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Abstract
We define a class of Markovian parallel dynamics for spin systems on arbitrary graphs with
nearest neighbor interaction described by a Hamiltonian function H(σ ). These dynamics
turn out to be reversible and their stationary measure is explicitly determined. Convergence
to equilibrium and relation of the stationary measure to the usual Gibbs measure are dis-
cussed when the dynamics is defined on Z

2. Further it is shown how these dynamics can be
used to define natively parallel algorithms to face problems in the context of combinatorial
optimization.

Keywords Probabilistic cellular automata · Parallel dynamics · Ising model · Lattice
systems · Monte Carlo combinatorial optimization

1 Introduction

We introduce a class of parallel dynamics, called shaken dynamics, to study spin systems on
arbitrary graphs G = (V , E) with general interaction given by

H(σ ) = −
∑

e={x,y}∈E
Jxyσxσy − 2

∑

x∈V
λxσx (1)

with Jxy and λx in R for x, y ∈ V , and σ ∈ {−1,+1}V a configuration on G. The novelty of
these dynamics is that transitions between configurations are obtained through a combination
of pairs of half steps each characterized by an asymmetric interaction.
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The shaken dynamics introduced here extend a class of PCA on spin systems, appeared
in previous papers [7, 8, 14, 18], characterized by transition probabilities defined in terms of
a pair Hamiltonian, i.e.

P(σ, τ ) = e−βH(σ,τ )

∑
τ ′ e−βH(σ,τ ′)

with H(σ, τ ) = ∑
x hx (σ )τx and β = 1

T , where T is the temperature of the system. For
each vertex x the local field hx (σ ) depends on the value of the spins in a neighborhood of
x and on the value of the spin at site x itself through a self-interaction parameter q > 0.
The dynamics considered in the aforementioned papers turn out to be reversible when the
interaction with the spins in the neighborhood is symmetric and irreversible otherwise. On
one hand, reversibility allows for a better control of the stationary measure. On the other
hand, irreversible dynamics may exhibit a faster convergence to equilibrium (see, e.g., [8,
11]), though the control of the invariant measure is in general more complicated.

For the shaken dynamics we show that reversibility holds despite the presence of a non
symmetric interaction. This fact allows for a rather robust control of the invariant measure on
arbitrary graphs also in the case of non-zero external field and different choices of boundary
conditions.

We study extensively the shaken dynamics on the square lattice. In this case we show that,
for suitable values of the parameters, its stationary measure tends, in the thermodynamic
limit, to the Gibbs measure with Hamiltonian (1). This result is complemented by a thorough
numerical investigation carried over in [9]. Moreover, we analyze the convergence to equi-
librium of the shaken dynamics in the low-temperature regime.We show that the asymmetric
interaction induces a faster convergence with respect to symmetric PCA and single spin flip
dynamics. In this respect, it is apparent that the shaken dynamics retains some of the prop-
erties of the irreversible PCA considered in [8, 14, 19]. Hence, shaken dynamics benefits of
the advantages of both reversible and irreversible dynamics.

A notable feature of shaken dynamics is the fact that their invariant measure turns out
to be the marginal of the Gibbs measure on an induced bipartite graph Gb whose geometry
is related to that of the original graph G. Tuning the self-interaction parameter q tunes the
geometry of Gb. Leveraging on this feature we show how it is possible to control the critical
behavior of the stationary measure of the shaken dynamics defined on the triangular lattice,
extending, in this way, the analogous result provided in [1] for the square lattice.

It is worth mentioning that one of the main reasons of interest on PCA, and, in general,
on parallel dynamics, is related to their numerical applications. Indeed, parallelization could,
at least in principle, speed up Markov Chain Monte Carlo (see, e.g.,[10, 20]). Even though
until a few years ago parallel computing was expensive and tricky, we have now powerful
and cheap parallel architectures, for instance based on GPU or even FPGA. In this regard,
we show how the class of shaken dynamics defined on general graphs provides a straightfor-
ward manner to define natively parallel Monte Carlo algorithms that can be used to tackle
discrete optimization problems. Algorithms exploiting shaken dynamics are not bound to
any particular computing architecture or graph structure and, hence, their performances are
likely to benefit from the development of parallel computing often driven by applications not
necessarily linked to academic research.

Shaken dynamics on general graphs are defined in Sect. 2. It is shown how a shaken
dynamics on an arbitrary G = (V , E) is related to a dynamics on a corresponding bipartite
graph Gb = (V b, Eb) where spins in each partition are alternatively updated. Theorem 2.3
identifies the stationary measure of the shaken dynamics and shows that it is the marginal of
the Gibbs measure on the configuration space {−1,+1}V b

. Section 3 is devoted to studying
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the shaken dynamics onZ2 with homogeneous interaction. It is shown that, if the temperature
of the system is sufficiently small, the invariant measure is close to the Gibbs measure for
the Ising model on the square lattice. As far as convergence to equilibrium is concerned, the
Section provides, in the low temperature regime, a comparison for the tunneling times from
themetastable to the stable state between the shaken dynamics, a symmetric PCA and a single
spin flip dynamics. Here theoretical results are complemented by numerical simulations. The
result concerning the critical behavior for the shaken dynamics on the triangular lattice is
provided in Sect. 4. In Sect. 5 the definition of shaken dynamics is generalized and Sect. 6
shows how these dynamics can be used in the context of combinatorial optimization. Proofs
are provided in Sect. 7. Finally, Sect. 8 is devoted to final remarks including the possible
applications of the shaken dynamics to model tidal dissipative effects in planetary systems.

2 Shaken Dynamics on General Graphs

Let G = (V , E) be a finite weighted graph and X V = {−1, 1}V be the set of spin configu-
rations on V . We consider the nearest neighbor interaction between spins given by the Ising
Hamiltonian in the general form:

H(σ ) = −
∑

e={x,y}∈E
Jxyσxσy − 2

∑

x∈V
λxσx

= −
∑

x

∑

y

1

2
Jxy1{x,y}∈Eσxσy − 2

∑

x∈V
λxσx = −〈1

2
J σ + 2λ, σ 〉 (2)

where the weight Jxy ∈ R associated to the edge {x, y}, represents the interaction, and
can be written in compact form as a symmetric matrix J and we denote by 〈·, ·〉 the scalar
product. The vector λ = {λx }x∈V is an external field, possibly non constant.

