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Abstract: Economic growth has significantly boomed carbon emissions in the global economy.
However, there is an ongoing debate about the economic growth–carbon emission nexus for various
economies in the literature. This paper investigates the short/long-term causal information flow
between fossil-fuel-related carbon dioxide emissions (CO2) and economic growth (GDP) in the US
economy spanning from 1800 to 2014. Using wavelet-based-nonparametric Granger causality analysis,
the empirical results indicate that (i) the long-run causal information flow running from GDP to
CO2 is positive, strong, uninterrupted and concentrated since the 1990s; (ii) the reverse causality is
positive but interrupted, short-term and intensifying during the early 1990s. Due to strong and very
long-term unidirectional causality findings, economic growth leads to environmental deterioration.
Hence, for policymakers, environment-based growth policies and structural reforms can foreshadow
energy-efficient policies by limiting carbon emissions. Hence, sustainable economic growth policies
are expected to decelerate environmental problems and promote environmental sustainability. The
findings can be attractive for other booming economies.

Keywords: CO2 emissions; economic growth; continuous wavelet transform; causality

1. Introduction

Globally, environmental deterioration has reached high levels and raised great con-
cerns about global warming over the past few decades. Fossil-fuel-related carbon dioxide
emissions (CO2) are higher than at any time in history and still the largest source of an-
thropogenic greenhouse gas (GHG) emissions. Global fossil CO2 emissions reached 37.9
gigatonnes of CO2 (Gt CO2) in 2018, following an upward trend since the first Industrial
Revolution. The United States, on the other hand, has always been one of the top emitters
that contributed the most to this increase. It experienced a continuous emissions growth
since the end of the 19th century mainly through increases in population and industrializa-
tion. According to the US Environmental Protection Agency report, the largest source of
US emissions is still burning fossil fuels for energy-related activities, and fossil-fuel-related
CO2 emissions accounted for 75.4 percent of total GHG emissions in 2018 [1] (EPA, 2020).
Although its emissions from fossil fuels decreased approximately 12.3 percent since the
peak at 5.7 Gt CO2 in 2005, it is still the second-largest emitter after China, with an emission
level of 5.0 Gt CO2 in 2018. Over the last few decades, there has been growing literature
on the relationship between economic growth and worsening environmental conditions.
Many studies in the literature fail to establish a consensus on the existence of causality and
its direction. Hence, the main objective of this paper is to examine the existence of a possi-
ble dynamic causal information flow patterns between fossil-fuel-related carbon dioxide
emissions (CO2) and economic growth (GDP) for the United States over the period 1800 to
2014 and produce new evidence on the very long-term growth-environment literature.
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The Granger causality test is widely used to investigate economic growth–carbon
emission nexus in the literature. With respect to the causality test, however, the conventional
Granger causality test does not incorporate both time dependent causality changes and
multiple time horizons at the same time. Hence, the main purpose of this paper is to apply
nonparametric continuous wavelet Granger causality (CWTC, hereafter) test, developed
by [2], to revisit the causal relationship between economic growth and carbon emission.
There are two major advantages of the nonparametric CWTC test. First, continuous wavelet
analysis provides time and frequency representation of the data, thus allowing for more
information about the evolution of data. Therefore, the novel nonparametric CWTC test, an
extension of the Granger causality test based on wavelet analysis, can easily deal with the
issue of multiple time scales. Second, the nonparametric CWTC test is exempt from explicit
autoregressive modeling that imposes difficulties on data parameterization, meaning that it
is free from both model misspecification and distribution assumption under the modeling
procedure.

Some advanced causality tests have actually been established over the first decade of the
new millennium. Ref. [3] proposes a graphical approach test based on the spectral density
matrix in the frequency domain, but restricts his research to the case of a weakly stationary
process. Ref. [4] introduce a nonparametric causality test assuming that the time series is
strictly stationary, which is not a realistic assumption. Moreover, this test relies on the residuals
obtained from the vector autoregressive (VAR) model, which may not reflect the true dynamics
of the data and suffers a misspecification of the bivariate model. In the newly expanding
literature attempting to combine wavelet analysis and Granger causality, wavelet analysis
is used as a part of causality analysis, especially as a preliminary step for decomposing the
data before using the traditional causality test (e.g., [5–7]). Additionally, the concepts of
coherence and phase difference have been employed to analyze the lead-lag relationship in
the literature recently ([8–12]). Coherence can be defined as the counterpart of the coefficient
of determination in the frequency dimension. Hence, correlation and coherence are slightly
different in spectral analysis. Coherence measures the strength—not direction—of the co-
movement tendency in the frequency domain. Ref. [13] address the resemblance between
wavelet coherence and correlation coefficient since coherence can be assumed as a localized
correlation coefficient in time–frequency space (For a detailed explanation of coherence and
correlation, please refer to [2,14–17]. The correlation coefficient proposed by [15] and the
CWTC test of [2] provide information on both the direction and strength of the correlation
and causality patterns.

