
WAS Control Center: An Autonomic Performance-Triggered Tracing
Envir onment for WebSphere

David Carrera, David Garcia, Jordi Torres, Eduard Ayguadé, Jeśus Labarta
{dcarrera, garcia, torres, eduard, jesus}@ac.upc.es

European Center for Parallelism of Barcelona (CEPBA)
Computer Architecture Department, Technical University of Catalonia (UPC)

C/ Jordi Girona 1-3, Campus Nord UPC, Mòdul C6, E-08034
Barcelona (Spain)

Abstract

Studying any aspect of an application server with high
availability requirements can become a tedious task when
a continuous monitoring of the server status is necessary.
The creation of performance-driven autonomic systems can
hurry up the analysis of this kind of complex systems. In this
paper we present an autonomic performance-driven envi-
ronment for WebSphere Application Server that can be used
as the basis to construct systems that must monitor the per-
formance of the system. As an applied use of this infrastruc-
ture, we present the WAS Control Center which is a deep
tracing tool-set for 24x7 environments. It exploits the ben-
efits of autonomic computing to lighten the costs of highly-
detailed system tracing on a J2EE application server. The
WAS Control Center is helping us in the creation of perfor-
mance models of the WebSphere Application Server.

1 Introduction

Application Servers based on the J2EE platform are
widely extended. They are used in many commercial en-
vironments, in most of complex web applications currently
online and in many B2B links. Facing up to the per-
formance challenges that this platform involves is not a
straightforward task in any way. The extremely complex
execution environment of application servers provides a
rich framework to develop and run web applications, but
makes enormously difficult the task of studying and improv-
ing their performance. The parameters that affect the out-
put level of an application server can change depending on
many factors (i.e. the instantaneous workload on the server
and the type of requests received can move the performance
bottleneck of the server from the network bandwidth to the

Figure 1. General overview of the WAS Con-
trol Center

computing capacity). This dynamism increases exponen-
tially the complexity of tuning these environments to obtain
a maximum output level, particularly when it is done stati-
cally. It becomes specially true when the desired throughput
of an application server is not defined in terms of technical
units but in business profit units. And it is known that cur-
rent trends of output level requirements are moving to the
definition of Service Level Agreements[2].

An alternative to an inefficient static and manual tune of
the application server is the creation of self-tuning applica-
tion servers. It requires a solid knowledge of performance
models for J2EE Application Servers and the techniques to
make systems be in control of their own configuration pa-
rameters to achieve a maximum performance.

This paper describes our work done in the creation of an
environment that is able to monitor the performance met-

1

© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works. DOI 10.1109/EMPDP.2005.47



rics of an application server, compare them to some user-
defined rules and trigger the appropriate actions if neces-
sary. We also describe how this environment has been used
to create a performance-triggered autonomic tracing system
(WAS Control Center) that can produce highly-detailed ex-
ecution traces that are helping us in the definition of accu-
rate performance models to describe the behavior of J2EE
application servers.

The WAS Control Center environment is fully developed
for the Java platform so it has no system dependencies. At
the moment, the environment is dependent on the architec-
ture of WebSphere Application Server[19] (WAS), so its
use is limited to this application server. Future versions
of this environment, based on the use of the Java Man-
agement eXtensions[20] API (JMX), will eliminate this de-
pendency. The used middleware is WebSphere Application
Server v4.0 Advanced Edition running on a 1.3 IBM Java
Virtual Machine.

The environment described in this paper can be helpful
on the construction of self-tuning systems. This is a first
step toward the creation of a performance self-tuning engine
for application servers, which is the final goal of our work.
The work progress that must be done before achieving our
objective consists of some complementary tasks. The study
of the performance of application severs will drive us to the
creation of performance models that, at the same time will
be used to create the core of the self-tuning engine. The
mechanisms to determine the stage of a performance model
that defines the state of the application server must also be
developed before an autonomic system can be in control of
its own configuration. A general view of the components a
system such as the described one should contain is shown
in figure 1.

