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Brewerl|X enables allelic expression analysis of
imprinted and X-linked genes from bulk and single-
cell transcriptomes

Paolo Martini'?’/, Gabriele Sales® "/, Linda Diamante3, Valentina Perrera®4, Chiara Colantuono®,

Sara Riccardo®, Davide Cacchiarelli®®, Chiara Romualdi® '™ & Graziano Martello® ™

Genomic imprinting and X chromosome inactivation (XCI) are two prototypical epigenetic
mechanisms whereby a set of genes is expressed mono-allelically in order to fine-tune their
expression levels. Defects in genomic imprinting have been observed in several neurodeve-
lopmental disorders, in a wide range of tumours and in induced pluripotent stem cells
(iPSCs). Single Nucleotide Variants (SNVs) are readily detectable by RNA-sequencing
allowing the determination of whether imprinted or X-linked genes are aberrantly expressed
from both alleles, although standardised analysis methods are still missing. We have
developed a tool, named BrewerlX, that provides comprehensive information about the allelic
expression of a large, manually-curated set of imprinted and X-linked genes. BrewerlX does
not require programming skills, runs on a standard personal computer, and can analyze both
bulk and single-cell transcriptomes of human and mouse cells directly from raw sequencing
data. BrewerlX confirmed previous observations regarding the bi-allelic expression of some
imprinted genes in naive pluripotent cells and extended them to preimplantation embryos.
BrewerlX also identified misregulated imprinted genes in breast cancer cells and in human
organoids and identified genes escaping XCl in human somatic cells. We believe BrewerlX
will be useful for the study of genomic imprinting and XCI during development and repro-
gramming, and for detecting aberrations in cancer, iPSCs and organoids. Due to its ease of
use to non-computational biologists, its implementation could become standard practice
during sample assessment, thus raising the robustness and reproducibility of future studies.
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set of genes (imprinted genes) by selectively silencing one

of the two copies of the gene (either the maternal or the
paternal allele). In female cells, also the genes on the X chro-
mosome are expressed mono-allelically thanks to a random epi-
genetic silencing mechanism called X chromosome inactivation
(XCI). However, in humans, a considerable proportion
(~20-25%) of genes escape XCI and are expressed bi-allelically.

X-linked and imprinting diseases are the most common con-
genital human disorders because loss-of-function mutations in
the single expressed allele will not be buffered by the second
silenced allele!. However, thanks to the randomness of XCI,
female individuals are often protected from X-linked mutations.
Imprinted genes were initially isolated as regulators of fetal
growth and their aberrant expression has been related to
cancer?4. For these reasons, analyzing the imprinting and XCI
status is crucial in many fields, including cancer research,
regenerative medicine, and assisted reproductive technology.

Correct imprinting information is used to evaluate the quality
of human-induced pluripotent stem cells (iPSCs)>°, while reac-
tivation of X chromosome is expected in both human naive and
murine naive pluripotent cells®’. Although iPSCs hold the pro-
mise for effective approaches in regenerative medicine, disease
modeling, and drug screening (for review see Perrera and
Martello®), their safety is compromised by frequent genetic and
epigenetic aberrations, such as Loss of Imprinting (LOI) or a
variable X chromosome status>3-16. Organoids are becoming the
system of choice for the study of tissue morphogenesis, cancer,
and infections!”-21, However, little is known about their epige-
netic stability and, in the case of brain organoids which are
commonly derived from PSCs!°-2l, it is not known whether
epigenetic aberrations found in PSCs>¢ might be inherited in the
organoids.

Although challenging, allelic expression can be determined by the
presence of Single Nucleotide Variants (SNVs) in RNA-sequencing
(RNA-seq) data. Most of the methods proposed for this aim are
based on allelic ratio (AR) thresholding or binomial test>22-26,
others are specifically designed for reciprocal cross or replicated
experimental settings?’—2%. A large scientific literature exists on this
issue, sometimes giving contradictory results?4-26-30-32 highlighting
the difficulty of this type of analysis. However, at the time of
writing, no standardized pipelines for analysis of allelic expression
of imprinted and X-linked genes have been developed. Existing
pipelines use different combinations of tools and rely on different
parameters that were set to analyze specific data and to address
specific questions®3334, Moreover, these pipelines need skilled
bioinformaticians to be run. A complete and easy-to-use tool, which
does not require programming skills, is still missing.

Motivated by this need, we built BrewerIX, an app available for
macOS and Linux Systems that looks for biallelic expression of
experimentally validated imprinted genes (see Supplementary
Data 1 for a manually curated list of human and mouse genes)
and genes on the sex chromosomes. Biallelic expression of
imprinted genes will indicate LOI. Biallelic expression of X-linked
genes in single cells may indicate reactivation of the X chromo-
some, as expected in the early embryo3 or in naive pluripotent
stem cells” 141536, X chromosome erosion, as observed after
extensive culture of pluripotent cells?”, or simply escape of single
genes from the XCI mechanisms, as recently documented in
somatic cells3337,

Here we present BrewerIX, a standardized approach for the
analysis of known imprinted and X-linked genes. Differently from
other tools, its implementation strategy allows the user (i) to
perform fast and efficient analyses from raw data to the final plots
on a standard desktop or laptop computer without requiring any
programming skills, (ii) to have comprehensive information of

G ene imprinting is used to control the dosage of a specific

imprinted and X-linked genes taken from different databases that
have been manually curated to avoid results misinterpretation,
(iil) to graphically visualize the results in an easy and intuitive
way. All these features will guarantee the reproducibility of results
and transparency.

Results

BrewerIX (freely available at https://brewerix.bio.unipd.it) is
implemented as a native graphical application for Linux and
macOS. It takes as input either bulk or single-cell RNA-seq data
(fastq files), analyzes reads mapped over the SN'Vs distributed on
imprinted genes (see “Knowledge base” section for details), X
chromosome and Y chromosome, and generates imprinting and
XCI profiles of each sample.

BrewerIX implements three pipelines with different aims
(Fig. 1a and Supplementary Fig. 1). The Standard pipeline is
meant to rapidly have the imprinting and X-inactivation status
of a set of samples (Fig. 1a). Here, BrewerIX will align each
sample, filter alignments, and call Allele-Specific Expression
(ASE) Read counter (see sections below for technical details)
using a set of pre-compiled biallelic SNVs. Before visualization,
SNVs are collapsed by genes to create a table that is displayed by
the user interface (UI). The Complete pipeline sacrifices speed
for the sake of completeness by using a larger set of SNVs (the
biallelic set used in the Standard pipeline plus the biallelic set
called on the user dataset using a pre-compiled set of multi-
allelic SN'Vs). The use of a larger set of SNVs will increase the
power to detect biallelic expression. The Tailored pipeline uses a
specific set of SNVs that the user might detect from whole-
genome or whole-exome sequencing data, allowing to evaluate
imprinting and X-inactivation starting directly from the actual
SNV profile of the samples (Supplementary Fig. 1). While the
input files for the Standard and the Complete pipelines are only
fastq files derived from RNA-seq experiments, the Tailored
pipeline additionally requires the VCEF file with a set of biallelic
SNVs. To speed up the analysis BrewerIX allows multicore
processing.