We introduce a class of bipartite weighted graphsGb = (V b, Eb) doubling the interaction
graph G. The idea is to duplicate the vertex set into two identical copies, V (1) and V (2),
representing the two parts of the vertex set of the bipartite graph. For each x ∈ V we denote
by x (1), x (2) the vertices corresponding to x ∈ V in V (1) and in V (2) respectively. The edges
between x (1) and x (2) are all present, for any x ∈ V . On the other hand the edges between
x (1) and y(2), with x �= y, or between y(1) and x (2), can be present only if {x, y} ∈ E . Exactly
one edge among the two possibilities (x (1), y(2)) and (y(1), x (2)) is in Eb if {x, y} ∈ E . This
means that for any graph G there are many doubling graphs Gb. Note that similar doubling
graphs have already been introduced in literature for different purposes (see [13]). More
precisely:

Definition 2.1 A bipartite weighed graph Gb = (V b, Eb) is the doubling graph of G =
(V , E) if

• the vertex set V b = V (1) ∪ V (2) where the two parts V (1) and V (2) are two identical
copies of V ;

• for any x ∈ V the edge (x (1), x (2)) ∈ Eb and we call it a self-interaction edge;
• if {x, y} ∈ E then one, and only one, between the two edges {x (1), y(2)} and {y(1), x (2)}

is in Eb. We call this kind of edge an interaction edge.

To construct a doubling graph starting from the interaction graph G = (V , E), define a
new oriented graph Go = (V , Eo) simply orienting the edges in an arbitrary way. Using
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Fig. 1 An undirected graph (a) and a possible choice for the related directed graph (b)

the oriented edges the set Eb is constructed as follows. For any x ∈ V we have the self-
interaction edge (x (1), x (2)) ∈ Eb with weight w(x (1), x (2)) = q and for x �= y ∈ V we
have (x (1), y(2)) ∈ Eb if and only if (x, y) ∈ Eo with weight w(x (1), y(2)) = Jxy .

Note that the edges in Eb are not oriented. However, by construction, the graph is bipartite,
so that for any e = {x, y} ∈ Eb we have x ∈ V (1), y ∈ V (2) or viceversa and so we
consider in the definition the natural order in the edges in Eb by setting e = (e(1), e(2)) with
e(1) ∈ V (1), e(2) ∈ V (2). For this reason we can use the oriented edges in Eo in order to
define Eb.

We will sometimes omit the superscripts (1) and (2) and we will always consider (x, y)
the ordered pair with x ∈ V (1), y ∈ V (2), and {x, y} the unordered pair with x, y ∈ V b.

Definition 2.2 The pair Hamiltonian H(σ (1), σ (2)) is the doubling of the Hamiltonian (2)
with interaction graph G if there exists a doubling graph Gb = (V b, Eb) of G such that
H(σ ), defined on the spin configurations σ ≡ (σ (1), σ (2)) ∈ XV b = {−1, 1}V b

, can be
written as

H(σ ) = −
∑

{x,y}∈Eb

w(x, y)σ xσ y −
∑

x∈V b

λxσ x (3)

with w(x, y) = q > 0 if {x, y} is a self interaction edge and w(x, y) = Jxy ∈ R otherwise
and with λx (1) = λx (2) = λx ∈ R.

In a more explicit way we can write

H(σ ) ≡ H(σ (1), σ (2))

= −
∑

(x,y)∈Eb

Jxyσ
(1)
x σ (2)

y −
∑

x∈V

(
qσ (1)

x · σ (2)
x + λx (σ

(1)
x + σ (2)

x )
)

= −
∑

x∈V

(
σ (1)
x h2→1

x (σ (2)) + λxσ
(2)
x

)

= −
∑

x∈V

(
σ (2)
x h1→2

x (σ (1)) + λxσ
(1)
x

)

(4)
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Fig. 2 The doubling of the graph of Fig. 1a obtained from the directed graph of Fig. 1b

with
h2→1
x (σ (2)) =

∑

y∈V :(x,y)∈Eb

(
Jxyσ

(2)
y

)
+ qσ (2)

x + λx

and
h1→2
x (σ (1)) =

∑

y∈V :(y,x)∈Eb

(
Jxyσ

(1)
y

)
+ qσ (1)

x + λx

By defining J o the matrix of oriented interaction, i.e., J o
xy = Jxy1(x,y)∈Eo , and its trans-

posed J oT corresponding to the opposite orientation, we can write

h2→1
x (σ (2)) = (J oσ (2))x + qσ (2)

x + λx

h1→2
x (σ (1)) = (J oT σ (1))x + qσ (1)

x + λx

and

H(σ (1), σ (2)) = −〈σ (1),J oσ (2)〉 − q〈σ (1), σ (2)〉 − 〈λ, σ (1)〉 − 〈λ, σ (2)〉
= −〈J oT σ (1), σ (2)〉 − q〈σ (1), σ (2)〉 − 〈λ, σ (1)〉 − 〈λ, σ (2)〉

If we consider the case σ (1) = σ (2) = σ , i.e., σ (1)
x = σ

(2)
x for any x ∈ V , then we have

H(σ ) ≡ H(σ, σ ) = H(σ ) − q|V |. Indeed we have immediately J = J o + J oT .
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We construct now the shaken dynamics on the state space XV by considering two subse-
quent updating defined as follows:

P1→2(σ, σ ′) := e−βH(σ,σ ′)
−→
Z σ

=
∏

x∈V

eβh1→2
x (σ )σ ′

x

2 cosh βh1→2
x (σ )

with
−→
Z σ =

∑

ζ∈XV

e−βH(σ,ζ ) (5)

P2→1(σ ′, τ ) := e−βH(τ,σ ′)
←−
Z σ ′

=
∏

x∈V

eβh2→1
x (τ )σ ′

x

2 cosh βh2→1
x (τ )

with
←−
Z σ ′ =

∑

ζ∈XV

e−βH(ζ,σ ′) (6)

Psh(σ, τ ) =
∑

σ ′∈XV

P1→2(σ, σ ′)P2→1(σ ′, τ ) =
∑

σ ′∈XV

e−βH(σ,σ ′)
−→
Z σ

e−βH(τ,σ ′)
←−
Z σ ′

(7)

We state the result on the shaken dynamics in this general context.

Theorem 2.3 The stationary measure of the shaken dynamics is

π(σ) =
−→
Z σ

Z
with

−→
Z σ :=

∑

τ

e−βH(σ,τ ) and Z :=
∑

σ,τ

e−βH(σ,τ ) (8)

and reversibility holds. This stationary measure is the marginal of the Gibbs measure on the
space XV b of pairs of configurations σ := (σ (1), σ (2)) defined by:

πb(σ ) := 1

Z
e−βH(σ ). (9)

The shaken dynamics on XV corresponds to an alternate dynamics on Gb in the following
sense

Psh(σ (1), τ (1)) =
∑

τ (2)∈{−1,+1}V (2)

Palt (σ , τ ) (10)

with

Palt (σ , τ ) = e−βH(σ (1),τ (2))

−→
Z σ (1)

e−βH(τ (1),τ (2))

←−
Z τ (2)

(11)

the stationary measure of Palt is πb(σ ). Note that Palt is independent of σ (2). This dynamics
is in general non reversible.

