
Scanned surface to CAD design:
Matching, Alignment and Difference Evaluation

Student: Marc Prat I Masó

Thesis supervisor: Cristina Cadevall Artigues

Tutor: Carlos Andujar Gran

Master in Innovation and Research in Informatics (MIRI)
Facultad de Informática de Barcelona (FIB)
Universitat Politècnica de Catalunya (UPC)

Abstract

This work proposes a tool to compare a high-precision surface scan
with its original CAD model. The project is divided into three steps: how to
process the CAD files, compute and optimize the registration, and develop
tools for visualization.

Because CAD files can contain multiple representations, we can’t
work directly with them. Normally this is approached by triangulating the
described components and simplifying the mesh for a fast rendering, but
this doesn’t work for our high-density scans. Instead, we need to process
the CAD to obtain a point cloud with a parameterized distance between
points —this will give a good starting point for the registration—.

Next, the registration can be divided into two parts, coarse and fine.
For the coarse register, we adapt the Initial Alignment Sample Consensus
algorithm (IA RanSac) to automate the configuration settings and optimize
the time for our input size. While in the fine register we will use the classic
Iterative Closest Point (ICP).

Due to the approach being a random consensus and the input being
two big points cloud, reducing the number of points to a feasible number
(statistically and computationally) will be essential to find a solution. For
this, we developed a local optimizer that combines a set of LOD to find a
global solution.

Finally, to analyze the result, we have developed a color visualization
interface with a set of modifier tools (colormaps, transparencies, range
modifiers, etc.). This allows us to detect discrepancies between the two
models that can be caused by wear or manufacturing imperfections.

2

Acknowledgments

I would like to thank Jordi Mariné and Guillem Carles Santacana,
who also contributed to this project during the weekly review. And my
thesis supervisor and tutor, Cristina Cadevall Artigues and Carlos Andujar
Gran, especially for helping me to overcome the thesis writing.

Also, I want to thank my couple, Ana, for supporting me and putting
up with my empty talk. And my dad for encouraging me and giving me the
confidence I needed.

3

Contents

Contents 4

1. Introduction 6
1.1 Goals . 7
1.2 Sections Organization . 8

2. State of the art 9
2.1 State of the Art at Sensofar Tech. 9
2.2 3D Registration and Retrieval 10
2.3 Commercial Software . 11

3. Our Method 13
3.1 Overview . 13
3.2 Test Dataset . 15
3.3 CAD processing . 16
3.4 Coarse and Fine Registration 17

3.4.1 Part-to-Model . 18
3.4.2 Sampling methods 20
3.4.3 Final Implementation 22

3.5 Error Calculation . 26
3.6 Visualization . 27
3.7 Further Considerations . 28

4. Results 31
4.1 CAD processing . 31
4.2 Registration . 32

4.2.1 Sensitivity And Robustness 32
4.2.2 HDIA RanSac . 35
4.2.3 Input Optimizer 36
4.2.4 Learning Curve 37

4.3 Visual Representation . 38
4.3.1 Error Calculator 38

4

Contents

4.3.2 Visual Comparison Toolkit 39

5. Conclusions 42
5.1 Results Discussions . 42
5.2 Final Conclusion . 43
5.3 Future work . 43

6. References 45

Appendix A. Resources 48

Appendix B. Open Resources 49

5

1. Introduction

Figure 1.1. In the top row, the input: CAD model design, a 3D printed version sample, its
3D scan, and the final point clouds inputs in the program. In the bottom row:
The result after registration, a difference evaluation, and better visualization
for the detail.

This project has been done under an agreement with Sensofar Tech.
SL, where I’m currently working. Sensofar is a leading-edge technology
company within the field of non-contact surface metrology.

One major use for the Sensofar scanners is to study the wear in
pieces. This is known as a tribology study, an iterative process to evaluate
the wear and durability: first, the sample is used multiple times, then it’s
scanned, and finally compared with the reference model. For the moment
the clients use other companies’ software, but these tools aren’t prepared
for our scanner’s quality, becoming slow and costly. For this reason, we
needed a better solution to compare the CAD design with its scanned
surface.

Besides tribology, there are other uses for these scanners and soft-
ware combinations. For example, in closed-loop manufacturing: each step
(or some key steps) includes the scanners to evaluate and check if the qual-
ity is correct along the production line and detect fabrication errors and
malfunction. Another use could be reverse engineering, for example trying
to replicate animal leather, creating a prototype design, and analyzing the
similarity to the original on a micro-scale.

The main problem in this work will be solving the registration —the
process to recognize and align two similar objects—. In this business sector,
most solutions are oriented toward macroscopic views. With this kind of
scanner, you can have excellent results —one of the state-of-the-art in

6

Introduction

stereo photometry is around 350.000 points and 5µm z-resolution[24]—
but the common number of points is much lower than our techniques,
and the current solutions for the registration are more focused on these
macroscopic scanners. For example, the Kinect camera has a resolution
of 307.200 pixels but uses infrared light, which limits its depth resolution
to 1cm. In our case, a typical scan has more than 500.000 points and a
z-resolution sub-micrometric.

To address this inconvenient the registering is done with a random
sample consensus (RANSAC), in each iteration, a smart-random process
will assign to the source points —the data we want to move— a corre-
spondence to the target mesh —where we want to align—. This method
becomes unfeasible with brute force —because the time in some parts is
cubic and the sampling combinations rise to a point it’s even impossible to
calculate—. For these, the only solution is to increase the probability to
find a better register, without discarding combinations.

In our case our RANSAC will follow this concept with some adap-
tation. The first step will be better sampling with an intelligent filter to
reduce the size of the object. This filter has to delimit the number of points
to a viable quantity, but at the same time, these points have to cover all
the mesh as much as possible. Next, we will modify the correlation assign-
ment, the problem here is, that there is no information that could connect
the two objects. So we need a similarity index that uses the neighbors’
points’ information to describe what represents the point and another data
structure to know where is this point in the mesh —this data has to be
independent of the mesh rotation and position—.

1.1 Goals

The main goals for this project are:

CAD Processing
For how the scanner technology works all the points in the scan are

in a XY plane with an equal distance —i.e. scans are height fields defined
on a regular grid—. Following our intuition, a good starting point will be
having the target point cloud with the same requirements without losing
any information that could be helpful.

Coarse and Fine Registration
The common approach to this problem without extra information

is starting with an initial matching, and then doing a final alignment
with more accuracy. Also, to ease the problem you can make use of shape
correspondence, key features, or other filters.

In our case, the problem is the same. But keeping in mind that our

7

Introduction

scans are bigger, 2.5D —an XY plane with a f(X,Y) = Z as a function—
, and may include scanner noise and/or the sample may be worn out.
Furthermore, we want to automatize this process, so we need no user
input.

Error Calculation
Here we are working with a small scale, so the error has to be precise

and we need to know the precision for analytical use.

Visualization
The final result will have a macroscopic alignment but there will be

a lot of details with different ranges. Therefore we need tools to keep the
encoding and visualization as clear and understandable as possible.

1.2 Sections Organization

In State of the art as its name suggests we will start talking about
how the different registering fields have evolved. We will cite some relevant
writings here to make it easy for new people starting in this field and some
basic concepts. As an opening, we will show Sensofar’s scanners and
scanning techniques. Then we will comment on how 3D registration is
defined, how has evolved, and the main application. Also, we will mention
how other software solves this from a user perspective. In this section, we
won’t talk about CAD processing.

Next in Our Method we will start discussing the tasks needed to
reach our goal. Followed by what examples we’ve used and why. Then the
main text in this chapter, where we describe how the main goals have been
solved. And finally, some early tests and ideas we have commented on but
discarded or failed, and some subjective conclusions.

The final chapter Results presents all the results and their data.
Followed by, Conclusions, what we have concluded from it and what are
the following steps we identified to improve the time and stability.

8

2. State of the art

2.1 State of the Art at Sensofar Tech.

Currently Sensofar has many products for different applications, but
the two we have used for this project are the S Wide and the S Neox[29].
Also, the S Neox has a second model, the S Neox Five Axis, which has 5
degrees of freedom to move and obtain full 3D scans.

Figure 2.1. S Wide, S Neox, and S Neox 5 axis.

The S Wide is a special case because it only uses one technique
called fringe projection[10], where it uses two projectors to project multiple
known patterns in two different angles over the sample. Meanwhile, a
camera captures each pattern and computes the pattern curvatures to
reconstruct the depth information.

On the other hand, the S Neox has more techniques and they have
better precision.

Starting with the focus variation[3] and the confocal[1] techniques
they share a similar concept. They know the exact height position where
the camera is and detect if the pixel is in focus. The difference is in how is
detected the focus. While focus variation considers, from all the Z photos, a
point in focus as the one with higher contrast respect to its neighbors. The
confocal project light patterns to isolate the pixel and the in-focus point
is the one with the highest light —because the light beam converges at a
single point–.