The end-point of the pipelines is a table (called “brewer-table”)
that is visualized by the UL The UI presents the results using two
graphical panels. The gene summary panel shows a matrix of dots
with as many rows as the number of genes (ordered according to
their genomic position) and as many columns as the number of
samples analyzed (position of the samples can be arranged just
dragging them in the desired order). The size and the color of the
dot are proportional to the confidence of our estimate: (i) the
larger the dot, the higher the number of SNVs supporting our
estimate; (ii) the brighter the color, the closer to 1 is the average of
the allelic ratios (minor/major) of all biallelic SNVs. Empty dots
are expressed genes with no evidence of biallelic expression. Gray
squares mean that the gene was detected but did not reach the
user’s thresholds, while the absence of any symbol indicates that
the gene was not detected (0 reads mapping on SNVs).

The SNVs summary panel shows a set of barplots (one set for
each sample) with as many bars as the number of SNVs per gene.
Here, blue is the color of the reference allele and red is the
alternative/minor one. Solid colors indicate biallelic SNVs,
transparent colors indicate monoallelic SNVs, while those SNV
that do not meet the minimum coverage are shown in gray. When
a gene shows no evidence of any genuine biallelic SNVs, we
collapse the counts over a virtual SNV (named “rs_multi”) to give
an indication of its expression.

The UI allows setting different filters: on SN'Vs and on genes.
The filters on SNVs are based on the following four parameters:

1. the overall depth (OD), representing the number of reads
mapping on a given SNV;
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Fig. 1 Analyses of imprinted gene expression in naive pluripotent cells with BrewerlX. a BrewerlX rational and overall implementation scheme for the
Standard pipeline. b False discovery rate estimates obtained by comparing WES calls and BrewerlX biallelic calls in one male BJ fibroblast and two iPS cell
lines. Three threshold combinations of overall depth (OD) and minimal coverage of the minor allele (MAC) were used; true positives (TP) in cyan; false
positives (FP) in shades of orange. ¢ BrewerlX gene summary panel results on bulk RNA-seq data from isogenic human fibroblasts (BJ FIBRO), primed
(HPDOO) and naive (HPDO1/3/4) iPSCs. The larger the dot, the higher the number of SNVs supporting the biallelic call. The brighter the orange, the closer
to 1is the average of the allelic ratios (minor/major) of all the biallelic SNVs. Empty dots indicate detected genes with no evidence of biallelic expression,
gray squares indicate genes detected but not reaching the user’s thresholds, while the absence of any symbol indicates that the gene was not detected.
d BrewerlX SNV summary panel for MEG3 in the case study shown in panel ¢. A barplot for each sample is reported, with as many bars as the number of
SNVs per gene. Solid colors represent actual SNV with both loci expressed, blue and red are the reference and the alternative/minor allele. Transparent
colors indicate SNVs detected with no evidence of biallelic expression, while grayscale colors indicate SNVs that do not meet the minimum coverage.
e Experimental validation of the indicated MEG3 SNVs by PCR followed by Sanger sequencing. The SNVs of interest are highlighted by a red box. See
Supplementary Table 2 for a list of all SNVs validated. Each SNVs was detected in two independent experiments, using either forward or reverse
sequencing primers. f Brewer|X gene summary panel results on bulk RNA-seq data generated by Yagi et al.#”. Murine ESCs were expanded in either 2i/L or
S/L conditions, while mouse embryonic fibroblasts (MEF) serve as controls. g BrewerlX gene summary panel results from bulk RNA-seq data of mESCs
cultured in 2i/L or S/L (two biological replicates) by Kolodziejczyk and colleagues?8. See Fig. 2a for matching single-cell RNA-seq samples.

2. the minor allele count (MAC), indicating the absolute 3. the threshold to call a biallelic SNV, which can be either a

number of reads mapping on the less frequent SNV variant cutoff on the allelic ratio (AR, minor/major allele) or the
among the two detected (i.e., the minor allele); p-value of a binomial test2223;
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4. the minimal number of biallelic SNVs needed to call a
biallelic gene, based on the assumption that when a gene is
expressed bi-allelically, multiple biallelic SNVs should be
detected.

The filter on genes allows the user to choose the set of genes to
display: all, only those detected (i.e., those with a sufficient OD)
or only those genes that are biallelic in at least one sample that
was analyzed. In addition, the user can control the source of
imprinted genes to be included in the analysis: human and mouse
have four sources that can be combined (see “Knowledge base”
paragraph) with the additional possibility to exclude placental
and/or isoform-dependent genes. Finally, the user can control the
allelic ratio measure, as either minor allele/major allele, or minor
allele/total counts.

Both genes and SNVs summary panels can be saved as PDF
files. Moreover, the gene summary panel can be exported as a tab-
delimited file to allow further analysis. All exports reflect the
filters chosen.

Default parameters setting. Default values of the parameters
have been empirically selected to minimize the number of false
positives. A false-positive call is an SNV not present in the DNA,
detected only at the RNA level due to sequencing and aligner
errors.

To precisely estimate the rate of false positives (FDR), we
generated whole-exome sequencing (WES) data for human male
BJ fibroblasts and for two iPS cells lines (HPD00 and HDP0415)
and identified SNVs on all autosomes of each cell line. We then
analyzed with BrewerIX RNA-seq data from the three cell lines
and estimated the fraction of SNVs detected from transcriptomic
data but not confirmed by WES using different thresholds. As
shown in Fig. 1b, we obtained a mean FDR of 6.67% using an
AR >=0.2—as in ref. > and3>*—, an OD = 20 reads and MAC = 4.
Lowering such parameters to OD =15 and MAC=3 did not
increase dramatically (7.64%) the FDR in all samples tested (BJ
prop test P-value 0.4587; HPDOO prop test P-value 0.1713; HPD04
prop test P-value 0.01829), while a further reduction increased the
FDR to 9.60% (BJ prop test P-value 0.1086; HPDOO prop test P-
value 0.04211; HPDO04 prop test P-value 4.582e-09).

To further evaluate the false-positive calls, we analyzed genes
on sex chromosomes of male cells, of whom only a single allele is
present. Thus, we analyzed bulk RNA-seq samples of six normal
male BJ fibroblasts from three published datasets (see Supple-
mentary Table 1, describing all datasets used in this study). We
collected on sex chromosomes all the SNVs with an OD>=5
reads in at least one sample.

As shown in Supplementary Fig. 2, the mean frequency
distribution of false-positive calls on the X chromosome dropped
to 3 every 10° SNVs analyzed, using an OD = 15 and MAC = 3.
Importantly, no biallelic SNVs were detected on the Y
chromosome in any of the analyzed samples.