Similar proposals have been previously done on the area
of distributed systems, like in [7] and in [10], but they are
not focused on application servers like ours. The concept
of autonomic computing has been widely explored and cat-
egorized by IBM, as described in [1]. There is some work
published in the field of application servers’ performance
modeling, like in [11], in [12] and in [13], showing differ-
ent approaches to the complexity of the problem. Also some
works face up to the performance prediction for application
servers, like in [14]. Some discussion about the creation of
self-managed systems for web or application servers can be
found, working with agents like in [9] or with other archi-
tectures, like in [16], in [15] and in [8].

2 Monitoring WebSphere with the Perfor-
mance Monitoring Infrastructure

Some different approaches can be taken to continuously
measure the performance of an application server. In the
scope of this paper, we will focus on the measurement of the

performance of the WebSphere Application Server, using
the Performance Monitoring Infrastructure[5] (PMI) that it
offers.

The Performance Monitoring Infrastructure consists in a
set of libraries and packages developed to simplify the task
of collecting, processing and visualizing performance infor-
mation relating to the application server. PMI gets informa-
tion from all the WAS components and makes it available to
users. It offers a rich set of performance indexes of the ap-
plication server. Some examples of indexes offered by PMI
are the total number of requests to an object, response time
of a web accessible object and number of concurrent active
requests. These indexes can be obtained for both individual
objects (servlets and EJBs) and the global system.

The WAS Control Center environment obtains continu-
ous performance information from WebSphere by polling
periodically the PMI Servlet deployed on it. This servlet,
when accessed, queries the WAS Performance Monitoring
Infrastructure to obtain performance indexes of the appli-
cation server and returns them to the client summarized in
a XML file that describes the current performance values
for the different components of the application server. Each
time the PMI servlet is accessed, an updated version of the
XML-formatted performance report is returned. Other ap-
proaches we are working on are based on the use of the
JMX API, what will make the environment independent of
the application server.

The Performance Monitoring Infrastructure makes data
available through an API composed of a set of interfaces.
One remarkable interface of the PMI API in the scope of
this paper is the PmiClient class, which can be used to de-
velop PMI client applications, connected remotely to appli-
cation servers. This interface creates an abstraction layer
between client applications and the real Performance Mon-
itoring Infrastructure.

3 Architecture of the WAS Control Center

The major feature of the WAS Control Center is the fact
that is able to automatically detect performance problems
on the application server according to a set of rules defined
by the user, called hooks. Each hook refers to a perfor-
mance index of the Application Server and sets a restric-
tion to its value (maximum value, minimum value, devia-
tion along time or other basic rules). If the hook restriction
is violated, the WAS Control Center triggers an appropriate
action. The performance indexes used to create hooks are
extracted from the PMI of WebSphere. For instance, it is
possible for a user to perform some actions when the num-
ber of active connections on the server exceeds 5000 clients
or when the response time for a concrete Java Servlet or
EJB is higher than a certain given value.

Although the WAS Control Center is composed of sev-

2



eral components, they can be mainly divided on two groups:
the Control Center Application and the Remote Monitoring
Server. The Control Center Application is in charge of mon-
itoring the performance of WAS and of the applications de-
ployed on it. This is done by accessing the WAS PMI servlet
remotely and parsing the XML report of the current WAS
performance metrics. The Control Center Application also
implements a unified GUI for the overall environment. The
Monitoring Server is a remote agent for the Control Center
Application that is deployed on the JVM process running
WebSphere. It can be used to take any required action on
the application server machine in response to a hook viola-
tion command sent by the Control Center Application.

The general operation scheme of the developed environ-
ment begins with the startup of the WebSphere Applica-
tion Server and the deployment of the Monitoring Server on
WAS (in the same process). The Monitoring Server acts as
a remote agent for the Control Center Application and must
be initialized together with WAS. The Control Center Ap-
plication will send commands that have to be executed on
WAS to the Monitoring Server. The Control Center Appli-
cation operation is directed by the WAS performance that is
reported by the PMI. The PMI servlet is polled periodically
by the Control Center Application and the obtained perfor-
mance metrics are compared with the user-defined perfor-
mance thresholds, named hooks. When the condition de-
fined by any of the hooks is violated, the user-defined action
associated with the hook is initiated. This is usually, but not
only, translated to an action to be performed on the applica-
tion server and the Monitoring Server is in charge of doing
it.