9

State of the art

Finally the interferometry[1], here the optics divide the light beam in
two, one goes to the sample, and the other will go to the reference. Then the
computer receives the wave phase difference and computes the distance,
by determining the number of wave cycles —only knowing the wavelength,
Z position, and the wave phase—.

Technique Objective & Camera Number of Points XY resolution
Theoretical
Z resolution

Fringe Projection - & 5MP 2448× 2048px 14, 23µm/pixel 500nm

Focus Variation EPI 10x v35 & HD 1224× 1024px 1, 38µm/pixel 90nm

Confocal EPI 50x & 5MP 2448× 2048px 0.14µm/pixel 12nm

Interferometry DI 10x & 5MP 2448× 2048px 0, 69µm/pixel 0.01nm

Table 2.1. Characteristics of the scan surface density and resolution depending on the
scan technique, settings, and the sample we choose.

2.2 3D Registration and Retrieval

3D registration, it’s been a common problem since the classic ICP
algorithm[2], published in 1987, and it has evolved in complexity since
then. To start we need to differentiate rigid and non-rigid registration.
Where in one case we work with only affine transformation, while non-rigid
has more degrees of freedom due to it can be deformed. Though this defini-
tion has been popularized there are many ad-hoc problems depending on
the degrees of freedom like: time, predefined joins or skeleton constraints,
isometric or conformal deformations, how the deformation is defined, etc.

Registration is normally defined as a non-linear optimization prob-
lem. Given two models (S and T), any extra information (I), and defining
an error (E) and a transformation (T). We can describe the registration
solution space as fN−DoF (S, T, I) = {T , E} where the global minimum error
is the best registration. For this reason, the two most common methods
are optimization methods, and learning-based methods —especially in
non-rigid—.

Then we have two approaches intrinsic and extrinsic alignment,
depending on the information used for our algorithm. For the extrinsic
methods, the knowledge comes from both models in the same Euclidean
space. On the other hand, intrinsic methods consider each model to be in
a free-standing space and the information used is from internal proper-
ties. So in intrinsic methods, the data is transformed to another domain,
aligned, and replayed in the original domain.

Note that any extra data can be useful: model global position, color,
if the data is defined by the viewpoint, any known geometrical or point

10

State of the art

references...
One common critical step in most methods is computing the cor-

respondence between the models. Here there is a whole field of shape
correspondence. Where in this 2010 decade survey [28] the main approach
has been by defining compact map representations —like in functional
maps[23]—. Also, learning-based methods have proven to be efficient, and
in some cases, they are fully unsupervised[11].

The knowledge evolution has grown rapidly and diversified but here
is an overview of the timeline. The registration problem has been studied
for at least 40 years. As we can see in the IEEE 2013 survey [30] dur-
ing this time most approaches consist of adaptations to the sub-problem,
defining custom constraints for the correspondence, and trying different
optimization strategies.

Meanwhile, the computer vision field published SIFT[21] (an image
feature detector), and from this idea in 2010, the SHOT[33] algorithm was
presented. Two years before the slow version of FPFH was also published
PFH[27]. These two feature descriptors settle a generic solution using his-
tograms. From here there have been developed variants like B-SHOT[25],
and also some feature detector comparisons[12].

Recently a new survey on non-rigid registration[9] was published.
The number of register methods has grown and diversified significantly.
This includes learning-based methods where there is a need for more data
but it proved to be more resistant to noise. At the same time, we are seen
new scanning tools (reconstructions from monocular videos or real-time
video with gyroscopic information) with more noise, but they are able to
run on mobile phones.

In the essays we found several real field applications for this problem.
One important field is medical image analysis to compare different tests
(PET, MRI, etc.), currently, there are numerous software applications to do
this [14]. Another use is MOCAP where you may want to apply an avatar
to a captured motion and you don’t have the bones information[7]. Finally,
another common field is simultaneous localization and mapping (SLAM),
where they constantly acquire 3D data and map its estimated position
from their sensors and scanning[22].

2.3 Commercial Software

To see how is the commercial situation of this registration problem
we tested some software. We experimented with the Geomagic X Control
and Geomagic Warp, Gom Inspect Pro, and the Optoinspect demo. For
each program, we spent about 1/2h to testing and learning how the initial
alignment and best fit registration works, though they also include other

11

State of the art

alignment algorithms that require some geometrical input (curvature,
point, plane...). Also, the workstation for this was an Intel 11th Gen i7-
11700 with 32GB of Ram and NVIDIA GeForce RTX 3070.

After importing the files, we tested its Initial Alignment (which can
be configured to fast or precise) and it take less than a minute to get a
good initial approach to position and orientation, though it was almost
there. Next, we tried the Best Fit Alignment, the configuration here is more
elaborated and can affect both time and precision, but in general, it seems
it is a point filtering with an ICP. This operator deviates the registration
to the center of the mesh.

Figure 2.2. Registration using Geomagic Design X. Left: Using Initial Alignment. Right:
Best Fit Alignment.

Then the Gom Inspect 2016 includes an initial alignment called
pre-alignment algorithm than requires no geometrical input but it couldn’t
compute our input. All the other options require selecting some geometry
input, so we ended the test here.

Lastly the Optoinspect3D Inline Demo has only one algorithm and
its parameters are similar to the ones for an ICP and the behavior as
expected from an ICP. In the end, register was not possible.

In conclusion most software focuses on other algorithms using geo-
metric references values. Although it is quite interesting and remarkable
how the Geomagic has a really fast and almost correct initial alignment
—which may have a different strategy than ours—.

12

3. Our Method

3.1 Overview

Task
The main goal is to create a tool to compare a high-precision scan

surface with its original design. To do so, our first step will be to trans-
form both inputs into point clouds with the same properties so we can do
operations on both of them. The next step is to find the 6-DOF (3 Degrees
Of Freedom for translation and 3 for rotation alignment), at least a good
initial guess, that will ensure the preconditions for the following operators
and avoid local-solutions that in fact are false-positives. Finally, we have
to compute the precision and represent it in an intuitive visual interface.

CAD processing
CAD (Computer-Aided-Design) representation has many file exten-

sions. In our case, we will work with STEP files, a data exchange format
from the ISO 10303-21[13]. This format supports both tessellated and
boundary representations. In this form, we can have one or multiple
shapes. And each shape is a set of faces[32] (or features) and this face
describes a surface —i.e.: p-curve, plane, b-spline, etc., also the face can
include boolean modifiers to remove or include more surface parts—.

To transform this into a 3D triangle model, we need to tessellate
these faces. And next, reconstruct the mesh topology between faces —
without losing what point belongs to each face—. In order to do that, we
have to store the points describing the border and the interior of the face
in multiple sets, where the border can be repeated.

Coarse and Fine Registration
Here there are multiple problems. As mentioned previously, we need

to reduce the number of points. This can be approached by filtering the

13

Our Method

model but this can be approached with different ideas like: randomly,
averaging, or ranking the points.

Next step will be to study how these three filters can be combined to
give the best result.

In addition there is another limitation, our scan is a 2.5D mesh
and may or may not represent the whole CAD model —represent only a
sub-model—, increasing the number of outliers. For this, the data used
to assign correspondences have to consider not only the point itself and
its neighborhood’s local information but also where this point is with
respect to the whole mesh neighborhood. To do so, we can tweak a little bit
how the correspondence between points is done, and add this mesh space
information.

Finally for the fine registration, the task will start with the ICP. If
it’s not working well enough we will use the previous filters to optimize the
time and result.

Error Calculation
For the alignment error, the ICP can provide a global error value.

But for each point, we need an accurate point-to-cloud distance calculator,
because we have a lot of resolution in the scan, this can be approximated
with a point-to-disk distance.

Visualization
Here the work will consist in encoding the point error and represent-

ing it using a color map. Furthermore, to help visualize the differences we
tried some transparency policies, and last, a sectional cut to focus on the
zone of interest.

14

Our Method

3.2 Test Dataset

Figure 3.1. A) Calibration B) Diaphragm C) Stanford Bunny D) USB-B.

As we will see our algorithm is sensitive to points that don’t have
correspondents. This is a major inconvenience since forces us to have an
accurate CAD and its scan.

To evaluate the software we have four samples, each one more com-
plex than the previous:

Calibration The first one is a set of steps used in the S Neox scanner
to validate its accuracy. The scan was done using focus variation and has
5.706.848 points while its CAD design is composed of 91 faces. This is by
far the biggest and most accurate sample where all steps are unique.

Diaphragm Next is the diaphragm. Here we have the original design
model and a physically damaged scan. This has 1.005.886 points with 124

features. This set of circumscribed circles with two notches will test how
well it works with almost symmetric objects and some small noise.

Bunny Next we have the Stanford bunny, which was 3D printed
—from the CAD version— so we could have an accurate scan. The input is
2.454.548 points and 700 features. Here the differences are from the printer
error. The bunny has a similar curvature between the ears, crown, and
body, this creates many local-solutions that in fact are false-positives.