To gain further confidence in methods based on RNA-seq data,
we calculated the number of false-positive calls detected by SNP-
array, a technique specifically developed and extensively used to
detect SNVs. We analyzed genomic DNA from BJ fibroblasts
profiled with Affymetrix Mapping 250 K Nsp SNP Array (GEO
accession GSE7253149), and we found that the number of false
positives detected was 100 times higher (2 every 103 evaluated
SNVs, Supplementary Fig. 3) confirming that RNA-seq data is
more accurate in detecting allelic imbalance.

Although the defined thresholds minimize false positives, we
investigated their power of detecting actual biallelic genes. For
this reason, we analyzed RNAs-seq data from female human
naive iPSCs (HPDO8 - GSM2988908), bearing two active X

chromosomes!>?!. We detected 104 biallelic genes on the entire
X chromosome out of 382 detected genes (27.2%).

We performed a similar analysis on all genes located on
autosomes—obviously excluding imprinted genes—in three
different cell lines and found that on average 35.5% of the
protein-coding genes detected were biallelic (B] fibroblasts 33%—
1145/3471; HPDOO 31.5%—1281/4068 and HPD04 42%—1805/
4295). Detection of ~30% of biallelic expression from autosomes
or from X chromosomes of female naive cells is an expected
result, given that not every single transcript might have SNVs
allowing the detection of allelic imbalance (see “Discussion”) and
given that monoallelic or allele-biased expression is observed out
of imprinted and X-linked loci#!-43,

Overall, we conclude that the chosen parameters allow the
detection of biallelic expression while minimizing false-
positive calls.

Our default parameters for standard bulk RNA-seq samples
(>10 M reads/sample) are 20, 4, and 0.2 for OD, MAC, and AR,
respectively. In addition, we call a gene biallelic when at least two
biallelic SNVs are detected, in order to filter out potential
sequencing artefacts. To test BrewerIX functionalities we analyzed
very diverse datasets, including both bulk and single-cell RNAseq,
different organisms (human and mouse) and different biological
systems (iPSCs, cancer cells, early embryonic development and
organoids).

Human-induced pluripotent stem cells (iPSCs) and murine
embryonic stem cells (mESCs). Reprogramming of human
somatic cells to pluripotency has been associated with imprinting
abnormalities®, both in the case of conventional, or “primed”,
iPSCs and in the case of naive iPSCs>8-10:15:44-46,

We analyzed ten isogenic bulk RNA-seq samples, including six
BJ fibroblast, one primed iPSC, and three naive iPSC lines. We
run the analysis both with the Complete pipeline (Fig. 1c) and the
Standard pipeline (Supplementary Fig. 4), obtaining highly
comparable results. MEG3, HI9, and MEG8 showed biallelic
expression specifically in naive iPSCs (Fig. 1c, d), as previously
reported !>,

To experimentally validate these results and further demon-
strate the accuracy of the default parameters, we performed
Sanger sequencing after PCR amplification of genomic DNA
from 1 naive iPSC line and confirmed the presence of 12
randomly selected SNVs (Supplementary Table 2 and Fig. le),
while biallelic expression of MEG3 was confirmed in 3
independent naive iPSC lines (Fig. le). An additional dataset of
human fibroblasts (HFF) and matching naive iPSCs (HPD06!°)
was analyzed with the Standard pipeline, confirming biallelic
expression of H19 and MEG3 only in naive cells (Supplementary
Fig. 5), as previously reported!>36:46,

We analyze a dataset of murine Embryonic Stem cells (mESCs)
expanded under different culture conditions. Yagi et al. reported
that expanding mESCs in 2i/L conditions resulted in LOI, while
mESCs in S/L conditions mostly retained correct imprinting®’.
With BrewerIX we obtained highly similar results for the
imprinted genes analyzed by Yagi et al. (Fig. 1f) and detected
five additional biallelic transcripts. We conclude that BrewerIX
detected LOI events in both human and mouse naive pluripotent
stem cells from bulk RNA-seq data, in agreement with the
previous analyses!>46:47,

Single-cell analysis of pluripotent, embryonic, somatic, and
cancer cells. Next, we wanted to compare the performance of
BrewerIX on matching bulk and single-cell RNA-seq data. Using
bulk samples from mESCs cultured in 2i/L or S/L conditions?8,
we identified 13 LOI events, with Ddc and Zfp264 showing LOI
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specifically in 2i/L and Pon2, Pegl0, Dhcr7, and Gabl showing
LOI only in S/L (Fig. 1g), and the remaining 7 shared between the
two conditions.

We then analyzed single-cell data (384 cells from 2i/L and 288
from S/L) using 15, 3, and 0.2 for OD, MAC, and AR,

respectively, in order to account for the sequencing depth, lower
than bulk samples. We also considered a gene bi-allelically
expressed when a single SNVs was found biallelic in at least 20%
of cells analyzed expressing such gene (Fig. 2a). We observed that
Impact and Inpp5, which displayed multiple biallelic SNVs in
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Fig. 2 Analyses of single-cell RNA-seq data of mouse embryonic and human adult cells. a Analysis of single-cell RNA-seq data from mESCs cultured in
2i/L or S/L, matching those shown in Fig. 1g. Results are summarized as percentages (degree of blue) of cells in which a given gene was expressed bi-
allelically. The number of cells analyzed: 2i/L 384, S/L 288. b Average allelic ratio (AAR) is defined as the average of paternal/maternal ratios across single
cells for all genes in X chromosome in male and female embryonic cells detected by single-cell RNAseg#!. Wilcoxon tests were performed between pairs of
sequential developmental stages of female embryos (mid2cell—late2cell, late2cell—4-cell, 4-cell- 16cell, 16cell—earlyblast. The number of cells for male
(M) and female (F) for each developmental stage: mid2cell 6 M, 6 F; late2cell 4 M, 6 F; 4-cell 3 M, 11F; 16cell 27 M, 23 F; earlyblast 28 M, 15 F. See also
Supplementary Fig. 6. ¢ Genes with frequent LOI across mouse developmental stages obtained by studying three datasets#!" 4% 50, On the y axis, the
average allelic ratios (AAR) of single samples (single cells or single embryos for the Santini dataset). Developmental stages have been collapsed into
broader categories (cleavage, morula, and blastocyst, see “Methods"). Number of cells for developmental stage: Deng et al. zygote 4, early2cell 8, mid2cell
12, late2cell 10, 4-cell 14, 8-cell 28, 16cell 50, earlyblast 43, midblast 60, lateblast 30; Borensztein et al., 2-cell 6, 4-cell 10, 8-cell 29, 16-cell 15, 32-cell
26, 64-cell 20; Santini et al. Blastocyst 8. See also Supplementary Figs. 7 and 8. d Analysis of single-cell RNA-seq data34 from 772 human fibroblasts
and 48 lymphoblastoid cells from 5 female individuals (IND1-5). Results are summarized as percentages (degree of blue) of cells in which a given gene
was expressed bi-allelically. Gray indicates undetected genes. Number cells: IND1 229, IND2 159, IND3 192, IND4 192, and IND5 48. e Results for X
chromosome genes on samples described in panel d. f BrewerlX gene summary panel results from bulk RNA-seq data from human breast cancer
samples®3. LN indicates matching metastatic lymph nodes. g Analysis of single-cell RNA-seq data from breast cancer samples, matching those analyzed in
panel f. Number of cells: BCO1 22, BCO2 53, BCO3 33, BCO3LN 53, BCO4 55, BCO5 76, BCO6 18, BCO7LN 52, BCO8 22, BCO9 55, BC10 15, BC11 11. Gray

indicates undetected genes.

