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Abstract: This review has examined two of the techniques most used by our research group for
evaluating gamete and embryo functionality in animal species, ranging from marine invertebrates
to humans. Electrophysiology has given access to fundamental information on some mechanisms
underpinning the biology of reproduction. This technique demonstrates the involvement of ion
channels in multiple physiological mechanisms, the achievement of homeostasis conditions, and
the triggering of profound metabolic modifications, often functioning as amplification signals of
cellular communication. Fluorescence spectrometry using fluorescent probes to mark specific cell
structures allows detailed information to be obtained on the functional characteristics of the cell
populations examined. The simple and rapid execution of this methodology allowed us to establish a
panel helpful in elucidating functional features in living cells in a simultaneous and multi-parameter
way in order to acquire overall drafting of gamete and embryo functionality.

Keywords: sperm functionality; oocyte physiology; embryo physiology; electrophysiology; fluorescence
spectroscopy

1. Introduction

In animals, reproductive efficiency depends on many variables affecting the individual
functions (genetics, endocrine, immunity, and pathology) and their relationship with the
environment (seasonality, thermal stress, and pollutants). In this context, the fertility of
the gametes, i.e., their ability to fertilize and produce viable progeny, plays a pivotal role
due to the ability of these cells to achieve their intended task, which is procreation. The
fertilization success with embryo development and the birth of full-term offspring represent
a reliable expression of the gamete fertility potential and the result of the numerous effects
interfering with reproductive efficiency. The fertility assessment, however, is not usually
practiced due to high costs, time consumption, and organizational difficulties and, in
humans, this option is not applicable. Therefore, it was necessary to develop independent
in vitro tests capable of estimating gametes’ fertilization and developmental competence
with good accuracy. Each of these tests analyzes a single attribute of the gametes which is
more or less related to fertility [1]. In sperm analysis, simultaneously combining multiple
function indicators in order to reduce the error in the fertility estimation has been largely
evaluated [2]. This approach increases the accuracy of the fertility potential evaluation [3];
however, an accurate fertility estimation remains a puzzle to achieve due to the possible
occurrence of unexpected variables. Nonetheless, the use of these fertility estimation tests
demonstrated very reliable for excluding rather than confirming the quality of germ cells.
In fact, if the lack of some gamete functionality requirements is incompatible with fertility,
their presence is not a guarantee of procreative success.

As for gametes, the functionality evaluation is also applicable to early embryos. To
select embryos either in vitro produced or in vivo collected, it is necessary to identify mark-
ers disclosing maximum development competence and the birth of healthy individuals.
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The fields of application of this discrimination are broad and diversified according to the
species. If, for example, for mammals, this selection could admit embryos to cryopreser-
vation techniques, for marine bioindicator organisms, the evaluation of correct embryo
development could be associated with dysfunctions following the exposure to various
environmental stressors. In most cases, the microscopic analysis of embryo morphology is
the simplest and most widely used examination because it is noninvasive, with an easy and
rapid execution. This evaluation has, however, been progressively corroborated by more
complex analyses to support the microscopic evaluation and/or to provide new indications
that cannot be evaluated by the morphology.

Oocytes and spermatozoa develop during gametogenesis that is underlined by meio-
sis, the unique process of cell division that leads to halving the number of chromosomes.
The correct gamete production, maturation, activation, and interaction contribute to the
gamete quality, which is an in vitro estimation of fertility [4,5]. In vitro tests have been
developed with the aim of evaluating single attributes of the gametes’ functionality capable
of estimating their fertility with a good degree of reliability. In spermatozoa, these tests
evaluate the motility and kinetics through computerized analysis systems [6], the number
and concentration [7,8], the viability [9], the morphological and ultrastructural character-
istics [10], the DNA fragmentation [11,12], several biochemical activities [13], as well as
the ability to interact with the female gamete (hemizona assay [14] and zona-free hamster
test [15]). In mammals, the oocyte quality depends on many variables influencing the ovary,
the follicle, the cumulus–oocyte complex, and, finally, the oocyte [16]. It is usually assessed
by using noninvasive tests, such as phase-contrast microscopy, vital dye staining (trypan
blue [17] and brilliant cresyl blue [18]), polarization light microscopy [19], as well as more
sophisticated techniques, such as the genetic analysis of the polar body [20]. For embryos,
quality evaluation is mostly based on morphological analysis [21,22], sometimes supported
by genomics, transcriptomics, proteomics, and metabolomics from embryonic biopsies [23]
or by the noninvasive profiling of the embryo culture medium secretome [24]. The develop-
ment of new assessment approaches helps to deepen the analysis of the quality of gametes
by obtaining complementary information capable, sometimes, of highlighting uncovered
aspects of gamete and embryo functionality. The study of ionic currents through the use of
electrophysiology techniques undertaken by our research group represents an alternative
approach to those conventionally used to follow the dynamics of some mechanisms related
to the physiology of gametes and embryos and identify associations with the criteria most
commonly used to evaluate their quality. Another innovative approach developed by
our research group relies on the use of fluorescent probes associated with fluorescence
spectroscopy and aimed at providing detailed information on multiple metabolic and
functional activities of cell populations, such as gametes, allowing reliable estimates of
their quality to be obtained.

2. Electrophysiology

Electrophysiological techniques are tools of paramount importance for studying the
role of ion channels in cells. Gametes are electrogenic cells due to the different distribution
of electrical charges across their plasma membranes, known as the voltage gradient, which,
in turn, generates a transmembrane resting potential (RP) [25]. In most of the cells, this
is negative, ranging from −10 mV to −100 mV, and is regulated by potassium (K+) ions.
Transient changes in ionic concentration in the cytoplasm shifts RP towards more positive
values, known as plasma membrane depolarization, whereas hyperpolarization is the
change of RP toward more negative values. Ion channels are proteins embedded in the
gametes’ lipid bilayer that, in response to different stimuli, allow the passage of ions whose
charges generate currents modifying the electrical asset of the cells. Ion channel gating
may be triggered by a change in the voltage (voltage-operated channels), a ligand (second
messenger-operated channels), or a mechanical stimulus (stretch-activated channels) [26].
The main ions modulating currents in biological processes are K+ that are more concentrated
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inside the cytoplasm, whereas those mostly present in the extracellular fluids are sodium
(Na+) and calcium (Ca2+) cations.

The patch clamp is the electrophysiological technique set up in 1976 that revolutionized
the study of biophysics of cells and tissues. The two main configurations of the patch-clamp
technique are the whole-cell and single-channel recordings (Figure 1). The first one is
normally obtained after a seal between the plasma membrane and a glass microelectrode.
A slight aspiration of the patched membrane allows clamping, recording of the RP, and
measurement of the ion fluxes from an entire cell. The single-channel configuration, instead,
without destroying the patched membrane, is able to record the ion fluxes through the
channels located in the intact patched membrane. These techniques based on the application
of gigaohm (GΩ)-seal resistance implemented studies of membrane electrophysiology,
providing precious information about cell function and ion-mediated cellular events (for
review, see [27–30]). Electrophysiological recordings applied to gametes and embryos have
allowed the currents involved in many steps of the reproductive processes to be disclosed
and measured, providing basic and fundamental pieces of information on the gametes’
functionality, fertilization, and embryo development in the studied species.
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Figure 1. Electrophysiology patch clamp and set up. On the left, a schematic diagram of two
recording methods for patch clamp. This technique requires the initial formation of a tight seal
between the plasma membrane and the blunt tip of a glass micropipette that is obtained by applying
a light suction. In this configuration, the currents flux through the channel into the pipette and can
be recorded by an electrode connected to a highly sensitive differential amplifier (single channel)
or, by applying a stronger suction, the membrane patch can be ruptured and the interior of the
pipette becomes continuous with the cytoplasm, allowing the electrical potentials and currents
from the entire cell (whole cell) to be recorded. On the right, the electrophysiology set up that
includes: (1) an antivibration air table to minimize mechanical vibrations; (2) an inverted microscope;
(3) a micromanipulator for stably positioning the micropipette; (4) a Faraday cage to block external
electrical interference; (5) an amplifier to collect and amplify the electrical signals; (6) a digitizer to
convert analogue into digital signals; (7) a computer with a proper analytical software. On the PC
screen, there is a typical fertilization current recorded in ascidian oocytes.
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2.1. Electrophysiological Techniques for Evaluating Gamete and Embryo Physiology

In the reproductive process, the involvement of different types of ion currents that
are generated by the ion fluxes through channels located on the cell plasma membranes of
either gametes or embryos in different animal species has been well demonstrated. These
ion fluxes play a pivotal role in gamete maturation, activation, and reciprocal interaction
and, subsequently, in the early stages of embryo development.