The CWTC test is superior to these kinds of methods in terms of being fully non-
parametric and easy to interpret through providing direct positive/negative causality
estimation output unlike other phase difference measures. Hence, CWTC is more effi-
cient method to provide a three-dimensional causality map containing time-scale–strength
evolution or causal information flow directly. In addition, refs. [2,18–20] prove that the
nonparametric continuous wavelet Granger causality testing approach can represent the
true time frequency pattern of a series and correctly cover the true network interaction
pattern, implying that this test is suitable for time series analysis and revealing information
flow among a series.

This paper contributes to the related literature in a two-fold manner: (i) To the authors’
best knowledge, this paper is the first in the literature to empirically apply the CWTC test
to analyze the causality relationship between CO2 emissions and US GDP growth for such a
long period. This paper comprehensively investigates the causal information flow between
US economic growth and carbon emission in detail. This paper shows new evidence that
causal information flow may change depending on both the time scales and time. (ii) The
paper examines the economic growth–carbon emission nexus for two-century-long data to
provide new insights about the evolution of the nexus. Hence, this paper provides new
knowledge on this two-century-long time and scale-based evolution of the information
flow between economic growth and carbon dioxide emissions in US. Specifically, this
paper presents two main conclusions. First, there may not be just one dichotomous answer
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about the Granger causality test for the economic growth–carbon emission nexus in a time
domain, as data exhibit different causal information flows for different time scales and
have complex and detailed causal information flow patterns that the traditional Granger
causality test, which provides dichotomous results, cannot fully explain in detail. Second,
there may not be only one theory explaining the economic growth–carbon relationship
nexus for all scales, but rather each theory may be valid for a specific time scale.

The studies in the related literature mainly employ conventional time series and
panel data methodologies to test a possible causality connection between environmental
deterioration and economic growth. These methodologies can investigate the relationship
in terms of time or cross-sectional dimensions of the related variables, but cannot capture the
relationship patterns in their frequency dimension. Hence, this study considers both time
and frequency dimensional features of variables through wavelet-based causality testing
methodology. This methodology is useful for analyzing causal relationships evolving
with time at different frequencies. It is an efficient tool for investigating how the different
periodic patterns of the data components evolve over time. One of the advantages of
frequency representation is that one can decompose the causal connections based on
periodic dynamics and isolate the long-term (low frequency) causal patterns from the short-
term (high frequency) causal patterns and see whether the short- or long-term causalities
change over time.

Our analysis provides more insights to the policymakers and economists to evaluate
changes in the causality information flow between economic growth carbon emissions
and in terms of both time and long/short-term (scale or frequency) evolution. Through
carbon emission, economic growth policies may evoke environmental problems. Therefore,
conducting environmentally friendly and sustainable economic growth policies can limit
carbon emissions. In addition to monetary and fiscal policies, structural reforms can
mitigate the economic growth–CO2 nexus in the US economy from a long-term perspective.

The rest of the paper is organized as follows: Section 2 explains a brief discussion of
the literature. Section 3 discusses empirical methodology. Section 4 provides data sources
for the study and presents empirical findings of the research. The last section concludes the
study and discusses the policy implications of the results.

2. Literature Review

In the last three decades, one of the subjects that has received the greatest attention
in the economics literature is the relationship between environmental contaminants, eco-
nomic growth, and energy use. The associated literature includes three research subfields.
The first strand focuses on the relationship between environmental pollutants and eco-
nomic expansion in order to evaluate the Environmental Kuznets Curve (EKC) theory.
An expanding corpus of literature has investigated this link between economic growth
and environmental pollution in the wake of the seminal paper of [21]. The empirical data
are still debatable though. The relationship between economic production and energy
use is the subject of the second study stream. Following the original paper of [22], other
studies have looked at the causal connection between GDP and energy usage. The literature
focusing on the causal relationship between energy consumption and economic growth
is thoroughly reviewed by [23,24]. These two study threads are combined in the third
stream of inquiry, which mainly focuses on the dynamic relationships between energy
use, environmental contaminants, and economic growth. The findings of empirical papers
focusing on the relationship between the energy–environment–growth nexus in the US and
other nations are presented in Table 1. Table 1 leads us to the conclusion that there is still no
clear causal link between the income nexus for energy use and CO2 emissions. Depending
on the sample period, methodology, and sample country utilized in the analysis, different
conclusions exist about causality orientations. Additionally, to detect any potential causal
relationships, these research employ time series or panel data techniques.
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Table 1. Papers on the energy–environment–growth relationship.

