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Experimental Modelling and Optimal Torque
Vectoring Control for 4WD Vehicles

Eduard Morera-Torres, Carlos Ocampo-Martinez Senior Member, IEEE, Fernando D. Bianchi

Abstract—This paper addresses the design of a torque vector-
ing architecture to control the four electrical machines in a four-
wheel-drive (4WD) formula-type competition vehicle. The scheme
includes a new yaw-rate controller and a novel optimal torque
distribution algorithm. Two yaw-rate controllers are proposed:
one based on H∞ optimal control and another based on linear
parameter varying (LPV) system concepts. Both controllers are
designed using an extended bicycle model validated with exper-
imental data. Simulation results shown the effectiveness of the
proposed overall control scheme in terms of energy efficiency, cor-
nering speed and stability no matter the high-demanding working
conditions. Such an effectiveness is quantitatively demonstrated
by means of several key performance indicators chosen to ease
the comparison of the proposed approach with respect to other
reported works.

Index Terms—Torque vectoring, torque distribution, yaw-rate
control, bicycle model, LPV modelling and control, H∞ optimal
control

I. INTRODUCTION

In the last decade, the automotive industry has been in-
creasingly committed to the electromobility together with a
continuous desire of improving safety and comfort. These
objectives have been reached in part by means of the imple-
mentation of modern control strategies in the vehicles, which
allows to enhance vehicle stability and dynamic behaviour
with, in some cases, better efficiency in terms of energy
management. Most of those strategies are based on an optimal
Torque Distribution (TD) among the vehicle actuators, a well-
known control scheme called Torque Vectoring (TV). TV is
used in both hybrid power-train vehicles [1], [2] and fully-
electric power-train vehicles with either one or multiple actu-
ators [3], [4], with the overall objective of improving energy
management and efficiency [5] or maximizing the performance
of a vehicle either off road or on a racing track. Most of
these TV schemes rely on controlling the yaw moment around
the vertical axis of the vehicle in order to suitably track a
desired path using a yaw-rate control and a TD mechanism in
a cascade configuration.

The benefits of using TV implementations in vehicles have
been widely analyzed in the literature. For instance, in [6] an
increase in the forces that the vehicle handles, together with a
faster and better vehicle response is reported. The benefits in
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tracking performance achieved with the use of a TV scheme in
in-wheel versus on-board motors is analyzed in [7]. Likewise,
in [8] a slip angle control working together with the yaw-
rate controller in order to adapt the vehicle limitations over
multiple terrains is presented. Following the same line, in [9]
the authors refer to the ability to include multiple driving
modes. Benefits as the reduction of slip losses is demonstrated
in [10]. All these works detail a general improvement in terms
of stability and safety due to the TV implementation.

Regarding the yaw-rate controller, multiple alternatives
have been proposed in the literature [11]. The proposals
include schemes based on Proportional Integral Derivative
(PID) strategies such as the ones in [12] or [13] focused
on achieving a more stable behavior in a double-lane change
maneuver. More advanced strategies based on sliding mode
control are employed by Lacroix et al. [14] to improve stability
compared to PID schemes. Linear quadratic control (LQR)
have also been used to increase stability and path-tracking
performance in [15], [16]. Robust control techniques such as
H∞ loop-shaping are utilized by Lu et al. [17] to achieve
an increase in robustness and a better trade-off between con-
trol effort and performance when shaping the under-steering
characteristic in quasi-static conditions without feed-forward.
Adaptive strategies like the gain scheduled Linear Parameter-
Varying (LPV) control presented in [18] have shown high
stability and tracking performance. LPV controllers are based
on gain-scheduling ideas in which the controller parameters
are adapted to different operating conditions. This a popular
technique to employ linear control tools in nonlinear systems.

Regarding the second module inside a TV algorithm, the
TD problem, two approaches can be found. The first consists
in applying equally accelerating-braking torques to generate
the yaw moment [6]. The second implements the TD based
on a direct relationship between wheel torques and the vertical
tire forces [19]. This second study presents better results than
the first one, but none of both focusing on energy manage-
ment. More advanced schemes using energy-loss optimization
are introduced in [20], [21]. Alcantar et al. [1] employ
unconstrained optimization to produce the TD considering
longitudinal forces throughout the slip ratio. Model Predictive
Control (MPC) strategies based on constrained optimization
are reported in [22], [23], [24]. Although these strategies
are commonly integrated in autonomous vehicles, they are
computational demanding and this might limit their use in
high speed applications. In addition, racing drivers do not feel
comfortable with this kind of strategies as they might limit the
driver’s ability to fully control the vehicle.

This paper proposes a new TV control system architecture
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for 4WD electric vehicles based on optimal control for the
yaw-rate and constrained optimization to achieve the TD. The
main contributions of this work are summarized as follows:

1) The statement and validation of a novel experimental-
data-based control-oriented LPV model of the com-
monly used two-Degrees-of-Freedom bicycle model
[25], extended to include transient regimes. The pro-
posed model includes the understeering or oversteering
vehicle behaviour in order to achieve more realistic
predictions.