Oocyte maturation involves nuclear and cytoplasmic changes. The latter is part of a
complex process regulated by a series of sequential molecular events, which also involve
modification of the plasma membrane permeability due to the ion current activity. Although
oocyte maturation follows various patterns among species, there is a general consensus
that different ion currents play a role in the resumption of meiotic maturation. Continued
advancements in reproductive biology and electrophysiological applications have allowed,
over the last decades, the involvement of ion channel activity in all the reproductive events
to be highlighted, from gametogenesis to gamete maturation, activation, interaction, and
even in the controversial process of polyspermy prevention. In embryo development, a
critical role is played by the gap junctions that are peculiar channel proteins that connect
blastomeres with each other, allowing the transfer of specific molecular messengers aimed
at regulating the specific developmental program [25,31–34]. The main advantages and
disadvantages related to the use of electrophysiology techniques are reported in Table 1.

Table 1. Advantages and disadvantages associated with the application of the electrophysiological
technique in gametes and early embryos.

Advantages (Pros) Disadvantages (Cons)

Real-time evaluation of the channel activity
Clear and reproducible results
Objective evaluation
Low maintenance costs

High cost of the equipment
High professional skills
Difficulties in membrane cell manipulation
(fragile and sticky membranes)
Need to remove extracellular coats
Need immotile cells

2.1.1. The Spermatozoon

During gamete activation, spermatozoa respond to messages originating from a gradi-
ent of ligands released by the oocyte extracellular coat in aquatic species [35] or the female
reproductive tract in mammals. The term sperm capacitation was first suggested in the
1950s [36] and grouped all the changes that spermatozoa undergo in order to acquire the
ability to fertilize the oocyte. In particular, the sequential steps of sperm activation and
capacitation involve the induction of sperm motility, chemotaxis, first binding, acrosome
reaction, and membrane fusion [37]. In all these events, the appropriate balance and sig-
naling of intracellular ions in spermatozoa play a role of utmost importance (see [38] for
review). As in all other cells, sperm-specific ion channels determine the inner and outer
ion concentration and the permeability of the plasma membrane that result, ultimately, in
establishing the RP. In mammals, during the journey from the testis to the uterus, sper-
matozoa encounter different ion gradients, such as Na+, K+, Cl−, Ca2+, H+, and HCO3

−,
whose concentrations have been accurately measured, determining their involvement in
modulating either cell volume or RP and pH [39]. In several mammalian species, it has
been well established that, during capacitation, spermatozoa undergo hyperpolarization
caused by an increase in the net negative charges in the intracellular compartment. The
occurrence of sperm hyperpolarization has been attributed mainly to K+ outward currents
and consequent to the downstream activation of some messengers. In this line, SLO3
potassium channels are crucial to induce the acrosome reaction that relies on intracellular
Ca2+ increase [40,41]. This is only one of the many examples on the functional relationship
between different ion channel activities that support sperm activity and fertility potential.
This evidence is further corroborated by experiments in which the inhibition or dysfunction
of even only one channel type results in a reduced or impaired fertilization rate [42,43].
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Until 2006, studies on the ion current activities in spermatozoa relied on the use of pharma-
cology and voltage- and ion-sensitive fluorescent probes, such as Ca2+ and H+ indicators
that, however, gave uncertain results based on weak signals emitted [44,45]. Spermatoge-
netic cells are progenitors of spermatozoa that, thanks to their larger size, round shape, and
immobility, offer an advantage for the application of the patch-clamp technique. Assuming
that immature germ cells express the same proteins present on the mature sperm plasma
membrane, studies provided some interesting cues on sperm ion channel function in ga-
mete signaling [46]. In rat spermatogenetic cells, the presence of K+ and Ca2+ currents was
first demonstrated [47] and, subsequently, these ion currents were considered responsible
for a negative RP in rat spermatids [48].

In mouse spermatogenetic cells, pH-dependent Ca2+ and K+ currents were correlated
with the state and function of mature sperm [49]. In particular, Ca2+ influx was suggested
to be required for the onset of the acrosome reaction, whereas K+ conductance was corre-
lated to the hyperpolarization and regulation of sperm fertilization potential [50,51]. The
characterization of a novel chloride (Cl−) channel in spermatogenesis of Caenorhabditis
elegans suggested its peculiar role in spermatid differentiation and a general role of the
chloride conductance in spermatogenesis [52].

First attempts to apply direct electrophysiological recordings in sperm cells encoun-
tered serious difficulties due to the cell’s small size and volume, strong motility, and the
association between the plasma membrane and some robust intracellular structures [53].
These morphological characteristics rendered it very difficult to perform a tight seal for
a patch clamp between the recording pipette and the sperm plasma membrane [53,54].
Nonetheless, in 1987, a first indication of at least two channel fluxes was provided by
applying the patch-clamp technique in sea urchin spermatozoa heads. However, authors
reported significant experimental limitations, such as a low rate of GΩ-seal formation [55].
The patch-clamp technique applied to monolayers formed of a mixture of lipid vesicles
and isolated sperm membranes had an enormous technological impact in the electrophys-
iological studies of the sperm cells. Despite these technical difficulties, the patch-clamp
technique was applied to mouse and human spermatozoa [56,57], allowing the identifi-
cation of the sperm plasma membrane region on which a tight GΩ seal could be formed
with the patch pipette [53,56]. In this line, an accurate description of the selection of the
electrophysiological equipment and media, sperm isolation for patch-clamp experiments,
formation of the GΩ seal, the use of the whole-cell voltage clamp configuration, along with
the advantages, limitations, and the most critical steps of this technology have been pro-
vided, detailed, and discussed [45,58]. In particular, in those years, a successful application
of the whole-cell patch-clamp technique to completely matured human sperm allowed
accurate studies of ion channels modulating sperm maturation, motility, chemotaxis, and
acrosome reaction [59–63]. Moreover, by single-channel recording applied initially in sea
urchin sperm plasma membrane, and then on spermatozoa of a series of animal models,
the functional role of several types of ion channels was confirmed, including cations, such
as K+ and Ca2+, and anion (Cl−) channels [64]. Clinical evidence also supports these
indications, demonstrating that perturbation of ion channel activity due to human genetic
alterations is significantly correlated with asthenozoospermia, a pathology characterized by
reduced or absent sperm motility [65]. Along with motility, other steps involved in sperm
activation, such as chemotaxis and acrosome reaction, are underpinned by ion channel
activity. Although not all evaluated on electrophysiological recordings, the main sperm
functional ion channels in the sperm physiology have been shown to be voltage-gated
Ca2+ channels, Ca2+-activated Cl− channels, K+ voltage-gated channel, voltage-gated H+

