and
long-range contributions. Short-range contributions are
computed directly with pairwise interactions, while long-
range contributions are approximated with a more efficient
computation in the frequency domain: potentials and 3D
charge density are first transformed into the frequency
space, then multiplied pairwise, and, finally, transformed
back to the real domain. Transforming the original convolu-
tion into a pointwise multiplication in the frequency domain
reduces the complexity of the long-range computation from
O(N2) to O(Nlog(N)). LAMMPS implements this step via
a 3D Fast Fourier Transform (FFT). The PPPM method
additionally interpolates the charge density on a fixed grid
when computing the long-range interactions.

2.1. Reference MD Experiment Structure
Building on top of the terminology just defined, Figure 1

illustrates the structure of an MD simulation experiment
First, an initialization step sets the values for initial particle
positions and velocities; then, timesteps are iteratively
computed. For a system of N atoms and npaavg neighbors per
atom on average, each timestep goes through the following
steps:

• Initial integration (O(N)): computes positions and
velocities at the next simulation step.

• Apply boundary conditions (O(N)): takes into ac-
count boundary conditions at the edge of the simula-
tion box.

• Update neighbor list (O(N)): bookkeeping step to
keep track of neighboring particles for cutoff optimiza-
tion.

• Compute forces: interaction forces between particles
are computed according to the experiment-specific



Set initial positions and 
velocities

Initial integration step:
Get x(t+Δt), v(t+(½)Δt)

Apply boundary conditions

Update neighbor list data 
structures

Compute non-bonded forces with 
an appropriate force field, compute 

bonded forces

Compute system properties of 
interest

short-range 
pairwise

long-range

bonded 
forces

I

II

V

VIII

IV

III

VI

VII

+

Figure 1: High-level structure of an MD simulation timestep

TABLE 1: Steps of a LAMMPS simulation, corresponding
to Figure 1

Computational Tasks

Bond VII Computation of bonded forces
Comm IV Inter-processor communication of atoms

and their properties
Kspace VI Computation of long-range interaction forces
Modify II Fixes†and computes invoked by fixes
Neigh III Neighbor list construction
Output VIII Output of thermodynamic info and dump files
Pair V Computation of pairwise potential
Other All other tasks

†Fixes are operations applied to groups of atoms, e.g., applying constraint
forces (e.g., SHAKE bond, and angle constraints [10]), controlling temper-
ature, and enforcing boundary conditions.

force field and approximation strategy, O(N) (bonded),
O(N∗npaavg) (pairwise non-bonded) and O(N∗ log(N))
(long-range).

• Compute properties (O(N)): computes output ther-
modynamic properties of interest, such as temperature,
volume, and others.
Table 1 breaks down the main computational steps of a

LAMMPS simulation and maps them to the general structure
of Figure 1.

2.2. LAMMPS Parallelization Strategy
The most effective way to parallelize MD simulations

is to divide the simulation box into sub-domains. Each
sub-domain computes a timestep independently, although
it must receive the updated positions of atoms near the
sub-domain boundaries from its neighbors and send back
the force contributions acting on said atoms. Additionally,
computing long-range forces requires several data exchanges
to compute a 3D FFT on the whole simulation domain.

We leverage LAMMPS’s INTEL package [5] to run
all experiments on the commodity CPUs, enabling two
levels of parallelization. The MPI level leverages the spatial

decomposition of the problem domain into smaller sub-tasks,
and the OpenMP parallelization attempts to parallelize the
code within a single task. This implementation [5] is generic
and parallelizes on both multi- and single-node scenarios.
Given our focus on performance and scalability within a
single node, we pick the single-node MPI reference for MPI
processes parallelization across multiple cores. Each MPI
process is assigned to a different core. We experimented
with OpenMP and observed that, for our experiments,
the OpenMP parallelization (or a combination of the two)
was less performing than the MPI-based one in all cases.
Similarly, the reference LAMMPS GPU package [4] we
leverage also uses MPI parallelization on our GPU instances.

3. MD Experiments Benchmark Suite
We select five MD experiments as representative bench-

marks for our suite; this choice depends on their diverse
characteristics and their previous use in literature [3]:
Rhodopsin simulates an all-atom rhodopsin protein in
solvated lipid bilayer [31] by using a CHARMM force field
and NPT time integration with added SHAKE constraints
[10]; contrary to all other experiments, it computes long-
range non-bonded forces. PPPM is used for long-range
force calculation, with a relative error threshold in forces
of 1.0 · e–4.
LJ simulates a 3D Lennard-Jones melt [24]. The force field
is LJ with cutoff, hence, no long-range forces are computed.
Chain simulates a bread-spring polymer melt with 100-
mer chains. It uses a FENE (Finite Extensible Nonlinear
Elastic) bonded potential [26], NVE time integration, and
applies a Langevin thermostat [12] to all atoms.
EAM simulates a copper metallic solid with EAM (Em-
bedded Atom Method) [13] potential. The force cutoff and
Neighbor skin are expressed in Angstroms and are specific
to the metal considered in the experiment.
Chute simulates a chute flow of packed granular particles
with frictional history potential [11]. The history variant
accounts for the tangential displacement between the
particles for the duration of the time they are in contact.
Unlike all previous benchmarks, this experiment does not
leverage Newton’s third law to reduce the number of
pairwise interactions to compute.

Table 2 summarizes the main features, as explained in
Section 2, of these five benchmarks:

• Cutoff reports the cutoff between short- and long-
range interactions. Based on the measurement units,
we report the distance in Angstrom or σ, i.e., the
distance at which the particle-particle potential energy
is zero.

• Neighbor skin reports the neighbor list skin distance
through which we decide which particles we consider
in our timestep updates.

• Neighbors/atom reports the number of atoms within
the cutoff range for an atom in the system.

• pair_modify allows modifying the parameters of the
pairwise interactions in the chosen force field, e.g.,
interaction coefficients between atoms of different



TABLE 2: Main characteristics of our benchmark suite.

Experiments Taxonomy

Benchmark Rhodopsin LJ Chain EAM Chute
Min atoms 32k 32k 32k 32k 32k
Force field CHARMM lj lj EAM gran/hooke/

history
Cutoff 8.0-10.0 Å 2.5 σ 1.12 σ 4.95 Å 1.0 σ
Neighbor skin 2.0 Å 0.3 σ 0.4 σ 1.0 Å 0.1 σ
Neighbors/atom 440 55 5 45 7
pair_modify† mix arithmetic - - - -
kspace_style‡ pppm - - - -
Kspace error‡ 1.0 e-4 - - - -
Integration NPT NVE NVE NVE NVE

†Only applicable to the force field used in Rhodopsin.
‡Only for Rhodopsin, the only one computing long-range interactions.

types, adding energy offsets or tail corrections. The
mix keyword determines which formula is used to
derive mixed-types coefficients from same-types coef-
ficients. Possible styles are arithmetic, geometric and
sixthpower [6].

• kspace_style shows the algorithm used to compute the
long-range interactions, where applicable.

4. Characterization Methodology
We focus on characterizing the performance of LAMMPS

for single compute nodes, evaluating all experiments for
different numbers of CPU cores and GPUs. Our goal is to
give insights into the architecture behaviors and directions
to improve next-generation commodity platforms.

4.1. Importance of single-node performance
Previous work studies multi-node strong scaling for

MD and shows that it rapidly becomes inefficient (e.g.,
33% parallel efficiency for LJ on Haswell with 64 nodes
[1]). Scaling out to multiple nodes is also inefficient in
terms of memory consumption, considering that an MD
simulation has limited memory requirements (2.9 GB for the
biggest experiment we run). A single node does not limit
the simulation box size for reasonably large experiments,
as modern high-performance, general-purpose servers are
normally configured with hundreds of GB to TB of DRAM,
to support memory-intensive workloads.

While scaling out may still be required in order to
meet requirements on simulation turnaround, improving
single-node performance translates to a smaller number
of nodes required for the same performance target, also
increasing per-node main memory utilization (important
because DRAM is a major driving cost in modern servers).