Study Country Period Methodology Causality

[22] US 1947–1974 GC N→E
[25] US January 1973–March 1978 GC E→P
[26] US 1950–1970 Sim’s GC N—E
[27] US 1947–1979 Sims’ GC N—E
[28] US 1947–1987 GC N→E
[29] US 1974–1990 GC G—E
[30] US 1947–1990 Multivariate VAR model E→G
[31] US 1947–1990 GC G—E
[32] US 1948–1994 GC E→G
[33] Norway 1973–2003 GC G→C

[34] France 1960–2000 ECM-based GC G→C
G→E

[35] US 1960–2004 Toda and Yamamoto (1995)
E—G
G—C
E→C

[36] Malaysia 1971–1999 ECM-based GC C→G
E↔G

[37] US 1949–2006 Toda–Yamamoto (1995) G—E

[38] Turkey 1960–2005 VECM-based GC
C↔G
C↔G2

C→E

[39] China 1960–2007 Toda and Yamamoto (1995)
C—G
G→E
E→C

[40] China 1975–2005 Pair-wise GC G→C
E→C

[41] Turkey 1960–2000 Toda and Yamamoto (1995) C—G
C→E

[42] US 1960–2007 Toda and Yamamoto (1995) G↔C
G→RE

[43] India 1971–2006 VECM-based GC C—G
[44] France 1960–2003 GC G→C
[45] Brazil 1980–2007 ECM-based GC G→C
[46] China 1995–2007 VECM-based GC G→C
[47] Malaysia 1980–2009 VECM-based GC C→G

[48] Philippines 1965−2010 ECM-based GC E↔G E↔C
C→G

[49] US 1973Q1–2014Q1 Time-varying
GC

E↔G 1990s
G→E 2000s

[50] 22 Central and South
American Countries 1995–2010 GC G→E (short-run)

G→C (long-run)

[51] China 1995–2015 FE, PSCE, N-W, FGLS
regression models G→C

[52] Belt and Road Initiative
Countries 1995–2015 Panel causality and

cointegration models EI, G↔C

[53] 65 countries 1965–2019 Panel causality and
cointegration models G↔ C

[54] Belt and Road Initiative
Countries 1991–2016 Tapio decoupling model,

Kaya–LMDI model G→C

[55] BRICS countries 1990–2014 ARDL model, causality test G→C
[56] UK 1985–2017 ARDL model, causality test G→C
[57] Kuwait 1971–2017 ARDL, causality test G→C

[58] China 1971–2016 quantile-on-quantile
regression, Granger causality G→C

[59] Mexico 1990–2018 ARDL, FMOLS models, and
causality G→C

[60] Brazil 1965–2019
ARDL, DOLS, FMOLS,

Maki cointegration,
Wavelet coherence

E, C→G

[61] Indonesia 1965–2019 ARDL, DOLS models G↔C

[62] ECO member countries 1990–2014 FMOLS model and causality
test G↔C

[63] Portugal 1980–2018 FDC causality,
Wavelet coherence G→C

[64] Sweden 1965–2019 quantile-on-quantile
regression G→C

Notes: → refers to the unidirectional causality or relationship impact direction; ↔ and — denote bivariate
causality or relationship impact direction, and no causality or no relationship impact direction, respectively. G,
N, E, P, and C refer to gross domestic product, gross national product, energy consumption, employment, and
CO2 emissions, respectively. GC denotes Granger causality testing framework. VECM denotes the vector error
correction model, and ECM is the error correction model. EI denotes energy intensity data.

Recent studies have used the wavelet methodology to evaluate the causation hypothe-
ses by taking the time and frequency dimensions of the pertinent data into account. The
discrete wavelet transform (DWT) is typically used to observe the correlations between
related variables. In the Turkish manufacturing sector from 1968 to 2002, Ref. [65] looked at
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multi-scale causality between economic growth and electricity usage. The results of the
study indicated a short-term bidirectional relationship between energy consumption and
GNP, but long-term causality between GNP and energy consumption was also demon-
strated. By using DWT for the quarterly data from 1973Q1 to 2012Q1, Ref. [66] examined
the causal relationship between economic growth and energy consumption in the US.
According to their findings, economic growth affects energy consumption in the medium
and long run, while energy consumption affects economic growth in the near term. For six
oil-exporting nations between 1980 and 2012, Ref. [67] examinated the connection between
carbon emissions, energy usage, and economic growth. According to their findings, there
is a bivariate relationship between economic growth and CO2 emissions as well as between
economic growth and energy consumption, and there are no feedback effects in the causal
chain connecting carbon emissions and energy consumption. For 74 nations between the
years of 1972 and 2014, Ref. [68] examined the causality relationship between GDP and
energy usage. Their findings implied that, over the long term, there is a bivariate causality
relationship between electrical energy usage and GDP. However, in the short and medium
term, GDP influences electricity consumption, whereas the opposite is not true. For data
from January 1973 to December 2018, Ref. [69] examined the short- to medium-run relation-
ships between economic activity and carbon emissions in the US. Their findings indicated
that there is no discernible relationship between emissions and short-term economic activity.
However, in medium-term cycles of roughly one to three years, there is a considerable
relationship between economic activity and carbon emissions.