channels, NaV1.1–1.9, SLO3/KCNU1, which are underlined by fluxes of K+, Na+, Cl−,
and Na+/H+ exchange, L- and T-type Ca2+ channels, and the members of the transient
receptor potential (TRP) channel family [46,59,66–72]. Among the channels involved in
sperm physiology and male infertility, the two most significant sperm cation channels are
Catsper and Hv1, both characterized by whole-cell patch-clamp techniques. In mouse
spermatozoa, electrophysiological characterization showed that Catsper is a sperm-specific,
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pH-sensitive Ca2+ channel located in the membrane of the flagellar piece and required for
sperm hyperactivation [46,61,73]. A recent study utilized a technical strategy by swelling
sea urchin spermatozoa and obtaining a stable cell-attached configuration. This allowed
CatSper to be characterized by using the patch-clamp technique, further highlighting its
role in motility in response to speract, a compound released from the egg jelly, known
to induce chemotaxis [74]. Located on the flagellum midpiece of the human spermato-
zoa, Hv1 is a high-conductive voltage-gated proton channel that represents the main H+

extrusion pathway controlling sperm intracellular pH. Hv1 is activated by an alkaline
environment that, by inducing intracellular alkalinization, is well recognized to promote
sperm motility [75]. It has been hypothesized that there is an interplay between Hv1 and
Catsper, since the latter is also potentiated by intracellular alkalinization [76]. The combined
action of these two channels, together with their colocalization on the principal piece of the
sperm flagellum in human spermatozoa, may be involved in increasing both intracellular
Ca2+ and pH that are required for sperm activation in the female reproductive tract [57].
Along with this two-channel coaction, in human spermatozoa, under whole-cell recording
configuration, evidence was provided of a transient inward “tail current” (ITail), whose
activity is mediated by progesterone-activated distinct channels [77]. Table 2 summarizes
the main research on the ion channels and ion currents in the male gamete at various stages
of development and maturation.

Table 2. Types and functions of ion channels/currents involved in animal and human spermatogenesis.

Animal Species Developmental Stage Channels/Currents Functions References

C. elegans Spermatids Cl− Differentiation [52]

Marine
invertebrates Spermatozoa

T-type Ca2+, Ca2+-activated
Cl− channels, K+, TRP
family

Chemotaxis, motility [46,66,72]

Mammals Several
spermatogenetic stages

Ca2+-activated Cl− channels,
K+, H+, NaV1.1–1.9, SLO3, L-
and T-type Ca2+, TRP family

Development,
maturation, chemotaxis,
motility, capacitation,
acrosome reaction

[46,59,66,67,69–72]

Rat Spermatocytes K+, Ca2+ Maturation [47,48]

Rat, human Epididymal and
ejaculated sperm K+, Ca2+, Cl−

Sperm physiology,
gamete interaction [64]

Mouse Spermatozoa SLO3 Acrosome reaction [40,41]

Spermatocytes K+, Ca2+
Maturation, acrosome
reaction, fertilization
potential

[49,50]

Spermatozoa CatSper, Hv1 Motility [74]

Human Spermatozoa K+, Cl−, Ca2+, K+, HCO3
−,

Na+

Maturation, motility,
chemotaxis, acrosome
reaction

[59–63]

Spermatozoa HV1 Motility, pH control [53]

Spermatozoa ITail “Tail current” or
membrane repolarization [77]

2.1.2. The Oocyte

Marine invertebrates were the most widely studied animal models for reproductive
biology since the second half of the last century, and the first hints of the increase in Ca2+ cur-
rent amplitude during oocyte germinal vesicle breakdown were provided in mollusks [78].
Later, the occurrence of Ca2+ flux through voltage-gated channels was confirmed in other
mollusks with different maturational patterns [79,80]. The main mechanism underlying
these events was spotted in an initial plasma membrane Ca2+ current associated with the
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RP depolarization that, in turn, was responsible for the mobilization of Ca2+ currents from
the intracellular stores [81,82].

Among marine invertebrates, ascidians play a pivotal role in electrophysiological stud-
ies due to their oocyte morphological characteristics. In particular, early studies in the 1990s
described the presence and modification of voltage-gated currents in either the ascidians’
mature oocyte or early embryos. Of interest were the first pieces of evidence of a random
distribution of Na+, Ca2+, and K+ currents along the animal/vegetal axis of the oocytes
blocked at the metaphase I stage. Consistent with this topographical distribution, subse-
quent investigations characterized two different types of voltage-dependent Ca2+ channels,
the L- and the T-type, suggesting their specific role in the regulation of cytosolic Ca2+ con-
centration [Ca2+]i during oocyte maturation and early embryo development [83–89]. Later,
the pattern and the possible functional role of ion current activity have been described in
either the immature oocyte stage in cephalopods or two different ascidian species [90,91].

Three innovative Italian studies aimed to disclose the role of ion currents in the
reproductive processes of marine animal models. In the cephalopod Octopus vulgaris, for
the first time, our team applied the whole-cell voltage clamp technique to the decorionated
oocytes in the pre- and early-vitellogenic oocytes. Interestingly, we presented evidence that
L-type Ca2+ currents together with the steady-state conductance were higher in small pre-
vitellogenic oocytes and significantly lower in the larger early vitellogenic oocytes. Since
these characteristics were more evident during the reproductive period, it was hypothesized
that ion and L-type Ca2+ currents were associated with specific gamete growth stages, the
vitellogenic cycle progression, and the reproductive cycle of the octopus females, suggesting
also a role of these currents in preparing the plasma membrane for the imminent interaction
with the spermatozoon [92].

In ascidians, we performed an accurate characterization along with the temporal and
spatial distribution of plasma membrane voltage-dependent ion currents from the immature
oocyte up to the eight-cell stage embryo in Ciona robusta (previously indicated as Ciona
intestinalis spA), proposing these currents as markers of early embryogenic processes [93].
The main maturational stages used were pre-vitellogenic oocytes, which exhibited the
highest L-type Ca2+ current activity, whereas the following vitellogenic stage showed, for
the first time, the presence of Na+ current activity that remained high during the maturation
up to the post-vitellogenic stage. At these stages, the oocyte acquires meiotic competence
and the suitability to interact with the spermatozoon [94]. More specifically, by using the
whole-cell voltage clamp technique, we also disclosed the ion currents involved in oocyte
meiotic progression and fertilization, together with the spatial distribution of ion currents
in the blastomeres at the developmental stage of eight cell (Figure 2). This stage plays a
crucial relevance, as it coincides with the segregation of the different cell types’ precursors
of future tissues into each blastomere [95]. In this study, we confirmed the role played by
voltage-dependent Ca2+ currents during oocyte maturation and, in particular, for L-type
calcium currents. A few years later, our group demonstrated, for the first time, the presence
and the functional role of T-type Ca2+ currents in the growth of immature oocytes of the
ascidian Styela plicata [96]. We classified three subtypes of immature oocytes on the basis
of their size, morphology, and accessory cells. These stages were shown to be associated
with increased activity of T-type Ca2+ currents and plasma membrane hyperpolarization.
Consistently, we observed that these currents oscillated in the early embryonic stages,
with an increasing amplitude starting from the zygote up to the eight-cell stage. The
pharmacological inhibition of T-type Ca2+ currents induced a significant reduction in the
cleavage rate and an absence of larval formation [96]. A wide literature reports that T-type
Ca2+ current activities are involved in neuron, heart cell, smooth muscle cell, and endocrine
cell regulation [97,98]; however, surprisingly, in this study, for the first time, we showed a
novel role of these channels in modulating oocyte growth, maturation, fertilization, and
embryo development in marine invertebrates.
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At fertilization, a reciprocal gamete activation occurs rescuing the metabolic quiescent
gametes and making them active cells ready to fertilize and be fertilized. Starting with the
oocyte-induced sperm activation and progressing toward the sperm-induced oocyte activa-
tion, a cascade of consecutive events occurs, often dependent on ion current activation [37].
Oocyte activation triggered by the interaction with the fertilizing spermatozoon is character-
ized by the change in electrical properties of the plasma membrane. In the echinoderms, the
first studies in the 1950s demonstrated K+ ion fluxes through the oocyte plasma membrane
that were associated with a transient change in the RP, called fertilization potential [99,100].
With the advent of the whole-cell voltage clamp technique, the fertilization potential was
recorded and characterized in echinoderm oocytes by an Italian research team, showing
that it was generated by the activation of a transient voltage-gated inward current [101,102].
In particular, an RP depolarization results from different ions flowing across the plasma
membrane. This peculiar ion current was named fertilization current (FC) and its first
electrophysiological characterization in the ascidian Ciona robusta demonstrated that the
FC originated from the gating of high conductive and nonspecific ion channels [103,104].
However, by using an upgraded patch-clamp software, our research group showed a
relevant involvement of Na+ currents in the FC, shedding light on the influence of the
FC on subsequent embryo development [93]. Following studies confirmed that FC was
responsible for the first oocyte activation events and differences in FC among species were
found. FC was recorded in sea urchins and amphibians, such as Xenopus, characterizing
the channels involved in FC as nonspecific and calcium-activated Cl− channels, respec-
tively [105,106]. The most interesting difference observed in FC between nonmammalian
and mammalian species was that, in the former, an inward FC is accompanied by an RP
depolarization, whereas, in mammals, FC is an outward current associated with an RP
hyperpolarization [107]. With the exception of rabbit oocytes [108], all mammals showed
consistent characteristics in the generation of FC. In fact, FC with similar biophysical charac-
teristics were also recorded in mice, hamsters [109], and bovines [110]. In the human oocyte
our team applied for the first time the whole-cell voltage clamp technique recording FC
as a bell-shaped outward current accompanied by a long-lasting hyperpolarization [111].