USB The last one is a USB-B and its 3D model from the internet.
It’s composed of 1.557175 points and 2.232 features. The 3D model was orig-
inally a high-detail triangle mesh, but in order to work, we simplified the
details and convert it to STEP file. Though the input is a simple geometric
mesh, the details won’t match since they are completely different.

15

Our Method

3.3 CAD processing

As we have commented in the task introduction, we will start by
remeshing the surfaces. For this we will read each CAD faces using UV

coordinates surface[31]. While tessellating, we will push the points in order
— forming a |V | × |U | matrix—. The tessellation will be proportional to the
scanner XY resolution leading to a theoretical regular distance between
points that we will call theoretical resolution length (RLT). The final vector
will be a concatenation of matrices of different sizes. At the same time,
we store the number of points for U and V dimensions, so we can retrieve
where the face starts and ends, which points are interior, border, or edges.
In some cases the design is done using boolean modifiers —if there are
holes or complex figures— that can be solved using a point-to-plane check
— with tolerance— and replacing the point with padding in the matrix (e.g.
using nan values).

Now the points are in a sorted matrix. We can reconstruct the inner
triangles trivially and mark the outer face points, as edges and corners. The
next will be to solve three possible problems. For this we took inspiration
from the common mending sewn problems:

Figure 3.2. Left: Common CAD processing. Center: UV tessellation without sewn, Red:
interior face; green: Edge; Yellow: Corner. Right: Tessellated mesh preserving
features ID.

Pin holes There are many points very close and they may be uncon-
nected. This can be detected with a k-nn (k-nearest neighbors), the input
will be all the points and a portion of the theoretical resolution length as
a radius (in our experience 0.5% is good enough). Once detected, choose
one to keep in the mesh, delete all the others, and update the classifier list
—interior, border, edge—.

Tears There are two faces sharing one edge, because there is a
constant resolution, they can be joined in a one-to-one association using
k-nn. The input will be the edge points and k equal to one.

Unstitched Edge This is like the Tears problem but the edges may
have a one-to-many relation. Now that the set of points —borders and

16

Our Method

edges— is smaller (approximately 3 times the number of corners) the
k-nn can work faster so we can increase the radius to the whole length
resolution.

This process has two drawbacks. First, you have to re-mesh the
whole object at the end of the “sewing” to update the triangle list. And
second, the length resolution has to be a multiple of the UV feature length.

The first problem sets a time and memory limit that in some cases
may affect our inputs since at a critical point we duplicate the memory
and we have a complexity of O(n log n), creating a bottleneck.

And the second problem can be adapted to our situation. The artifacts
increase when the length resolution is big and the mesh has many sharp
curves —we are losing information—, luckily this isn’t our case since we
use a small value. Furthermore, if the length is a bad multiple from the
U or V original face size, some edges points will not be the same as the
original, causing problems when we apply the Tears mending —merging
to the interior producing holes—. This can be patched by forcing that U
and V always include the last point. By doing this, the problem is reduced.

For our case, this can be accepted, as our objective is to obtain a point
cloud (with a regular distance, and good points and normals).

3.4 Coarse and Fine Registration

The process to fully align the two inputs will start with a rough
matching (coarse registration), for this, we will modify the IA RanSac, an
intrinsic method, to work better with our inputs. And for the accurate
alignment (fine registration) we will use the ICP[2].

Our work on this section consists of two parts. One is to optimize
the source and target points cloud to maximize the fitting by reducing
or increasing the number of points, and how it’s done. The second part
consists of adapting the IA RanSac to work better with the 2.5D scan,
and/or with a limited scan part.

Since this work is highly related to IA RanSac we will do an overview
of how it works. This algorithm is a random iterative process. In each
iteration, a kernel calculates a fitness score, and at the end, it returns the
best solution —there is no connection between iterations, it’s a random
brute-force approach—. The kernel has four steps:

1. The original algorithm samples a random number of points, defined
by the programmer as samples. At the same time, these samples are
constrained by a minimum distance they have to have between them,
this variable is defined by the programmer. Currently in the PCL library
this is done with an asymptotic time of O(samples ∗ |points|)[16].

17

Our Method

2. The kernel searches for the correspondence between these source sam-
ples and the target point cloud. This is done using k nearest neigh-
bors (k-nn) over a histogram that represents the features in the point
cloud. This histogram is computed using a Point Feature Histograms
(PFH or Fast-PFH alias FPFH)[27]. In the correspondence, to avoid a
false-positives, instead of assigning the nearest feature neighbor, the pro-
grammer sets a quantity of correspondences, and the algorithm chooses a
random correspondence in the top correspondences candidates.

• The key concept in this step is the FPFH. This feature evaluator has
the property that it’s not subject to the mesh rotation or position. The
process to compute the features is: Compute a k-nn for each point (the
programmer will set a k or radius for it). Now for each set using the
original point as a center, compute a Darboux frame, and finally com-
pute in which chunk resides each neighbor point respecting the frame
planes. The percentage distribution will be the final histogram.[15]

3. An estimated rigid transformation will calculate the matrix transform.
Now that we have the source samples and the target correspondences, we
can estimate the affine transformation using an SVD estimator (which
has a O(samples3) asymptotic time).

• The SVD estimator consists of: computing the centroid corrected ver-
sion of the point sets (centroid source = Ŝ, centroid target T̂). Prepare
the covariance matrix S = Ŝ ∗ T̂ T

and extract the SVD S = U
∑︁

V T to
obtain the optimal rotation matrix R = V UT . Finally you can construct
the transformation matrix computing the translation with t = Ŝ −RT̂ .
[17]

4. Once the source cloud is transformed, we can evaluate how accurate it
is with a fitness score. One option for this heuristic is the summation
of all the point-to-point distances. Because the programmer may have
a tolerance value, maximum distance, it could be used to normalize the
distance and clamp the value between zero and one —if it’s bigger than
the maximum—.

3.4.1 Part-to-Model

After studying how IA RanSac works we see that its major flaw is
that it’s able to understand how the points are distributed (edges, corners,
concave, convex, flat surface, etc... using the FPFHs the k-nn settings in a

18

Our Method

precise way), but this local information is the only concept being used for
the correspondence.

The problem with this is that the algorithm is ignoring the global
information between features. And it may attempt to connect two pairs of
features that are correct in the FPFH but looking at the whole mesh it’s
impossible —e.g. imagine that the source and the target both have two
curves very similar. But if you connect them, in the target the distance
between them is 3 units, and in source 10, it’s impossible to connect in
a 6-DOF, but the current correlation policy will consider this a target
candidate—.

A solution that Chu-Song Chen proposes at [5] is a constraint on
the target correspondence to be inside a radius described from the sample
points information.

Following this idea combined with the IA RanSac, the next step is to
apply this between-features information as a weight in the correspondence
assignment (instead of a binary filter). To do so, we try to match the
distance in the source samples with the distance in the target samples.

Given N source samples (SS = {0, ..., N}) over M target points (TP),
we can get the top K correspondences and sort them. The classic IA RanSac
correspondence will assign for each source point K target candidates (TCi).

∀s ∈ SS, TCs = {TP [fc(s, 0)], ..., TP [fc(s, k)]} (3.1)

Now the classic algorithm will select the final correspondence from
the target candidates randomly, forming a best target correspondence
(BTC). Following what we have mentioned, a better option will be to mini-
mize the distance difference between source points and target candidates.

classic: BTC = {rand(TC0), ..., rand(TCN)}

ours: BTC = {∀s ∈ SS| argmin
c∈TCs

(

N−1∑︂
n=0

|s− SS[n]| − |c−BTC[n]|)} (3.2)

This theoretical solution differs from the random approach in the IA
RanSac, and can’t be applied directly. Because it’s a recursive definition
and it lacks a base case or we may compute all the combinations and that
will be too expensive. To solve this, BTC0 will be selected randomly. Now
the definition is complete, but a deterministic solution is subject to local-
solutions, so we can form a final correspondence selector with a weighted
random using the distance.

final: BTC = {rand(TC0, [1, ..., 1]), ...rand(TCN ,WN)}

DN = ∀c ∈ TCs|
s−1∑︂
n=0

|SS[s]− SS[n]| − |c−BTC[n]|

WN = {∀c ∈ TCs|max(DN)−DN [c]} (3.3)

19

Our Method

This will make that the points with the smallest difference will be
the most probable to be selected.

Figure 3.3. Input: On the left is the source with the random samples and on the right is
the target.
Iteration: 1, On the left with a yellow circle, the sample is selected for the
target correspondence, and on the right, the random target is selected (for
these examples the random is always the correct one).
Iteration: 2, sample selected with its reference distance (left) and correspon-
dences with its distance to the previously selected correspondence.
Iteration: N, the last iteration testing all possible target correspondence dis-
tances against the source.

3.4.2 Sampling methods

Along the project we needed filtering operators. For that reason,
we developed a set of filters with different kernel ideas. These filters are
developed for general input, but some are more focused on one input than
another or may have a mandatory prerequisite.