The economic growth–environment nexus is being investigated in an increasing num-
ber of papers employing the continuous wavelet transform (CWT). For instance, Ref. [70]
examined the connection between renewable energy consumption and industrial productiv-
ity in the United States using monthly data with the period from 1981 to 2013. The study’s
findings showed that using renewable energy increases industrial production at both lower
and higher frequencies in a favorable and significant way. Ref. [71] used quarterly data with
the period from the 2005Q1 to 2015Q3 to study the co-movements between real production
and aggregate and sectoral energy consumption levels in the United States. Their findings
demonstrated that both renewable and non-renewable energy consumption is outpacing
real production and that the consumption of all renewable and non-renewable sources
moves in tandem with real output. Using both discrete and continuous wavelet transform
for the period January 1973 to July 2015 [72] studied the relationships between economic
growth, energy consumption, and carbon emissions for the transportation sector in the
United States. Their findings indicated that, in the short run, there exists unidirectional
causal relationship between energy use and carbon emissions and economic growth, but
that, in the long and very long runs, economic growth leads energy usage and emissions.
The impact of renewable energy sources on industrial production in the US from January
1989 to November 2016 was examined by [73]. According to their findings, both short- and
long-term cycles of industrial output are positively impacted by renewable energy sources.

According to a review of the body of research on wavelet causation, the majority of
studies have either employed shorter time intervals or have concentrated on the causality
connection between energy usage and economic output. Additionally, Ref. [74] served
as the foundation for the CWT methodology employed in earlier investigations (1998).
This study set itself apart from earlier research by employing a more recent methodology,
the CWT-based Granger causality method proposed by [2], to investigate the causality
relationship between carbon emissions from fossil fuels and economic growth in the United
States over a very long time period, 1800–2014. This technique avoids the requirement for
minimum-phase transfer functions and can pinpoint causality both in terms of time and
frequency domains ([75]).

Ref. [50] found evidence in favor of short-run unidirectional causality connection
between renewable energy and economic growth for 22 nations. Moreover, economic
growth leads higher carbon emission in the long run. Thus, they conclude that economic
expansion eventually results in larger carbon emissions. Ref. [51] examined how economic
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expansion influences carbon emissions in China by looking at the country at the national
and regional levels from 1995 to 2015. Ref. [60] demonstrated how energy use and carbon
emissions can be used to forecast economic expansion in Brazil from 1965 to 2019.

Ref. [76] examined causal information flow between GDP and carbon dioxide emis-
sions in 79 countries including US for the period of 1980–2014. The results indicated that,
in countries with high average per capita income, GDP and carbon dioxide emission have
a bidirectional causality in both the short and long run. Investigating the nexus between
economic growth and carbon dioxide emissions in G20 countries for the period 1992 to
2014, Ref. [77] found a bidirectional causality relationship between economic growth and
pollution.

Refs. [78,79] examined the relationship between carbon dioxide emissions and eco-
nomic growth in US, and found evidence in favor of the environmental Kuznets curve
hypothesis across states. Hence, the findings indicated that the level of CO2 emissions
rises until peak of economic growth, then the level of CO2 emissions decreases, yielding
inverted U-shaped relationship between CO2 emissions and economic growth in US. They
emphasized that higher levels of economic development will eventually reduce pollution.
Similarly, Ref. [80] suggested US government use of renewable energy sources due to fact
that they play a dominant role in reducing carbon dioxide emissions, while non-renewable
energy contributes to environmental degradation. Moreover, economic expansion and
globalization helps to minimize environmental pollution after a threshold, based on the
analysis results in the US for the period 1980–2016.

Ref. [81], pointing out the long-term relationship between carbon emissions and GDP,
stresses that GDP have a beneficial impact on carbon emissions. The results indicate that the
amount of carbon emitted decreases when the economy expands for the US economy from
1985 to 2020. Ref. [82], investigating the leading factors for the carbon dioxide emission
for the six largest world emitter countries for the period of 1990–2018, addressed that
results are mixed for the countries. However, energy intensity leads both GDP and carbon
dioxide emissions. Additionally, there exist univariate causality from carbon emission
to GDP for Russia and also univariate causality from GDP to carbon emission for Japan.
Through analyzing the causal relationship between economic policy uncertainty and carbon
emissions, Ref. [83] found that policy uncertainty affects the carbon emission growth for US
sectors when carbon emission growth is at a lower level than at a higher level. Interestingly,
Ref. [84] mentioned that that clean energy consumption does not contribute to emissions
reduction in the long run for France. The results revealed the causality from political
uncertainty to economic growth and emissions, giving importance to the impact of policy
implication on carbon emissions. Additionally, they reported that both economic growth
and economic policy uncertainty increases carbon dioxide emission and bidirectional causal
information flow between carbon dioxide emission and economic growth and political
uncertainty and carbon dioxide emission for the period 1987–2019.