bulk analysis (Fig. 1g) were found biallelic also in a large fraction
(>50%) of single cells analyzed (Fig. 2a). Several LOI events were
detected only in bulk samples, possibly because single-cell
RNAseq detects preferentially the 3’ end of transcripts, limiting
the number of SNVs detected. Despite such limitations, some
biallelic genes could be detected only by single-cell RNAseq
(Ccdc40 and Plagll), indicating that only single-cell RNAseq
allows the detection of LOI events occurring in a limited fraction
of cells.

Deng et al. analyzed the gene expression of single cells from
oocyte to blastocyst stages of mouse preimplantation develop-
ment describing that in female embryos the paternal X
chromosome is transiently activated at the four-cell stage and
subsequently silenced*!. BrewerIX results were highly concordant
with those generated with a custom pipeline by Deng et al,
confirming the transient reactivation of the paternal X chromo-
some (Fig. 2b and Supplementary Fig. 6). Next, we observed an
expected monoallelic expression of imprinted genes (Fig. 2c and
Supplementary Fig. 7), although 9 of them showed biallelic
expression at several stages of preimplantation embryos. We
analyzed two additional datasets4>0 of early mouse embryos and
confirmed biallelic expression of such genes in multiple samples
from at least two independent studies. Of note, the biallelic
expression of Zim3 and Usp29 was detected up to the 4-cell stage
and could be attributed to a mix of maternal and zygotic mRNAs,
each expressing a different allele (Supplementary Fig. 8). Con-
versely, the remaining seven imprinted genes were biallelic at the
blastocyst stage, indicating defective imprinted gene expression.

Next, we analyzed a human somatic single-cell RNA-seq
dataset®* and observed that 15 genes showed biallelic expression
in 20% of cells (Fig. 2d). Only two of these genes (ATPI0A and
TFPI2) were also found biallelic by the authors of the original
study3%. We extended the analysis to X-linked genes and found
that, out of 583 detected genes, 27 genes escaped XCI in at least
two individuals (Fig. 2e). Notably, 18 out of 27 were previously
identified as escapees®!, while the remaining 9 were identified by
BrewerIX. We conclude that BrewerIX efficiently identifies LOI
and XCI escape events occurring in small fractions of somatic
cells from single-cell transcriptomes.

Different cancers, such as breast, kidney, and lung, are
characterized by frequent expression level changes of imprinted
genes, often accompanied by DNA methylation level changes in
several imprinted domains, such as PEG3°2. To test whether
BrewerIX could detect LOI events in cancer cells, we analyzed 515
single-cell samples and matching bulk samples from 11 breast
cancer patients®>. Analysis of bulk samples using the Complete

pipeline identified only five genes, each expressed bi-allelically in
only one sample. In stark contrast, analysis of single-cell data
identified nine genes biallelic in the majority of breast cancer
samples (Fig. 2f).

Such results indicate that single-cell analyses outperform bulk
analyses in the case of heterogeneous cancer samples and that
imprinting abnormalities might be much more widespread in
cancer cells than currently thought.

Analysis of brain organoids. Human PSCs have been recently
shown to have the capacity to self-organize into 3D structures
containing different parts of the brain!®-21:>4, Such structures
have been named cerebral organoids, or “mini-brains”20:21->3,
Moreover, it is also possible to obtain more homogeneous
structures such as retina or cortical organoids!%>4°6-38,

We first analyzed single-cell transcriptomes from fetal neural
cortex®” and observed biallelic expression of several imprinted
genes (Fig. 3a), some of which were previously reported to be
biallelic in the brain, such as PPPIR9A and NTM3!. We then
analyzed transcriptome from minibrains and cortical organoids
and observed that the same genes were found biallelic in multiple
independent samples (Fig. 3a, b). We conclude that brain
organoids faithfully recapitulate the tissue-specific regulation of
imprinted genes observed in the brain. Notably, we also observed
that some genes that are known to be imprinted in the brain®’,
such as DLKI, SMOCI, and L3MBTLI, were bi-allelically
expressed in some organoids, indicating LOI events associated
with organoid formation. However, DKLl and L3MBTLI
frequently show LOI in hPSCs, therefore such aberrations might
be inherited during neural differentiation, as previously reported.
Overall, our results indicate aberrant expression of some
imprinted genes in organoids, including genes associated with

neurodevelopmental defects and cancer®.

Precision/recall analysis and parameters setting. To guide the
user in the process of cutoff selection we performed a precision/recall
analysis based on the set of genes detected by RNA-seq data analyses
and validated by Sanger sequencing both (i) in our study and (ii) in
the study by Santini and colleagues®® obtaining a total of 307 vali-
dated SNV of which 49 are true positives (i.e., validated biallelic) and
258 are true negatives (ie., validated monoallelic expression).

As expected, in Fig. 4a we can appreciate that the precision has an
increasing trend from the lower to higher overall depths thresholds.
For allelic ratios (AR) between 0.1 and 0.3, we obtained a precision
greater than 80% for overall depth cutoff greater or equal to 15 reads.
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Fig. 3 Analysis of bulk and single-cell RNA-seq data from human organoids for 14 selected genes. a Analysis of single-cell RNA-seq data from the fetal
neocortex, cortical-like ventricle from cerebral organoids (Vent) and whole-cerebral organoids (minibrains). Gray indicates undetected genes. b
Summarized view of the imprinting status of 14 selected genes in 4 different studies in human minibrains and cortical organoids.

The recall was above 60% for values equal to, or lower than 20 for the
overall depth. In sum, for an AR = 0.2, which is commonly used to
define biallelic expression, an OD between 15 and 20 maximizes both
precision and recall (green areas in Fig. 4a, b). Of note, the same
parameters minimized the FDR calculated from RNAseq and whole-
exome sequencing (Fig. 1b).

We also tested the performance of the binomial distribution
(Fig. 4c, d), rather than using AR, and found a precision above
90% for P values equal to or below 0.05, regardless of the overall
depth, while the recall was affected by the P-value, remaining
above 60% only in the case of a P-value equal to 0.05 and an
overall depth equal to or below 15.