2) The design and comparison of two yaw-rate control
strategies: one based onH∞ optimal control and another
on gain-scheduled LPV techniques. The design of both
strategies relay on the proposed control-oriented LPV
model.

3) A new TD algorithm based on multi-objective opti-
mization, constrained by both longitudinal and lateral
tire forces, following the idea of the unconstrained
approach reported in [1]. In this new TD scheme, the
optimization problem is fed with the tire information,
the driver’s commands and the signal produced by yaw-
rate controller.

The remainder of the paper is organized as follows. In Sec-
tion II, the overall proposed control scheme is presented. Sec-
tion III introduces a two-Degrees-of-Freedom bicycle model
based on experimental data that is latter used to design the
yaw-rate controllers. The proposed TD algorithm is presented
in Section IV. The complete control scheme is evaluated
by extensive simulations using IPG-CarMaker in Section V.
Finally, some concluding remarks are drawn in Section VI.

II. PROPOSED CONTROL SCHEME

The object of study in this paper is a vehicle prototype
equipped with four independently driven electrical machines
within the framework of the Formula Student (FS) compe-
tition1. Given the multiple actuators included in the power-
train, a control system is necessary to ensure a suitable
coordination among these actuators, taking into account the
driving intentions and the dynamical limitations of the vehicle.

The proposed control strategy is presented in Figure 1.
The driver sets two target signals, a reference longitudinal
force F ref

x,V , directly related to the pedal position, and the
steering angle δ. This latter signal is then translated into
a reference yaw moment M ref

z,TV by the yaw-rate controller
according to the steering angle δ, the measured yaw-rate ψ̇
and the slip angle β. The yaw-rate control consists of an either
LTI or LPV controller designed from a non-linear bicycle
model based on experimental data as detailed in Section III.
The target signals are used as set-points for the TD-related
multi-objective optimization problem described and further
discussed in Section IV. Such an optimization problem aims
to produce a set of four torque commands (ΓFL, ΓFR, ΓRL,

1Formula Student is an engineering competition held annually worldwide
where teams from universities around the world design, build, test, and race
a small-scale formula style racing car. IMechE Official website: https://www.
imeche.org/events/formula-student

and ΓRR) for the four electric motors in order to maximize
stability and performance in all working conditions.

It is crucial for the control algorithm to be constantly fed by
real-time information. The sensors in the Inertial Navigation
Systems (INS) and Inertial Measuring Units (IMU) on-board
allow the measurements of velocities, accelerations and yaw-
rate, while position sensors the capture of the driver steering
and pedal commands. Tires information can also be calculated
by using position sensors or, even better, estimators in order
to complement and improve the INS data. In this case, the
automotive software IPG-CarMaker2 can be used to calculate
all the above mentioned data.

III. YAW-RATE CONTROLLER

A. Model Based on Experimental Data

The two Degrees-of-Freedom Bicycle Model in Figure 2
is widely used for control design purposes since it suitably
approximates the steady-state cornering behaviour of a vehicle.
However, multiple approaches have been presented and tested
to improve the basic model in order to achieve a more accurate
parametrization of the yaw dynamics [25]. Studies which show
an improvement of this model focus on including the nonlinear
behaviour of the tire. For instance, in [26] a piece-wise tire
model is used to include the dependence of longitudinal force
on slip ratio.

The aim of the extended model proposed in this paper is
to overcome the limitations of the two Degrees-of-Freedom
Bicycle Model with constant cornering stiffness coefficients
that unavoidably affect the performance of the resulting control
systems. In this case study, the lateral force dependence on slip
angle is included through a parametrization of the cornering
stiffness. The proposed model, from now on referred to as
extended bicycle model, is given by the following equations:

β̇ =
−(Cf (β) + Cr(β))

mv
β −

(
1 +

Cf (β) lf − Cr(β) lr
mv2

)
ψ̇

+
Cf (β)

mv
δ, (1a)

ψ̈ =
Cr(β) lr − Cf (β) lf

Jv
β −

Cr(β) l2r + Cf (β) l2f
Jv v

ψ̇

+
Cf (β) lf
Jv

δ +
1

Jv
Mz,TV , (1b)

where m [kg] is the mass of the vehicle, Jv [kg m2] is the
inertia of the vehicle around the Z axis, δ [rad] is the steering
angle of the front axle, lf [m] is the distance between the CoG
(Center-of-Gravity) and the front axle, lr [m] is the distance
between the CoG and the rear axle.

The non-linear phenomena associated to the tires, usually
described with the Pacejka’s formulation [27], is reflected
both at the relation between lateral tire forces and its cor-
respondent slip angle and at the cornering stiffness curve.
This non-linearity is included in the model throughout a novel

2More information and further details about this software can be found at
https://ipg-automotive.com



3

Fig. 1. Scheme of the proposed control strategy.