Biomolecules 2022, 12, 1685 9 of 25

Our further biophysical characterization of ion channels revealed that the human FC is
underlined by the activity of Ca2+-activated K+ channels [112].

[Ca2+]i rises have been described in cumulus–oocyte complexes (COCs) following
luteinizing hormone (LH) exposure and candidate as a signal for resumption of meiosis in
the mammalian oocyte [113–115]. However, the role of Ca2+ entry through ion channels on
the plasma membrane has been described only in a few mammalian species. In the mouse,
oocytes at different maturational stages were compared for the presence and activity of
Ca2+ ions, suggesting a selective increase in the number of Ca2+ channels during oocyte
growth which preceded nuclear maturation and were associated with the acquisition of
meiotic competence [116]. Later, in the same animal model, the presence of a functional
voltage-dependent Ca2+ channel (L-type) was described and, interestingly, a relationship
between the absence and/or defects in this channel expression and the ability of oocytes
to undergo the germinal vesicle breakdown that underpins the maturation onset was
demonstrated [117]. In mouse oocytes, a recent study aimed to investigate the distribution
pattern of different types of voltage-dependent Ca2+ channels and their involvement in
the fertilization outcome confirmed the pivotal role of Ca2+ entry during mammalian
fertilization and that this influx may be controlled through the N- or P/Q-type voltage-
dependent Ca2+ channels [118].

The occurrence of ion current activity was also investigated by our group in bovine
oocytes at different meiotic stages, demonstrating that the activity of L-type voltage-
dependent Ca2+ channels was high in the immature oocytes and decreased after the
breakdown of the nucleus. The concomitant decrease in the steady-state conductance
from the germinal vesicle to the metaphase I and a subsequent increase in the metaphase II
mature oocytes corroborated the hypothesis that the plasma membrane channels represent
a suitable mode of Ca2+ entry into bovine oocytes during meiosis [119]. Table 3 summarizes
the main research on ion channels and ion currents in the female gamete at various stages
of development and maturation.

Table 3. Types and functions of ion channels/currents involved in oogenesis and oocyte maturation
in animals and humans.

Animal Species Developmental Stage Channels/Currents Functions References

Ciona intestinalis
(now
Ciona robusta)

Metaphase I Na+, Ca2+, K+

L- and T-type Ca2+

Animal/vegetal axis
establishment Oocyte
maturation and early
embryo development

[85–91]
[90,91]

Pre-vitellogenic
vitellogenic

L-type Ca2+

Na+
Maturation
Sperm interaction [94]

Metaphase I fertilization current; Na+ Fertilization [93,103,104]

Styela plicata Germinal vescicle T-type Ca2+ Growth, maturation,
fertilization [96]

Echinoderms Mature egg K+ Fertilization [99,100]

Sea urchin Mature egg fertilization current Fertilization [101,102]
Mature egg Non specific Fertilization [105]

Octopus vulgaris Pre-vitellogenic and early
vitellogenic L-type Ca2+ Vitellogenic cycle

progression [92]

Xenopus laevis Mature egg Ca2+-activated Cl− Fertilization [106]

Rabbit Metaphase II Depolarizing Fertilization [108]

Hamster, mouse Metaphase II Hyperpolarizing Fertilization [109]
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Table 3. Cont.

Animal Species Developmental Stage Channels/Currents Functions References

Mouse Cumulus–oocyte
complexes Ca2+ Growth and meiotic

competence [113–116]

Germinal vesicle L-type Ca2+ GVBD and growth [117]
Metaphase II N- or P/Q-type Ca2+ Fertilization [118]

Bovine Metaphase II Ca2+- activated K+ Fertilization [110]
Germinal vesicle L-type Ca2+ Meiosis resumption [119]

Human Metaphase II Ca2+-activated K+ Fertilization [111,112]

2.1.3. The Embryo

Voltage-gated ion currents play a role also during embryogenesis, since, following
fertilization, ion currents are generally downregulated and redistributed on the basis
of specific developmental physiological needs [120]. This seems particularly true in a
developing embryo, since the introduction of a new plasma membrane may modulate
electrical changes exerting a profound impact on the ongoing events of growth [32,121].
First studies on this matter date back to the early 1970s, when the increase in K+ membrane
permeability was observed during embryo development in different species, and the early
cleavage divisions were associated with RP hyperpolarization [122,123].

The role of K+ conductance was analyzed in Xenopus laevis [124] and loach [125]
cleaving embryos, where a cell cycle behavior of stretch-activated K+ currents was found
and associated with membrane conductance and RP changes. In the following years,
several studies provided pieces of evidence that cell-cycle-induced channel modulation
underpins early embryogenesis [126].

In Xenopus, the kinetic of L-type Ca2+ channel subunit expression suggested its
possible regulator role of Ca2+ influx through L-type Ca2+ channels in the acquisition of
embryo neuronal induction [127–129].