This analysis, performed on a set of experimentally validated
genes, confirms that our default parameter of overall depth = 20,
AR =2 (thus a minor allele = 4) gives the best trade-off for
precision and recall. Moreover, using a binomial distribution with
a P-value=0.05 and an overall depth =15 gives even higher
precision with an acceptable recall.

Concluding, BrewerIX identifies with high precision and recall
transcripts that are bi-allelically expressed, but such findings need
to be validated by independent techniques, such as Sanger
sequencing after PCR amplification of the transcripts under
analysis (as shown in Fig. 1).

Discussion
The inference of LOI using RNAseq is surely highly challenging.
Although BrewerIX takes into account possible sources of bias

such as the presence of duplicated reads and of reads that overlap
two SNVs or the quality control of heterozygous sites for ASE,
other issues could limit our detection efficiency (e.g., low gene
expression, reference bias mappability and the poor mappability
of some genomic regions).

Moreover, it is also important to point out that the identifi-
cation of mono- or biallelic expression by BrewerIX is dependent
on the existence of at least one genomic SNV on the locus of
interest and it is limited to those genes that are robustly tran-
scribed in the analyzed samples. For these reasons, a gene
detected as non-biallelic by the tool is not necessarily referable as
monoallelic, since the absence of any evidence of biallelic
expression might be due to poor coverage, a negligible expression
of the gene or to the absence of detectable SNVs in the locus of
interest. This limitation particularly affects the analysis of mono-
or biallelic expression in samples derived from inbred mouse
strains, where genomic SNVs are extremely rare.

We should also mention that for the study of X-linked genes
single-cell RNA-seq data should be used. In normal human
female tissue samples, X-inactivation is random, i.e., about 50% of
the cells express the paternal and 50% the maternal copy of X,
and hence in bulk RNAseq most of the X-chromosomal sites are
expressed bi-allelically irrespective of their X-inactivation status.
The use of single-cell data (see Fig. 2) circumvents such
limitations.

While considering all these limitations, we notice that the
results obtained by BrewerIX on the selected case studies out-
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Fig. 4 Precision-recall analysis. Precision and recall analysis on the validated SNV from this study and from Santini et al. (a) precision and (b) recall using
increasing Overall Depth (OD) and three different Allelic Ratio (AR). ¢ Precision and d recall using increasing OD and three P-value cutoffs for the binomial
test. The horizontal dashed lines define the cutoffs of acceptable precision and recall values, while the green areas indicate the best overall depths.

competed published custom pipelines confirming and extending
published results, demonstrating the reliability and usefulness of
the tool. For the analysis of relatively homogeneous cell popula-
tions, such as pluripotent cells in culture, we conclude that bulk
RNA-seq data allowed robust identification of LOI events. Con-
versely, when heterogeneous populations of cells, such as cancer
samples, are analyzed, only single-cell measurements allowed the
detection of widespread events of LOI or XCI escape, indicating
that such phenomena might have been underestimated for
technical limitations.

Previous studies reported biallelic expression of some imprin-
ted genes in both human and mouse naive pluripotent cells>46:47
and interpreted it as aberrations induced by in vitro culture under
specific conditions. We confirmed such observations for both
human and murine cells, the latter showing biallelic expression of
several genes regardless of the culture conditions used. Interest-
ingly, analysis of three independent preimplantation embryo
datasets showed biallelic expression of multiple imprinted genes,
some of which (H13, Impact, Dhcr7, Snx14, Igf2r, and Pon2) were
also biallelic in mESCs. Of note, similar conclusions have been
drawn by Santini and colleagues®®, suggesting that biallelic
expression of some imprinted genes is normally occurring in
naive pluripotent cells in vivo and in vitro.

Due to the ease of use of BrewerIX to noncomputational
biologists, we believe that its implementation could become
standard practice during the assessment of newly generated
pluripotent cells and organoids, as well as for the study of the
molecular mechanisms underlying genomic imprinting and XCI
in different tissues and developmental stages, hopefully raising
robustness and reproducibility of future studies.

Methods

Knowledge base. The knowledge base contains the species genome with the
genome index (for hisat2), the biallelic and the multi-allelic SNV file (ENSEMBL

variants annotation version 98; INDELs and the SNVs whose reference alleles differ
from the reference genome were removed), the regions with the genes of interest
i.e.,, imprinted genes and genes on the sex chromosomes.

We manually curated a comprehensive set of imprinted genes from different
sources. For human and mouse imprinted genes, we collected the data from the
Geneimprint database (http://geneimprint.com/) and Otago database (http://
igc.otago.ac.nz/home.html). We excluded all genes labeled as “Predicted” or “Not
Imprinted” and manually curated “Conflicting Data”. We added human imprinted
genes identified by Santoni et al.* and mouse imprinted genes regulated by
H3K27me3 in the early embryo, identified by Inoue et al.>>. We have also labeled
placental-specific and isoform-dependent imprinted genes within the curated gene
list. Placental-specific imprinted genes were identified by combining information
from the Otago database and from two additional studies—° for human imprinted
genes and®! for mouse genes. For isoform-specific genes, we referred to
Geneimprint (category: “Isoform Dependent”) and Otago databases. The manually
curated gene lists are shown in Supplementary Data 1.

Front-end implementation. The BrewerIX graphical interface is distributed as a
native application for both Linux and macOS. It is written in the Haskell pro-
gramming language and makes use of the wxWidgets cross-platform GUI library.
Plots are generated using the Cairo library and its PDF output capabilities. The
Linux version of the application is packaged using the AppImage tool.

Back-end implementation. The computational pipeline is implemented in Python
and is available as a Python package called brewerix-cli at https://github.com/
Romualdi-Lab/brewerix-cli. The pipeline performs the alignment, allelic count and
creation of the “brewer-table”. The pipeline can be run also using the command
line interface (CLI) implemented by brewerix-cli itself. The final output of the CLI
is the “brewer-table” that is parsed by the user interface to produce the BrewerIX
visual outputs. The CLI has been thought for advanced users willing to analyze
their own set of genes or genomes of different species. The minimum required
inputs are the following: a genome (fasta format) and its index for hisat2, genome
dict (computed with GATK) and genome fasta index, a bed file indicating the
region of interest (i.e., imprinted genes and genes on the sex chromosomes), a set of
biallelic SNV's with reference alleles that must be present in the reference genome.
In the following, we report the technical details of each analysis step.

Alignments. BrewerIX requires fastq files as input. The pipeline works with a
homogeneous library layout i.e., all fastq files are either single- or paired-end. The
fastq files are aligned to a reference genome. The user can choose between Mouse
GRCm38.p6 or human GRCh38.p13 genome. Alignments are performed using

8 COMMUNICATIONS BIOLOGY | (2022)5:146 | https://doi.org/10.1038/s42003-022-03087-4 | www.nature.com/commsbio


http://geneimprint.com/
http://igc.otago.ac.nz/home.html
http://igc.otago.ac.nz/home.html
https://github.com/Romualdi-Lab/brewerix-cli
https://github.com/Romualdi-Lab/brewerix-cli
www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03087-4

ARTICLE

hisat2 (version 2.1.0, default parameters) and filtered to keep only reads laying on
genes of interest. Aligned reads are further processed according to GATK best
practices, i.e., marking duplicates, splitting reads with N in the cigar, and per-
forming base quality scores recalibration (such post-processing steps are optional
in brewerix-cli).