We believe that characterizing MD performance on a
single node (CPU- or GPU-based) is a significant missing
piece in literature and orthogonal to studying scale-out
behavior. Our study is a first contribution towards making
MD more efficient on future general-purpose systems.

4.2. Platforms and Experimental Flow
We use two systems for our evaluation: 1) the CPU

instance, equipped with a dual-socket Intel Xeon Platinum

TABLE 3: CPU and GPU Instances Description

CPU Specs. CPU Inst. GPU Inst.

CPU Intel Xeon Platinum 8358 Intel Xeon Platinum 8167M
Cores 32 26
Threads 64 52
Freq. (turbo) 2.6 GHz (3.4 GHz) 2 GHz (2.4 GHz)
L1 Cache 64 KB per core 32 KB per core
L2 Cache 1 MB per core
L3 Cache 48 MB shared 35.75 MB shared
Tech. Node 10nm 14 nm
TDP 250W 165W

GPU Specs. CPU Inst. GPU Inst.

GPU - NVIDIA V100
SM - 84
Global Mem. - 16 GB HBM
L2 Cache - 6 MB shared
L1 Cache - 128 KB per SM
Frequency - 1.35 GHz
Tech. Node - 12nm
TDP - 300W

Instance Specs. CPU Inst. GPU Inst.

Sockets 2 Intel Socket 4189 2 Intel Socket 3647
Memory 1024 GB DDR4 768 GB DDR4
OS Ubuntu 20.04.4 LTS
Kernel Linux 5.13.0-1033-oracle

Automation Infrastructure

Executable

Settings

Type
?

Benchmarking Experiment
Run

Bench.

CPU 
Power
GPU 

Power

Data 
Log

Metric 
Parser

Formatted
Output

Profiling Experiment

Architecture 
Profiler

vTune

NSight

Data 
Log

Profiling 
Data

Aggregator

Formatted
Output

Visualizer

A

B

Figure 2: Framework structure to automate the experiments.

8358; 2) the GPU instance, equipped with 8 Nvidia V100
GPUs. Table 3 reports a detailed description of the instances.
Our characterization methodology builds on top of an open-
source experimental framework [32] we developed to
ensure repeatability and correctness of evaluations. Figure 2
outlines the overall structure of our framework. For each
experiment, the user can define the mode of operation,
namely A profiling or B benchmarking, and define the
parameters space, e.g., number of MPI processes, system
sizes, and input of the benchmark. The benchmarking
mode records performance and energy efficiency statistics,
while the profiling mode extracts and stores profiling
information from each run. The framework uses powerstat
for CPUs and nvidia-smi for GPUs, running at a fixed
sampling rate of 0.5 seconds to measure the power con-
sumption. In all experiments, we set each benchmark to run
enough timesteps to reach a run time of at least ten seconds,
providing enough time to collect power measurements at the
given sampling rate. The framework exploits architecture-



specific profiling utilities and includes an aggregator that
parses and processes data to produce plots for visualization.
We rely on Intel VTune Profiler [2] version 2022.2 and
NSightSystems 2022.1 [7] profile on the CPU and GPU
instances, respectively.

4.3. Compiler and System Settings

To execute all experiments, we compiled LAMMPS via
Makefile with the following settings. We used mpiicpc for
the Intel® MPI Library 2021.6 for Linux; icpc version 2021.6.0
(compatible with gcc 9.4.0). The compiler flags included are
the standard flags in the Makefile.intel_cpu_intelmpi
makefile. We used these LAMMPS flags for FFT: -DFFT_MKL
-DFFT_SINGLE. The mkl version used was 2022.1.0. The GPU
library was compiled with the mpi Makefile (-m mpi flag)
and with the -a sm_70 arch flag. We compiled the GPU
code with nvcc 11.4.120, CUDA version 11.4, and driver
version 470.57.02.

5. CPU Experiments Characterization

We first analyze our benchmark suite on the CPU in-
stance (see Table 3). As a first analysis, we break down execu-
tion time in terms of the fundamental tasks we identified in
subsection 2.1. In all experiments, we map each MPI process
to a separate physical core using Intel’s KMP_AFFINITY ;
we do not use hyperthreads and fully fill one socket before
using the second one (i.e., only experiments with 64 MPI
processes use two sockets). Typical sizes of the simulation
box of MD experiments range from some hundred thousand
of atoms to a few millions [14, 17, 33]. To cover this space,
we report four different experiment sizes ranging between
32k and 2048k particles. Figure 3 reports the execution time
breakdown across our benchmarks, highlighting different
behaviors across the suite.

We observe that the number of neighbors per atom,
rather than the specific pairwise force field employed, is
responsible for increasing the relative runtime of the short-
range pairwise forces computation (“Pair” tasks of Figure 3).
Although the Chain and LJ experiments use the same
Lennard-Jones pairwise potential, the LJ experiment spends
over 75% of its runtime computing pairwise interactions if
not parallelized, i.e., with one MPI process. Conversely, the
Chain and Chute experiments, having 5 and 7 neighbors
per atom, respectively, spend significantly less time in that
portion of the timestep. This result is consistent with the
fact that the pairwise computation scales as the product of
the number of atoms times the average number of neighbors
per atom.

A second trend we identify is that, although paral-
lelization generally reduces the time spent in short-range
forces computation, this effect is less noticeable for larger
experiment sizes. This effect can be explained by considering
that for the same cutoff range for a given experiment, in
a larger system, we have subdomains with more atoms
internal to the subdomain than the surrounding ghost
atoms that need to be exchanged among processes. The

0

50

100

R
un

Ti
m

e
[%

]

B.=chain — S.=32 B.=chain — S.=256 B.=chain — S.=864 B.=chain — S.=2048

0

50

100

R
un

Ti
m

e
[%

]

B.=chute — S.=32 B.=chute — S.=256 B.=chute — S.=864 B.=chute — S.=2048

0

50

100

R
un

Ti
m

e
[%

]

B.=eam — S.=32 B.=eam — S.=256 B.=eam — S.=864 B.=eam — S.=2048

0

50

100

R
un

Ti
m

e
[%

]

B.=lj — S.=32 B.=lj — S.=256 B.=lj — S.=864 B.=lj — S.=2048

1 2 4 8 16 32 64
MPI Processes

0

50

100

R
un

Ti
m

e
[%

]

B.=rhodo — S.=32

1 2 4 8 16 32 64
MPI Processes

B.=rhodo — S.=256

1 2 4 8 16 32 64
MPI Processes

B.=rhodo — S.=864

1 2 4 8 16 32 64
MPI Processes

B.=rhodo — S.=2048

Bond Comm Kspace Modify Neigh Other Output Pair

Figure 3: Breakdown of execution time by task for all
benchmarks (one per row); problem size increases left-
to-right from 32k to 2048k particles; the number of MPI
processes corresponds to the number of CPU cores used.

communication portion starts to dominate for smaller
systems with a high degree of parallelization.

Across the suite, only Rhodopsin and Chain include the
computation of bonded forces. For these two benchmarks,
the time spent computing them is marginal and scales well.
This is in line with the findings for Anton 3 [35], in that
bonded forces are only worth optimizing once non-bonded
forces have been optimized as much as possible.