Ascidians represent a good model for electrophysiological studies on embryos. A de-
tailed description of plasma membrane electrical characteristics was performed in Halocyn-
thia roretzi cleavage-arrested embryos correlating the ion current activity with the presump-
tive tissue regions [130]. In particular, Ca2+ currents were associated with the presumptive
muscle blastomeres, whereas Na+/Ca2+-dependent action potentials were recorded in ecto-
dermal cells. Interestingly, the decrease in these currents was accompanied by a gradual
increase in an anomalous K+ current throughout the embryo development. In the early
1980s, in Halocynthia roretzi, neural, epidermal, and muscular tissues were related to the
main ion current activities found in embryos from the 8- to 32-blastomere stage [131]. These
findings suggested that blastomere membrane differentiation occurs in different steps
depending on the specific tissue segregation. The evaluation of current activity pattern
from the oocyte up to the eight-cell stage in the ascidian Boltenia villosa showed a cell cycle
behavior of the ion current activity and highlighted that the Na+ current activity of the
oocyte disappeared since the first cleavage stage. In contrast, Ca2+ and K+ currents were
constantly present in blastomeres with different developmental fates, suggesting that Ca2+

and K+ channels were continuously added in new developing membranes [83].
During the further embryo development, the oscillatory pattern of the ion current

changes suggested a key role of ion channels in the differentiation of the cell types. In
fact, only muscle tissue blastomeres relied on voltage-gated Ca2+ currents, whereas, in
the remaining blastomeres, outward K+ currents were required [132]. In contrast, the Na+

currents in oocytes were redistributed soon after fertilization and progressively decreased
after the first cleavage, suggesting their specific function for fertilization and a minor role
in embryogenesis [83,84,87].

In the ascidian Ciona robusta, our group performed the characterization of each blas-
tomere plasma membrane, revealing a functional expression of Ca2+ and Na+ currents from
the 2- up to eight-cell stage. We observed an oscillatory pattern underlined by a decline in
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Ca2+ and Na+ currents from the zygote to the four-cell stage, indicating the minor role of
these currents during the first embryonic mitotic cycles. Later, a significant increase in all
the current activities was observed in all the blastomeres, except for the posterior vegetal
blastomere B4.1 (Figure 2) [93].

Our group demonstrated also in sea urchin embryos that the activity of different ion
channels correlated with developmental stages. At the two-cell embryos, a cyclical L-type
Ca2+ channel activity was revealed, demonstrating a specific ion channel expression and
polarization in different blastomeres. The whole sea urchin embryo at the 16-cell stage
includes three different size populations of blastomeres, such as macromeres, mesomeres,
and micromeres. Our electrophysiological characterization demonstrated a strong polariza-
tion of Ca2+ current activity from the animal to the vegetal pole, with a cluster at the animal
pole that gradually decreased up to disappearing in the small micromeres. However, these
exhibited a higher global conductance with respect to the macromeres and mesomeres pos-
sibly driven by K+ currents [133]. This study provided the first hint of a functional role of
Ca2+ channels in sea urchin embryo development, also supported by some morphological
embryo anomalies observed in embryos grown in a reduced Ca2+ concentration [134].

Moreover, in mammals, a functional role of ion currents was demonstrated. In the
1980s, in mouse embryos, a biophysical characterization of the embryo plasma membrane
showed the presence of inward Ca2+ currents progressively decreasing through early
development, with the whole disappearance at the eight-cell stage. In hamsters, instead,
an abrupt increase in the outward current occurred after the two-cell stage, showing an
inverse correlation with the Ca2+ current pattern [135]. These data argued for a potential
role of either Ca2+ or K+ currents during membrane differentiation in mammalian embryos.

More recent studies revealed that anion channels, such as Cl− channels, also play
a role in early preimplantation embryos. A change in the expression of Cl− channels in
preimplantation mouse embryos has been demonstrated. In particular, during in vitro
embryo culture, Cl− channels modulate the uptake of amino acids [136], whereas a swelling-
activated anion current correlated with cell-cycle stage [137]. By using the whole-cell
voltage clamp technique, the presence of a 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid
(DIDS)-sensitive, outwardly rectifying Cl− current throughout the embryo development
process was characterized, with a large conductance from the zygote up to blastocyst stages.
Following blastocyst expansion, a further DIDS-insensitive Cl− current was detected in
cells belonging to the trophoblast lineage [138].

Gap junctions (GJ) are transmembrane ion channels that, during embryonic develop-
ment, establish the inter-blastomere coupling and communication by diffusing ions and
small metabolites [139,140]. GJ play a fundamental role in embryo development, such as
compaction [141], cavitation [142], and embryo viability [143]. Some studies support the
functional role of GJ in preimplantation development (see [144] for review); in fact, GJ
are active in the early mouse embryo [145] and their perturbation at the 8–16-cell stage
induces further morula decompaction and, in turn, causes developmental defects [146,147].
Electrophysiological techniques have been successfully applied in the study of GJ function
during embryo development by showing the electrical communication in terms of electric
charge exchange. In the ascidian Ciona robusta, our group demonstrated the electrical
coupling between blastomeres through GJ in the two-cell embryo, together with a func-
tional maternal expression at the zygote stage [86,148]. Similarly, in the sea urchin at the
16-cell stage, we discovered a functional GJ cluster localized at the vegetal pole exactly
in the opposite side with respect to the L-type Ca2+ channels cluster [149]. Moreover, we
showed that regionalization of GJ between macromeres and micromeres correlates with
the inductive process between these blastomeres and their descendants. In support of the
functional role of the electrical communication between blastomeres, it was shown that the
inhibition of the GJ communication was associated with a delay in successive gastrulation
and defects in archenteron formation [150]. Electrical coupling between blastomeres was
also found by our group in mammals. In both in-vivo- and in-vitro-produced bovine
embryos, a progressive decrease in GJ permeability was recorded during the early embryo
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developmental stages, together with a significant difference between these differently pro-
duced embryos. Hence, a delay and reduction in the blastomere communication occurrence
discriminated the embryo quality between in vitro and in vivo embryos [151], supporting
the hypothesis of a pivotal role for GJ in modulating normal embryonic development. The
occurrence of GJ permeability during embryonic development appears to be stage- and
species-dependent. In fact, in mice, both electrical and dye coupling are established at the
eight-cell stage and are correlated with the compaction [152]. In contrast, in the human
embryo, in a pioneering study, our group demonstrated that GJ coupling appears only at
the blastocyst stage, possibly due to a specific requirement of blastomere communication at
the crucial time of tissue polarization [153].

However, blastomere communication may also transduce specific signals. In partic-
ular, we found the occurrence of membrane serotonin receptors in the inter-blastomere
contact area in the early sea urchin embryo during the cleavage division by applying
a whole-cell voltage clamp. These results argued for the role of ion channel activity in
the regulation of the cleavage events and a possible involvement in regulating embryo
development [154,155]. Table 4 summarizes the main research on ion channels and ion
currents in the early embryos at various stages of development.

Table 4. Types and functions of ion channels/currents involved in early embryo development in
animals and humans.

Animal Species Developmental Stage Channels/Currents Functions References

Ciona intestinalis
(now 2-cell and zygote Gap junction activity and

expression Developmental competence [86,148]

Ciona robusta) 2- up to 8-cell Ca2+ and Na+ oscillatory
pattern

Blastomere development [93]

Boltenia villosa 8-cell
Post- gastrulation

Ca2+, K+, Na+

voltage-dependent Ca2+
Membrane development
Muscle-tissue development

[83,84,87]
[132]

Halocynthia roretzi Cleavage-arrested embryos Ca2+ Na+/Ca2+-dependent
action potentials

Specific tissue segregation [130]

8- up to 32-cell Unspecific Neural, epidermal, and
muscular tissue segregation [131]

Starfish Germinal vesicle K+ Membrane
hyperpolarization [122]

Sea urchin 2-cell
Early embryo

L-type Ca2+

L-type Ca2+
Cell-cycle-related
Development

[133]
[134]

16-cell Gap junctions Gastrulation and archenteron
formation [150]

Cleavage Unspecific Development regulation [154,155]

Xenopus laevis,
loach Cleaving embryos stretch-activated K+ Cell-cycle-induced channel

modulation [124,125]

Xenopus laevis Mature eggs L-type Ca2+ Neural induction [127–129]

Mouse, hamster 2- up to 8-cell Ca2+, K+ Membrane differentiation [135]

Mouse Preimplantation embryos Cl− Amino acids uptake
Cell cycle [136,137]

Zygote to blastocyst DIDS-insensitive Cl− Blastocyst expansion,
trophoblast lineage [138]

Early embryo Gap junctions Embryo compaction [145–147]

Bovine In vivo and in vitro
embryos Gap junctions Embryo quality modulation [151]

Human Blastocyst Gap junctions Tissue polarization [153]
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3. Fluorescent Probes for Evaluating Cell Activities

Some features of cell functionality have been brilliantly analyzed by using fluorescent
probes. These substances have the ability to establish bonds on the basis of chemical affinity
with cellular structures, highlighting them and allowing their exclusive reading with the
aid of detectors, such as fluorescence microscope, spectrofluorometer, or flow cytometer.
For the evaluation of cellular structures and components for which it is not possible to
exploit a particular chemical affinity, these probes have been linked to antibodies allowing
a specific molecular identification; this technique is called immunofluorescence.