On the other hand, Ref. [85] pointed out that the negative change in economic policy
uncertainty facilitates emissions in the USA in the long and short run, whereas its positive
change does not produce any significant effect. They emphasized that policies should aim
to adjust fossil energy consumption through developing green and clean energy sources
for energy resource diversification and low-carbon intensification. Ref. [86] examined the
relationship between carbon dioxide emissions and economic development in ten different
countries, including US, from 2010 to 2019. The results reveal long-run positive association
between GDP and carbon emission where association pattern is negative in the short run.

3. Methodology

The underlying idea behind wavelet analysis is to simultaneously disintegrate data
into components varying in both time and frequency dimensions. Unlike the conven-
tional time series and Fourier transformation techniques, wavelet analysis enables spectral
analysis to examine distinct periodic components of data as they change over time and
frequency [87]. Fourier analysis reveals frequency structures in a given dataset; however,



Sustainability 2022, 14, 10566 7 of 16

Fourier analysis fails to reveal any temporal information in time dimension. Wavelet
analysis outperforms Fourier analysis by taking into account the dynamic nature of the
component in the time and frequency scale. Thus, wavelet analysis is considered as nonsta-
tionary data analysis tool unlike Fourier analysis. Wavelet analysis has become popular
in economic and financial data analysis as most of the economics and financial data have
nonstationary nature. Therefore, wavelets have become widely used in economics and
finance to examine temporal fluctuations between variables on different horizons.

In wavelet analysis, decomposition step is executed through either discrete (DWT)
or continuous (CWT) wavelet transforms. Initial applications of wavelets have generally
focused on the DWT [88–93]. More recently, there has been a growing literature employing
the CWT (including, [10,16,88–101]). The CWT, unlike the DWT, have advantages of more
wavelet function alternative to use and providing easily interpretable analysis output, and
CWT efficiently investigate common dynamics and phase discrepancies [75,87,102]. In this
study, we uses the CWT for a recent causality test of [2], which modifies the correlation
measure in CWT proposed by [15] by including a specific indicator function for a specific
type of causality investigated.

3.1. Continuous Wavelet Transform

A wavelet can be defined as a rapidly ascending and descending wave-shaped function
with zero mean. Convolution of data with repeatedly shifting and stretching wavelet
function of Ψs,τ(t) = Ψ ((t− τ)/s)/

√
s provides the CWT coefficients:

WX(s, τ) = (x ∗Ψs, τ)(t) =
∫ ∞

−∞
x(t)

1√
s

Ψ̃
(

t− τ

s

)
dt (1)

where Ψ̃(·) denotes the complex conjugate of Ψ(·). s and τ are the wavelet scale and
localized time index parameters, respectively. Stretching via various s parameter values
and shifting wavelet function along τ parameter values provides three-dimensional data
representation of data. Following [2], the Morlet wavelet function, invented by [103],
was used in this study. The Morlet wavelet function is a function that a plane wave
modulated by a Gaussian: Ψ(η) = π−1/4exp(iωη)exp(−η/2) with ω = ω0 = 6. ω is the
nondimensional frequency, and η is nondimensional time (see [74]). The Gaussian envelop,
exp(−η/2), effectively optimizes the location of the wavelet between the resolutions in time
and frequency, which are determined by the dimensionless frequency. In the literature, the
concepts of scale and frequency are almost the same (s ≈ f ). The wavelet is stretched trough
parameter s so that η = s·t. Morlet wavelet optimizes the time–frequency distribution of
the data. Moreover, the Morlet wavelet is suitable for oscillation analysis with time varying
scale and amplitude. Moreover, it captures information about the data’s frequency pattern.
Hence, it is applicable for non-stationary data containing transient or irregular cycles with
varying periods ([104]). The discretization of Equation (1) for data {xn : n = 1, 2, . . . , N}
provides the wavelet spectrum:

Wm
X (s, τ) =

δt√
s ∑ xnΨ̃

(
(m− n)

δt
s

)
, m = 1, 2, . . . , N− 1. (2)

where δt refers to uniform increment size. The wavelet power spectrum
∣∣Wm

X (s, τ)
∣∣2

contains the information on the variability in time–frequency dimensions. The cross-
spectrum of data xn and yn, which captures covariance patterns in frequency domain, is
defined as Wm

XY(s, τ) = Wm
X (s, τ)W̃m

Y (s, τ), where W̃m
Y (s, τ) denotes the complex conjugate

matrix of Wm
Y (s, τ). Then, for variable x , wavelet transform is decomposed into the real

and imaginary parts through Wm
X (s, τ) = <

{
Wm

X (s, τ)
}
+ i=

{
Wm

X (s, τ)
}

to compute

the local phase, ϕX(s, τ) = tan−1
{
=(Wm

X (s, τ))
< (Wm

X (s, τ))