5.1. MPI Parallelization Scaling Overhead
We leverage our profiling methodology from Section 4 to

investigate the MPI parallelization overhead on the execution
time of all experiments for different problem sizes and
number of MPI processes (a.k.a. MPI ranks). Figure 4 (top
- distribution over all MPI ranks of the percentage of
time spent in MPI functions) and Figure 5 (breakdown
per MPI function of the time in Figure 4, averaged over
all MPI ranks) illustrate the MPI overheads for simulation
running for 10k timesteps. Figure 5 shows that theMPI_Init()
function, responsible for initializing the MPI context, takes
a considerable portion of the overall time spent in MPI
functions. Even for relatively long-running experiments, its
impact remains very relevant, despite the function being



4 8 16 32 64
MPI Processes

0

50

M
PI

Ti
m

e
[%

]

Benchmark = chain-long

4 8 16 32 64
MPI Processes

0

50

Benchmark = chute-long

4 8 16 32 64
MPI Processes

0

25

50

Benchmark = eam-long

4 8 16 32 64
MPI Processes

0

50

Benchmark = lj-long

4 8 16 32 64
MPI Processes

0

20

40
Benchmark = rhodo-long

Size[k atoms]
32
256
864
2048

4 8 16 32 64
MPI Processes

0

5

M
PI

im
ba

la
nc

e
[%

]Benchmark = chain-long

4 8 16 32 64
MPI Processes

0

10

Benchmark = chute-long

4 8 16 32 64
MPI Processes

0.0

0.5

Benchmark = eam-long

4 8 16 32 64
MPI Processes

0.0

0.5

Benchmark = lj-long

4 8 16 32 64
MPI Processes

0.0

2.5

5.0

Benchmark = rhodo-long
Size[k atoms]

32
256
864
2048

Figure 4: Total MPI overhead and MPI imbalance percentage, averaged for all ranks over total time.

called only once per MPI rank for each run. In order to
confirm that the long time spent on MPI_Init() is not an
artifact due to short simulations, we increased the number
of timesteps in our experiment by two orders of magnitude
and observed that the time spent in MPI_Init() scales with
the total execution time. We observe that the time spent
executing MPI_Init, averaged per MPI rank, increases with
the number of MPI processes. This overhead likely depends
on the specific MPI library implementation. Investigating
performance bottlenecks specific to the Intel MPI library
implementation is out of the scope of this paper and left
for future work.

Looking at the absolute overhead of MPI on the sim-
ulation in Figure 4, we can observe that the overhead
decreases if we increase the system size. We also observe
that most of the overhead for smaller systems is not due to
actual data transfers between MPI processes but rather a
consequence of initialization and synchronization overheads.
Indeed, the MPI function breakdown of Figure 5 shows that
most of the execution time is spent in MPI_Init(), as already
discussed, and MPI_Wait(). MPI_Send(), MPI_Sendrecv(), and
MPI_Allreduce() become more prominent for bigger systems
but generally decrease with the number of MPI processes.
The decrease of the overall impact of MPI calls for systems
with more atoms despite the increased data transfer size
is an expected behavior. Indeed, the increasing number of
atoms in each subdomain (with fixed density d) increases
the computation more than the communication between
subdomains: assuming each subdomain is a cube of side
L, we can approximate the number of data to transfer
on each timestep as O(6(L2) ∗ cutoff _range ∗ d), whereas
the number of iterations of the pairwise potential kernel
is O((L3) ∗ npaavg ∗ d), where npaavg is the number of
neighbors per atom on average.

We analyzed the MPI imbalance of our workload,
which represents the time spent in the MPI library calls
when a process waits for data. Figure 4 (bottom) reports
the percentage of MPI time spent due to MPI imbalance.
We observe that the LJ, Rhodospin, and EAM experiments
have a much lower imbalance (EAM and LJ in particular)

than Chain and Chute. Indeed, these three benchmarks
spend more time in the “Pair” computation, and Rhodospin,
the most imbalanced of the three, performs long-range
forces calculation. Despite a well-balanced computation,
this trend indicates that the addition of more tasks (e.g.,
fixes and long-range forces) or the more frequent neighbor
list construction may result in more imbalance in the the
pairwise potential central step V .

5.2. CPU Strong Scaling Analysis

Finally, we analyze the workload scalability along
timesteps, energy and parallelization efficiency. We define
parallel efficiency as: Pn/(P1×n), where Pn is performance
(timestep/s, TS/s) with n resources (e.g., MPI processes).

Figure 6 (top) reports indeed the performance, showing
how the total efficiency of a timestep depends on many
factors. For example, the Rhodopsin experiment has by far
the lowest performance (10.7 TS/s on a 2 million atoms
system), due to having one order of magnitude more neigh-
bors per atom than the EAM and LJ experiments, as well
as having to compute the long-range forces contributions.
Rather unexpectedly, Rhodopsin scales well with bigger
system sizes, meaning that the 3D FFT for the computation
of the long-range forces scales up similarly to the other
timestep components.

Conversely, the Chute experiment has the best perfor-
mance for small systems (10697 TS/s) but cannot sustain
it for larger systems, where LJ and Chain demonstrate
superior scalability. Moreover, Chute also does not scale
well with MPI parallelization, exhibiting the worse parallel
efficiency (as low as 48%) for systems with more than 32k
atoms (Figure 6, bottom). Looking at the profiling results,
we noticed that Chute exhibits the lowest average physical
core utilization at 24%, compared to the 48% of LJ, 56%
of Chain, 63% of EAM, and 83% of Rhodopsin. This lends
support to the idea that parallelization improvements may
be possible for this experiment. The low core utilization
also explains the difference in power efficiency between
Chute and the other benchmarks in Figure 6 (middle).



0

50

100

M
PI

Fu
nc

ti
on

Ti
m

e
[%

] B.=chain-long — S.=32 B.=chain-long — S.=256 B.=chain-long — S.=864 B.=chain-long — S.=2048

0

50

100

M
PI

Fu
nc

ti
on

Ti
m

e
[%

] B.=chute-long — S.=32 B.=chute-long — S.=256 B.=chute-long — S.=864 B.=chute-long — S.=2048

0

50

100

M
PI

Fu
nc

ti
on

Ti
m

e
[%

] B.=eam-long — S.=32 B.=eam-long — S.=256 B.=eam-long — S.=864 B.=eam-long — S.=2048

0

50

100

M
PI

Fu
nc

ti
on

Ti
m

e
[%

] B.=lj-long — S.=32 B.=lj-long — S.=256 B.=lj-long — S.=864 B.=lj-long — S.=2048

4 8 16 32 64
Processes

0

50

100

M
PI

Fu
nc

ti
on

Ti
m

e
[%

] B.=rhodo-long — S.=32

4 8 16 32 64
Processes

B.=rhodo-long — S.=256

4 8 16 32 64
Processes

B.=rhodo-long — S.=864

4 8 16 32 64
Processes

B.=rhodo-long — S.=2048

MPI Allreduce MPI Init MPI Send MPI Sendrecv MPI Wait others

Figure 5: Breakdown of the MPI overhead in terms of the
most relevant MPI functions for the time spent by each
benchmark (one per row); problem size increases left-to-
right.

6. GPU Experiments Characterization
We now characterize the benchmarks of Section 3

execution through the LAMMPS standard GPU package
on the GPU instance. Differently from the CPU counterpart,
the standard GPU package does not support the Chute
experiment because of unimplemented features, (gran/hooke
pair style). Since implementing this support is beyond the
scope of our work, we exclude Chute from the GPU analysis.
As for the CPU analysis, we discuss the runtime breakdown
and the strong scaling across multiple GPUs.

6.1. Task Optimization vs Flexibility on GPUs
Figure 7 reports the tasks runtime breakdown for the GPU

instance, drawing a different picture than the CPU instance
counterpart. First, we can see that the relative runtime
of the pairwise forces computation changes drastically: in
the Rhodopsin experiment the GPU accelerated version
performs this task significantly faster, spanning less than
25% of the total runtime. On the other hand, Figure 8
strongly suggests that not all kernels are equally optimized.
The EAM experiment, for example, still spends most of
its runtime in pairwise forces computation. The reason

1 2 4 8 16 32 64
MPI Processes

0

5000

10000

Pe
rf

or
m

an
ce

[T
S/

s] SIZE = 32

1 2 4 8 16 32 64
MPI Processes

0

500

1000

SIZE = 256

1 2 4 8 16 32 64
MPI Processes

0

100

200

300
SIZE = 864

1 2 4 8 16 32 64
MPI Processes

0

50

100

SIZE = 2048
NAME

chain
chute
eam
lj
rhodo

1 2 4 8 16 32 64
MPI Processes

0

25

50

75

En
er

gy
Ef

fic
ie

nc
y

[T
S/

s/
W

at
t]