3 The Shaken Dynamics on Z
2

Let� be a two-dimensional L× L square lattice inZ2 and let B� denote the set of all nearest
neighbors in � with periodic boundary conditions.

In � we identify a set B where the value of the spins is frozen throughout the evolution
and that plays the role of boundary conditions. This means that we will consider the state
space X�,B = {σ ∈ X� : σx = +1 ∀x ∈ B}.

Following the construction of the shaken dynamics of the previous section we can define

H(σ, τ ) = −
∑

x∈�

[
Jσx (τx↑ + τx→) + qσxτx + λ(σx + τx )

]

= −
∑

x∈�

[
Jτx (σx↓ + σx←) + qτxσx + λ(σx + τx )

] (12)
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Fig. 3 The doubling graph of Z2

represented in the figure turns out
to be a hexagonal lattice

q

J

J

Λ1

Λ2

where x↑, x→, x↓, x← are, respectively, the up, right, down, left neighbors of the site x on
the torus (�,B�), J > 0 is the ferromagnetic interaction, q > 0 is the inertial constant and
λ represents the external field. We can write

H(σ, τ ) = −
∑

x∈�

σxh
ur (τ ) − λ

∑

x∈�

τx = −
∑

x∈�

τx h
dl(σ ) − λ

∑

x∈�

σx (13)

where the local up-right field hurx (τ ) due to the configuration τ is given by

hurx (τ ) =
[
J (τx↑ + τx→) + qτx + λ

]
(14)

and the local down-left field hdlx (σ ) due to the configuration σ is given by

hdlx (σ ) =
[
J (σx↓ + σx←) + qσx + λ

]
(15)

Define the asymmetric updating rule

Pdl(σ, τ ) := e−βH(σ,τ )

−→
Z σ

with
−→
Z σ =

∑

σ ′∈X�,B

e−βH(σ,σ ′) (16)

Due to the definition of the pair Hamiltonian, the updating performed by the transition
probability Pdl(σ, τ ) is parallel: given a configuration σ , at each site x ∈ � the spin τx of
the new configuration τ is chosen with a probability proportional to eβhdlx (σ )τx so that

Pdl(σ, τ ) := e−βH(σ,τ )

−→
Z σ

=
∏

x∈�

eβhdlx (σ )τx

2 cosh βhdlx (σ )

We have H(σ, τ ) �= H(τ, σ ) and actually, by (13), H(τ, σ ) corresponds to the opposite
direction of the interaction for the transition from σ to τ . We define

Pur (σ, τ ) := e−βH(τ,σ )

←−
Z σ

with
←−
Z σ =

∑

σ ′∈X�,B

e−βH(σ ′,σ ) (17)
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Similarly for Pur (σ, τ ) with the up-right field hurx (σ ) we get

Pur (σ, τ ) := e−βH(τ,σ )

←−
Z σ

=
∏

x∈�

eβhurx (σ )τx

2 cosh βhurx (σ )

Note that in the definition of H(σ, τ ) = − ∑
x∈� τxhdl(σ ) − λ

∑
x∈� σx the last term

could be canceled obtaining the same value for the transition probability Pdl(σ, τ ). However
we added it in the pair Hamiltonian for symmetry reasons: in particular the fact that H(τ, σ )

is the correct pair Hamiltonian to define Pur (σ, τ ) is due to this symmetry. Note also that

H(σ, σ ) = H(σ ) − q|�|
where we define H(σ ) to be the usual Ising Hamiltonian with magnetic field 2λ

H(σ ) = −
∑

{x,y}∈B�

Jσxσy − 2λ
∑

x∈�

σx (18)

We define

Psh(σ, τ ) =
∑

σ ′∈X�,B

Pdl(σ, σ ′)Pur (σ ′, τ ) =
∑

σ ′∈X�,B

e−βH(σ,σ ′)
−→
Z σ

e−βH(τ,σ ′)
←−
Z σ ′

(19)

Reversing the order of the “down–left” and the “up–right” updating rules onewould obtain
the chain with transition probabilities

Psh′
(σ, τ ) =

∑

σ ′∈X�,B

Pur (σ, σ ′)Pdl(σ ′, τ ).

Clearly, by choosing a different orientation instead of down-left and up-right inZ2, a different
pair Hamiltonian can be obtained with a resulting different graph for the interaction.

In this square case we could have directly used the alternate dynamics, since Z2 is already
a bipartite graph. Indeed we can consider the checkerboard splitting of the sites in � =
V (1) ∪ V (2), in black and white sites, with |V (1)| = |V (2)| = |V | = |�|/2. Black sites
interact only with white sites and viceversa with the usual Ising Hamiltonian

H(σ ) ≡ H(σ (1), σ (2))

= −
∑

x∈V (1)

(
σ (1)
x h2→1

x (σ (2)) + λxσ
(2)
x

)

= −
∑

x∈V (2)

(
σ (2)
x h1→2

x (σ (1)) + λxσ
(1)
x

)
.

By Theorem 2.3 we immediately obtain that the invariant measure of the alternate dynam-
ics is the Gibbs measure πG(σ ) = e−βH(σ )/Z . The idea of alternate dynamics on even and
odd sites is already present in the literature (see [5]).

3.1 Relation with the Gibbs Measure

Remaining in � ∈ Z
2 with J > 0 and B = ∅, i.e. with the standard periodic boundary

conditions, we denote the invariant measure of the shaken dynamics π� =
−→
Z σ

Z .
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Let πG
� be the Gibbs measure

πG
� (σ) = e−βH(σ )

ZG
with ZG =

∑

σ∈X�

e−βH(σ ) (20)

with H(σ ) defined in (18) and we define the total variation distance, or L1 distance, between
two arbitrary probability measures μ and ν on X�,B as

‖μ − ν‖T V = 1

2

∑

σ∈X�,B

|μ(σ) − ν(σ )| (21)

In the following Theorem 3.1 we control the distance between the invariant measure of the
shaken dynamics and the Gibbs measure at low temperature (large β). We notice that this
theorem is an extension of Theorem 1.2 in [18] to the case of Hamiltonian with the non zero
external field. This result could be extended to the case B �= ∅.
Theorem 3.1 Set δ = e−2βq , and let δ be such that

lim|�|→∞ δ2|�| = 0 (22)

Under the assumption (22), there exists J̄ such that for any J > J̄

lim|�|→∞ ‖π� − πG
� ‖T V = 0. (23)

3.2 Convergence to Equilibrium: A Comparison

For the Ising model on the finite L × L box � ⊂ Z
2 with periodic boundary conditions,

consider now the regime 0 < λ < J and very low temperature, i.e. β � 1. This is usually
called “metastable regime”. Indeed the configuration−1with all spins−1 represents, in this
regime of low temperature, a metastable state, while the configuration +1 with all positive
spins, parallel to the external field λ, represents the stable state, where the Gibbs measure
concentrates in the limit β → ∞. We will call tunneling time τ+1 the first hitting time to
+1 starting from −1.