The investigation with a fluorescent microscope is an accurate method, especially if
conducted with an advanced system, such as the confocal laser microscope, and constitutes
an essential reference for this type of analysis, since it allows the cellular location of the
fluorescent probe to be verified and monitoring of any displacement areas of the analyzed
target. It is based on acquiring micrographs of the sample and quantifying the number of
the cells marked or not by the fluorescent probe. The obtainable result is, therefore, the
relative percentage of fluorescent cells on the total number of cells examined [156]. Using
an additional image analysis, it is also possible to obtain the fluorescence intensity of the
cells examined. However, this technique is time-consuming, predominantly qualitative
rather than quantitative, and it is generally based on a small number of cells.

Flow cytometry is undoubtedly a powerful and sophisticated method for rapidly
analyzing large numbers of cells individually using light-scattering, fluorescence, and ab-
sorbance measurements [157]. Many cellular parameters can be determined, highlighting
their distribution within the cell population. Cell characteristics, such as size, membrane
potential, lipoperoxidation (LPO), intracellular pH (pHi), and cell content of DNA, protein,
receptors, and [Ca2+]i, can be accurately evaluated [157,158]. This method is based on
the passage of labeled cells through a laminar flow, passing one by one through a cell
where they are illuminated by one or more lasers, the interrogation points. The scattered or
emitted light is filtered by mirrors and filters, reaching several photo-detectors, where the
signals are amplified. Finally, the information is digitalized and reported in fluorescent in-
tensity units. Using a computer-assisted discrimination of labeled cells, the flow cytometer
provides either the emission histogram for each single cell or the number of fluorescent
cells. However, this analysis requires very expensive equipment, high professional ability,
and perfectly dissociated cells [159].

Fluorescence spectrometry represents a reliable compromise to the above techniques
because it is easy to use and capable of providing solid and repeatable results on multi-
ple functional characteristics of the cells by using specific fluorochromes [160,161]. This
method measures the total fluorescence intensity of a sample and is mostly used for free
and unbound dyes in solution. Its use is much more limited on labeled suspended or
adherent cells, for which it is commonly used as a derived application of the spectrofluo-
rometer, such as the 96-well plate reader. This method does not permit a discrimination
between individual cells; rather, it allows an average measurement of the fluorescence
intensity representative of a cell population [162]. Weaknesses of this methodology may
be attributable to the difficulty of excluding possible contaminants in the sample, such as
cell debris and other components providing nonspecific fluorescence, as well as aggregates
and cellular matrices potentially capable of retaining the fluorochrome and, nonspecifically,
magnifying the fluorescence intensity of the sample [9,163]. This source of errors can be
partially solved by combining, in the preliminary phase, this analysis with microscopic
examinations of the fluorescent target and adopting appropriate positive controls.

Liquid tissues, such as blood and semen, represent excellent models for the application
of all three techniques because they are based on dissociated cells. Comparisons between
these techniques were carried out for the evaluation of several parameters of cellular func-
tionality. For example, the extent of sperm DNA fragmentation analyzed by TUNEL test
was evaluated by either fluorescence microscopy or flow cytometry [164], and a high corre-
lation was found between these two methods (r = 0.720, p < 0.001). However, the percentage
of TUNEL-positive spermatozoa assessed by flow cytometry was 2.6 times higher than that
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detected in optical microscopy. Comparing the mitochondrial membrane potential (MMP)
of BSC-40 and HeLa G cells, either under suspension or attached status, with flow cytome-
try and fluorescence microplate reader (spectrofluorometry), respectively, Kalbacova and
colleagues [162] showed a lower sensitivity in the latter method. Conversely, evaluating
the [Ca2+]i of indo-1-loaded A172 human glioblastoma cells stimulated by platelet-derived
growth factor (PDGF), Szollosi and colleagues [165] did not find a difference in sensitivity
between flow cytometry and spectrofluorometer detection. Moreover, comparing fluores-
cence microscopy, flow cytometry, and spectrofluorometry to quantify gene electro-transfer
in suspensions of CHO and B16 cells, Marjanovic and colleagues [166] demonstrated that
(i) the three techniques are highly correlated, (ii) flow cytometry measures higher values of
transfection percentage compared to microscopy, and (iii) spectrofluorometry can be used
as a simple and consistent method to determine gene electro-transfer efficiency on cells in a
suspension. In Table 5, there is a comparison of the main advantages and disadvantages
associated with the use of these three techniques based on the properties of fluorescent
reports for sperm quality assessment.

Table 5. Advantages and disadvantages in the use of fluorescence microscopy, flow cytometry, and
fluorescence spectrometry techniques for the evaluation of sperm functional parameters.

Advantages (Pros) Disadvantages (Cons)

Fluorescence
microscopy

Low cost of the equipment
Localization of the dye
Visual quality check
Morphological info
High accuracy for qualitative assessments
Multiple ways of discriminating mixed
cell populations

Time consuming
Small reference cell sample
Subjective analysis (operator effect)
High professional skills
Moderate accuracy for quantitative assessments

Flow cytometry or
fluorescence-activated cell
sorting (FACS)

Rapid assessment of large cell populations
High accuracy
Objective analysis
Sorting cell populations
Excluding unclear signals
Multiple ways of discriminating mixed
cell populations

High cost of the equipment
Long test times
Needs visual quality check first *
Less morphological info *
High professional skills

Fluorescence
spectrometry

Low cost of the equipment
Short test times
Rapid assessment of large cell populations
Objective analysis
Moderate professional skills

Needs visual quality check first
Less morphological info
Difficulty to exclude unclear signals (cell debris,
dye aggregates)
Applicable on single or
fluorescence-discriminable cell populations

* These disadvantages have now been solved with image flow cytometry and its upgrades, as virtual-freezing
fluorescence imaging flow cytometry [167].

3.1. Our Experience on Fluorescence Spectroscopy to Evaluate Gamete Functionality

Chemical, physical, and biological stresses can significantly influence the gamete
quality [5]. Gamete exposure to stressful conditions can occur in the outside environment, as
in aquatic organisms at spawning, or in mammals when subjected to gamete manipulations,
as well as inside the body, with direct effects on gametogenesis. The studies conducted by
our research team in this area covered both conditions, evaluating the effect of different
stresses through multiparametric tests carried out with the prevalent use of fluorescent
probes read with a spectrofluorometer.