SIZE = 32

1 2 4 8 16 32 64
MPI Processes

0

2

4

6

SIZE = 256

1 2 4 8 16 32 64
MPI Processes

0.0

0.5

1.0

SIZE = 864

1 2 4 8 16 32 64
MPI Processes

0.0

0.1

0.2

0.3

SIZE = 2048 NAME
chain
chute
eam
lj
rhodo

2 4 8 16 32 64
MPI Processes

102

4× 101

6× 101

Pa
ra

lle
lE

ffi
ci

en
cy

(%
)

SIZE = 32

2 4 8 16 32 64
MPI Processes

SIZE = 256

2 4 8 16 32 64
MPI Processes

SIZE = 864

2 4 8 16 32 64
MPI Processes

SIZE = 2048
NAME

chain
chute
eam
lj
rhodo

Figure 6: Performance (top), Energy Efficiency (mid), Parallel
Efficiency (bottom) of the target benchmarks on the CPU
instance for increasing problem sizes (left to right)

0

50

100
R

un
Ti

m
e

[%
]

B.=chain — Size=32 B.=chain — Size=256 B.=chain — Size=864 B.=chain — Size=2048

0

50

100

R
un

Ti
m

e
[%

]

B.=eam — Size=32 B.=eam — Size=256 B.=eam — Size=864 B.=eam — Size=2048

0

50

100

R
un

Ti
m

e
[%

]

B.=lj — Size=32 B.=lj — Size=256 B.=lj — Size=864 B.=lj — Size=2048

1 2 4 6 8
GPUs

0

50

100

R
un

Ti
m

e
[%

]

B.=rhodo — Size=32

1 2 4 6 8
GPUs

B.=rhodo — Size=256

1 2 4 6 8
GPUs

B.=rhodo — Size=864

1 2 4 6 8
GPUs

B.=rhodo — Size=2048

Bond Comm Kspace Modify Neigh Other Output Pair

Figure 7: Breakdown of GPU execution time by task for all
benchmarks (one per row), problem size increases left-to-
right.

stands partially in the additional EAM overhead of splitting
the pairwise forces computation into the k_eam_fast and
k_energy_fast kernels. However, their individual runtime
on the device is greater than the one of the Rhodopsin
counterpart, k_charmm_long, as shown in Figure 8. This
result suggests that additional optimization of the EAM
potential pairwise GPU kernel may be worth investigating.

Another important takeaway for the Rhodopsin bench-
mark is that the neighbor list construction seems to hit a
breaking point for systems larger than 864k atoms: while



0

50

100

R
un

Ti
m

e
[%

]

B.=chain — S.=32 B.=chain — S.=256 B.=chain — S.=864 B.=chain — S.=2048

0

50

100

R
un

Ti
m

e
[%

]

B.=eam — S.=32 B.=eam — S.=256 B.=eam — S.=864 B.=eam — S.=2048

0

50

100

R
un

Ti
m

e
[%

]

B.=lj — S.=32 B.=lj — S.=256 B.=lj — S.=864 B.=lj — S.=2048

1 2 4 6 8
GPUs

0

50

100

R
un

Ti
m

e
[%

]

B.=rhodo — S.=32

1 2 4 6 8
GPUs

B.=rhodo — S.=256

1 2 4 6 8
GPUs

B.=rhodo — S.=864

1 2 4 6 8
GPUs

B.=rhodo — S.=2048

[CUDA memcpy DtoH]
[CUDA memcpy HtoD]
[CUDA memset]

calc neigh list cell
k lj fast
kernel info

kernel special
kernel zero
transpose

k eam fast
k energy fast
interp

k charmm long
make rho
particle map

Figure 8: GPU kernels and data movement functions for all
benchmarks (one per row), problem size increases left-to-
right.

for all systems up to that size the longest-running GPU
kernels are related to the computation of the long-range
forces (make_rho and particle_map), for the 2 million atoms
simulation calc_neigh_list_cell becomes prevalent. Moreover,
we observe that the Modify section for the Rhodopsin
experiment has become more relevant, although we see no
counterpart in the GPU kernels. The reason is the lack of
a GPU implementation for the SHAKE constraints; hence
the CPU is in charge in the current LAMMPS version.
Considering that it has now become a more relevant portion
of the timestep runtime, it seems that accelerating this
computation on the GPU may be a viable next step in
optimizing the GPU package performance.

Lastly, we note how the majority of the time actively
spent by the GPU is involved in memory movement
primitives, specifically CUDA memcpy from host to device
and from device to host. This clearly shows that from the
perspective of GPU utilization, the amount of computation
per communication is sub-optimal, and the first instinct
would be to optimize this by porting more computation
steps on the GPU. However, this is not always feasible while
maintaining the flexibility required to support all compu-
tational variations and fixes, as indicated by the example
of the SHAKE constraints. Moreover, the GPU acceleration
needs to be balanced with the MPI parallelization on the
host side. In fact, as stated by the optimization guide for the
GPU package in the LAMMPS documentation [4], it is often
optimal to assign multiple MPI processes to the same device,
increasing utilization by allowing multiple subdomains to
time-multiplex the use of the device while still parallelizing
the computation on the host side. In this case, the optimal

1 2 4 6 8
GPU devices

500

1000

1500

Pe
rf

or
m

an
ce

[T
S/

s] SIZE = 32

1 2 4 6 8
GPU devices

250

500

750
SIZE = 256

1 2 4 6 8
GPU devices

0

100

200

300

SIZE = 864

1 2 4 6 8
GPU devices

0

50

100

150
SIZE = 2048

NAME
chain
eam
lj
rhodo

1 2 4 6 8
GPU devices

2

4

6

En
er

gy
Ef

fic
ie

nc
y

[T
S/

s/
W

at
t]

SIZE = 32

1 2 4 6 8
GPU devices

1

2

SIZE = 256

1 2 4 6 8
GPU devices

0.25

0.50

0.75

SIZE = 864

1 2 4 6 8
GPU devices

0.0

0.2

0.4

SIZE = 2048
NAME

chain
eam
lj
rhodo

1 2 4 6 8
GPU devices

102

3× 101
4× 101

6× 101

Pa
ra

lle
lE

ffi
ci

en
cy

(%
) SIZE = 32

1 2 4 6 8
GPU devices

SIZE = 256

1 2 4 6 8
GPU devices

SIZE = 864

1 2 4 6 8
GPU devices

SIZE = 2048

NAME
chain
eam
lj
rhodo

Figure 9: Performance (top), Energy Efficiency (mid), Parallel
Efficiency (bottom) of the target benchmarks on the GPU
instance for increasing problem sizes (left to right).

balance has to be manually tuned according the capabilities
of the host CPU and the GPUs.

6.2. Strong Scaling Analysis: the Data Movement
Bottleneck

Similarly to the results reported for the CPU instance,
we analyze the strong scaling behavior of the experiments
in the GPU-powered instance (Figure 9). Firstly, we observe
that the strong scaling on multiple GPU devices is consider-
ably worse than the CPU-only MPI parallelization scaling. In
fact, the parallel efficiency (Figure 9, bottom) becomes as low
as 23.28%. We empirically tested different numbers of MPI
processes per device for different system sizes, and in any
case no more than 48 total MPI processes were beneficial,
despite having 52 available hardware cores on the CPU.
The low parallel efficiency of the GPU stems from the fact
that the reference CUDA implementation suffers from low
device utilization: therefore, using multiple devices achieves
little improvement. This is likely an implementation issue
stemming from the fact that LAMMPS supports many
different combinations of kernels that are not co-optimized
to the fullest extent (this is far from a trivial task). The
problem is exacerbated by fractioning the computation
domain assigned to each process; we observe that data
movement through PCIe occupies most of the runtime, but
the the PCIe bandwidth is under-utilized. This analysis
indicates that more aggressive software optimizations for
the GPU implementation are a very promising direction
towards significantly improving single-node MD perfor-
mance. We do not see fundamental limitations preventing
designers from realizing MD algorithms that optimize data
movement and better leverage the available bandwidth.
One example would be porting more of the code to run
on the GPU (instead of relying on the host), such as some
of the ‘fixes’ and integration strategies (e.g., the SHAKE
integration strategy for Rhodopsin).