We compare here the tunneling times for different dynamics: the single spin flip (SSF)
dynamics, the PCA dynamics and the shaken dynamics (Sh) with q < λ.

More precisely consider, for each x ∈ �, the local fields

hSSFx (σ ) =
[ J
2

(σx↑ + σx→ + σx↓ + σx←) + 2λ
]

hPCA
x (σ ) =

[ J
2

(σx↑ + σx→ + σx↓ + σx←) + qσx + λ
]

hdlx (σ ) and hurx (σ ) defined in (15) and (14), and the local transition probabilities

p∗
x (σ, τ ) := eβh∗

x (σ )τx

2 cosh βh∗
x (σ )

, ∗ = SSF, PCA, dl, ur .

Denote by σ x the configuration obtained from σ by flipping the spin at site x and by χ{A}
the indicator function of event A. Then, the three dynamics under consideration, have the
following transition probabilities:

PSSF (σ, τ ) = 1

|�| p
SSF
x (σ, τ )χ{τ=σ x }

123
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PPCA(σ, τ ) =
∏

x∈�

pPCA
x (σ, τ )

PSh(σ, τ ) =
∑

σ ′∈X�

∏

x∈�

pdlx (σ, σ ′)
∏

x∈�

purx (σ ′, τ ).

The SSF dynamics is reversible with Gibbs invariant measure

πG
� (σ) = eβ

∑
x h

SSF
x (σ )σx

ZG

and the invariant measure of PCA and shaken dynamics are, respectively,

πPCA(σ ) =
∑

τ e
β

∑
x h

PC A
x (σ )τx

Z PC A
and π(σ) =

∑
τ e

β
∑

x h
dl
x (σ )τx

Z
.

Note that, in the case J
2 = q , the dynamics defined via the transition probabilities PPCA

turns out to be the same as the cross PCA dynamics introduced in [6] and it is possible to
show that the measure πPCA and the Gibbs-like measure with Hamiltonian H(σ ) defined in
[6, Equation (2.5)] coincide.

All these measures, in the regime of large β, concentrate on the stable state +1. This
is proven for π(σ)PCA in [6] and it is immediate for the Gibbs measure. For the shaken
dynamics this follows by noting that, for all σ �= +1,

π(σ)

π(+1)
=

∏

x∈�

2 cosh βhdlx (σ )

2 cosh β[2J + q + λ] ≤ e−2βq (24)

and, hence

lim
β→∞

π(σ)

π(+1)
= 0.

For large inverse temperature β we have p∗
x (σ, τ ) ∼ 1 if τx is parallel to the local field

h∗
x (σ ). We call such a local move “along the drift”. On the other hand p∗

x (σ, τ ) ∼ e−2β|h∗
x (σ )|

if τx is anti-parallel to the local field h∗
x (σ ). We call such a local move “against the drift”.

Let λ < J . For the SSF dynamics we have for any δ > 0 (see for instance [3, 17]):

lim
β→∞ PSSF−1 (τ+1 > eβ(�−δ)) = 1 (25)

with

� = 4J
c − 2λ
2c + 2λ(
c − 1)

and critical size 
c = [ J
λ

] + 1, where
[ · ]

denotes the integer part. The typical exit paths
from the metastable state −1 follow a sequence of growing squares and rectangles (quasi
squares) of plus spins up to the critical size 
c. Starting from a rectangular droplet of plus
spins a move against the drift is necessary to create a new line, and the line is completed with
subsequent moves along the drift.

A similar result for the PCA dynamics is proven in [6] in the case q = J
2 . In particular, the

typical exit paths follow the same growthmechanism of the SSF dynamics since moves along
the drift lead to rectangular droplets of plus spins and parallel updates against the drift do
not take place with high probability for β large (see [6, Sect. 2.7] for a detailed discussion).

A different growth takes place in the case of shaken dynamics. Indeed using an argument
inspired by [8] it is simple to prove that configurations with complete diagonals of plus spins
can be used to construct a efficient way to go from the metastable to the stable state.
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We have the following

Theorem 3.2 For any δ > 0 and 0 < q < λ < J

lim
β→∞ PSh−1(τ+1 < e2β[(2J+q−λ)+δ]) = 1.

This means that the crossover takes place for the shaken dynamics, typically, within a
time corresponding to the time it takes, for the SSF and PCA, to flip the first spin to +1.

Moreover we can define an event characterizing the tube of typical paths from the
metastable state −1 to the stable state +1. Actually we prove Theorem 3.2 by using this
event.

We need some notation. Denote by XSh
t the evolution of the shaken dynamics and let

τ−1c = inf{t > 0 : XSh
t �= −1} be the time of the first spin flip, starting from −1. We

denote a site x ∈ � as x = (i, j) with i, j = 1, ..., L and for each k = 1, ..., L we define a
diagonal Dk ⊂ � as the set of sites forming a diagonal in the up-left to down-right direction
on the torus (i.e., with periodic boundary condition):

Dk := {x = (i, j) ∈ � such that (i + j − 1) ≡ k (mod L)}
Let D be the set of configurations where each up-left to down-right diagonal has all spins

with the same sign:

D := {σ ∈ X : ∀ k = 1, ..., L σx = σy for any x, y ∈ Dk}.
Note that −1,+1 ∈ D. For notation convenience we identify a configuration σ ∈ D with
the set of indices of diagonals with positive spins, i.e., with a subset of {1, 2, ..., L} denoted
by Iσ . We say that m /∈ Iσ is nearest neighbor of Iσ if there exists n ∈ Iσ with |n −m| = 1.
Given σ, σ ′ ∈ D we say that σ ′ increases σ if Iσ ′ ⊃ Iσ and their difference Iσ ′ \Iσ is a single
integer m nearest neighbor of Iσ .

Starting from −1 define the sequence of strong times {si , ti }i=1,2,... as follows: t0 = 0
and for any i = 1, 2, ..

si = inf{t > ti−1; XSh
t /∈ D}, ti = inf{t > si ; XSh

t ∈ D}.
Fix an arbitrarily small positive δ and define Tδ = e2β[(2J+q−λ)+δ] and the following event

T := {
s1 = τ−1c < Tδ/2, tL = τ+1 < Tδ, {XSh

ti }i=1...L

is a sequence of increasing configurations in D
}

We have

Theorem 3.3 For any δ > 0

lim
β→∞ PSh−1(T ) = 1.

Clearly the event T implies the event τ+1 < Tδ , so Theorem 3.2 is established by proving
Theorem 3.3.