SNV calling. SNVs are called only at multi-allelic SNV using HaplotypeCaller from
GATK v4.1. Calls are performed as if all the samples have the same genotype, i.e.,
all in the same batch. The reference and the most represented alternative allele are

selected. We set the following parameters: “--max-alternate-alleles 1 -stand-call-
conf 1 --alleles multi_allele_vcf_file --dbsnp multi_allele_vcf_file”.

Allelic count. The allelic count is performed using ASEReadCounter with default
parameters from GATK v4.1. This tool, given a set of loci and a bam file, allows
computing the reads bearing the reference and the alternative allele. Sample-
specific results are collapsed into an ASER table.

WES library preparation. Genomic DNA was extracted from BJ fibroblasts and
two iPS cell lines, HPD0O and HPDO04; the human foreskin fibroblast cell lines BJ
were cultured in DMEM with 10% fetal bovine serum (FBS; Sigma-Aldrich), in
normoxic conditions (21% O,, 5% CO,, 37 °C), while iPSCs were cultured on MEFs
in the FGF-free medium RSeT (05970, StemCell Technologies, prepared following
the manufacturer’s instructions) in hypoxic conditions (5% O,, 5% CO,, 37 °C), as
described in ref. 1. Two replicates for each cell line were used and gDNA was
quantified using the Qubit 2.0 fluorimetric Assay (Thermo Fisher Scientific);
sample integrity, based on the DIN (DNA integrity number), was assessed using a
Genomic DNA ScreenTape assay on TapeStation 4200 (Agilent Technologies).

Libraries were prepared from 100 ng of total DNA using a WES service (Next
Generation Diagnostics srl) which included library preparation, target enrichment
using the Agilent V7 probe set, quality assessment, and sequencing on a NovaSeq
6000 sequencing system using a paired-end, 300 cycle strategy (2 x 150)
(Illumina Inc.).

WES analysis. The raw data were analyzed by Next Generation Diagnostics srl
Whole Exome Sequencing pipeline (v1.0) which involves a cleaning step by UMI
removal, quality filtering and trimming, alignment to the reference genome,
removal of duplicate reads, and variant calling®2-9°. Variants were finally annotated
by the Ensembl Variant Effect Predictor (VEP) tool5.

The final set of variants was refined applying hard-filter according to GATK
best practices. In detail, we used GATK VariantFiltration QD < 2.0, FS > 60.0,
MQ < 40.0, SOR > 4.0, MQRankSum < —12.5 and ReadPosRankSum < —8.0.

False discovery rate. From the BrewerIX ASER table obtained from the RNA-seq
data, we extracted the SNVs with an OD = 5 reads and MAC 2 1. Using this set of
SNVs we computed ASE from WES data. For each sample, we extracted the set of
SNV covered by at least five reads in RNAseq and in both WES replicates. False
positives are defined as the number of BrewerIX biallelic SNVs without an het-
erozygous call in at least one WES replicate. False positives were computed at three
thresholds: 20—4; 15—3 and 10—2, respectively, for OD and MAC.

Precision/recall analysis. To estimate precision and recall, we build a set of true
positive and true negative calls that were experimentally validated both in this
study and in>%. We expanded our previous validations reported in Supplementary
Table 2 with five additional SN'Vs (collecting in total 17 SNVs validated in

5 samples). We downloaded from www.sanger.ac.uk/sanger/Mouse_SnpViewer/
rel-1303 the SNVs of the two mouse strains (C57BL/6 [B6] and DBA/2) used by
Santini et al. and extract 135 SNVs laying in 11 monoallelic validated genes (see
Santini’s®® Supplementary data 3). We summarized the BrewerIX calls for the
SNVs validated in this study and those validated by Santini and colleagues in
Supplementary Data 2 (only SNV with more than five reads were considered).

Case studies data. All RNA-seq data but three were downloaded from GEO
database using fastq-dump from sra-tools version 2.8.2. The mouse ESCs, bulk, and
single-cell Cortical organoid datasets were downloaded from Array Express via
direct link. All datasets images were created using the BrewerIX-core imprinted
genes (i.e., genes curated from Geneimprint DB and Otago) unless stated other-
wise. Moreover, images were created showing only relevant genes with default
parameters i.e OD =20, MAC =4, AR >=0.2 and at least two biallelic SNV per
gene in bulk data, while we considered a gene biallelic when at least one SNV was
found biallelic with OD =15 and MAC = 3 in the case of single-cell data. For the
organoid dataset, we manually selected a list of 14 imprinted genes for Fig. 3a, b,
moreover in the case of droplet-based single-cell RNA-sequencing data we had to
consider the samples as pseudo-bulk, rather than single-cell datasets, because the
detected SNVs were too few, independently from the sequencing depth.

We collected BJ fibroblasts RNA-seq data from three sources on the GEO
database: GSE110377!> (BJ fibroblast GSM2988896; primed iPSC GSM2988902,
naive iPSC GSM2988898, GSM2988903, GSM2988904), GSE126397% (BJ
fibroblasts GSM3597749 and GSM3597750) and GSE63577%7 (BJ fibroblasts
GSM1553088-GSM1553090). To deal with the heterogeneous reads layout (single-

and paired-end) of the sequencing data, we aligned each batch to the reference
human genome using hisat2, with default parameters. We use BrewerIX-cli to run
the analysis starting from the alignment files (bam). We used the Complete
pipeline and loaded the “brewer-table” on the visual interface to explore the results.

HFF samples were downloaded from GSE93226 (GSM2448850-GSM2448852)
while reprogrammed iPSC from GSE1103771> (GSM2988900). As for the BJ
fibroblast dataset, we computed single- and paired-end alignments separately
(hisat2, default parameters) and then run brewerix-cli with Standard pipeline.
Panels summarizing the results have been generated with BrewerIX user interface.

The Yagi dataset of mESCs (GEO accession GSE8416447; GSM2425488-
GSM2425495) was fully analyzed by BrewerIX with the Complete pipeline.

For the Kolodziejczyk et al.*® and Kim et al.%® dataset of mouse ESCs we
analyzed mESCs cultured in 2i/L or S/L downloaded from Array Express under the
accession E-MTAB-2600%3%8, We analyzed three bulk samples (one cultured in 2i/
L and two in S/L) and 682 single-cell samples (384 cultured in 2i/L and 288 in S/L).
Both bulk and single-cell RNA-seq datasets were analyzed using BrewerIX with
Standard pipeline. Bulk data visualization of the three samples was performed
using BrewerIX user interface. Single-cell RNA-seq results were visualized using
custom R code available at github.com/Romualdi-Lab/. Results were summarized
by the two categories: 2i/L and S/L. We analyzed genes that are expressed in at least
ten cells in at least one category. We considered a gene bi-allelically expressed when
at least one SNV was found biallelic in at least 20% of cells analyzed expressing
such gene (other parameters remain default).