Secondly, we can observe that some benchmarks benefit
more than others from GPU parallelization. For example,



EAM outperforms Chain on the GPU instance, contrary to
what we observe on the CPU instance. This is likely because
the computation of pairwise forces, where EAM spends
most of its runtime in both instances, is more suitable for
acceleration than the construction of the neighbor lists
and the computation of bonded forces, which are more
time-consuming for Chain.

Comparing the performance of the CPU and GPU code
is not trivial, considering that the CPU of the CPU-only
instance is relatively new (released in 2021), while the GPU
instance uses both the V100 GPUs and the its own CPU,
which has though lower performance and core count than
the CPU-only instance. Nevertheless, moving towards a
GPU implementation that spends less time on data transfers
and allows to fully utilize both the host and the devices is
likely the most sensible optimization trajectory to improve
the overall performance.

7. Lowering of the Error Threshold

After characterizing the performance of LAMMPS bench-
marks with a baseline configuration, we further our analysis
by focusing on specific input parameters and on their
impact on application behavior. This analysis is not meant
to discuss the optimality of the choice of the parameters
themselves, which highly depends on the individual experi-
ments; instead, it aims to show how the scaling properties
of a sub-section of the algorithm can impact performance.

Firstly, we evaluate the impact of the maximum relative
error threshold on forces for the long-range interaction
component. We consider the Rhodopsin experiment being
the only experiment among the proposed benchmarks
using PPPM to estimate long-range forces contribution.
We progressively lower the error threshold and run the
benchmark for the previously considered system sizes and
computational resources. As expected, the runtime spent
on long-range forces computations increases by lowering
the error threshold, as Figure 11 shows.

Figure 10 showcases how the required precision has a
massive impact on performance. Considering a system of 2
millions atoms, an error threshold of 1.0 · e–4 on 64 MPI
processes achieves 10.77 TS/s, while lowering the threshold
1.0·e–7 causes a performance drop to 3.54 TS/s. The parallel
efficiency is also negatively affected, dropping from 74.29%
to 56.54%, highlighting how the long-range portion of the
timestep exhibits worse strong scaling properties, most
likely due to the global communication steps required by
the 3D FFT.

However, the MPI overhead on the total execution
time is reduced, as shown in Figure 14. The threshold
of 1.0 · e–5 and 1.0 · e–6 exhibits a similar behavior,
hence, we exclude the former from the figure. The MPI
functions breakdown (Figure 12) shows how for bigger
system sizes, the prevalence of MPI_Send increases over
all other functions, indicating that less time is spent on
synchronization between tasks and more time is spent on
actual data exchange.

1 2 4 8 16 32 64
MPI Processes

0

200

400

Pe
rf

or
m

an
ce

[T
S/

s] SIZE = 32

1 2 4 8 16 32 64
MPI Processes

0

25

50

75

SIZE = 256

1 2 4 8 16 32 64
MPI Processes

0

10

20

SIZE = 864

1 2 4 8 16 32 64
MPI Processes

0

5

10

SIZE = 2048

NAME
rhodo
rhodo-e-5
rhodo-e-6
rhodo-e-7

1 2 4 8 16 32 64
MPI Processes

102

5× 101

6× 101
7× 101
8× 101
9× 101

Pa
ra

lle
lE

ffi
ci

en
cy

(%
) SIZE = 32

1 2 4 8 16 32 64
MPI Processes

SIZE = 256

1 2 4 8 16 32 64
MPI Processes

SIZE = 864

1 2 4 8 16 32 64
MPI Processes

SIZE = 2048

NAME
rhodo
rhodo-e-5
rhodo-e-6
rhodo-e-7

Figure 10: Performance and parallel efficiency of the
rhodopsin benchmark on the CPU instance for decreasing
problem kspace relative error threshold on forces.

0

50

100

R
un

Ti
m

e
[%

]

B.=rhodo — S.=32 B.=rhodo — S.=256 B.=rhodo — S.=864 B.=rhodo — S.=2048

0

50

100

R
un

Ti
m

e
[%

]

B.=rhodo-e-6 — S.=32 B.=rhodo-e-6 — S.=256 B.=rhodo-e-6 — S.=864 B.=rhodo-e-6 — S.=2048

2 4 8 16 32 64
MPI Processes

0

50

100

R
un

Ti
m

e
[%

]

B.=rhodo-e-7 — S.=32

2 4 8 16 32 64
MPI Processes

B.=rhodo-e-7 — S.=256

2 4 8 16 32 64
MPI Processes

B.=rhodo-e-7 — S.=864

2 4 8 16 32 64
MPI Processes

B.=rhodo-e-7 — S.=2048

Bond Comm Kspace Modify Neigh Other Output Pair

Figure 11: Breakdown of execution time by task for the
rhodopsin benchmark on the CPU instance for decreasing
problem kspace relative error threshold on forces, indicated
as “rhodo-e-*” in each plot.

Concerning the GPU instance, the negative impact on
performance is even more noticeable in Figure 13. For the
same 2 million system we go from 16.09 TS/s on 8 GPUs,
to 0.46 TS/s for an error threshold of 1.0 · e–7. A lower
error threshold implies CUDA memcpy from host to device
to grow substantially, shadowing all other CUDA API and
kernel calls.

8. Scaling Performance to Double Precision

Lastly, we evaluate the impact of floating-point precision
on the pairwise non-bonded forces calculations on both CPU
and GPU. Usually, the computations exploit single precision
for the pairwise forces while accumulating the contributions
in double precision. We tune this mixed strategy to use
only single or double precision for the whole computation.
A command-line parameter in the INTEL package allows
choosing between the floating-point precisions, while the
GPU requires re-compilation with a dedicated flag. Figure 15
and 16 report the performance for the LJ and Rhodopsin



0

50

100

M
PI

Fu
nc

ti
on

Ti
m

e
[%

] B.=rhodo — S.=32 B.=rhodo — S.=256 B.=rhodo — S.=864 B.=rhodo — S.=2048

0

50

100

M
PI

Fu
nc

ti
on

Ti
m

e
[%

] B.=rhodo-e-5 — S.=32 B.=rhodo-e-5 — S.=256 B.=rhodo-e-5 — S.=864 B.=rhodo-e-5 — S.=2048

0

50

100

M
PI

Fu
nc

ti
on

Ti
m

e
[%

] B.=rhodo-e-6 — S.=32 B.=rhodo-e-6 — S.=256 B.=rhodo-e-6 — S.=864 B.=rhodo-e-6 — S.=2048

4 8 16 32 64
Processes

0

50

100

M
PI

Fu
nc

ti
on

Ti
m

e
[%

] B.=rhodo-e-7 — S.=32

4 8 16 32 64
Processes

B.=rhodo-e-7 — S.=256

4 8 16 32 64
Processes

B.=rhodo-e-7 — S.=864

4 8 16 32 64
Processes

B.=rhodo-e-7 — S.=2048

MPI Allreduce MPI Init MPI Send MPI Wait MPI Waitany others

Figure 12: Breakdown of the MPI overhead in terms of the
most relevant MPI functions.

1 2 4 6 8
GPU devices

0

100

200

300

Pe
rf

or
m

an
ce

[T
S/

s] SIZE = 32

1 2 4 6 8
GPU devices

0

50

100
SIZE = 256

1 2 4 6 8
GPU devices

0

10

20

30

SIZE = 864

1 2 4 6 8
GPU devices

0

5

10

15

SIZE = 2048

NAME
rhodo
rhodo-e-5
rhodo-e-6
rhodo-e-7

1 2 4 6 8
GPU devices

102

3× 101

4× 101

6× 101

Pa
ra

lle
lE

ffi
ci

en
cy

(%
) SIZE = 32

1 2 4 6 8
GPU devices

SIZE = 256

1 2 4 6 8
GPU devices

SIZE = 864

1 2 4 6 8
GPU devices

SIZE = 2048

NAME
rhodo
rhodo-e-5
rhodo-e-6
rhodo-e-7

Figure 13: Performance and parallel efficiency of the
rhodopsin benchmark on the GPU instance for decreasing
problem kspace relative error threshold on forces.

benchmarks with single, double, and mixed precision on
CPU and GPU instances.