In order to deploy the Monitoring Server on WAS, an
automatic Java code interposition tool called JACIT (see
section 4.1 for more details) is used to modify the start-
Transports() method of the WAS ServletEngine class and
make it load the Monitoring Server before being executed.
At the same time, the WAS Performance Monitoring Infras-
tructure is started up after the application server instance is
completely loaded, and the PMI servlet (which makes ac-
cessible a XML-encoded representation of the PMI perfor-
mance counters) is deployed on the application server and
made accessible. With all this done, the Monitoring Server
is ready to receive requests from the remote Control Center
Application. These requests can be manually submitted us-
ing the environment GUI or can be an automatic response
produced by the Control Center engine. A general opera-
tion diagram of an applied use of the WAS Control Center
is shown in figure 2.

The Control Center Application works remotely from the
application server machine. It is composed of four coopera-
tive components: a GUI, an XML parser module, an appli-
cation logic module and a communication stub.

The XML parser module is in charge of making this ini-

Figure 2. WAS Control center operation dia-
gram for autonomic system tracing

tial parsing process. The amount of information from the
XML file obtained from the PMI servlet that is offered to the
user depends on the configuration of the WAS Control Cen-
ter. So, the XML parser module not just parses the XML file
but also selects what information from the XML file is fi-
nally shown to the user and used to define hook restrictions.
As long as the tree structure of the XML file generated by
the PMI servlet is dynamic (each time the PMI servlet is
accessed the produced XML file can change depending on
the activity of the server), the XML parser has to detect the
changes on its structure and adapt it to the in-memory rep-
resentation.

The logic module of the Control Center Application con-
tains all the program logic required to make the presented
environment work. This logic module is configured to pe-
riodically request the PMI servlet to generate an XML re-
port of the las observed performance metrics on the appli-
cation server. The request rate to the PMI servlet is a user-
configured parameter. Each time the XML-formatted file is
obtained through the PMI servlet, all the hooks restrictions
are checked.

The GUI module offers an overall configuration inter-
face for the entire environment. On figure 3, an example of
the Control Center GUI can be observed. On it, the last ob-
served value for the number of concurrent requests for the
servlets of the DefaultApplication is shown. For this met-
ric, the mean value and the integral value can be used by the
user to define hook restrictions.

4 Using the WAS Control Center for auto-
nomic system tracing

Application servers (specially those of the complexity
and robustness of WAS) are usually executed in environ-
ments with high availability requirements. In many cases
this means ”24x7” clusters of fault-tolerant systems with
high-availability requirements. In this kind of environ-

3



Figure 3. View of the WAS Control Center GUI

ments, obtaining detailed execution information to con-
struct system performance models can be a problem be-
cause tracing tools are not overhead-free and they should
not be working continuously.

The presented development tries to overcome these lim-
itations. We use the WAS Control Center environment to
control a highly-detailed system tracing tool in an auto-
nomic way. It allows the creation of system execution traces
only during the performance degradation to allow them to
make a subsequent post-mortem analysis.

4.1 Tracing and analysis tools

Three previously developed tracing and analysis tools
are integrated with the WAS Control Center to create an au-
tonomic tracing environment. These characteristics of these
tools are briefly discussed below.

JIS: Highly-detailed system tracing

The system tracing of an Application Server can be done
using JIS[3] (Java instrumentation Suite), a tracing environ-
ment oriented to the study of Java applications and specially
J2EE Application Servers. Four levels are considered by JIS
when tracing a system: operating system, JVM, middleware
(application server) and application. Information collected
by all levels is finally correlated and merged to produce an
execution trace file. The level of detail of the information
produced by each JIS level can be dynamically configured.