The single-cell datasets of mouse embryos, from oocyte to blastocyst from Deng
et al.4!, were downloaded from GEO accession GSE457194! (GSM1112490-
GSM1112581 and GSM1112603-GSM1278045; female samples include
GSM1112504-GSM1112514, GSM1112528-GSM1112539, GSM1112543-
GSM1112553, GSM1112626-GSM1112640, GSM1112656-GSM1112661,
GSM1112696-GSM1112697, GSM1112702-GSM1112705; male samples include
GSM1112490-GSM1112503, GSM1112515-GSM1112527, GSM1112540-
GSM1112542, GSM1112554-GSM1112581, GSM1112611-GSM 1112625,
GSM1112641-GSM1112653, GSM1112654-GSM1112655, GSM1112662-
GSM1112695, GSM1112698-GSM1112701, GSM1112706-GSM1112765; for
remaining samples no sex specification were available). Analysis has been carried out
using BrewerIX with Standard pipeline. The computed values were used for
downstream custom analysis (code can be found at https:/github.com/Romualdi-Lab/).

For the X chromosome, we performed the analysis plotting the average of the
allelic ratios in each developmental stage for male and female samples. We used
developmental stages where both male and female samples were present. Thus, we
considered 4 male, 6 female in middle 2-cell (mid2cell); 4 male, 6 female for late
2-cell (late2cell); 3 male, 11 female for 4-cell (4-cell); 27 male, 23 female for 16-cell
(16cell); 28 male, 15 female for early blastocyst (earlyblast). To detect paternal X
chromosome reactivation, we inferred that the maternal allele was the most
expressed allele in the mid2cell stage. Using maternal and paternal alleles inferred
from the mid2cell stage, we computed the maternal/paternal ratio in all other
stages. To evaluate the performance of BrewerIX in detecting paternal X
chromosome reactivation, we downloaded Deng’s processed dataset from the
supplementary material of the manuscript*!. To avoid any bias, we analyzed genes
shared by Deng’s processed dataset and BrewerIX generated data.

For imprinted genes, we plotted the Average Allelic Ratio (AAR) for each gene
in each developmental stage. We grouped the samples into the following 3
categories: Cleavage: early2cell, mid2cell, late2cell, 4-cell; Morula: 8-cell, 16cell;
Blastocyst: earlyblast, midblast, lateblast.

For the datasets of mouse embryos from oocytes to blastocysts, generated by
Borensztein and colleagues? we analyzed Xist-wt single-cell samples from
GSE80810% (GSM2371473-GSM2371585). We run BrewerIX with the Complete
pipeline. We consider a gene biallelic when at least one SNV was found biallelic with
OD =15 and MAC = 3. We grouped samples into the following three categories:
Cleavage stage: 2-cell, 4-cell; Morula 8-cell, 16-cell; Blastocyst 32-cell, 64-cell.

For the blastocysts stage embryos dataset from Santini et al.>%, we analyzed eight
samples of blastocyst-stage embryos from GSE152106°° (GSM4603204-
GSM4603211). We run BrewerIX with the Complete pipeline. We considered a gene
biallelic when at least one SNV was found biallelic with OD = 15 and MAC = 3.

We used available data from 772 human fibroblasts we analyzed 229, 159, 192,
and 192 for IND1, IND2, IND3 and IND4 respectively) and 48 lymphoblastoid
(IND5) cells from 5 female individuals (GEO accession GSE1230283%°1,
GSM3493332-GSM3494151).

The single-cell RNA-seq dataset was analyzed using BrewerIX with the
Standard pipeline. The single-cell RNA-seq visual reports were produced with
custom R code available at https://github.com/Romualdi-Lab/.

Results were summarized by individuals. We analyzed genes that are expressed in
at least ten cells in at least four individuals. For this dataset, we included all human
sources of imprinted genes, i.e., genes curated from geneimprint DB, Otago, and from
Santoni et al.’* (see “Knowledge base” paragraph for details). We considered a gene
bi-allelically expressed when at least one SNV was found biallelic in at least 20% of
analyzed cells that express that gene (other parameters remain default).

Chung and colleagues® analyzed 11 patients representing four subtypes of
breast cancer (luminal A—BCO01 and BC02, luminal B—BC03, HER2 + — BC04,
BCO05, and BCO6 or triple-negative breast cancer—TNBC— BC07-11). They
obtained 515 single-cell transcriptome profiles and 12 matched samples with bulk
RNAseq from 11 patients (GEO accession GSE75688°3 all the samples listed in
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GSE75688_final_sample_information.txt.gz; B03 has both primary breast cancer
and lymph node metastases). Bulk samples from the breast cancer dataset were
analyzed using BrewerIX with Complete pipeline. Visual inspection was performed
using BrewerIX. The single-cell RNA-seq dataset was run using the Complete
pipeline. The single-cell RNA-seq visual reports were produced with custom

R code.

Patients were included in the analysis if a corresponding bulk sample was
analyzed. The number of cells analyzed for each patient are the following:
BCO01 = 22, BC02 = 53, BC03 = 33, BCO3LN = 53, BC04 = 55, BC05 =76,

BC06 = 18, BCO7LN = 52, BC08 = 22, BC09 = 55, BC10 = 15 and BC11 =11.
We analyzed genes that were expressed in at least two cells in at least one
sample. We considered a gene bi-allelically expressed when at least one SNV was

found biallelic in at least 20% of analyzed cells that express that gene (other
parameters remain default). Code to reproduce the figure can be found at https://
github.com/Romualdi-Lab/ as well.

In their study, Camp et al.>7 analyzed 734 single-cell transcriptomes from
human fetal neocortex or human cerebral organoids (GEO accession GSE75140,
GSM1957048-GSM1957493, GSM1957495, GSM 1957497, GSM1957499,
GSM1957501, GSM1957503, GSM1957505, GSM 1957507, GSM1957509,
GSM1957511, GSM1957513, GSM1957515, GSM1957518, GSM1957520,
GSM1957522, GSM1957524, GSM1957526-GSM1957814). We run the analysis
using BrewerIX with Standard pipeline”. The single-cell RNA-seq visual reports
were produced with custom R code starting from the “brewer-table”. Single cells
were summarized according to their annotation available from GEO: we collapsed
according to the tissue of origin (“Dissociated whole cerebral organoid”; “Fetal
neocortex” and “Microdissected cortical-like ventricle from cerebral organoid”) and
the stage (12 weeks post-conception—12-wpc, 13 weeks post-conception 13-wpc,
33 days, 35 days, 37 days, 41 days, 53 days, 58 days, 65 days). The numbers of cell
analyzed for each tissue stage combination are the following: fetal Neural_Cortex
12-wpc = 164, fetal_Neural_Cortex 13-wpc =62, Vent_ESC_H9 53 days = 96,
Vent_iPSC_409B2 58 days = 79, MiniBrain_iPSC_409B2_33-days = 40,
MiniBrain_iPSC_409B2 35 days = 68, MiniBrain_iPSC_409B2 37 days =71,
MiniBrain_iPSC_409B2 41 days = 74, MiniBrain_iPSC_409B2 65 days = 80. We
analyzed genes that were expressed in at least ten cells in at least one category. We
considered a gene bi-allelically expressed when at least one SNV was found biallelic
in at least 20% of analyzed cells expressing that gene (other parameters remain
default for single-cell data).