Poisson Disk Sampling
Since we have the points dispersed in a 2D plane, we can adapt the

Poisson disk sampling radius (r) parameter to:

r ≈
√︁
|points|√

k
RLe (3.4)

Where k is the number of Poisson points and RLe is the empirical
resolution length calculated from averaging the distance from all the points
to the nearest neighbor. Although this is designed for 2D and 2.5D inputs,
this filter can also work with 3D input if it has a high point density and
k << |points|.

20

Our Method

FPFH Unique points
In the second paper of FPFH[26] they mention an approach to detect

unique points. This is an overview of how they did it. First, the FPFH
histogram1 will be interpreted as points in N dimensions, to compute the
euclidean distance. They consider that the histogram of these distances
should follow a Gauss distribution. From this, the distribution tails could
be considered unique —In their paper, they consider that the top less
common 5% are the unique points—. These points may be truly unique
or just outliers, for this reason, they do a double-check step. What they
propose is to calculate two FPFH unique point sets with incremental k-nn
(Pfi and Pfi+1) and validate the points with their intersection. Then if we
want a bigger or smaller set of points we compute n multiple FPFH sets
and join them as:

Pf =

n−1⋂︂
i=0

[Pfi ∪ Pfi+1] (3.5)

For our case we know we have a regular distance between points.
Knowing this prerequisite, the radius we used to calculate the different
sets is r = i ∗RLT .

Voxel Grid
For this, we simplify the points with a Voxel Grid algorithm from

the PCL library[19]. Here the points are hashed to a 3D grid where
a parameter (size) defines each voxel size. Then the final point is the
centroid of all the points in each grid. At the same time, the normal is
recovered for each new point. This new normal results from averaging the
old normals recovered using the new point and the voxel size.

P ′ = {∀V ∈ V oxel(P, size)|

∑︁
p∈V

p

|V |
}

N ′ = {∀p′ ∈ P ′|

∑︁
n∈k−nn(p′,P,size)

n

|k − nn(p′, P, size)|
} (3.6)

1The same histogram we talk about in the second step from Coarse and Fine
Registration

21

Our Method

3.4.3 Final Implementation

Figure 3.4. Flowchart of the different algorithms we will see and their input variables.

HDIA RanSac
To simplify the IA RanSac algorithm we’ve automated the user-

defined input variables (samples, minimum distance for the sampling
step, correspondence in the smart-random correspondence and maximum
distance for the fitness score).

Starting with the source samples selector, we are replacing the brute
force —double for loop with the variable minimum distance— check with a
Poisson Disk Sampling. This way we no longer need the parameter and
change the asymptotic time to O(k). At the same point, the number of
samples is defined using the smallest set of unique points

samples = clamp(mini=0n−1(|Pfi ∪Pfi+1|) ∗ percentage, 3,maximum) (3.7)

22

Our Method

This heuristic is based on the idea that the FPFH Unique points filter
is the union of the set of unique points, which means each set is composed
of the minimum points to define the model. Following this concept, if we
want the first registration then we should include a minimum number of
these particular points while keeping a good balance between outliers and
interesting points. For that reason, we tested a percentage, and empirically
this number should be around (5%, 25%). The clamp is to ensure we have
the minimum requisites for the SVD (3 points). And the maximum is
for hardware and complexity limitations, we don’t want the iterations to
become a bottleneck.

Next parameter we configured is the correspondence in the correspon-
dence step for our custom algorithm. The classic algorithm will work with
an arbitrary ratio of 1/100 (correspondence candidates/source points), but
with our part-to-model, a 5/100 ratio works better.

And finally, the fitness score is a custom fitness using point-to-disk
distance, the maximum distance will be replaced to 1/8 of the smallest
bounding sphere diameter (source S or target T) and the value will be nor-
malized with the number of points. This way our score will be a normalized
value for all inputs making it easy to read without changing its continuity
and with higher precision than the default point-to-point distance. To help
to understand this Score we also included the percentage of points inside
this threshold as QttyScore —this variable has no use except for better
comprehension—.

Score =

∑︁
p∈S min(

|DistanceToDisk(p, T)|
(D/8)

, 1)

|P |
(3.8)

Qtty Score =
|{p ∈ S|(D/8) > |DistanceToDisk(p, T)|}|

|P |
(3.9)

Where T and S are the target and source clouds.

For our hardware limitations, even though we optimized the sampling
process and limited the SVD size the k-nn search may become a bottleneck.
To avoid this we developed a pre-process where we do a Poisson Disk
Sampling filter to reduce the CAD and scan. This filtering is the maximum
that our hardware can handle, 40.000 points for the target and 1.650 points
for the source.

ICP
Since the coarse registration should lead to a close solution and we

don’t know for sure if we can have a perfect fit for each point, the ICP with
normals is our best option —The major problem from this algorithm is
that the correspondence points is selected from the shortest point-to-plane
distance. This may provoke that depending on the starting point, the best

23

Our Method

solution is an edge with a normal that ends in a non-existing plane. But
at the same time, in the case that the best position for a point may be
in between two points it’s possible, and the fitness error is lower than
standard ICP—.

The other configuration we have done is the parameters for the
termination criteria. In our case we want the best accurate transformation
matrix, for that, we want a decent amount of maximum iterations. And
the epsilons —differences between two iterations– will be small values,
this way the criteria will stop with the smallest precision. For example,
the transformation epsilon will be 1%RLe, for the transformation rotation
epsilon an angle of 1◦, and the other epsilons will be an arbitrary number
like 1−10.

Also, the parameter max correspondence distance will help to avoid
the sliding problem and we already know that this distance at least is at
1/8 of the bounding sphere diameter and for a more limited version we can
use a scalar of the resolution length.

Naive Global Optimizer
Now using the simplification, we’ve developed a naive global opti-

mizer. The idea is to try different simplifications —a similar concept to
LOD (Level Of Details)— and get the best results for the registration.
The concept behind this is that a global solution will be global for all
LODs (where the cloud is big enough to still be considered a valid model).
At the same time for some holistic reason, each LOD will have different
probabilities for all possible solutions (global and local). So we can work
with smaller samples to save time and achieve a better solution than the
original inputs.

24

Our Method

Figure 3.5. Visualization on how the input optimizer iterates through the selected LODs
to obtain the best coarse score in each step and improve the fine registration
with a better initial position.

Each LOD will consist in a Voxel Grid simplification followed by
the FPFH Unique points unique points extractor. Then it tries to run the
registration algorithms separately and stores the best result. Because we
don’t want to execute all LODs to save time, we will start from the smallest
point cloud, and execute only some iterations increasing the cloud size.

Here we can develop many policies depending and the registration
algorithms we have and how we combine them. We currently have three
registration algorithms: HDIA RanSac, ICP with the RanSac threshold
as the max correspondence distance, and the ICP with an even smaller
max correspondence distance using the resolution length. Our combination
approach will be a naive brute force. We will try the three algorithms,
and since the fine alignment depends on the current position, we will
execute the loop two times using the best know transformation matrix at
the moment.

To select the LODs, we have two options, random and ranged based.
In the random, we get a random value for the Voxel Grid length in each
iteration. While the range will have a pre-process. Here the user will set
the maximum resolution length to calculate the LODs and a process will
iterate increasing the resolution until it finds a minimum, defining the
minimum LOD as the one where the HDIA RanSac won’t need its random
filter to pre-process.

Also considering that the difference between two consecutive LODs
may not be significant, to test as much possible LODs, the stride length
between iterations will increase/decrease randomly. As mentioned previ-
ously we don’t need to execute all the range, so we will terminate the input
optimization after some iterations and if it isn’t good enough the user will

25

Our Method

resume it.

3.5 Error Calculation

At this point we will consider that the registration has found the best
solution and we will proceed to obtain the errors for the error analysis.

Computing The Error
For the error visualization we first need to obtain the values. This

error will be a point-to-disk distance. It consists of two steps: for each
point, p, get the closest point q with k-nn. Then using the q normal (n)
compute the point-to-disk distance. Where we basically first project the
point to the plane (p′), and next if it’s outside the disk, we move q in the
direction of p′ projecting it to the disk boundary (p′′). Also using the normal
we can know on which side of the plane is p to determine the sign.

Figure 3.6. Visualization of point-to-point, point-to-plane, and point-to-disk distances.

p′ = p− n ∗ (n · (p− q))

p′′ =

⎧⎪⎨⎪⎩q +
(p′ − q)

|p′ − q|
∗RL , if |p′ − q| > RL

p′ , otherwise

error =

{︄
|p′′ − o| , if n · (p− q) > 0

−|p′′ − o| , otherwise
(3.10)

Note that this method relays on having good normals and that the
point is close enough to its equivalent in the other mesh. This is because
the scanner may add a small noise in the cloud, and any small change can
affect the normals significantly. This can be palliated by averaging the
normals in some neighborhoods.