The asymmetric nature of the interaction gives the shaken dynamics a higher mobility
with respect to its symmetric counterpart (“standard” PCA). This is the reason of shorter
tunneling times. Evidence of this fact, in the regime 0 < q < λ < J , is provided by the
numerical experiment whose results are summarized in Figure 4. For both the PCA and the
shaken dynamics the simulations are started in configuration−1 and the value of the average
magnetization is tracked. Simulations are run for several values of the inverse temperature
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(a) (b)

(c) (d)

Fig. 4 Comparison of the magnetization over time for PCA and shaken dynamics for growing values of the
inverse tempeature β

β. It is immediately clear that, for the shaken dynamics, the tunneling towards a state is
much faster. Note also that this higher mobility causes a slightly smaller magnetization at
equilibrium for finite β.

A similar behavior has been highlighted in [14, 15] where a comparison between the
symmetric PCA and an irreversible PCA with totally asymmetric interaction has been per-
formed in the case λ = 0. In the case of null magnetic field, if the value of the inverse
temperature β is large but finite, the system exhibits, both in the case of PCA dynamics and
shaken dynamics, a (positive or negative) spontaneous magnetization. On short time scales
the system stays in one “phase” (e.g. it is negatively magnetized) whereas, on longer time
scales, it tunnels rapidly towards the other phase. However, since the value of the spontaneous
magnetization is neither exactly−1 or+1, choosing the right parameters to compare the two
dynamics, as far as tunneling time is concerned, may be a somewhat delicate matter. To make
a fair comparison of the tunneling times we tuned the parameters of the PCA and the shaken
dynamics so to have similar values for the (average) spontaneous magnetization. The results
of the experiment are summarized in Figure 5 where the average magnetization over time is
represented for both dynamics. It is evident that, also in this case, the shaken dynamics has
considerably more mobility than the PCA. As far as the tunneling behavior is concerned, the
shaken dynamics retains, essentially, the same features of the irreversible PCA considered in
[15]. However, it is to remark that, in the case of the shaken dynamics, reversibility allows
to manage the invariant measure more easily.

4 Geometrical Discussion

In the shaken dynamics the idea of alternate dynamics is combined with that of the doubling
Hamiltonian. Indeed considering only part of the interaction (for instance down-left first and
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Fig. 5 Comparison of the evolution of the magnetization for a spin system evolving according to a shaken
dynamics (black) and according to a symmetric PCA (red). The values of the parameters are such that both
dynamics exhibit the same spontaneous magnetization and are consistent with those of [15] (Color figure
online)

then up-right in the case of� ∈ Z
2 presented at the beginning of the section) and introducing

the inertial parameter of self interaction q it is possible to interpolate between different lattice
geometries induced by the doubling graph as already discussed in [1].

Indeed the alternate dynamics on the hexagonal lattice makes possible to interpolate
between the square (q → ∞) and the 1-dimensional lattice (q → 0). The interpolation
between lattices induced by the shaken dynamicsmay be applied in general (see, e.g., [21] for
an application to the 3d cubic lattice), and in the case of planar graphs the results concerning
the critical behavior contained in [1] can be extended, using [4].

Consider for instance the Ising model on the triangular lattice. On this lattice we divide
the 6 nearest neighbors of each vertex x into two sets, e.g. 
(x) left and r(x) right nearest
neighbors of x , and define a shaken dynamics with self interaction q . Hence the doubled
Hamiltonian is

H�(σ, τ ) = −
∑

x

[ ∑

y∈
(x)

(
Jσyτx

) + qσxτx

]
= −

∑

x

[ ∑

y∈r(x)

(
Jτyσx

) + qσxτx

]

The corresponding alternate dynamics turns out to be defined on the square lattice (see Fig. 6)
with invariant measure the Gibbs one. In particular the square lattice is regular when we set
J = q . In this case the parameter q can be used to move through different geometries. The
triangular lattice (q → ∞) and the hexagonal lattice (q = 0) can be derived from the original
square lattice just tuning the value of q . Amore precise statement of this interpolation is given
by the following

Theorem 4.1 For the shaken dynamics on the triangular lattice the critical equation relating
the parameters J and q is given by

1 + tanh3(J ) tanh(q) = 3 tanh(J ) tanh(q) + 3 tanh2(J ) (26)

In the case q = J we obtain the Onsager critical temperature for the square lattice, for
q = 0 we obtain the critical temperature for the hexagonal lattice and in the limit q → ∞
we obtain the critical temperature for the triangular lattice.
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Fig. 6 Interaction in the pair
Hamiltonian for the shaken
dynamics on the triangular
lattice. Each spin of configuration
σ (living on the solid lattice)
interacts with the spin at the same
location and the three spins on its
left in τ (living on the dashed
lattice). The darker lines show
that the pair interaction lives on a
rectangular lattice. For q = J
this lattice becomes the square
one. As q → ∞ the square lattice
collapses onto the triangular
lattice. If q = 0 the interaction
graph becomes the homogeneous
hexagonal lattice

Λ1

Λ2

q

J

J

J

5 The Generalized Shaken Dynamics

We can generalize the construction of the shaken dynamics. Starting from a symmetric inter-
action J defining the Hamiltonian H(σ ), as in (2), we can define an arbitrary decomposition
of the interaction matrix J in a sum of two matrices with non negative entries

J = J o + J oT . (27)

This means that every non oriented edge {x, y} with weight Jxy is decomposed in a pair of
oriented edges (x, y) and (y, x) with weight respectively J o

xy and J o
yx . Call E

o the set of all
these oriented edges and apply the construction presented in Sect. 2 to construct the doubling
graph by using this set Eo of oriented edges.

We proceed as before defining the doubling Hamiltonian

H(σ (1), σ (2)) = −〈σ (1),J oσ (2)〉 − q〈σ (1), σ (2)〉 − 〈λ, σ (1)〉 − 〈λ, σ (2)〉
= −〈J oT σ (1), σ (2)〉 − q〈σ (1), σ (2)〉 − 〈λ, σ (1)〉 − 〈λ, σ (2)〉. (28)

In the case σ (1) = σ (2) = σ by equation (27) we have again H(σ, σ ) = H(σ ) − q|V |.
The corresponding alternate dynamics on the state spaceXV is definedwith two subsequent

updating as follows:

P1→2(σ, σ ′) := e−βH(σ,σ ′)
−→
Z σ

, P2→1(σ ′, τ ) := e−βH(τ,σ ′)
←−
Z σ ′

(29)

and

Psh(σ, τ ) =
∑

σ ′∈XV

P1→2(σ, σ ′)P2→1(σ ′, τ ) =
∑

σ ′∈XV

e−βH(σ,σ ′)
−→
Z σ

e−βH(τ,σ ′)
←−
Z σ ′

(30)

The results obtained in Theorem 2.3 can be immediately extended to this more general
case.