Paraver: Trace analysis and visualization

Paraver[21] is a flexible performance visualization and anal-
ysis tool based on an easy-to-use Motif GUI. Paraver was

developed to respond to the need to have a qualitative global
perception of the application behavior by visual inspection
and then to be able to focus on the detailed quantitative anal-
ysis of the problems. Paraver provides a large amount of
information useful to improve the decisions on whether and
where to invert the programming effort to optimize an ap-
plication.

JACIT: Code Interposition based on Aspect Program-
ming

The JACIT tool (Java Automatic Code Interposition Tool)
can be used to apply the aspect[17, 18] programming
paradigm to the modification of existing bytecodes of an
application without need of source code availability.

With the JACIT tool it is possible to open a jar file from
any application, choose one of the classes contained in the
jar file, select one of the methods or interfaces of the method
and decide to add some code before or after invoking it. The
inserted code can use anyone of the parameters of the Java
method. Later, the code can be compiled to test its correct-
ness and after that, an equivalent aspect programming file is
generated (if wanted) and the needed changes are applied to
the jar file to execute the added code when required. Finally
the jar file is saved and a backup jar file is also produced.

4.2 Triggering the system tracing

When the value of one of the performance metrics re-
ported by the PMI servlet violates one of the defined hook
restrictions, the JIS system tracing process is enabled and
kept in this state until the reported values fall again inside
limits defined by the broken hook.

5 Testing the autonomic system tracing envi-
ronment

In this section we present an example of use of the WAS
Control Center applied to the system tracing environment.
The chosen testing system is composed of three machines: a
4-way application server machine running WebSphere 4.0,
a 2-way database host machine running MySQL and a client
machine running the servlet-based version of the RUBiS[4]
1.4 benchmark. Each one of these machines disposes of
2Gb of physical RAM. The MySQL database server is host-
ing the tables required by the RUBiS benchmark servlets
running on WAS.

The RUBiS benchmark simulates an Internet auction site
and is distributed in some different versions, depending on
its implementation: PHP, Servlets or EJBs. We chose the
Servlets version for our experiment. The benchmark uses a
database to store information relative to the products, users
and bids.

4



(a) Normal response time during a benchmark run (b) Degraded response time

Figure 4. Observed response time for a servlet of the RUBiS Benchmark

As an experiment, we put this environment to work and
waited it to detect some performance problems without hu-
man cooperation. After a system warm-up, we measured
the response time for one RUBiS servlet (ViewUserInfo).
The observed response time along time can be seen on fig-
ure 4(a). At the moment, all the system metrics seemed sta-
ble, so we decided to set the performance metrics thresholds
(hooks) on the WAS Control Center, setting it up to trigger
JIS when the observed response time for the ViewUserInfo
servlet varied±10% of the normal value. Although it was
done for the response time of the ViewUserInfo servlet, it
could have also been done for the entire application server
or for some other metrics.

Short time after having launched the benchmark, the re-
sponse time shown by the PMI servlet for ViewUserInfo
servlet increased. The observed response time when the
performance degradation was detected can be seen on fig-
ure 4(b). It can be observed on this figure that the response
time for the servlet called ViewUserInfo shows an important
peak value in comparison to the normal execution behav-
ior. This fact caused the WAS Control Center logic module
to trigger the JIS system tracing process on the application
server machine. With the system tracing that JIS performed
on the WAS system, we expected to detect the cause of the
observed performance problems.

The analysis of a trace file generated by JIS starts by
opening it whit Paraver. This first visualization of the trace
file didn’t provide too much information about any perfor-
mance degradation on the service of servlets on the applica-
tion server. To get this information we had to consider using
the statistical tools of Paraver. The first thing to do was to
study the time distribution of the operations performed by
the servlet which caused the triggering of the tracing pro-
cess. This servlet, as commented above, is the ViewUser-

Info RUBiS servlet.