Precision
Now for a more analytical approach, we need to define a precision

value so our tool is complete. We will define the precision using the RMSE

26

Our Method

using the original inputs.

Precision =

√︄∑︁
p∈ScanDistanceToCAD(p, CAD)2

|Scan|
(3.11)

Note that the point-to-CAD distance algorithm is highly demanding
and not feasible for the number of points we are working with. For that
reason, we will do a fast random sampling from the scan. Because the
points are in a XY matrix, we can define and decide to sample N points

and compute a stride s =
|Scan|
N

, then the sample index will be the index
by the step plus a random value from one to the stride (index = iteration ∗
stride+ rand(1, stride)).

3.6 Visualization

For the error visualization we start with a classic Phong’s shading
where the point error is already known and received as an input in the
vertex shader.

Colormap Encoding
The encoding works with a [−1, 1] range and can be set to the classic

jet colormap or to a diverging color blind friendly colormaps (like PRGn,
RdYlBu or PiYG)[8].

Figure 3.7. Divergent colormaps.

For the jet colormap the range is linear so we transform the range
from zero to one where zero will be the negative minimum value and
one the maximum. On the other side, the divergent mapping will be
asymmetric starting with minus one as the smallest negative value, zero
with no changes, and one as the maximum positive.

Another key point is that the user can configure the minimum, and
maximum value to change the scale and increase the resolution for smaller
values.

clipping Plane
The scans can have many details and concave zones, so a tool to

discard the rendering in some parts can help the visualization. For this,
I’ve just added a clipping plane check in the fragment shader that discards

27

Our Method

the outside fragments.

Transparency
Showing the two objects in the same position may be difficult to

visually understand. To solve this problem, we have many options:

• Disable the rendering for one of them.
• Render the model with uniform color.
• Render the model with transparency.

For the transparency policy we propose two options, one is a low but
constant alpha with the same color as the uniform option. And the other is
defining alpha as equal to the error squared clamped to a minimum and a
maximum value –avoiding full transparency or opacity—.

Interpolation
Though the data is calculated per-vertex the error could be sent to the

fragment shader where the value will be interpolated linearly. Most users
are experts and understand that the scan is a point cloud (represented
as a mesh), so although the colors look sharper this interpolation may be
interesting to disable (using the GLSL flat keyword).

3.7 Further Considerations

Even though the main concept for this project is an approach to
6-DOF registration with a high-density cloud, throughout the project with
the help of my supervisor, tutors, and other contributors we found some
attractive ideas that may be interesting to study, take into consideration
or we couldn’t explore them enough with the minimum rigor:

• A first thought was to simulate the real scanning camera and scan
the whole CAD like the real instrument. The camera will follow a Gaussian
map from the model (figure 3.8) this way the rendering will be perpendicu-
lar to the scanning zone simulating the scanning process. And next, this
will be registered using the result as a 2D image. Though the prototype
showed positive results, it was probably that it had bad scalability. Also,
a major drawback was how occlusions were a double edge that may help
or may make the problem unsolvable. On one hand, if the scanner was
positioned at the same position as our simulation, we will have the same
occlusions view. But if for some reason the scanner wasn’t positioned
perpendicular to the sample (with some angle) the solution will never be
found. For that reason, this was discarded.

28

Our Method

Figure 3.8. A Blender node shader to simulate the scanner behavior, and its result using
OpenCV.

• One interesting idea for a simplification method was using spectral
spaces. Following chapter four (Spectral transform) from [6]. We could
do a Fourier-transform-removing to change the space, remove the lower
frequencies, and change back again. The idea behind this is that the CAD
has less texture and detail (only the basic high frequencies) than the scan,
meanwhile, the scan is formed from a lot of small detail —an scan may be
3.5cm and the points are 14.5µm a part—, so basically it has a lot of high
frequencies that can be removed (another good point is that in fact is a 2.5D
mesh, so it could be interpreted as a 2D wave). The only inconvenience in
this is its major complexity to develop.

• For the registering we knew that the PCL library[18] would already
have a starting point. But they have many options (Trajkovic Keypoint
3D, ISS Keypoint 3D, etc...). Ultimately we found the IA RanSac[26]
and thought its first solution was poorly with raw input, its parameter
was intuitive enough and maybe the solution could be found after many
executions with different parameters.
After a lot of execution time, we couldn’t find any solution, even though
we were changing the parameters, the score was stuck in a big area and
all of them were local-solutions. This was counter-intuitive because the IA
RanSac was working fine with simple 3D models. That’s why we started to
work on reducing the cloud size and optimizing for matching a model with
only a sub-part (part-to-model).

• Another interesting property in the IA RanSac was that the matrix
estimation could be configured. The PCL already includes some options,
SVD (Singular Value Decomposition), LM (Levenberg Marquardt-based),
DQ (Dual Quaternions), Transformation Estimation with 3 Points...

After doing some research we considered keeping using the SVD.
Because it was a numerical method (LM is iterative), we won’t worry
about estimated eigenvalues, it’s simple (DQ offers a matrix that can be
interpolated), and the input can be any number of points. A. Lorusso did
a comparison of different matrix estimators and conclude that the most

29

Our Method

stable and general option is SVD[20].

• One big inconvenient we found is that the error in the CAD-Scan
has to be simple (wear not too destructive, only a small missing zone,
no infinite ground, etc.) but if the two models have some parts that are
completely wrong, they can’t be registered. For these, we’ve added a section
in the results chapter Sensitivity And Robustness.

• At some moment, we exported an early version of our IA RanSac
(HD IA RanSac) algorithm to another system where it works with any 3D
model. There we tested the Part-to-Model optimization with common 3D
models and it showed better results than the classic algorithm. Though
this optimization was especially thought for big clouds where the global-
solution is more occluded this kind of optimization seems interesting and
may need more exploration.

Figure 3.9. Captures and final error from registering only using only 1000 iterations. The
only difference in the Part-To-Model is applying the optimization.

30

4. Results

4.1 CAD processing

The two configuration variables for CAD processing are the theoreti-
cal resolution length and the plane check tolerance —if it’s necessary—.
One important note is that the code has two parts that can be concur-
rent1: the CAD feature tessellation; and the update on the triangle list on
remeshing the deleted points.

Input Features
Open Cascade

CAD Points 2
Open Cascade

CPU Time Resolution3
Our Approach

CAD Points
Our Approach

CAD Time1

Calibration 91 3.594 0,033s 118,896 6.905 17,547s | 10,435s
” ” ” ” 371,716 573 2,218s | 0,376s

Diaphragm4 124 98.376 0,414s 92,147 44.159 101,995s | 33,358s
” ” ” ” 386,851 468 1,639s | 0,285s

Bunny 700 207.876 0,944s 168,262 124.950 49,107s | 11,412s
” ” ” ” 595,394 6.740 2,226s | 0,377s

USB 2232 6.696 0,252s 142,707 679,49 24,604s | 24,605s
” ” ” ” 679,49 166 2,073s | 2,073s

Table 4.1. Times from Open Cascade triangulation[4] and our tessellated CAD with differ-
ent resolutions. Averaging 3 executions.

As we can see in the table 4.1, our method is slower even when
we create fewer points than the Open Cascade. At the same time if we
need to do a point-to-plane check the time increases a lot and may break
the regular distance property. Another important concept we can see is

1Time is expressed as (CPU time | execution time)
3Open Cascade process the cad with split edges.
4This is the empirical resolution length (RLe). Reference: SensoSCAN SWide:
14.16 and SensoSCAN SNeox: 2.76

31

Results

how the number of features is a bottleneck, the USB design is composed of
triangles and this is counterproductive in the processing.

4.2 Registration

For this section we will see the time (execution, CPU, and real time)
and its accuracy for each method we develop. Also, we tested how the noise
and the cleaning process for the same input with different criteria can
affect the registration process. Finally, we show how an experienced user
can reduce the execution time using some operators.

While the fitness is quite easy to understand as a precision value,
one way of interpreting the score and qtty score is using the qtty score as a
percentage of points in the threshold (D/8) range and the score as a mean
divided by the threshold —considering the penalization in the qtty score—.

Although these variables can be used to evaluate the registration
each input is different and may have some local-solutions at different
points. Here are some examples to visualize these values.

Figure 4.1. Upper row: true-positive solution. Lower row: false-positive of some local-
solutions. The value in each picture is the score.

4.2.1 Sensitivity And Robustness

Cleaning Process
Normally, after the scanning the user cleans the data using the

SensoView software, this cleaning process depends on the next usage,
purpose, and the scanning quality (despike, background removal, restoring
missing points...), so it isn’t always the same.

For this reason we tested how different approaches may end up.
The first one will be a rough cleaning, only removing the background
(diaphragm raw), next we will reconstruct the mesh and create a moderated

32

Results

recreation (diaphragm), and finally, a strict cleaning, ensuring all points
are real (diaphragm flat).