The choice of the shaken dynamics discussed in Sect. 2 is a particular case of generalized
shaken dynamics in which J o

xyJ o
yx = 0 for any pair x, y. In the general case the geometrical

discussion of the doubling graph of interaction is much more complicated. Also the inter-
polation between different geometries obtained for different values of the parameter q , as
discussed in Sect. 3, is more involved in this generalized case.
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Fig. 7 The construction of the doubling graph in the case of the generalized shaken dynamics

Another particular choice in this class of generalized shaken dynamics is J o = 1
2J

corresponding to the PCA discussed in [7].

6 Application to Optimization Problems

The shaken dynamics on a general graph, and its generalization, gets the possibility to look for
the minimum of a general Hamiltonian H(σ ) defined on {−1,+1}V by means of a parallel
dynamics, by using the following result that could be considered a corollary of Theorem
2.3. In combinatorial optimization this can be used as a parallel approach to the Quadratic
Unconstrained Binary Optimization (QUBO) i.e., the problem of minimizing a quadratic
polynomial of binary variables (see [12] for a survey).

Theorem 6.1 Consider a Hamiltonian H(σ ) of the form given in (2) on {−1,+1}V , for any
doubling Hamiltonian H(σ, τ ) defined in (3), corresponding to a bipartite graph Gb =
(V b, Eb).

(1) If

q > max
x∈V

{ ∑

y:{x,y}∈Eb

|Jxy | + |λx |
}

(31)

then the alternate dynamics defined with H(σ, τ ) is a parallel algorithm to find config-
urations σ minimizing H(σ ).

(2) For any positive q the alternate dynamics defined with H(σ, τ ) is a parallel algorithm
to find a lower bound for minσ H(σ ).
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To assess the effectiveness of the strategy presented in Theorem 6.1, we put forward some
preliminary tests on a simplified version of the Edwards-Anderson model where the weight
of the edges connecting neighboring sites is set to J = +1 with probability 1

2 and J = −1
with probability 1

2 and where the external field is zero. In this case, setting q > 2 is sufficient
to satisfy the hypotheses of the corollary. We compared the results with those obtained with a
single spin flip heat bath dynamics and considered “grids” with side length 128 and 256.With
this setting, the heuristic minima that we obtained with the shaken dynamics are essentially
equivalent to those obtained with the single spin flip dynamics. However the speed up with
respect to the single spin flip dynamics was significant. To be as fair as possible in this
comparison, we renormalized the time of the single spin flip dynamics with the number of
vertices in the graph so to have the same number of “attempted spin flips”. We observed a
speed-up of about 10 times when considering, for both algorithms, a CPU implementation
and up to 200 timeswhen comparing theCPU implementation of the single spin flip dynamics
with a GPU implementation of the shaken dynamics. These findings are in agreement with
Theorem 3.2.

7 Proofs of the Results

7.1 Proof of Theorem 2.3

We have immediately the detailed balance condition w.r.t. the measure π(σ) indeed

∑

σ ′∈XV

e−β(H(σ,σ ′)+H(τ,σ ′))
←−
Z σ ′

= −→
Z σ P

sh(σ, τ ) = −→
Z τ P

sh(τ, σ ) =
∑

σ ′∈XV

e−β(H(τ,σ ′)+H(σ,σ ′))
←−
Z σ ′

(32)
It is straightforward to prove that πb(σ (1), σ (2)) is the stationary measure of Palt

∑

σ (1),σ (2)

πb(σ (1), σ (2))Palt (σ , τ ) =
∑

σ (1),σ (2)

e−βH(σ (1),σ (2))

Z

e−βH(σ (1),τ (2))

−→
Z σ (1)

e−βH(τ (1),τ (2))

←−
Z τ (2)

= e−βH(τ (1),τ (2))

Z
= πb(τ (1), τ (2))

(33)

��
Note that, in general

πb(σ (1), σ (2))Palt (σ , τ ) �= πb(τ (1), τ (2))Palt (τ , σ ).

For instance consider the bipartite graphs Kn,n with equal weights on all edges and where,
for all i , (σ (1)

i , σ
(2)
i ) = (+1,+1) and (τ

(1)
i , τ

(2)
i ) = (+1,−1).

7.2 Proof of Theorem 3.1

To prove Theorem 3.1 it is possible to argue as in the proof of Theorem 1.2 in [18].
In our notation π� and πG

� have the role, respectively, of πPCA and πG used in [18].
Further let gx (σ ) := J (σx↓ +σx←) be the analogue of hi (σ ) in [18]. Here we assume λ < 0.
The case λ > 0 can be treated likewise.
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Recalling that δ = e−2βq , it is possible to write
−→
Z σ in the following way:

−→
Z σ =

∑

τ

e−βH(σ,τ ) =
∑

τ

e−βH(σ,σ )e−β[H(σ,τ )−H(σ,σ )]

= eβq|�|e−βH(σ )
∑

τ

eβ
∑

x :σx �=τx −2gx (σ )σx−2q−2λσx

= eβq|�|e−βH(σ )
∑

I⊂�

δ|I | ∏

x∈I
e−β(2gx (σ )σx+2λσx )

= eβq|�|e−βH(σ )
∏

x∈�

(1 + δe−β(2gx (σ )σx+2λσx ))

(34)

where the sumover τ has been rewritten as the sumover all subsets I ⊂ � such that τx = −σx
if x ∈ I and τx = σx otherwise. The factor eβq|�| does not depend on σ and cancels out in

the ratio
−→
Z σ

Z .
Call f (σ ) := ∏

x∈�(1 + δe−β(2gx (σ )σx+2λσx )), w(σ) := e−βH(σ ) f (σ ) = wG(σ ) f (σ ).
Then, by (34), it follows

π�(σ) = w(σ)∑
τ w(τ)

= wG(σ ) f (σ )∑
τ wG(τ ) f (τ )

=
wG (σ )

ZG f (σ )
∑

τ
wG (τ )

ZG f (τ )
= πG

� (σ) f (σ )

πG
� ( f )

with πG
� ( f ) = ∑

σ πG
� (σ) f (σ ).

As in [18], using Jensen’s inequality the total variation distance between π� and πG
� can

be bounded as

‖π� − πG
� ‖T V ≤

√
πG

� ( f 2)

(πG
� ( f ))2

− 1 =: √
(�(δ)).

To prove the theorem, it will be shown that �(δ) = O(δ2|�|).
By writing �(δ) = elog(π

G
� ( f 2))−2 log(πG

� ( f )) − 1, the claim follows by showing that the
argument of the exponential divided by |�| is analytic in δ and that the first order term of its
expansion in δ cancels out.

In other words the claim follows thanks to the following lemma.