The first analysis on the time distribution of the servlet
execution just considered the activity on the system caused
by the servlet which triggered the instrumentation process.
We can configure the Paraver visualization module to only
show information concerning to the ViewUserInfo servlet.
So, we could study what were threads doing during the ser-
vice of each request received for the ViewUserInfo servlet.
Concretely, we were interested on getting information about
the state of each thread of the WAS Servlet Engine thread
pool that had been in charge of the service of at least one of
the requests to the ViewUserInfo servlet.

By studying the results, we could see that most of the
execution time for each request of the servlet during the
system low performance period had been spent in the inter-
ruptible blocked thread state, independently of which thread
was servicing the request. This situation was suspicious of
either a problem of contention on the application server re-
sources (i.e. locks or database connection pools) or a prob-
lematic blocking system call.

The next logical step was to start investigating possible
problems with system calls. The result of this analysis in-
dicated that the highest percentages of service time for the
servlet processing were spent on some socket receive sys-
tem calls. After a new study on the socket channels affected
by these blocking operations (which is beyond the scope
of this paper), it was determined that they corresponded
to the database connection pool channels. After obtain-
ing these results, we decided to study the activity of the
database server machine during the benchmark run, and it
was determined that the intense use of the machine by one
of its users caused the increase on the response time of the
database server. Anyway, the tracefile contains information
enough to work intensively in the creation of new perfor-

5



mance models describing the relation between the perfor-
mance of the database server and the application server.

Although this is a simple testing example for the envi-
ronment and that our purposes were centered on obtaining
valuable information about the factors that can modify the
performance of an application server, the experience shown
us that it could be a very useful environment for system ad-
ministrators which are in charge of ”24x7” environments
and that need highly detailed information about their sys-
tems when they seem to be in trouble.

6 Conclusions & Future Work

In this paper we have shown a performance-driven en-
vironment for WebSphere that can be used as the basis for
the construction of autonomic middleware systems based n
WAS. As a first use of this environment, we have applied it
to our research necessities and it has been integrated with
some previously developed tools to control a fine-grain sys-
tem instrumentation process. The results of this association
are helping us in the construction of performance models
for J2EE application servers.

Our development represents a first step toward the cre-
ation of a self-optimizing and self-tuning environment
for WebSphere. We have started with the creation of a
performance-sensitive environment an its application to an
autonomic tracing system. This environment will be our
start point to create more advanced autonomic systems, up
to create a generic self-tuning engine for J2EE application
servers.

The combination of an instrumentation tool, a visual-
ization tool and a remote control tool is now probed to be
enough to have a ”24x7” deeply traced server without need
of human cooperation until the analysis step.

6.1 Future Work

The framework described on this paper, at the moment,is
WAS specific as far as it depends on the use of the PMI
to collect performance metrics. Our work now is centered
in moving to a new technology: the JMX core of WAS
5 and JBoss 3/4. This Java API, which stands for Java
Management eXtensions, can be used to create manage-
able components and integrate them as an application. With
this technology, each configurable component of an applica-
tion server is represented by a MBean object (Management
Bean) and can be remotely managed. To support different
remote access techniques, a JMX adaptor layer is incorpo-
rated, which usually supports HTTP/SOAP, RMI and Bean
accesses.

Acknowledgements

We acknowledge the European Center for Parallelism of
Barcelona (CEPBA) and CEPBA-IBM Research Institute
(CIRI) for supplying the computing resources for our exper-
iments. This work is supported by the Ministry of Science
and Technology of Spain and the European Union (FEDER
funds) under contract TIC2001-0995-C02-01.

References

[1] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–50. IEEE, Jan-
uary 2003.

[2] Keller, A., Ludwig, H., The WSLA Framework: Spec-
ifying and Monitoring Service Level Agreements for
Web Services, Journal of Network and Systems Man-
agement, Special Issue on ”E-Business Management”,
Volume 11, Number 1, Plenum Publishing Corporation,
March, 2003

[3] D. Carrera, J. Guitart, J. Torres, E. Ayguadé and J.
Labarta: An Instrumentation Environment for Java Ap-
plication Servers, 2003 IEEE International Symposium
on Performance Analysis of Systems and Software, pp.
166-176, March 2003.