Figure 4.2. Diaphragm raw: only cropping the diaphragm circle.
Diaphragm: same but also the inner circle is cropped and the missing points
are restored.
Diaphragm Flat: Limited depth to the known diaphragm notches.

Input
HDIA RanSac

Score
HDIA RanSac

Qtty Error
ICP

Fitness (µm)

Diaphragm Raw 0,502 0,394 951,595

Diaphragm 0,486 0,39 551,168

Diaphragm Flat 0,419 0,334 686,360

Table 4.2. Results after a geometric filter to the scan followed by an HDIA RanSac and a
normal ICP. The coarse registration is the mean of 5 executions and 8 threads
and the fine is just 5 execution.

As expected, the raw input has the worst registration. But interest-
ing enough the coarse registration was better in the strict (Diaphragm Flat)
version than in the moderated one, even so, the ICP fixed this deviation.

Noise
Another inconvenience that may occur is that the scanning process

was careless and the result includes a lot of noise. We tested how strong
was the RanSac algorithm to see how it may deviate.

To do so we used the Calibration input –is the input with less noise
we have and there is no symmetry—. The process consisted of: simplifying
to save time, adding noise to the scan cloud points on the Z axis, recon-
structing the normals with a normal estimator, proceeding to an HDIA
RanSac, recovering the original cloud, and computing the plot values using
a threshold of 1mm.

33

Results

Figure 4.3. In red we have the reference value (no jittering), blue worst, and green better.
This result is from averaging 11 executions and the threshold for the score
values is 1mm for all of them. The resolution length for the models was: Scan
98, 37um and CAD 109, 94um.

The noise has a clear effect here and the RanSac was given good
initial results up to 2, 5mm, then it gets worse until at 5mm the registration
is useless. One interesting observation, is how the variability at zero noise
is really small (not noticeable in the picture) and this variability increases
the next 0.1mm and then it stabilized for all the samples around 0.1mm

and 0.5mm. But after that the RanSac stability is chaotic. Mention again
that this plot shows 11 executions where the result is the top value from
8.000 iterations (1.000 iterations by 8 threads).

Since the jittering offered a substantial improvement we repeated the
experiment using the Diaphragm input and with two different resolutions.

34

Results

Figure 4.4. Score, Qtty Score, Mean and standard deviation from 0 to 1.1mm. Here the
input resolution for the CAD is 92um and for the scan 203um. This figure is
from the results of 3 executions.

Figure 4.5. Jittering values with CAD resolution 92um and scan 128um. This figure is
from the results of 3 executions.

After this, we attempted to implement this idea in the registration
adding a Z jittering of half the resolution length (RLe) before the RanSac.
Using the bunny input and only applying a Voxel Grid filter to 20 on both
models, we got a good coarse registration —good enough for finishing with
a fine registration— in 1m6s.

4.2.2 HDIA RanSac

An execution is done using 8 HDIA RanSac threads where each one
executes 1.000 iterations. Also, the input had already done the pre-process
globally, and the final score is the best of them. For better quality in this
table 4.3, we used the values of each thread in the score.

35

Results

Input Score Qtty Score
Time1

Pre-process
Time1

HDIA RanSac

Calibration 0,004 0% 539,578s | 395,912s 508,867s | 65,798s
Scan at 13.729

Points 0,041 0% 0,804s |0,113s 883,168s | 111,670s

Diaphragm 0,03 0% 95,632s | 69,888s 1196,44s | 154,26s
Scan at 2.695

Points 0,5 39,888% 2,215s| 0,296s 233,012s | 30,041s

Bunny 0,254 3,26% 227,691s | 164,901s 909,541s | 116,992s
Scan at 20.806

Points 0,537 31,466% 4,118s | 0,709s 1400,085s | 177,178s

USB 0,024 0% 150,3s | 110,939s 392,576s | 50,832s
Scan at 9.060

Points 0,351 16,782% 0,673s | 0,097s 533,638s | 68,627s

Table 4.3. The time is from 3 execution and the score is from averaging the 8 threads (24
in total). These results are from the original input —All scan points and the
CAD at the highest resolution (Table 4.1)— and the second result where the
scan had a Geometrical filter to a size lower than the HDIA RanSac scan limit.

The concurrency here is done in the FPFH Estimation from PCL
(pre-process) and in the 8 threads. As we can see the feature estimator
is quite fast and the Poisson Disk Sampling sampling for a high number
of points, 40.000, is quite bad. At the same time, reducing the number of
in some cases increases the time, this is due that the k-nn is working by
distance and the data structure is slowing down.

Despite that this may be interesting. The overall time is lower and
in some cases, the penalization in the score values is good enough for a
coarse registration. The drawback of this is that this is not linear and the
correct size is hard to find.

4.2.3 Input Optimizer

Input
Random

Score
Random
Time1

Ranged
Score

Ranged
Time1

Calibration 0.013 9410,38s | 1348,460s 0.0003 617,517s | 177,576s

Diaphragm 0.006 10028,9s | 1347,44s 0.018 282,588s | 61,734s

Bunny 0.148 19405,7s | 2858,81s 0.136 340,205s | 257,155s

USB 0.019 12180,6s | 1660,86s 0.022 227364s | 55,366s

Table 4.4. Results from one sample with the original input. And the ranged time doesn’t
include the minimum LOD searcher pre-process time and the maximum LOD
is 1 time its resolution.

36

Results

Note that the table 4.4 includes both coarse and fine registration, and
we are doing 5 (2 times as mentioned in Naive Global Optimizer) iterations
from minimum to what the random stride arrives. Another interesting
observation is that the ranged time has the best times so far and in some
cases is good enough, although the same random optimizer proves that
they aren’t the global solution.

Figure 4.6. Histogram of the different scores obtained by the HD IA RanSac for different
LODs and its global score.

4.2.4 Learning Curve

As we have seen so far, the trading between cloud size and our
software precision has potential even though in some situations or the
score is a local-solution or the time is too big to consider it good enough.
For that reason, we have done some manual executions combining our
operators to find what could be considered a good solution.

Input Recipe Real Time Score

Calibration

1) Geometrical filter to the scan at 50
2) Ranged local optimizer at [1, 10]5

3) Limited ICP 3m 42s 0,0001

Diaphragm
1) Geometrical filter to the scan at 20
2) Random local optimizer 14m 52s 0,0096

Bunny

1) Ranged local optimizer at [200, 50]5

2) Geometrical filter both clouds at 20
3) Limited ICP 6m 10s 0,015

USB

1) Geometrical filtered to the scan at 5
2) Normal smoothing at 200
3) Ranged local optimizer at [1, 10]5

4) Limited ICP 5m 13s 0,0067

Table 4.5. Process to get the best results, time from the opening until closing the applica-
tion, and final score.

37

Results

As we can see in the table 4.5. The times and score improve con-
siderably only by starting with a bigger LOD and a final ICP limited to
the 10 times resolution length, another interesting operator is smoothing
the scan normals —any small scanner noise can change drastically the
normals—. The drawback is that knowing the initial LOD is particular to
each input.

4.3 Visual Representation

4.3.1 Error Calculator

Here we have some values of how much time costs to smooth the
normals to reduce the noise and compute the distance values. For the
moment we computed both distances from CAD to scan and vice-versa
since we are using a point-to-disk approach we could reduce the CAD size
to speed up the time.

Input
Smooth Normals

Time1 CPU Time

Calibration 8,331s | 2,963s 11,435s

Diaphragm 9,142s | 2,034s 2,156s

Bunny 308,863s | 39,837s 4,217s

USB 3,666s| 1,147s 2,523s

Table 4.6. Smoothing and error extracting times from 3 executions.

For the precision, we did multiple executions to see how the sam-
pling could variate. In table 4.6, we started using a 5% sampling but the
execution time was too big and we limited it to the minimum between the
5% and 50.000 samples. Another optimization we added is to execute in
concurrent the CAD distance calculations.
5[biggest cloud size, stride to search the minimum]
6This input has some false local solution around this value and the solution is not
stable
7The solution is not stable. The simple reason is that an upside-down register is
worst in the connector but better in strain relief

38

Results

Input Time1 Precision Standard Deviation

Calibration 275,6s | 37,7s 3,58 µm 0,008

Diaphragm 916,8s | 131,0s 521,67 µm 0,020

Bunny8 19,49h | 2,49h 2,10 µm -

USB 1.383,8s| 194,9s 1.100,13 µm 0,051

Table 4.7. Precision values and its time. Average of 5 executions.

As we can see, in the table 4.7, the sampling looks stable but the
computing CAD distance is highly demanding and almost impossible in
the Bunny input where the scan is a subset of the CAD. Interestingly
enough the precision values seem positive. Though theoretically, we are
encapsulating the three errors in one value (scanning noise, registration
error, and wear/input error) the precision offers a good uncertainty for
an analysis, when the input has small differences like the Calibration
and Bunny. But this encapsulation is disturbing the Diaphragm precision
which has many input differences.