}
. Moreover, the phase difference, which

contains information on lead-lag relationship patterns, is used to calculate spectral Granger
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causality through wavelet correlation (the same decomposition also applies to the variable
y). Ref. [15] defines wavelet correlation as:

ρXY(s, τ) =
ζ
{

s−1
∣∣<(Wm

XY(s, τ)
)∣∣}

ζ

{
s−1
√∣∣Wm

X (s, τ)
∣∣2} · ζ{s−1

√∣∣Wm
Y (s, τ)

∣∣2} (3)

where ζ(·) = ζscale(ζtime(·)). ζscale and ζtime refer to the operators to smooth spectrum
values for the scale axis and time axis, respectively.

3.2. Continuous Wavelet Transform-Based Causality

Ref. [2] proposed the novel CWT based causality measure, with the modification of
the correlation formula in Equation (3) by including a specific indicator function, which in
turn is based on the phase difference calculation. The phase difference between x and y
data pair is defined as:

φXY(s, τ) = φX(s, τ)− φY(s, τ) = tan−1

(
=
(
Wm

XY(s, τ)
)

<
(
Wm

XY (s, τ)
)) (4)

with the range −π ≤ φXY(s, τ) ≤ π that can be subdivided into four intervals (see [87,96]).
Each interval provides information on lead-lag pattern and the direction of the causal
information flow. Intervals of φXY(s, τ) ∈

(
0, π

2
)

or φXY(s, τ) ∈
(
−π

2 , 0
)

indicate that two
variables comoves in positive direction (or they move in-phase). Alternatively, phase differ-
ence within the intervals of φXY(s, τ) ∈

(
π
2 , π

)
or φXY(s, τ) ∈

(
−π,−π

2
)

indicate that two
variables co-move negatively (or they move out-of-phase). Further, φXY(s, τ) ∈

(
−π

2 , 0
)

or φXY(s, τ) ∈
(

π
2 , π

)
indicates that y leads x, in other words, phase difference in

these intervals reveals that x has causal information flow on y. φXY(s, τ) ∈
(
0, π

2
)

or
φXY(s, τ) ∈

(
−π,−π

2
)

denote x leads y.
The indicator function is a mathematical function using phase difference interval

information to separate integrated causal links from the non-causal patterns. Moreover,
indicator functions measure the direction of the causal information flow. Indicator functions
are set to one for the given defined phase difference subinterval and zero otherwise. Thus,
indicator functions are considered as restriction imposed on wavelet correlations for both
specific directions and the lead-lag causal information flow. For instance, an indicator
function investigating only whether x leads to y, ignoring the direction of the causality, is
defined as (other directional indicator functions to investigate in-phase or out-of-phase
predictive information flows from x to y or from y to x are provided in [2]):

IY−→X(s, τ) =

{
1, i f φXY(s, τ) ∈

(
0, π

2
)
∪
(
−π,−π

2
)

0, otherwise
. (5)

Augmenting [15]’s CWT-based correlation formula with the indicator function IY−→X(s, τ)
yields the following CWT-based Granger causality test:

GY−→X(s, τ) =
ζ
{

s−1
∣∣<(Wm

XY(s, τ)
)

IY→X(s, τ)
∣∣}

ζ

{
s−1
√∣∣Wm

X (s, τ)
∣∣2} ζ

{
s−1
√∣∣Wm

Y (s, τ)
∣∣2} (6)

where GY−→X(s, τ) is positive causal movement measure (in-phase causality) in the case
of the IY−→X(s, τ) indicator function being true for the intervals of φXY(s, τ) ∈

(
0, π

2
)

or
φXY(s, τ) ∈

(
−π

2 , 0
)
. This Granger causality measure in CWT can separately investigate

positive and negative causality through indicator functions specifically defined for the
required phase-difference range. Similarly, predictive information flows from x to y are
investigated through GX−→Y(s, τ) through indicator function IX−→Y(s, τ).
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Equation (6) is an alternative to the wavelet causality measure in CWT proposed
by [19], which suffers from spectral matrix factorization calculation failure. This nonpara-
metric technique, which demands high autoregressive order because to the high correlation
structure in the parametric approach, is particularly crucial for time series with oscilla-
tions and extended memory. As a result, the nonparametric Granger causality technique
eliminates the chance of erroneous causation brought on by incorrectly described errors.
This CWT causality measure is computationally efficient because it exempts from both
Fourier transformation and any assumption about specification of the autoregressive model
lag order (for detailed information about features of the continuous wavelet transform
causality method and simulation results, please see [2]). This methodology deviates from
the conventional parametric Granger causality method that (i) lacks the ability to fit the
complex structure of time series data, (ii) requires autoregressive modeling which imposes
difficulties on data parameterization, and (iii) assumes that a single dichotomous causality
result that is assumed to be held for the whole period investigated.