Lemma 7.1 There exists Jc such that, for all J > Jc

1.
log(πG

� ( f 2))
|�| and

log(πG
� ( f ))

|�| are analytic in δ for |δ| < δJ

2.
log(πG

� ( f 2))
|�| − 2

log(πG
� ( f ))

|�| = O(δ2)

Proof The analyticity of
log(πG

� ( f 2))
|�| and

log(πG
� ( f ))

|�| is proven by showing that these quantities
can be written as partition functions of an abstract polymer gas. The analyticity is obtained
using standard cluster expansion.

To carry over this task, we will rewrite πG
� ( f k) in terms of standard Peierls contours.

Divide the sites in � according to the value of the spins and number of edges of the Peierls
contour left and below the site in the following way:

• �−−
− : {x ∈ � : σx = −1 ∧ (σx← = −1, σx↓ = −1)};

• �+−
− : {x ∈ � : σx = −1 ∧ ((σx← = +1, σx↓ = −1) ∨ (σx← = −1, σx↓ = +1))};

• �+−
+ : {x ∈ � : σx = −1 ∧ σx← = +1, σx↓ = +1};

• �++
+ : {x ∈ � : σx = +1 ∧ (σx← = +1, σx↓ = +1)};
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• �−+
+ : {x ∈ � : σx = +1 ∧ ((σx← = +1, σx↓ = −1) ∨ (σx← = −1, σx↓ = +1))};

• �−+
− : {x ∈ � : σx = +1 ∧ (σx← = −1, σx↓ = −1)};

With this notation, f (σ ) can be written as

f (σ ) = [1 + δeβ(−4J+2λ)]|�| ∏

x∈�
+−
−

(1 + δe+2βλ)

[1 + δeβ(−4J+2λ)]
∏

x∈�
+−
+

[1 + δeβ(4J+2λ)]
[1 + δeβ(−4J+2λ)]

∏

x∈�
++
+

[1 + δeβ(−4J−2λ)]
[1 + δeβ(−4J+2λ)]

∏

x∈�
−+
+

(1 + δe−2βλ)

[1 + δeβ(−4J+2λ)]
∏

x∈�
−+
−

[1 + δeβ(4J−2λ)]
[1 + δeβ(−4J+2λ)]

= [1 + δeβ(−4J+2λ)]|�|ξ̃ (σ, λ)

(35)

with

ξ̃ (σ, λ) =
[

(1 + δe+2βλ)

[1 + δeβ(−4J+2λ)]
]

∣∣∣�+−
−

∣∣∣
×

[
[1 + δeβ(4J+2λ)]
[1 + δeβ(−4J+2λ)]

]∣∣∣�+−
+

∣∣∣

×
[

[1 + δeβ(−4J−2λ)]
[1 + δeβ(−4J+2λ)]

]∣∣∣�++
+

∣∣∣

×
[

(1 + δe−2βλ)

[1 + δeβ(−4J+2λ)]
]

∣∣∣�−+
+

∣∣∣
×

[
[1 + δeβ(4J−2λ)]
[1 + δeβ(−4J+2λ)]

]∣∣∣�−+
−

∣∣∣

(36)

For a given a configuration σ ∈ X�, we denote by γ (σ ) its Peierls contour in the dual
B∗

� = ∪(x,y)∈B�
(x, y)∗

γ (σ ) := {(x, y)∗ ∈ B∗
� : σxσy = −1} (37)

Noting that e−βH(σ ) = e(2J−2λ)β|�|e−2β J |γ (σ )|+4βλ|V+(σ )|,with |V+(σ )| = ∑
x∈� 1{σx=+1}

is the number of plus spins in � of configuration σ , we have

πG
� ( f k) = 1

ZG
e(2J−2λ)β|�|[1 + δeβ(−4J+2λ)]k|�| ∑

σ

[
e−2β J |γ (σ )|+4βλ|V+(σ )|ξ̃ (σ, λ)k

]

(38)

Setting

ξ(σ, λ) =
[

(1 + δe+2βλ)

[1 + δeβ(−4J+2λ)]
]

∣∣∣�+−
−

∣∣∣
×

[
[1 + δeβ(4J+2λ)]
[1 + δeβ(−4J+2λ)]

]∣∣∣�+−
+

∣∣∣

×
[
e+2βλ[1 + δeβ(−4J−2λ)]

[1 + δeβ(−4J+2λ)]

]∣∣∣�++
+

∣∣∣

×
[
e+2βλ(1 + δe−2βλ)

[1 + δeβ(−4J+2λ)]
]

∣∣∣�−+
+

∣∣∣
×

[
e+2βλ[1 + δeβ(4J−2λ)]

[1 + δeβ(−4J+2λ)]

]∣∣∣�−+
−

∣∣∣

(39)

allows us to write, for k ∈ {1, 2},
∑

σ

[
e−2β J |γ (σ )|+4βλ|V+(σ )|ξ̃ (σ, λ)k

]
=

∑

σ

[
e−2β J |γ (σ )| (e+2βλ|V+(σ )|)2−k

ξ(σ, λ)k
]

(40)
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A straightforward computation yields ξ(σ, λ)k ≤ ξ(σ, 0)k and then

∑

σ

[
e−2β J |γ (σ )| (e+2βλ|V+(σ )|)2−k

ξ(σ, λ)k
]
d ≤

∑

σ

e−2β J |γ (σ )|ξ(σ, 0)k

= 2
∑

γ

e−2β J |γ |ξ(γ, 0)k
(41)

where ξ(γ, 0)k coincides with ξ I
k (�) in the proof of Lemma 2.3 in [18], with

∣∣�+−
−

∣∣ +∣∣�−+
+

∣∣ = |l1(�)| and ∣∣�+−
+

∣∣ + ∣∣�−+
−

∣∣ = |l2(�)|.
This implies that the proof can be concluded following the same steps as in [18]. ��

7.3 Proof of Theorem 3.3

Starting from −1 the first spin flip is a move against the drift having a probability
e−2β|hShx (−1)| = e−2β(2J+q−λ) for some x ∈ �. Different exits from −1, with more than
a single spin flip, have a probability exponentially smaller than this. Hence, denoting for
simplicity a configuration with the set of its plus spins, we have XSh

τ−1c
= {x} and therefore

lim
β→∞ PSh−1

(
{τ−1c < Tδ/2} ∩ {XSh

τ−1c
= {x} for some x ∈ �}

)
= 1.