Heat stress (HS) is a condition normally occurring in animals associated with a signifi-
cant lowering of reproductive efficiency during the summer [168] and which has, unfortu-
nately, become an emerging threat due to global warming. The effects of HS were evaluated
on sperm quality in Mytilus galloprovincialis [160]. Rearing sexually mature mussels within
tanks at either 28 ◦C (HS group) or 14 ◦C (control group) for one month, we found in the
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spermatozoa of the former group: (i) a significant reduction in concentration; (ii) a biphasic
pattern of motility and MMP that first increased, and then collapsed; (iii) a rapid increase
in LPO up to the third week of HS; (iv) after the third week of HS, an increase in DNA
fragmentation that was assessed by terminal deoxynucleotidyl transferase (TdT)-mediated
dUTP nick end labeling (TUNEL) assay; and (v) a decrease in the [Ca2+]i. Ultrastructural
evaluations of the spermatozoa at the transmission and scanning electron microscopy (TEM
and SEM) revealed atypical morphology (i.e., sperm with a globular head, asymmetrical
tail, and acrosome loss) associated with the HS exposure. MMP, LPO, DNA fragmentation,
and [Ca2+]i were evaluated by using florescent probes read with a spectrofluorometer.

By using a similar methodology, we evaluated the effects on the ascidian Ciona ro-
busta sperm quality of an emergent marine contaminant, such as nickel nanoparticles (Ni
NPs) [161]. Before Ni NPs exposure, spermatozoa were loaded with different florescent
probes in order to evaluate various sperm quality parameters. After 2 h of Ni NPs exposure,
LPO, MMP, pHi, and DNA fragmentation were assessed by spectrofluorometric analysis.
Moreover, aliquots of sperm suspension exposed to the same concentrations of Ni NPs
were used to assess fertilizing capability and ultrastructural characteristics by TEM and
SEM. Ni NPs generate oxidative stress in a dose-dependent pattern that, in turn, induced
LPO and DNA fragmentation, and altered MMP and sperm morphology. Furthermore, the
sperm fertilizing ability progressively decreased, whereas the incidence of anomalies in the
offspring progressively increased, together with the exposure concentration of Ni NPs.

Copper oxide nanoparticles (CuO NPs) are further emerging contaminants with
increasing use in industrial applications and, consequently, increasing concentration in the
seawater. They could become a serious threat for reproduction and, therefore, the survival
of marine animals. To evaluate the effects of this compound, sea urchin spermatozoa
were exposed to increasing concentrations of CuO NPs. [169]. A panel of sperm function
analyses detected by fluorescent probes and read with a spectrofluorometer has been
applied together with morphological assessment by SEM. Results showed that CuO NPs
exposure decreased sperm viability, impaired mitochondrial activity, and increased the
production of ROS, LPO, DNA damage, and morphological alterations. By verifying that
the effects associated with CuO NPs were avoided following the use of antioxidants, we
hypothesized that oxidative stress is the main driver of CuO NP spermiotoxic effects.

Another physical stress directly associated with global climate change and, more
precisely, with the increase in carbon dioxide (CO2) levels in our atmosphere is ocean
acidification. Experiments were carried out to evaluate short-term (7-d) effects deriving
from the direct exposure of sexually mature individuals of the ascidian Ciona robusta to
seawater pH conditions simulating the ocean conditions predicted for the end of this
century (pH = 7.80 vs. pH = 8.20 in controls), either in in situ transplant experiments
at a naturally acidified volcanic vent area or in microcosm experiments [170]. Sperm
parameters, such as motility, viability, MMP, LPO, intracellular and extracellular pH,
intracellular levels of hydrogen peroxides and superoxide anions, as indicators of reactive
oxygen species (ROS), as well as fertilization capability and morphological characteristics
at SEM, were daily evaluated. In the first days of exposure to acidified conditions, sperm
motility, morphology, and physiology were significantly altered. However, in the next
days, there was a rapid recovery of physiological conditions, suggesting a resilience ability
of ascidian spermatozoa in response to ocean acidification. A similar study was carried
out in Mytilus galloprovincialis either in in situ transplant or microcosm experiments on
a parental longer (21-d) exposure to low pH conditions [171]. Under field conditions,
the low pH exposure was associated with an increase in total sperm motility and MMP
on days 7 and 14, whereas, in microcosm, an increase in total motility was only found
on day 14. Sperm morphology and intracellular pH were affected in both experimental
approaches; however, oxidative stress was detected only in spermatozoa collected from
mussels under field conditions, suggesting that multi-stress conditions may have occurred
under field conditions. Altogether, these results seem to exclude the involvement of
oxidative stress in ocean-acidification-related mechanisms acting on marine organisms’
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reproductive failures. This topic was further deepened by direct in vitro exposure of mussel
and ascidian spermatozoa to low pH conditions [172]. The pH lowering as a possible source
of stress is a concrete threat, since, in free-spawning marine invertebrates, fertilization is
highly sensitive to changes in seawater quality and chemistry [173]. Analyzing several
endpoints of sperm functionality, such as motility, vitality, MMP, oxidative state, and pHi,
we found that, following sperm in vitro exposure to acidified seawater, the percentage of
motile spermatozoa, mitochondrial activity, and pHi decreased in comparison to control,
whereas vitality and oxidative state were unaffected by the low external pH in both the
species. The lack of sperm activation naturally occurring at spawning by the alkaline pH of
seawater would be at the basis of the lowering of sperm motility; this occurrence is strongly
associated with a lowering of fertility leading to relevant implications for the fitness and
the survival of marine invertebrates.

Other possible sources of stress affecting the gamete quality are related to microma-
nipulation and in vitro culture techniques. On this line, we analyzed bioenergetics, kinetics,
and oxidative status in the semen of donkey stallions, which was collected, diluted with
different extenders at different sperm concentrations, and stored at +4 ◦C [174]. The storage
produced a progressive decline in sperm kinetics and MMP, whereas parameters related to
oxidative status either increased (LPO and nitroblue tetrazolium (NBT) assay) or decreased
as the antioxidant activity evaluated by anti-LPO. The anti-LPO potential was assessed
by incubating C11 BODIPY581/591-loaded sperm with a mild oxidant stimulus; this index
showed the highest correlations with sperm motility and kinetics. Extenders and sperm
concentration proved to be differently effective in preserving sperm kinetics, MMP, and
oxidative status. The storing-dependent sperm quality decrease has also been studied in
cattle, in which frozen/thawed sperm was incubated with substances capable of stimu-
lating sperm metabolic activity and analyzed in relation to bioenergetics, kinetics, and
oxidative status [175]. Comparing several compounds, such as myo-inositol, pentoxifylline,
penicillamine + hypotaurine + epinephrine mixture (PHE), caffeine, and coenzyme Q10
+ zinc + D-aspartate mixture (CZA), we found that, on the first hour of incubation, CZA
treatment produced the best performance in total and progressive sperm motility, as well
as in sperm kinematic parameters. MMP showed the highest values after treatment with
pentoxifylline and PHE. LPO and [Ca2+]i were significantly affected by the incubation
time rather than the treatments, whereas pHi varied significantly in relation to either the
incubation time or treatments. Significant correlations were found between sperm kinetic
and metabolic parameters.

Focusing on the high sperm sensitivity to oxidative stress and on the necessary avail-
ability of cysteines for the synthesis of the main ROS scavengers present in the genital
tract, such as hypotaurine and glutathione, we have undertaken a study on the role of the
1-carbon cycle (1-CC) on sperm quality [176]. Human, bovine, and ascidian spermatozoa
were incubated with a mixture of compounds supporting the 1-CC (TRT) and compared to
the effects induced solely by N-acetyl-cysteine (NAC). After 90 and 180 min of incubation,
the MMP in TRT and NAC groups was significantly higher than in control. However,
ROS production differed between species and, only in mammalian sperm, both the 1-
CC supporting mixture and NAC improved sperm kinetics, MMP, and ROS production.
Conversely, in ascidian sperm, the treatment supporting I-CC failed its scope.