4.3.2 Visual Comparison Toolkit

Tough to extract some real results we should do user testing. For the
moment we can see that the values can be easily visualized and configuring
the color range is useful.

Also subjectively, having the two models at the same time is a little
hard to understand but our Transparency options offer good options: Using
a mate color for one of them is better to understand only the missing mate-
rial of one part; having constant transparency is handy in the exchange of
some color perturbations but let the user compare how much is missing
and how much material is left; and the transparency following the error
has a subtle difference but has a less information in the screen, offering
cleaner image. We collected all options using the Bunny data set (Figure
4.7).

39

Results

Figure 4.7. Some visualizations of the Bunny sample. On the left, we have both at the
same time, and in the upper row, we have the CAD as a priority and the lower
the Flat. From left to right: both, only one, the secondary with constant color
and the secondary with constant transparency.

One big flaw we can see is that we have 2.5D data, they aren’t
solid, and they may represent only a part of the CAD design. So when
we compute the encoding for those points the sign of the value may be
wrong. For those cases, the clipping Plane can be helpful to remove this
kind of outliers (Figure 4.8). Another problem we can see here is when the
CAD resolution isn’t enough and we can see the borders of two disks with
different normals.

Figure 4.8. Clipping Plane on the Z axis to clean CAD outliers.

Another interesting observation is that the shader interpolation
for the values is quite handy for CAD visualization since the faces are
considerably big. But this interpolation in the scan may trick the user into
a thing this is a continuous value instead of a discrete one that already
has a high density (en example is illustrated in Figure 4.9).

40

Results

Figure 4.9. Interpolation on/off for CAD and Scan error. Note the dotted circle is high-
lighting differences.

Finally the color maps we selected seems to be informative and
helpful to understand the error (Figure 4.10).

Figure 4.10. All 4 colormaps we implemented on the USB input and CAD are transparent
following the error.

41

5. Conclusions

5.1 Results Discussions

After collecting all the results we can extract some discussions.
From the CAD processing we can conclude that the times are worst

than normal processing. We achieved our goal for the regular distance
point cloud, but there are some ill inputs that need a different approach.

The Registration showed good results, the algorithms are subject to
how accurate the cleaning and scanning process is, but our algorithm is
robust enough to find a good solution.

Our first consideration —having the two inputs with a similar regu-
lar distance— was almost correct. Still, we didn’t consider the magnitude
of the worse case. When the regular distance adds a constraint to the SVD
transformation matrix approximation and the best solution is obstructed
—e.g. trying to match two waves with the same frequency but different
phases—. Now with the jittering results, we see that having the two inputs
with similar RL and jittering one a little bit increases the efficiency.

At the same time the LODs concept is partially valid, the jittering
makes more accessible the global-solution but the high-density points we
have is unfeasible and this idea could be reused for validation criteria or
time optimization.

In the visualization we need a user study to determine the viability
of the transparency policies and interpolation.

Also we overestimated how the point-to-disk distance works and
in some cases we have small artifacts because of bad normals and/or
low-density points in some regions. Maybe we should consider a clas-
sic approach point-to-mesh, which may be slower, or improve the CAD.
Nevertheless, these artifacts have an easy fix.

42

Conclusions

5.2 Final Conclusion

The toolkit we have developed includes enough options to have a
good registration and visualize the error in a reasonable amount of time.
But depending on the input complexity and the user experience the auto-
matic options aren’t good enough and a manual solution should be done.
Even though the operator parameters are simple (one or none) and can be
scripted so the recipe solution can be reused.

On the bad side our CAD processing depends a lot on how well is
designed the input. The time increases badly and if it’s built using boolean
operators the time suffers a big penalization and also the regular distance
between points may not be achieved.

At the same time we adopted the IA RanSac to speed up its time,
have better results, and parameterized its input parameters to reduce it
to number of iterations and two optional more, percentage and correspon-
dences. Also, the LODs strategy we found seems a starting point to solve
the registration problem for our input magnitude or bigger.

For the error visualization we have a completed set of options to view
the error in different scales and keep track of the reference model.

5.3 Future work

The major drawback in the CAD processing is merging the Tears and
its time increases with the number of features, one way to optimize this is
creating a better data structure to configure the k-nn by features and not
only interior-border points.

Our HDIA RanSac can be enhanced. First, there is no information
shared between iterations so we can paralyze a lot more. But also the
Part-to-Model is incomplete. For instance, we are ignoring the vectors’
direction between samples and our distance idea can be applied similarly
to the angle. A more elaborated idea could be a second level of features
similarity evaluation to weigh the random.

The Naive Global Optimizer is a naive solution to prototype the vi-
ability of the LODs concepts. With the results we have, we can say that
this idea can be improved. Starting with the pre-process of finding the
minimum LOD, we can automate with a binary search. Again the LODs
are causing a bottleneck because we are repeating the Voxel Grid simplifi-
cation, this can be computed once and stored for later reuse.

Also. after adopting the jittering depending on the LOD detail, we
could use this optimizer with the simulated annealing method. Using this
method we can define many options. Like a dynamic number of iterations
depending on the LOD —for example, the Bunny can find the solution with
only 80 iterations, in contrast, the USB needs the 8.000—, or a termination

43

Conclusions

criteria, or even a voting IA classifier for the coarse alignment.
For the Precision value we can have better times if instead of measur-

ing against the whole CAD for every point, we detect first the CAD features
candidates with the feature borders points and the inner points will be
only against a subset of features and not the whole design. Simultaneously
this optimization will help to what a good sampling ratio may be. And
another interesting topic could be a new precision definition to separate
the three errors (scanning noise, registration error, and wear/input error).

The visualization we need user feedback to know if Transparency
has potential. At the same time, the visualization is interesting, but this
data should be exportable and quantifiable.

44

6. References

Bibliography

[1] Roger Artigas, Ferran Laguarta, and Cristina Cadevall. Dual-technology
optical sensor head for 3d surface shape measurements on the micro- and
nanoscales. In Wolfgang Osten and Mitsuo Takeda, editors, Optical Metrology
in Production Engineering. SPIE, September 2004.

[2] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d
point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-9(5):698–700, 1987.

[3] Carlos Bermudez, Pol Martínez, Cristina Cadevall, and Roger Artigas. Ac-
tive illumination focus variation. In Peter Lehmann, Wolfgang Osten, and
Armando Albertazzi Gonçalves, editors, Optical Measurement Systems for
Industrial Inspection XI. SPIE, June 2019.

[4] Open CASCADE. Brepmesh_incrementalmesh class reference. https://dev.

opencascade.org/doc/refman/html/class_b_rep_mesh___incremental_mesh.html.

[5] Chu-Song Chen, Yi-Ping Hung, and Jen-Bo Cheng. RANSAC-based DARCES:
a new approach to fast automatic registration of partially overlapping range
images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(11):1229–1234, 1999.

[6] Daniel Cohen-Or, Chen Greif, Tao Ju, Niloy J. Mitra, Ariel Shamir, Olga
Sorkine-Hornung, and Hao (Richard) Zhang. A sampler of useful computa-
tional tools for applied geometry, computer graphics, and image processing.
CRC Press, 2020.

[7] Stefano Corazza, Lars Mündermann, Emiliano Gambaretto, Giancarlo Fer-
rigno, and Thomas P. Andriacchi. Markerless motion capture through visual
hull, articulated icp and subject specific model generation. International
Journal of Computer Vision, 87(1):156, Sep 2009.

[8] Mark Harrower Cynthia Brewer. Color brewer 2.0. https://colorbrewer2.org/

#type=diverging&scheme=RdYlBu&n=11.

[9] Bailin Deng, Yuxin Yao, Roberto M. Dyke, and Juyong Zhang. A survey of
non-rigid 3d registration. Computer Graphics forum, 41:559–589, 2022.

[10] Sai Siva Gorthi and Pramod Rastogi. Fringe projection techniques: Whither
we are? Optics and Lasers in Engineering, 48(2):133–140, 2010. Fringe
Projection Techniques.

45

https://dev.opencascade.org/doc/refman/html/class_b_rep_mesh___incremental_mesh.html
https://dev.opencascade.org/doc/refman/html/class_b_rep_mesh___incremental_mesh.html
https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=11
https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=11

References

[11] Oshri Halimi, Or Litany, Emanuele Rodola Rodola, Alex M. Bronstein, and
Ron Kimmel. Unsupervised learning of dense shape correspondence. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, June 2019.

[12] R. Hänsch, T. Weber, and O. Hellwich. Comparison of 3d interest point
detectors and descriptors for point cloud fusion. ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, II-3:57–64,
August 2014.

[13] Industrial automation systems and integration — product data representa-
tion and exchange — part 21: Implementation methods: Clear text encoding
of the exchange structure. Standard, International Organization for Stan-
dardization, Geneva, CH, March 2016.

[14] András P. Keszei, Benjamin Berkels, and Thomas M. Deserno. Survey
of non-rigid registration tools in medicine. Journal of Digital Imaging,
30(1):102–116, October 2016.