Starting now from this single plus spin in x = (i, j) we have a sequence of [L/2] moves
along the drift producing a configuration in D with plus spin in the diagonal containing
x , i.e. Dk with k = (i + j − 1)mod L . Indeed in the first half (dl) step of the dynamics
the configuration {(i, j + 1), (i + 1, j)} is reached with a move along the drift and in the
subsequent (ur ) half step the configuration {(i, j), (i − 1, j + 1), (i + 1, j − 1)} is reached
and so on up to reach in [L/2] steps along the drift the configuration ω1 = ω1(x) ∈ D with
plus spins in Dk . We obtain

lim
β→∞ PSh−1

(
{τ−1c < Tδ/2}∩{XSh

τ−1c
= x for some x ∈ �}∩{XSh

t1 =ω1(x)}∩{t1 < 2Tδ/2}
)
=1

The minimal cost to leave a configuration in D, i.e., the minimal |hSh. (·)| to pay in the
exponent of the probability, is 2J − λ − q corresponding to the cost of a flip to plus in a site
adjacent to the diagonal. Indeed to flip to minus a spin in the diagonal has a cost 2J + λ− q .
To flip a spin not adjacent to the diagonal has a larger cost. This implies that in a subsequent
interval of time e2β(2J−λ−q+δ) an increased configuration ω2 ∈ D is reached with ω2 = ω+

1
or ω2 = ω−

1 and Iω±
1

= k±1. Note that, by the same arguments, it follows that the state −1

is indeed metastable, i.e., it has the largest stability level in the sense of [16].
We get

lim
β→∞ PSh−1

(
{τ−1c < Tδ/2} ∩ {XSh

τ−1c
= x for some x ∈ �} ∩ {XSh

t1 = ω1(x)}

∩ {XSh
t2 = ω1(x)

+ or ω1(x)
−} ∩ {t2 < 3Tδ/2}

)
= 1.

By iterating this argument L − 2 times we get the result. ��

7.4 Proof of Theorem 4.1

This is an application of Theorem 1.1 in [4] holding for a finite planar, non degenerate and
doubly periodic weighted graph G = (V , E). Denote by E(G) the set of all even subgraphs
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 The elementary cell a for the shaken interaction on the triangular lattice and the corresponding even
subgraphs. Subgraphs a and hwind around the torus an even number of times and are, therefore, in E0 whereas
the remaining subgraphs are in E1

of G, that is, those subgraphs where the degree of each vertex is even. Further call E0(G) the
set of even subgraphs of the lattice winding an even number of times around each direction
of the torus and E1(G) = E(G) \ E0(G). Then the critical curve relating the parameters J
and q of the Hamiltonian is the solution of the equation

∑

γ∈E0(G)

∏

e∈γ

tanh Je =
∑

γ∈E1(G)

∏

e∈γ

tanh Je. (42)

The square lattice induced by the shaken dynamics on the triangular lattice, with Je = q
for the self–interaction edges and Je = J for the other edges, satisfies the hypotheses of this
theorem and can be obtained by periodically repeating the elementary cell of Figure 8.

A direct application of (42) yields the claim. ��

7.5 Proof of Theorem 6.1

Let H(σ ) be a Hamiltonian of the form given in (2) and let H(σ, τ ) be its doubling.
The invariant measure πb of the alternate dynamics Palt defined on the bipartite graph

Gb with Hamiltonian H(σ, τ ) is identified in Theorem 2.3:

πb(σ ) := 1

Z
e−βH(σ ).

At very low temperature, this measure concentrates on the set of configurations minimizing
the Hamiltonian H(σ, τ ). We have

min
σ,τ

H(σ, τ ) ≤ min
σ

H(σ, σ ) = min
σ

H(σ ) − q|V | (43)

yielding immediately claim (2).
If the equality

min
σ,τ

H(σ, τ ) = min
σ

H(σ, σ ) (44)
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holds, the parallel algorithm provided by the alternate dynamics may be used to find config-
urations minimizing H(σ ).

If the parameter q satisfies condition (31), the validity of equation (44) can be verified by
contradiction. Assume indeed that there exists a pair configuration (σ̄ , τ̄ ) such that

min
σ,τ

H(σ, τ ) = H(σ̄ , τ̄ )

and σ̄ �= τ̄ at least in a vertex x ∈ V . Under condition (31), a spin flip at vertex x leads to a
lower value for the doubling Hamiltonian, contradicting the hypothesis that the pair (σ̄ , τ̄ )

is the minimizer of H(σ, τ ). ��

8 Conclusions and Open Problems

We conclude our paper with some general comments and open problems.
With the shaken dynamics we have constructed a reversible parallel dynamics and we

control its invariant measure with arbitrary boundary conditions. The advantages of the
shaken dynamics can be summarized as follows:

• The shaken prescription can be applied to general interaction graphs. This allows to
construct parallel algorithms to tackle a large class of optimization problems.

• The shaken prescription, modifying suitably the parameters appearing in the doubled
Hamiltonian, allows to compare the spin systems defined on different geometries.

• The dynamics can be interpreted as amodel for systems inwhich some kind of interaction
alternates its direction on short timescale. See below for an example referring to the tidal
dissipation.

As noted by an anonymous referee, the shaken dynamics could be extended in order to
consider spin systems with more general summable interactions, not necessarily limited to
two or one body terms. This could have important applications in combinatorial optimization
problems such as set covering problem.

In this respect we want to outline that the regimes of parameters considered in the various
theorems of Sects. 3 and 6 are different. In this paper we considered the possible applications
of the idea of the shaken dynamics and we presented some analytical results about its appli-
cability. The regime considered in Theorem 3.2 is usually considered quite difficult, since it
involves metastable phenomena. Here the efficiency of the shaken dynamics emerges, as can
be seen, for instance, in Figs. 4 and 5. The regimes considered in Theorems 3.1 and 6.1 are on
the other side related to the choice of a large q , providing a sufficient (certainly not necessary)
condition to have a convergence between Gibbs measure and PCA invariant measure.

The construction of the shaken dynamics and, in particular, of its generalization, is not a
unique prescription. This freedom in the definition of the oriented graphdefining the dynamics
and in the choice of the parameters involved could be usefully exploited in applications to
speed up the dynamics.

As far as a full understanding of the of metastable behavior of the shaken dynamics
on the square lattice is concerned, it will be challenging to consider also different regimes
than the one considered in Theorem 3.2. To this purpose, it may be beneficial to study the
metastable behavior of the alternate dynamics on the hexagonal lattice. A preliminary step
in this direction has been done in [2].

Finally we want to outline that the presence of an alternate interaction suggests that the
shaken dynamics, with B �= ∅ and q large, could be a good model to take into account the
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effects of Earth’s tides in geodynamics and other tidal dissipative phenomena in Solar System.
We assume that the inner structure of the Earth and of the satellites of themajor planetsmay be
described in terms of constraints that can be randomly broken, with a probability depending
on the state of the nearest neighbors of each constraint. Tidal effects could give a dependence
of this breaking probability on an alternate direction, related to the tidal state and to the related
tidal currents. This geological and astronomical application will be developed in forthcoming
papers.
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