3.3. Data

This paper employed annual data on real GDP per capita and carbon emissions
for the United States from 1800 to 2014. Real GDP per capita (at 2012 constant prices
in US Dollars) data were based on the study of [105] (the data are available at https:
//www.measuringworth.com/datasets/usgdp, accessed on 10 April 2016). The series on
total fossil-fuel emissions were obtained from Carbon Dioxide Information Analysis Center
(CDIAC) and based on the study of [106] (See [106] for details. The data are available at
https://cdiac.ess-dive.lbl.gov/ftp/ndp030/nation.1751_2014.ems, accessed on 14 April
2018). Both series were used in natural logarithms, and logarithmic differences were used
for the analysis.

4. Results

Figure 1 exhibits the results of CWT-based causality connections between variables.
Panels (a) and (b) show the time–frequency CWT plots of causal effects from GDP to CO2
and from CO2 to GDP in level curves as there are three dimensions of time, frequency, and
causality strength involved. The color code represents the height of the level curves, which
runs from 0 to 1, and indicates the strength of the causality between variables. The vertical
axis reports the period (scale or reverse of frequency) reported in years, while the horizontal
axis reports the time. Panel (a) shows CWTC causality from GDP to CO2. Panel (a) exhibits
short-dated causality from GDP to CO2 for the periods of (1860–1880), 1910s, in the end
of 1920s, (end of 1950s–beginning of 1960s), and in the 1970s at the highest scale band
of (1–4) years. The relatively transient nature of these causal information flows indicates
the relatively weak dynamics behind them. Additionally, weak and short-dated causality
occurs at around 6 years’ scale in the period of (1820–1830). CWTC detects more persistent,
thus strong, causality pattern in the period of (end of 1850s–2014) with a transient break
around 1900s at (8–16) years’ scale band. These patterns are considered as strong due to its
persistent nature. In terms of statistical significance, this causal information flow becomes
stronger in the period of (1870–1900) and (1910s–2014). Additionally, causal flow is seen
in the period of (1900–2014) and becomes stronger in the period of (1910–2014) at (16–32)
years’ scale band. Combining the causality patterns seen in (8–16) and (16–32) years’ scale
band together, the most persistent pattern is seen in the period of (1850s–2014) at (8–32)
years’ scale band. The causality pattern with the lowest scale band occurs in the period of
(1900s-end of 1950s) at around 40 years’ scale band, but it is relatively weak. In summary,
Panel (a) shows a strong causality from GDP to CO2 with the 8~16-year frequency, and
this causality relationship has continued from the 1860s to the present. However, a much
stronger causal effects are observed between 1870 and 1890 on the 8~16-year frequency and
between 1920 and 1960 on the 16~32-year frequency. There was also causality between 1900
and 1960 on the 32-year frequency. Relatively high-frequency causality is also observed on
the 4-year frequency, but it is not regular.

https://www.measuringworth.com/datasets/usgdp
https://www.measuringworth.com/datasets/usgdp
https://cdiac.ess-dive.lbl.gov/ftp/ndp030/nation.1751_2014.ems
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Figure 1. Continuous wavelet transform-based causality patterns between economic growth and
carbon emissions. The color code indicates the strength of causality. The x-axis reports the years, and
the y-axis reports the period (reverse of frequency) defined in terms of years. The white (yellow)
contour indicates the 5% (10%) significance level constructed based on 3000 Monte Carlo simulations
of ARMA (1,1) process with null hypothesis of no statistical significance. The green line represents
the cone-of-influence (COI) defining the areas affected by the edge effects [13].

Panel (b) shows CWTC causality from CO2 to GDP. Panel (b) exhibits short-dated
causality from CO2 to GDP for the periods of 1810s, (end of 1830s–1950s), 1980s, and 2010s
at the highest scale band of (1–4) years. The relatively transient nature of these causal
information flows indicates the relatively weak dynamics behind them. CWTC also detects
transient causality patterns in the period of 1810s, in the beginning of 1870s, (1900–1950s),
(1970s–1990s), and 2010s at (4–8) years’ scale band. Additionally, causal flow is seen in the
period of (1900–1950s) at (8–10) years’ scale band. The causality pattern with the highest
scale band occurs in the period of (1940s–2014) at around 32 years’ scale band, but it is
relatively weak. In summary, in Panel (b), we observe a strong but intermittent causality
running from CO2 to GDP between 1900–1990 on an 8-year frequency. Causality from
CO2 to GDP with a 32-year frequency is also seen after 1940. Intermittent and relatively
high-frequency causality is observed on the 4-year frequency and between 1970–1990, and
long-run causality is seen between 1970–1990. Panel (c) exhibits the continuous wavelet
transform-based correlation measure proposed by [15]. These two variables generally
move together since the correlation is high in all periods. It also shows that the periods
of causality connection observed in Panels (a) and (b) correspond to the period of high
positive correlation between the carbon emission and economic growth.