LJ shows a slight decrease in performance for the
double precision version for the CPU instance, while the
performance for single and mixed-precision is compara-
ble. For a system of 2048 thousand atoms with 64 MPI
processes, the performance drops from 115.2 for the single-
precision version to 98.9 TS/s for double precision. The
GPU versionvshows a more significant change, going from
170.0 TS/s on 8 GPUs with single precision to 121.6 TS/ss
for the double-precision version for the same number of
atoms, likely due to the hardware implementation of double
precision arithmetics.

Considering the Rhodopsin benchmark, the performance
difference is larger for the CPU instance, dropping from
11.5 for single to 8.4 TS/s for double. The GPU version
shows only a slight decrease in performance for the larger

4 8 16 32 64
MPI Processes

0

50

M
PI

Ti
m

e
[%

]

Benchmark = rhodo

4 8 16 32 64
MPI Processes

25

50

75

Benchmark = rhodo-e-6

4 8 16 32 64
MPI Processes

25

50

75
Benchmark = rhodo-e-7

Size[k atoms]
32 256 864 2048

4 8 16 32 64
MPI Processes

0

20

40

M
PI

im
ba

la
nc

e
[%

] Benchmark = rhodo

4 8 16 32 64
MPI Processes

0

5

10

Benchmark = rhodo-e-6

4 8 16 32 64
MPI Processes

0

5

10

Benchmark = rhodo-e-7

Size[k atoms]
32 256 864 2048

Figure 14: Total MPI overhead (top) and imbalance (bottom)
percentage, averaged for all ranks over total time.

1 2 4 8 16 32 64
MPI Processes

0

2500

5000

7500
Pe

rf
or

m
an

ce
[T

S/
s] SIZE = 32

1 2 4 8 16 32 64
MPI Processes

0

500

1000

SIZE = 256

1 2 4 8 16 32 64
MPI Processes

0

100

200

300
SIZE = 864

1 2 4 8 16 32 64
MPI Processes

50

100

SIZE = 2048

NAME
lj
lj-double
lj-single

1 2 4 8 16 32 64
MPI Processes

0

200

400

Pe
rf

or
m

an
ce

[T
S/

s] SIZE = 32

1 2 4 8 16 32 64
MPI Processes

0

25

50

75

SIZE = 256

1 2 4 8 16 32 64
MPI Processes

0

10

20

SIZE = 864

1 2 4 8 16 32 64
MPI Processes

5

10

SIZE = 2048

NAME
rhodo
rhodo-double
rhodo-single

Figure 15: Performance for the LJ and rhodopsin bench-
marks with different floating point precision on the CPU
instance.

system tested (from 17.1 to 16.5 TS/s); the performance
(in TS/s) further increases when smaller systems and fewer
devices are used.

In summary, it is clear that a higher precision negatively
affects performance. However, the relative impact of this
parameter on the overall runtime is highly dependent on
system size and the number and type of devices chosen,
with smaller systems being the more affected, and the
LJ benchmark on GPU being the most sensitive to this

1 2 4 6 8
GPU devices

1000

1500

Pe
rf

or
m

an
ce

[T
S/

s] SIZE = 32

1 2 4 6 8
GPU devices

400

600

800
SIZE = 256

1 2 4 6 8
GPU devices

100

200

300

SIZE = 864

1 2 4 6 8
GPU devices

100

150

SIZE = 2048

NAME
lj
lj-double
lj-single

1 2 4 6 8
GPU devices

150

200

250

300

Pe
rf

or
m

an
ce

[T
S/

s] SIZE = 32

1 2 4 6 8
GPU devices

40

60

80

100
SIZE = 256

1 2 4 6 8
GPU devices

20

30

SIZE = 864

1 2 4 6 8
GPU devices

5

10

15

SIZE = 2048

NAME
rhodo
rhodo-double
rhodo-single

Figure 16: Performance for the LJ and rhodopsin bench-
marks with different floating point precision on the GPU
instance.



parameter. We also collected the same results for the other
four benchmarks, with EAM showing similar behavior to the
LJ experiment and Chain behaving similarly to Rhodopsin.

9. Related Work

Several works have investigated LAMMPS scalability
and performance over the years. However, none of them
presented a comprehensive, fine-grained characterization
of single-node commodity general-purpose systems as this
work.

A sizable collection of benchmarking results is collected
on the LAMMPS website’s benchmarking directory [3].
Several weak scaling results are reported for all benchmarks
studied in this work on different systems, both desktop
machines, CPU-based and GPU-based clusters. Differently,
our characterization focuses on single-node performance
and scalability, as well as a more fine-grained analysis of
application behavior through profiling. We also include
energy efficiency measures.

The work by Morinigo et al. [29] investigates the effect
of task co-location on MPI performance on the TACC,
Helios, and Eagle supercomputers. Instead, our work focuses
on the MPI parallelization overhead on a single node,
investigating its impact on different benchmarks, required
kspace precision, and floating-point precision.

The work of Kondratyuk et al. [25] investigates the per-
formance portability of LAMMPS and GROMACS between
NVIDIA’s Titan V and AMD’s Radeon VII. Unlike this work,
we focus on characterizing the CUDA kernel performance
and multi-GPU capability of LAMMPS.

The work by Hagerty et al. [18] investigates the
portability of LAMMPS performance on several HPC GPU
node clusters. The authors also investigate the impact of
several options in the Kokkos package. With respect to this
work, we choose to characterize the standard GPU package,
focusing on multi-GPU strong scaling and characterizing
the energy efficiency of the experiments under study.

The work by David Shaw et al. on Anton 2 and
Anton 3 [35, 36] represents the most notable example
of Domain-Specific Architecture for molecular dynamics
simulation. Although this work is pivotal in setting the
bar for achievable performance in the post-Moore era, the
limited availability of this specialized hardware means that
commodity hardware still has a very relevant role in this
field. Therefore, we choose commodity hardware as our
primary focus in this analysis.

10. Takeaways and Conclusion

We presented an in-depth characterization of relevant
MD workloads on general-purpose commodity systems
through a benchmark suite of MD experiments exploiting
LAMMPS for different interaction potentials. We built
a rigorous methodology and automated framework to
extensively characterize our benchmarks on single-node
commodity CPU and GPU instances, scaling the system

under evaluation size from 32k to 2048k atoms. Our analy-
sis provides insights to drive next-generation commodity
platforms towards MD optimizations.

Our findings showcase the good scalability of the
considered CPU instance across all experiments, especially
for big system sizes. Indeed, for Rhodopsin, EAM and LJ
with 2 million atoms the parallel efficiency loss normalized
per number of MPI processes is roughly constant. Rhodopsin
incurs in greater parallel efficiency loss from 32 to 64 MPI
processes. Moreover, we characterized the MPI overhead
across benchmarks and instance resources. Instead, the eval-
uated GPU package struggles to scale on multiple devices
per single node (up to 8 NVIDIA V100 GPUs), dropping
under 30% parallel efficiency for some benchmarks. The
reason is the modular style of acceleration for relevant
portions of the tasks in the standard GPU package, involving
multiple data serialization and transmission steps between
CPU and GPU. These scaling results correspond to reduced
energy efficiency for the GPU instance, whereas the CPU-
only instance yields higher efficiency.

We also perform a sensitivity analysis on experiment-
specific parameters. Both lowering the long-forces error
threshold and changing the precision to compute pairwise
non-bonded forces decrease performance on both instances.
Moreover, lowering the error threshold exhibits an MPI
overhead reduction and a growth of the CUDA memcpy
for the CPU and the GPU instance, respectively. On one
hand the CPU instance benefits from an increased data
exchange volume and reduced tasks synchronization. On
the other, the GPU instance suffers from the increased data
movement overhead, lowering the accelerator utilization.