The use of fluorescent dyes read with a spectrofluorometer was also applied to assess
the quality of female gametes. In mammals, however, unlike spermatozoa, the quantity of
oocytes available for such examinations is extremely limited. An indirect evaluation study
was, therefore, undertaken through the analysis of granulosa cells [177]. Mitochondrial
activity, evaluated by steroidogenic acute regulatory (StAR) protein expression and MMP,
has been assessed in bovine granulosa cells (GCs) and related to follicle growth and atresia.
Atresia was estimated by morphological examination of follicle walls and cumulus–oocyte
complexes [178] and assessed by TUNEL assay. StAR protein expression was assessed
using both immunofluorescence (IF) and Western blot (WB) analyses. GCs collected from
small nonatretic follicles showed a higher MMP and WB-based StAR protein expression
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than small atretic follicles. For IF analysis, StAR protein expression in large atretic follicles
was higher than that in large nonatretic follicles. These results suggest a role played by
mitochondria in GC steroidogenic activity, which declines in healthy follicles along with
their growth. In large follicles, steroidogenic activity increases with atresia.

All the research mentioned above has progressively confirmed the effectiveness of the
techniques based on the use of fluorescent probes read with a spectrofluorometer as an
excellent diagnostic investigation tool to provide information on the function of the gametes
under real-time and vital conditions. Some of these techniques were simultaneously tested
in the gametes of several animal species, comparing their versatility. For example, the
gamete viability test based on the dual DNA fluorescent dyes, i.e., SYBR-14 staining live
and propidium iodide staining degenerated/dead spermatozoa, was used to evaluate the
sperm viability in three marine invertebrates: the ascidian Ciona intestinalis, the sea urchin
Paracentrotus lividus, and the mollusk Mytilus galloprovincialis [179]. This method proved
effective in all three animal species and was proposed as a simple, accurate, rapid, sensitive,
and cost-effective method for screening marine pollutants for spermiotoxicity.

3.2. The Reliability of the Fluorescence Spectroscopy Techniques

The above studies allowed a panel test to be set up capable of evaluating different
characteristics of sperm function. Some of these evaluations, such as those associated with
mitochondrial activity or the oxidative state, have been related to each other to derive
possible associations [180]. However, even when some parameters are highly correlated
with each other and their simultaneous use could be questioned for an obvious analytical
repetition, they may provide useful information on the dynamics of a given stressful event.
For example, LPO could be considered an obvious effect of an increase in ROS production
and is usually highly correlated with the ROS content in the cells examined [180]. However,
it should be considered that LPO occurs more slowly than sudden increases in ROS;
moreover, it could be generated by extracellular stimuli and/or due to the reduction in
antioxidant substances or scavengers.

To verify the effectiveness of these methods for the evaluation of the functional cell
characteristics, before being used for analytical purposes and read with a spectrofluo-
rometer, each dye was incubated with the cell target and analyzed with confocal laser
microscopy, to confirm the specific intracellular localization of the probe (Figure 3). In
the case of spermatozoa, a highly diluted paraformaldehyde solution was used to induce
a reversible sperm immobilization while maintaining vitality [181] and, thus, allowing
effective traceability of the fluorescent probe and acquiring images.

Finally, each test was supported by the use of positive controls aimed at increasing
or reducing the functionality of the dye target with the detection of the variation in fluo-
rescence intensity. For this purpose, the analysis aimed at evaluating the MMP, based on
JC-1 dye, used the carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a protonophore
that, uncoupling the oxidative phosphorylation in mitochondria, causes a decrease in
MMP, shifting down the second fluorescent emission peak at ~595 nm [160]. For LPO
detection based on the C11-BODIPY581/591 lipophilic fluorophore, the samples used as
positive controls are incubated with FeSO4 and ascorbic acid [182]; this treatment causes an
increase in the first fluorescent emission peak at ~520 nm and a decrease in the second fluo-
rescent emission peak at ~590 nm [160]. For ROS detection, positive controls are obtained
by incubating cell samples with either oxygen peroxide or pyrogallol/menadione when
2′,7-dichlorodihydrofluorescein diacetate (H2DCF-DA) or dihydroethidium (DHE) dyes are
used [176,180]; with both treatments, the fluorescent emission peak at ~530 and ~600 nm,
respectively, largely increased. For [Ca2+]i evaluated by Fluo-4 AM dye, a very rapid incu-
bation with a Ca2+ ionophore, such as A23187, represents an efficient positive control [160].
For DNA fragmentation, as recommended by TUNEL kit manufacturer, positive-control
samples are treated with DNase I [160]. For cell viability based on SYBR-14-PI assay, posi-
tive controls have been prepared in various ways; however, particularly suitable for marine
invertebrate sperm is heating the sample to 50 ◦C for 15 min before using the dyes [179].
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The pHi evaluation is carried out using BCECF-AM fluorescence probe and based on the
intensity of the fluorescence emission at 530 nm induced by excitation with two different
wavelengths (440 and 490 nm). The transformation of the fluorescence intensity value
into the pH value is obtained thanks to a calibration line. This derives from the exposure
of cellular samples in a culture medium without buffer and in the presence of nigericin,
which annuls the ability of the cells to regulate their intracellular pH, making it equal to
the external one. By setting the sample solutions at different pH values and evaluating
the fluorescence intensity of these cells, a straight line is obtained by whose equation the
transformation of the data is obtained. The effectiveness of this method is confirmed by a
high correlation coefficient of the calibration line [160].
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Figure 3. Schematic representation of the fluorescence spectra and photomicrographs of spermatozoa
of different species stained with different fluorescent probes, evaluated by confocal laser microscopy
and assessed by fluorescence spectrometry. DNA fragmentation was assessed in mussel sperm
by using TUNEL assay and DAPI and comparing the two fluorescent emission peaks; positive
controls were obtained by treating sperm with DNAse I. Mitochondrial membrane potential (MMP)
was assessed in donkey sperm by JC-1 staining and comparing the two fluorescent emission peaks
(FoB/FoB); positive control was obtained by incubating sperm with CCCP. Lipoperoxidation (LPO)
was assessed in donkey sperm by C11-BODIPY581/591 staining and comparing the two fluorescent
emission peaks ((F0A/(FoA + FoB)) × 100); positive control was obtained by incubating sperm
with FeSO4 and vitamin C. Reactive oxygen species (ROS) were assessed in bovine sperm by either
H2DCF-DA or DHE for evaluating the hydrogen peroxide or superoxide ion content, respectively;
positive control samples were obtained by treating sperm with hydrogen peroxide and pyrogallol,
respectively. Intracellular calcium content [Ca2+]i was assessed in bovine sperm by Fluo-4 AM
staining; positive controls were obtained by treating sperm with the calcium ionophore, A23178.
Viability in sea urchin sperm was assessed by SYBR-14/PI staining; positive controls were obtaining
by treating sperm with heat. Intracellular pH was assessed in bovine sperm by using BCECF-AM; a
high correlation coefficient (R2) of the three measurements used to obtain the calibration line ensures
the reliability of the method. Fo indicates the emission peak of the fluorescence intensity.
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4. Conclusions

In this review, two techniques widely used by our research group to evaluate the
characteristics of the biology and functionality of gametes and embryos, ranging from
marine invertebrates to humans, were evaluated in detail. Electrophysiology techniques
undoubtedly represent sophisticated methods, difficult to apply in the diagnostic routine
but capable of uncovering fine dynamics of the mechanisms of gamete maturation, fertil-
ization, and embryonic development. The fluorescence spectrometry techniques, on the
other hand, have been conceived as simple and fast techniques that are, therefore, easy
to apply and able to provide multiple details on the functioning and quality of the cells
examined. We believe that, through the development of studies based on the application
of these methods, important information has been, and we hope will be, revealed on the
mechanisms of gamete function and embryo development.
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