[4] C. Amza, A. Chanda, E. Cecchet, A. L. Cox, S. El-
nikety, R. Gil, J. Marguerite, K. Rajamani, and W.
Zwaenepoel: Specification and Implementation of Dy-
namic Web Site Benchmarks, Fifth Annual IEEE In-
ternational Workshop on Workload Characterization
(WWC-5), November 2002.

[5] S. Rangaswamy, R. Willenborg, and W. Qiao: Writing a
Performance Monitoring Tool Using WebSphere Appli-
cation Server’s Performance Monitoring Infrastructure
API, IBM WebSphere Performance, IBM WebSphere
Developer Technical Journal, February 2002

[6] D. Viswanathan and S. Liang: Java Virtual Machine
Profiler Interface. IBM Systems Journal, 39(1):82-95,
February 2000.

[7] K. P. Birman, R. van Renesse, J. Kaufman and W. Vo-
gels: Navigating in the Storm: Using Astrolabe for
Distributed Self-Configuration, Monitoring and Adap-
tation, Autonomic Computing Workshop Fifth Annual
International Workshop on Active Middleware Services
(AMS’03) June 25 - 25, 2003

[8] Hoi Chan et al., Approach to Policy Execution In Auto-
nomic Manager Toolkit, First Workshop on Algorithms
and Architectures for Self-Managing System, Feder-
ated Computing Research Conference 2003

6



[9] Y. Diao, J.L. Hellerstein, S. Parekh and J.P. Bigus, Man-
aging Web Server Performance with AutoTune Agents,
IBM Systems Journal, Vol 42, No. 1, 2003.

[10] D.J. Kerbyson, J.S. Harper, E. Papaefstathiou and
G.R. Nudd, Use of Performance Technology for the
Management of Distributed Systems, 6th International
Euro-Par Conference (Euro-Par 2000), Lecture Notes in
Computer Science 1900, Springer Verlag, August 2000,
pp.149-159.

[11] J.C. Hardwick, E. Papaefstathiou, and D. Guimbellot,
Modeling the Performance of E-Commerce Sites, Jour-
nal of Computer Resource Management, Winter 2002
Edition, Issue 105, pp. 3-12.

[12] D.Bacigalupo, J.D.Turner, S.A.Jarvis, G.R.Nudd.
Modelling Dynamic e-Business Applications Using
Historical Performance Data. 19th Annual UK Perfor-
mance Engineering Workshop (UKPEW03), University
of Warwick, UK, 9-10 July 2003, pp 352-362

[13] S. Kounev and A. Buchmann. Performance Modelling
of Distributed E-Business Applications using Queue-
ing Petri Nets. 2003 IEEE International Symposium on
Performance Analysis of Systems and Software (IS-
PASS03), 2003.

[14] Yan Liu, Ian Gorton, Anna Liu, Ning Jiang, Shiping
Chen, Design a Test Suite for Empirically-based Mid-
dleware Performance Prediction, TOOLS PACIFIC,
Feburay 2002

[15] M. Trofin and J. Murphy. A Self-Optimizing Con-
tainer Design for Enterprise Java Beans Applica-
tions. 8th International Workshop on Component-
Oriented Programming WCOP2003, (in conjunction
with ECOOP’2003), Darmstadt, Germany.

[16] A. Mos and J. Murphy. Performance Management in
Component-Oriented Systems using a Model Driven
Architecture Approachm, 6th IEEE International En-
terprise Distributed Object Computing Conference
(EDOC, September 2002, Lausanne, Switzerland).

[17] John Viega and Jeffrey Voas: Can Aspect-Oriented
Programming Lead to More Reliable Software?, in the
November/December 2000 issue of IEEE Software

[18] Markus Voelter: Aspectj-Oriented Programming in
Java, in the January 2000 issue of the Java Report.

[19] IBM WebSphere Application Server
http://www.ibm.com/websphere

[20] Java Management eXtensions
http://java.sun.com/products/JavaManagement/

[21] Paraver
http://www.cepba.upc.es/paraver

7