Our results show that an experiment like Rhodopsin
with 2 million atoms on a single CPU node runs at 2
ns/Day on current commodity hardware. Our GPU node
with eight devices reached 2.8 ns/Day. These numbers imply
that we are still very far from being able to carry out
milliseconds-scale experiments on commodity hardware.
The results presented in this breakdown suggest that
better utilization of GPUs as accelerators would help bring
commodity hardware closer to DSA in terms of achievable
performance. In fact, on 2 million atoms systems, the
average utilization per GPU reaches only 30%. A more
effective parallelization is critical in achieving the full
potential of these instances. An promising direction to
maintain flexibility while achieving optimal performance is
adopting Domain-Specific Languages (DSLs), allowing to
write efficient MD code more productively. Examples exist
in the literature, but have not seen widespread adoption [9].

Acknowledgments

This work was supported by the Computing Systems
Lab, part of the Huawei Zurich Research Center.

This work was supported in part by Oracle Cloud credits
and related resources provided by the Oracle for Research
program.



References
[1] “Accelerating lammps performance,” https://www.lammps.org/

workshops/Aug17/pdf/moore.pdf, accessed: 2022-06-23.
[2] “Intel vtune profiler,” https://www.intel.com/content/www/us/en/

\developer/tools/oneapi/vtune-profiler.html.
[3] “Lammps benchmarks,” https://www.lammps.org/bench.html, ac-

cessed: 2022-03-23.
[4] “Lammps gpu package,” https://docs.lammps.org/Speed_gpu.html,

accessed: 2022-06-23.
[5] “Lammps intel package,” https://docs.lammps.org/Speed_intel.html,

accessed: 2022-06-23.
[6] “Lammps pair_modify command,” https://docs.lammps.org/

pair_modify.html, accessed: 2022-06-23.
[7] “Nsight systems,” https://developer.nvidia.com/blog/nvidia-nsight-

systems-2022-1-introduces-vulkan-1-3-and-linux-backtrace-
sampling-and-profiling-improvements/, accessed: 2022-03-22.

[8] “Request for proposals for biomolecular simulation time on anton at
pittsburgh supercomputing center,” https://www.psc.edu/resources/
anton/anton-rfp/, accessed: 2022-07-07.

[9] B. Acun, D. J. Hardy, L. V. Kale, K. Li, J. C. Phillips, and J. E. Stone,
“Scalable molecular dynamics with namd on the summit system,” IBM
journal of research and development, vol. 62, no. 6, pp. 4–1, 2018.

[10] H. C. Andersen, “Rattle: A “velocity” version of the shake algorithm
for molecular dynamics calculations,” Journal of computational Physics,
vol. 52, no. 1, pp. 24–34, 1983.

[11] N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Pöschel, “Model
for collisions in granular gases,” Physical review E, vol. 53, no. 5, p.
5382, 1996.

[12] R. L. Davidchack, R. Handel, and M. Tretyakov, “Langevin thermostat
for rigid body dynamics,” The Journal of chemical physics, vol. 130,
no. 23, p. 234101, 2009.

[13] M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation
and application to impurities, surfaces, and other defects in metals,”
Physical Review B, vol. 29, no. 12, p. 6443, 1984.

[14] M. De Vivo, M. Masetti, G. Bottegoni, and A. Cavalli, “Role of
molecular dynamics and related methods in drug discovery,” Journal
of medicinal chemistry, vol. 59, no. 9, pp. 4035–4061, 2016.

[15] E. D’Arnese, D. Conficconi, M. D. Santambrogio, and D. Sciuto,
“Reconfigurable architectures: The shift from general systems to
domain specific solutions,” in Emerging Computing: From Devices to
Systems. Springer, 2023, pp. 435–456.

[16] P. P. Ewald, “Die berechnung optischer und elektrostatischer gitter-
potentiale,” Annalen der physik, vol. 369, no. 3, pp. 253–287, 1921.

[17] H. Guterres and W. Im, “Improving protein-ligand docking results
with high-throughput molecular dynamics simulations,” Journal of
Chemical Information and Modeling, vol. 60, no. 4, pp. 2189–2198,
2020.

[18] N. Hagerty, V. Melesse Vergara, and A. Tharrington, “Studying per-
formance portability of lammps across diverse gpu-based platforms,”
Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), Tech.
Rep., 2022.

[19] R. W. Hockney and J. W. Eastwood, Computer simulation using
particles. crc Press, 2021.

[20] S. A. Hollingsworth and R. O. Dror, “Molecular dynamics simulation
for all,” Neuron, vol. 99, no. 6, pp. 1129–1143, 2018.

[21] A. Hospital, J. R. Goñi, M. Orozco, and J. L. Gelpí, “Molecular
dynamics simulations: advances and applications,” Advances and
applications in bioinformatics and chemistry: AABC, vol. 8, p. 37,
2015.

[22] G. Jaeger, “What in the (quantum) world is macroscopic?” American
Journal of Physics, vol. 82, no. 9, pp. 896–905, 2014.

[23] V. Jansoone, “Dielectric properties of a model fluid with the monte
carlo method,” Chemical Physics, vol. 3, no. 1, pp. 78–86, 1974.

[24] J. E. Jones, “On the determination of molecular fields.—i. from the
variation of the viscosity of a gas with temperature,” Proceedings
of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, vol. 106, no. 738, pp. 441–462,
1924.

[25] N. Kondratyuk, V. Nikolskiy, D. Pavlov, and V. Stegailov, “Gpu-
accelerated molecular dynamics: State-of-art software performance
and porting from nvidia cuda to amd hip,” The International Journal of
High Performance Computing Applications, vol. 35, no. 4, pp. 312–324,
2021.

[26] K. Kremer and G. S. Grest, “Dynamics of entangled linear polymer
melts: A molecular-dynamics simulation,” The Journal of Chemical
Physics, vol. 92, no. 8, pp. 5057–5086, 1990.

[27] B. A. Luty, M. E. Davis, I. G. Tironi, and W. F. Van Gunsteren, “A
comparison of particle-particle, particle-mesh and ewald methods for
calculating electrostatic interactions in periodic molecular systems,”
Molecular Simulation, vol. 14, no. 1, pp. 11–20, 1994.

[28] G. McKenna, “Performance analysis and optimisation of lammps on
xcmaster, hpcx and bluegene,” MSc, University of Edinburgh, EPCC,
2007.

[29] J. A. Moríñigo, P. García-Muller, A. J. Rubio-Montero, A. Gómez-
Iglesias, N. Meyer, and R. Mayo-García, “Benchmarking lammps:
sensitivity to task location under cpu-based weak-scaling,” in Latin
American High Performance Computing Conference. Springer, 2018,
pp. 224–238.

[30] I. Ohmura, G. Morimoto, Y. Ohno, A. Hasegawa, and M. Taiji,
“Mdgrape-4: a special-purpose computer system for molecular dy-
namics simulations,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 372, no. 2021,
p. 20130387, 2014.

[31] K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima,
B. A. Fox, I. L. Trong, D. C. Teller, T. Okada, R. E. Stenkamp et al.,
“Crystal structure of rhodopsin: Ag protein-coupled receptor,” science,
vol. 289, no. 5480, pp. 739–745, 2000.

[32] F. Peverelli, D. Conficconi, D. B. Bartolini, A. Scolari, and
M. D. Santambrogio, “Lammps benchmarking repository,”
https://github.com/necst/lammps-benchmarks, 2022.

[33] O. M. Salo-Ahen, I. Alanko, R. Bhadane, A. M. Bonvin, R. V. Honorato,
S. Hossain, A. H. Juffer, A. Kabedev, M. Lahtela-Kakkonen, A. S.
Larsen et al., “Molecular dynamics simulations in drug discovery
and pharmaceutical development,” Processes, vol. 9, no. 1, p. 71, 2020.

[34] M. Schaffner and L. Benini, “On the feasibility of fpga acceleration
of molecular dynamics simulations,” arXiv preprint arXiv:1808.04201,
2018.

[35] D. E. Shaw, P. J. Adams, A. Azaria, J. A. Bank, B. Batson, A. Bell,
M. Bergdorf, J. Bhatt, J. A. Butts, T. Correia et al., “Anton 3: twenty
microseconds of molecular dynamics simulation before lunch,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021, pp. 1–11.