Giandomenico et al.>* profiled three neural organoids derived from H9 and H1
(2) iPSC using 10Xv2 (GEO accession GSE124174). Sequencing data were used as
bulk samples, i.e., not dividing in single cells, because the detected SNVs were too
few, independently from the sequencing depth. We selected one run per organoids
to avoid any depth biases (SRA run ids SRR8368415, SRR8368423, and
SRR8368431). The analysis was run using BrewerIX with Complete pipeline, with
default parameters.

In their study, Quadrato et al. profiled organoids at 6 and 3 months age using
single-cell sequencing (DropSeq; GEO accession GSE86153%!). Sequencing data
were used as bulk samples, i.e., not dividing in single cells, because the detected
SNVs were too few, independently from the sequencing depth. We selected one run
per organoids to avoid any depth biases (SRA run ids SRR4082002 and
SRR4082026). The analysis was run using BrewerIX with the Complete pipeline,
with default parameters.

Pasca et al.”® analyzed the expression of Cortical Organoids (GEO accession
GSE112137). We analyze 4 samples (bulk RNAseq) from four control cortical organoids
(GSM 3058370, GSM3058382, GSM3058394, and GSM3058406). The analysis was run
using BrewerIX with the Complete pipeline, with default parameters.

In their study, Lopez-Tobon et al. profiled cortical organoids both in bulk
(Array Express accession E-MTAB-8325°°) and single-cell RNAseq (10Xv2 - Array
Express accession E-MTAB-8337°¢). We analyzed single-cell experiments as bulk
samples, i.e., not dividing in single cells, because the detected SNVs were too few,
independently from the sequencing depth. Overall we analyzed 3 cortical organoids
derived from ESC (HUESS, bulk at 50 and 100 days—Array Express run ids
ERR4198631 and ERR4198637; single-cell at 100 days—Array Express run id
ERR4229837) and 3 cortical organoids derived from iPSC (MIFF3, bulk at 50 and
100 days— Array Express run id ERR4198633 and ERR4198639; single-cell at
50 days—Array Express run id ERR4229861). We run bulk and single-cell RNAseq
separately using BrewerIX with default parameters.

SNV detection via PCR followed by Sanger sequencing. Genomic DNA (gDNA)
was extracted from cellular pellets with Puregene Core Kit A (Qiagen) according to
the manufacturer’s protocol; 1 ug gDNA was used as a template for PCR using the
Phusion High-Fidelity DNA polymerase (NEB, cat. M0530L).

Total RNA was isolated from cellular pellets using a Total RNA Purification kit
(Norgen Biotek, cat. 37500), and complementary DNA (cDNA) was generated
using M-MLV Reverse Transcriptase (Invitrogen, cat. 28025-013) and dN6 primers
(Invitrogen) from 1000 ng of total RNA following the protocols provided by the
manufacturers, including a step of TurboDNAse treatment (Thermo Scientific).
cDNA was diluted 1:5 in water and used as a template for PCR using the Phusion
High-Fidelity DNA polymerase; gDNA and cDNA were amplified by PCR using
primers detailed in Supplementary Table 3. PCR was conducted with the following
program: denaturation at 98 °C for 30's; 35 cycles of denaturation at 98 °C for 10s,

annealing at a temperature depending on primer sequence (Tm-5 °C) for 30,
elongation at 72 °C for 15 s; final elongation at 72 °C for 10 min.

PCR reaction products were resolved and imaged by agarose gel electrophoresis.
The remaining PCR products were purified using the QIAquickPCR purification
kit (Qiagen, cat. 28106) and direct sequencing was performed using the same
primers used for PCR amplification. Each PCR region of interest was sequenced at
least twice, using both forward and reverse primers. Sanger sequencing was
performed by Eurofins Genomics (https://www.eurofinsgenomics.eu/en/custom-
dna-sequencing/gatc-services/lightrun-tube/). Sequence analysis and peak
detection were performed using freely available ApE software (https:/
jorgensen.biology.utah.edu/wayned/ape/).

Statistics and reproducibility. For RNA-seq and WES datasets, we analyzed two
independent biological replicates and, when possible, included samples from
multiple studies. Biological replicates indicate when a cell line was exposed to a
given treatment multiple times and the samples were harvested, processed, and
analyzed all at once. All statistics were done using R (v4.1.1) unless otherwise
stated. Fig 1b, P values were computed with prop.test (R package stats v4.1.1) two-
sided with Yates’ continuity correction. For Fig. 2b, P values were computed with
Wilcoxon tests (wilcox.test R package stats v4.1.1) two-sided. Error bars indi-
cate + /— one standard deviation. The binomial test implemented in BrewerIX is
performed by scipy v1.7.3 Python v3.8 (scipy.stats.binom_test testing proportion
greater than 1/6). No P values were computed when 7 < 3.

Ethics approval. All animal experiments were performed according to guidelines
and ethical considerations, as outlined in*1:474%. The use of human primary cells,
human pluripotent stem cells and organoids was approved by ethics committees, as
outlined in®>57-"867 and informed consent was obtained from all participants, as
outlined in34°1,53,

Data availability

All RNA-seq data used in this study were publicly available and obtained from either the
Gene Expression Omnibus (GEO) database under the accession codes GSE110377,
GSE126397, GSE63577, GSE93226, GSE84164, GSE123028, GSE45719, GSE75688,
GSE75140, GSE124174, GSE86153, GSE112137, GSE80810, and GSE152106 or from
Array Express under the accession codes E-MTAB-2600 and E-MTAB-8325. Whole-
exome sequencing data generated in the current study are available via the Sequence
Read Archive (SRA) repository with BioProject ID PRINA705070. Additional details
about all datasets used in the study are in Supplementary Table 1. The raw Sanger
sequencing data file underlying Fig le and Supplementary Table 2 have been uploaded
on figshare (https://doi.org/10.6084/m9.figshare.17313110). Source data underlying the
graph and charts presented in the main figures are available in Supplementary Data 3.

Code availability

BrewerlIX is freely available for academic users at https://brewerix.bio.unipd.it. All code
and tutorials are available at https://github.com/Romualdi-Lab under AGPL3 license and
have been deposited at Zenodo®-72.
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