[15] Point Cloud Library. impl/fpfh.hpp. https://github.com/PointCloudLibrary/pcl/
blob/master/features/include/pcl/features/impl/fpfh.hpp#L238.

[16] Point Cloud Library. impl/ia_ransac.hpp. https://github.com/

PointCloudLibrary/pcl/blob/master/registration/include/pcl/registration/

impl/ia_ransac.hpp#L79.

[17] Point Cloud Library. impl/transformation_estimation_svd.hpp.
https://github.com/PointCloudLibrary/pcl/blob/master/registration/include/

pcl/registration/impl/transformation_estimation_svd.hpp#L129.

[18] Point Cloud Library. Module registration. https://pointclouds.org/

documentation/group__registration.html.

[19] Point Cloud Library. pcl::voxelgrid class reference. https://pointclouds.

org/documentation/classpcl_1_1_voxel_grid_3_01pcl_1_1_p_c_l_point_cloud2_01_

4.html.

[20] Adele Lorusso, David W Eggert, and Robert B Fisher. A comparison of four
algorithms for estimating 3-D rigid transformations. Citeseer, 1995.

[21] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, November 2004.

[22] A. NÜCHTER. 3D Robotic Mapping The Simultaneous Localization and
Mapping Problem with Six Degrees of Freedom. Springer, 2009.

[23] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and
Leonidas Guibas. Functional maps. ACM Transactions on Graphics, 31(4):1–
11, August 2012.

[24] Gianluca Percoco, Maria G. Guerra, Antonio J. Sanchez Salmeron, and
Luigi M. Galantucci. Experimental investigation on camera calibration for
3d photogrammetric scanning of micro-features for micrometric resolution.
The International Journal of Advanced Manufacturing Technology, 91(9-
12):2935–2947, 08 2017. Copyright - The International Journal of Advanced
Manufacturing Technology is a copyright of Springer, (2017). All Rights
Reserved; Última actualización - 2019-07-23.

[25] Sai Manoj Prakhya, Bingbing Liu, Weisi Lin, Vinit Jakhetiya, and
Sharath Chandra Guntuku. B-SHOT: a binary 3d feature descriptor for fast
keypoint matching on 3d point clouds. Autonomous Robots, 41(7):1501–1520,
December 2016.

46

https://github.com/PointCloudLibrary/pcl/blob/master/features/include/pcl/features/impl/fpfh.hpp#L238
https://github.com/PointCloudLibrary/pcl/blob/master/features/include/pcl/features/impl/fpfh.hpp#L238
https://github.com/PointCloudLibrary/pcl/blob/master/registration/include/pcl/registration/impl/ia_ransac.hpp#L79
https://github.com/PointCloudLibrary/pcl/blob/master/registration/include/pcl/registration/impl/ia_ransac.hpp#L79
https://github.com/PointCloudLibrary/pcl/blob/master/registration/include/pcl/registration/impl/ia_ransac.hpp#L79
https://github.com/PointCloudLibrary/pcl/blob/master/registration/include/pcl/registration/impl/transformation_estimation_svd.hpp#L129
https://github.com/PointCloudLibrary/pcl/blob/master/registration/include/pcl/registration/impl/transformation_estimation_svd.hpp#L129
https://pointclouds.org/documentation/group__registration.html
https://pointclouds.org/documentation/group__registration.html
https://pointclouds.org/documentation/classpcl_1_1_voxel_grid_3_01pcl_1_1_p_c_l_point_cloud2_01_4.html
https://pointclouds.org/documentation/classpcl_1_1_voxel_grid_3_01pcl_1_1_p_c_l_point_cloud2_01_4.html
https://pointclouds.org/documentation/classpcl_1_1_voxel_grid_3_01pcl_1_1_p_c_l_point_cloud2_01_4.html

References

[26] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature
histograms (fpfh) for 3d registration. In 2009 IEEE International Conference
on Robotics and Automation, pages 3212–3217, 2009.

[27] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Michael Beetz,
Intelligent Autonomous Systems, and Technische Universität München.
Persistent point feature histograms for 3d point clouds. In In Proceedings
of the 10th International Conference on Intelligent Autonomous Systems
(IAS-10, 2008.

[28] Yusuf Sahillioğlu. Recent advances in shape correspondence. The Visual
Computer, 36(8):1705–1721, September 2019.

[29] Sensofar Tech. SL. Sensofar industry & research. https://www.sensofar.com/

metrology/industry-research/.

[30] G. K. L. Tam, Zhi-Quan Cheng, Yu-Kun Lai, F. C. Langbein, Yonghuai Liu,
D. Marshall, R. R. Martin, Xian-Fang Sun, and P. L. Rosin. Registration of 3d
point clouds and meshes: A survey from rigid to nonrigid. IEEE Transactions
on Visualization and Computer Graphics, 19(7):1199–1217, July 2013.

[31] Open CASCADE Technology. Shapeanalysis_surface class reference. https:

//dev.opencascade.org/doc/refman/html/class_shape_analysis___surface.html.

[32] Open CASCADE Technology. Topods class reference. https://dev.opencascade.

org/doc/refman/html/class_topo_d_s.html.

[33] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique signatures
of histograms for local surface description. In Computer Vision – ECCV 2010,
pages 356–369. Springer Berlin Heidelberg, 2010.

47

https://www.sensofar.com/metrology/industry-research/
https://www.sensofar.com/metrology/industry-research/
https://dev.opencascade.org/doc/refman/html/class_shape_analysis___surface.html
https://dev.opencascade.org/doc/refman/html/class_shape_analysis___surface.html
https://dev.opencascade.org/doc/refman/html/class_topo_d_s.html
https://dev.opencascade.org/doc/refman/html/class_topo_d_s.html

A. Resources

List of software

• Programming languages: c++20, python3.6, bash
• Build automation: Cmake (v3.16.3)
• OpenGL API: gl3w, openGL4.6-freeglut
• UI: Imgui (v1.86)
• CAD: OpenCASCADE-OCCT (v.7.6.1)
• Maths: Eigen (v.3.4.0)
• Point cloud: PCL (v1.12.1)
• kd-tree: nanoflann (v1.3.0)
• zip: LibZip (v1.8.0)
• XML: rapidXML (v1.13)

List of Tools

• OS: Ubuntu 20.04
• Github
• Atom
• Paint.net
• Overleaf
• Grammarly
• DrawIO
• SensoView 1.9
• FreeCAD 0.19
• Blender 3.2
• Kazam 1.4.5

List of Hardware

• SensoSCAN S Wide
• SensoSCAN S Neox
• Formlabs Form 3, Form Wash and Form Cure
• Lenovo Ideapad 530S-14IKB Intel1 Core i5-8250U/8GB/256 SSD/14"

1CPU with 4 cores, 8 threads and a max frequency 3.40GHz

48

https://github.com/skaslev/gl3w
https://github.com/ocornut/imgui/blob/master/docs/README.md
https://git.dev.opencascade.org/repos/occt.git
https://gitlab.com/libeigen/eigen
https://github.com/PointCloudLibrary/pcl
 https://github.com/jlblancoc/nanoflann
https://github.com/nih-at/libzip
http://rapidxml.sourceforge.net/

Timesheet

Field Time (h)
Organization 24,85
Coding 376,79
Input samplings and execution analysis 61
Research 58,74
Writing the memory 188,35
Estimated time for the presentation 24,27
Others 16

Table 1.1. time spent in each field.

B. Open Resources

Basic code framework:
https://github.com/serk12/gl3w-Template

Latex schema, pictures, videos (lfs) and raw results:
https://github.com/serk12/TFM-latex-Scheme

Demo video:
Drive

49

https://github.com/serk12/gl3w-Template
https://github.com/serk12/TFM-latex-Scheme
https://drive.google.com/file/d/1bm-wVUWI4-KGWDQWjze3r3_v_PMHK1TG/view?usp=sharing

	Contents
	1. Introduction
	1.1 Goals
	1.2 Sections Organization

	2. State of the art
	2.1 State of the Art at Sensofar Tech.
	2.2 3D Registration and Retrieval
	2.3 Commercial Software

	3. Our Method
	3.1 Overview
	3.2 Test Dataset
	3.3 CAD processing
	3.4 Coarse and Fine Registration
	3.4.1 Part-to-Model
	3.4.2 Sampling methods
	3.4.3 Final Implementation

	3.5 Error Calculation
	3.6 Visualization
	3.7 Further Considerations

	4. Results
	4.1 CAD processing
	4.2 Registration
	4.2.1 Sensitivity And Robustness
	4.2.2 HDIA RanSac
	4.2.3 Input Optimizer
	4.2.4 Learning Curve

	4.3 Visual Representation
	4.3.1 Error Calculator
	4.3.2 Visual Comparison Toolkit

	5. Conclusions
	5.1 Results Discussions
	5.2 Final Conclusion
	5.3 Future work

	6. References
	Appendix A. Resources
	Appendix B. Open Resources