In summary, there is a strong causality information flow running from GDP to CO2
after the 1860s for different year frequencies, indicating that economic growth leads to
environmental degradation as expected. This relationship became significant and uninter-
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rupted during the last decades. However, the contrast causality is interrupted and valid for
the short-term frequencies.

Figure 2 shows the positive (in phase) causality relationship patterns in Panels (a) and
(b) and the negative (out of phase) causality relationship patterns in Panels (c) and (d). In
Figure 2, we observe that the causality relationship expressed in Figure 1 is positive, and
there is no negative causality between the two variables. Panel (a) exhibits a positive Granger
causal information flow from GDP to CO2. Generally, we observe a strong positive causal
effect from GDP to CO2 after the 1860s for midterm frequencies as an adjustment of high
economic growth comes up with environmental degradation. The uninterrupted causality
concentrated during the last decades. On the other hand, the reverse positive causality is
interrupted, acceptable for the short-term frequencies and intensifying early 1990s.
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Figure 2. Positive (in phase) and negative (out of phase) continuous wavelet transform-based
causality patterns between economic growth and carbon emissions. The color code indicates the
strength of causality. The x-axis reports the years, and the y-axis reports the period (reverse of
frequency) defined in terms of years. The white (yellow) contour indicates the 5% (10%) significance
level constructed based on 3000 Monte Carlo simulations of ARMA (1,1) process with null hypothesis
of no statistical significance. The green line represents the cone-of-influence (COI) defining the areas
affected by the edge effects.

Starting from the 1850s to 1960, the world economies, particularly the US, faced a
constant growth of emissions through expeditious industrialization and population growth,
which led to a rapid economic growth. This increase was interrupted only because of some
historical events, such as the Great Depression and the World War II in in the 1930s and
1940s. Our findings indicate that strong positive causality from GDP to CO2 occurs in
the period 1850 to 1900. Rapid industrialization and population growth may explain the
existence of strong positive causality from GDP to CO2 in 1850–1900. By 1900, oil and its
byproducts had become widely used in the US industry, even in the country’s daily life.
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In the 1950s, the US became an oil importer due to the growth of oil consumption, which
made the country dependent on the new oil supply.

5. Conclusions

Economic growth is one of the drivers of carbon emissions (CO2), while the US
economy is one of the top emitters in the world. Although it was interrupted due to some
shocks, such as the Great Depression and World War II, the increase in CO2 is attributed
to many long-term and short-term factors, including rapid industrialization, population
growth, changing energy prices, economic growth, and new technologies and regulations.

In the literature, there is an ongoing debate about the economic growth–carbon emis-
sion relationship for various economies (Table 1). This paper examined both the short-
and long-run causality patterns between carbon emission and economic growth on the US
economy, spanning the very long period from 1800 to 2014. In this study, the application
of wavelet-based-nonparametric Granger causality analysis allowed us to investigate the
causality dynamics between economic growth and carbon emissions in various time scales
and hence, enables us to identify not only the causality dynamics between the two variables
both in the long term and in the short term, but also the evolution of causality patterns.

By employing a novel approach to causality, a time–frequency–strength framework
of causality measure developed by [2], we observed a bidirectional causality between
GDP and CO2 in the US economy. However, the long-run causality from GDP to CO2 is
strong, uninterrupted and positive, indicating that economic growth leads to environmental
degradation. It concentrated during the last decades (since the 1990s). However, the reverse
causality is interrupted, short-term and positive intensifying during the early 1990s.

Based on the results, a rise in economic growth increases carbon emissions. It is widely
recognized that carbon emission is the main cause of environmental problems. Therefore,
the environment-based economic growth strategies are a part of sustainable development.
By promoting environmentally friendly and sustainable economic growth policies, carbon
emissions can be reduced both in the short term and long term in the US economy. Since the
monetary and fiscal policies have short-term effects on the domestic economy, structural
reforms, such as renewable energy infrastructure, energy-efficient investments (or clean
production technologies), tax subsidies for green growth, and environmental regulations,
can ease the growth–CO2 nexus in the US economy for long-term perspective.

The limitation of the current research is that the empirical analysis concentrated
on the relationship economic growth and carbon dioxide emission. Due to lack of long
data for new sectors driving US economic growth, such as information technology, or
green/renewable energy sectors, this research focuses on bivariate causal information flow
analysis. Future studies could be performed on a broader sample of nations with additional
drivers of carbon dioxide emissions when longer data becomes available in the future.
Likewise, the research might be improved by incorporating important factors into the
causality analysis, such as economic complexity, renewable energy, globalization, financial
development, and information technology when data become feasible in the future.
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