[36] D. E. Shaw, J. Grossman, J. A. Bank, B. Batson, J. A. Butts, J. C.
Chao, M. M. Deneroff, R. O. Dror, A. Even, C. H. Fenton et al.,
“Anton 2: raising the bar for performance and programmability in
a special-purpose molecular dynamics supercomputer,” in SC’14:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2014, pp. 41–53.

[37] K. S. Shim, B. Greskamp, B. Towles, B. Edwards, J. Grossman, and
D. E. Shaw, “The specialized high-performance network on anton 3,”
in 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2022, pp. 1211–1223.

[38] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, “A com-
puter simulation method for the calculation of equilibrium constants
for the formation of physical clusters of molecules: Application to
small water clusters,” The Journal of chemical physics, vol. 76, no. 1,
pp. 637–649, 1982.

https://www.lammps.org/workshops/Aug17/pdf/moore.pdf
https://www.lammps.org/workshops/Aug17/pdf/moore.pdf
https://www.intel.com/content/www/us/en/\developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/\developer/tools/oneapi/vtune-profiler.html
https://www.lammps.org/bench.html
https://docs.lammps.org/Speed_gpu.html
https://docs.lammps.org/Speed_intel.html
https://docs.lammps.org/pair_modify.html
https://docs.lammps.org/pair_modify.html
https://developer.nvidia.com/blog/nvidia-nsight-systems-2022-1-introduces-vulkan-1-3-and-linux-backtrace-sampling-and-profiling-improvements/
https://developer.nvidia.com/blog/nvidia-nsight-systems-2022-1-introduces-vulkan-1-3-and-linux-backtrace-sampling-and-profiling-improvements/
https://developer.nvidia.com/blog/nvidia-nsight-systems-2022-1-introduces-vulkan-1-3-and-linux-backtrace-sampling-and-profiling-improvements/
https://www.psc.edu/resources/anton/anton-rfp/
https://www.psc.edu/resources/anton/anton-rfp/


[39] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen et al., “Lammps-a flexible simulation tool for particle-
based materials modeling at the atomic, meso, and continuum scales,”
Computer Physics Communications, vol. 271, p. 108171, 2022.

[40] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong,
J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov et al., “Charmm
general force field: A force field for drug-like molecules compatible
with the charmm all-atom additive biological force fields,” Journal of
computational chemistry, vol. 31, no. 4, pp. 671–690, 2010.

[41] T. Wang, T. Geng, X. Jin, and M. Herbordt, “Accelerating ap3m-based
computational astrophysics simulations with reconfigurable clusters,”
in 2019 IEEE 30th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), vol. 2160. IEEE, 2019,
pp. 181–184.

[42] C. Wu, T. Geng, S. Bandara, C. Yang, V. Sachdeva, W. Sherman, and
M. Herbordt, “Upgrade of fpga range-limited molecular dynamics to
handle hundreds of processors,” in 2021 IEEE 29th Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2021, pp. 142–151.



Appendix
The code is available at [32] for the Artifact available

with the latest updates, with the DOI: https://doi.org/
10.5281/zenodo.7153144.

1. Abstract
This brief appendix describes how to download and test

our LAMMPS benchmarking framework.

2. Artifact check-list (meta-information)
• Algorithm: Molecular Dynamics simulation
• Program: LAMMPS
• Compilation: C++, CUDA, Makefile, CMake (LAMMPS)
• Binary: LAMMPS binaries are required
• Data set: available in the LAMMPS repository under
’lammps/bench’

• Run-time environment: Linux
• Hardware: Intel CPU, NVIDIA GPU
• How much disk space required (approximately)?: 10

GB
• How much time is needed to prepare workflow (ap-

proximately)?: 30 minutes
• Publicly available?: yes
• Code licenses (if publicly available)?: MIT License

3. Description
3.1. How to access. Code publicly available at https://
github.com/francesco-peverelli/lammps-benchmarks.git .

3.2. Hardware dependencies.
• requires an Intel CPU to run VTune profiling
• requires a CUDA-capable GPU to run and profline
GPU experiments

3.3. Software dependencies.
• Requires CUDA >= 11.4 to run GPU experiments
• Requires the powerstat CPU profiling tool
• Requires the nvidia-smi and NVIDIA Nsight Systems
utilities

• Requires python 3, and the pandas and seaborn python
packages

3.4. Data sets.
• dataset available in the LAMMPS repository under
’lammps/bench’

4. Installation and Benchmarking Flow
• verify the installation of the dependencies provided in
this appendix

• clone the lammps repository; This tool assumes that
your LAMMPS software is located at ‘../lammps‘ rela-
tive to this repository. If your LAMMPS/ input files are
in a different location, modify the run and profiling
scripts accordingly.

• configure, compile and install LAMMPS with the
packages that you wish to benchmark/profile

• clone https://github.com/francesco-peverelli/lammps-
benchmarks.git

• no further build steps are required, modify the run
and profiling scripts indicated below according to the
experiments you want to run
In the repo we collect results of different benchmarks

and software on a range of architectures. A collection of
‘run_<RUN TYPE>.sh‘ and ‘run_<RUN TYPE>.py‘ scripts
are available to run different experiment setups on CPU
and GPU. A collection of ‘profile_<RUN TYPE>.sh‘ and
‘profile_<RUN TYPE>.py‘ are available to manage profiling
runs. These scripts are intended to be modified by the user
to set up the desired experiments,

The ‘lammps‘ and ‘lammps_gpu‘ directories will contain
the run results of the performance measurement exper-
iments. If the content of the ‘runs.csv‘ file within this
directory does not match the repo state, other utilities such
as graph generation may not work properely.

‘run_wrapper.py‘ is used internally to run the bench-
marks. More information on the options for these scripts
is available in the repo’s README

5. Evaluation and expected results

The benchmarking results heavily depend on the ar-
chitecture under test. After succesfully running a bench-
marking script, the runs are added under the benchmark’s
directory in a ’run.csv’ file (e.g., lammps/runs.csv’). To
visualize the results, edit the script in the benchmark’s
directory called ’generate_all_charts4paper.py’, specifying
the experiments configurations you ran for which you
want to produce the graphs. Examples are already provided,
however you will need to comment out the graph render-
ing for all the experiments you have not run. Similarly.
the results for the profiling runs will be available under
’<bench_name>/prof’. Additional scripts are available to
post-process the profiling results, enabling graph genera-
tion for them as well. Run ’aggregate_mpi_data.py’ and
’parse_task_breakdown.py’ for MPI profiling data, and
’generate_report.sh’ for VTune profiling post-processing.
Run ’aggregate_gpu_data.py’, ’parse_task_breakdown.py’
and ’generate_report.sh’ for GPU experiments.

6. Experiment customization

To customize the experiments run, edit the run and
profiling scripts. The lists at the top of each script control
the number of devices used, the benchmarks run and the
number of iterations. The corresponding input data must
be present in your local LAMMPS directory.

7. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-
review-badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://doi.org/10.5281/zenodo.7153144
https://doi.org/10.5281/zenodo.7153144
https://github.com/francesco-peverelli/lammps-benchmarks.git
https://github.com/francesco-peverelli/lammps-benchmarks.git
https://github.com/francesco-peverelli/lammps-benchmarks.git
https://github.com/francesco-peverelli/lammps-benchmarks.git
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Introduction
	Molecular Dynamics Simulation
	Reference MD Experiment Structure
	LAMMPS Parallelization Strategy

	MD Experiments Benchmark Suite
	Characterization Methodology
	Importance of single-node performance
	Platforms and Experimental Flow
	Compiler and System Settings

	CPU Experiments Characterization
	MPI Parallelization Scaling Overhead
	 CPU Strong Scaling Analysis 

	GPU Experiments Characterization
	 Task Optimization vs Flexibility on GPUs 
	 Strong Scaling Analysis: the Data Movement Bottleneck 

	Lowering of the Error Threshold
	Scaling Performance to Double Precision
	Related Work
	Takeaways and Conclusion
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation and Benchmarking Flow
	Evaluation and expected results
	Experiment customization
	Methodology