Fig. 2. Two Degrees-of-Freedom Bicycle Model.

parametrization of the cornering stiffness coefficients obtained
from experimental data. These coefficients are defined here as

Cκ(β) =
ηκ φκ

λκ(βκ)β2 + εκ
, (2)

where Cκ [N/rad] refers to the cornering stiffness of the
front (κ = f ) or rear axle (κ = r). The parameter λκ
allows the use of the cornering stiffness parametrization with
the state variable β instead of the axle slip angle βκ. The
experimental data at Figure 3 comes from (Cκ = Fy,κ/βκ),
where Fy,κ and βκ have been experimentally obtained during
tests on track. To obtain the parametrization in Figure 3, the
parameters ηκ, φκ, λκ and εκ are determined by a curve
fitting process, taking the presented experimental data. In this
case, as both front and rear tires are the same, both axis
coefficients result equal. In Figure 3, it can be seen that the
data obtained with the proposed coefficient expression (2)
properly fit the experimental data. The main advantage of
using the approximation (2) is to have an expression that only
depends on the slip angle β, an state in model (1).

The effect of the front and rear cornering stiffness co-
efficients can be assumed one depending on β and the
other constant. Although the rear cornering stiffness is a
dynamic phenomena [25], [27], even with this approximation
the proposed model predicts a system behavior closer to the
experimental data than previous models. This is shown in the
next paragraphs.

Two tests have been carried out with the aim of validating
the proposed model. The first test consists in driving the
vehicle in an eight-shape circuit, also known as skidpad,
in order to evaluate the yaw-rate developed in situations
involving maximum lateral acceleration and fast turning di-
rection change. Figure 4 shows a comparison between the
experimental data logged during a test on tracks, the simulation
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Fig. 3. Cornering Stiffness parametrization Cκ.

data obtained using the nonlinear model (1) and the simulation
data using a basic bicycle model [25], which is similar to (1)
but with constant values for Cr and Cf . The relative error
εrel between the experimental data and the response of both
models is assessed as

εrel =
||s− sm||2
||s||2

100%, (3)

where s and sm are the simulated and measured signals,
respectively. Then, the non-linear model response shows a
fitting error of 13.7% compared to the real data, while the
error fitting of the basic bicycle model is higher than 31%.

The second validation test was performed by comparing the
response of the non-linear bicycle model with data logged
when the vehicle was driven in an FS circuit. This test is
particularly interesting as it covers a wide range of working
conditions. The results are shown in Figure 5. The model (1)
also exhibits a suitable estimation of the vehicle behavior.

B. Controller Design

The main objective of the yaw-rate controller is to en-
sure a suitable yaw-rate. For this purpose, two controllers
are presented in this section: one based on H∞ optimal
control tools and another, with adaptive capabilities, using
LPV techniques with the speed v and the slip angle β as
scheduling variables. LPV controllers can be seen as optimal
linear controllers with parameters that are modified in real-
time according to a set of scheduling variables in order to
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Fig. 4. Comparison between experimental and simulation responses when the
vehicle is driven in a skidpad test circuit.
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Fig. 5. Comparison between real and simulation responses when the vehicle
is driven in a FS test circuit.

adapt itself to different operating conditions. The LPV control
is a version of the popular gain-scheduling techniques with
improvement in the design algorithm. The main appeal of
gain-scheduling techniques is the possibility of extending the
intuition of linear control design in nonlinear system.
H∞ optimal control and LPV techniques seek a controller

that solve the following optimization problem:

min
K∈K

||z||2
||w||2

, (4)

where z is a performance signal, w the closed-loop input and
‖x‖2 =

∫∞
0
xTx dt the 2-norm of the signal x. In case of

H∞ optimal control, K is sought in the set of stabilizing LTI
controllers K. In case of LPV techniques, the set K consists
of the stabilizing LPV controllers with scheduling variables v
and β.

The yaw-rate control can be cast as illustrated in Figure 6.
The objective is to track a yaw-rate reference ψ̇ref , whereas
a bounded control action Mz,TV and robustness are ensured.
These objectives are stated by selecting

z =

[
ẽ
ũ

]
=

[
We(s)(ψ̇ref − ψ̇),
Wu(s)Mz,TV .

]
.

The weight We penalizes the tracking error at low frequencies.
On the other hand, Wu penalizes the control action at high fre-

Gref

w = δ ψ̇ref

− K
e

G
Mz,TV ψ̇

We

ẽ

Wu

ũ z

Fig. 6. Yaw-rate control design setup

quencies to guarantee a proper implementation and robustness
against modelling errors. These weights are defined as

We(s) = ke
s/10ωe + 1

10s/ωe + 1
, (5a)

Wu(s) = ku
10s/ωu + 1

s/10ωu + 1
, (5b)

where ke, ωe, ku, and ωu are design parameters.
The yaw-rate reference is set as

Gref =
v0

l(1−Kuv20)
, (6)

where v0 [m/s] is constant representative velocity of the
CoG, l [m] is the wheelbase of the vehicle and Ku is the
understeering coefficient. It is important to mention that the
yaw rate reference signal is corrected in further simulations,
if needed, through a weighing factor which depends on the
side slip angle in order to ensure safe driving conditions. This
methodology is detailed in [28].

Both controllers are designed with the same setup shown in
Figure 6. In the case of the H∞ controller, the plant G is an
LTI model obtained from linearizing (1) at an operating point
given by v0 and β0.

On the other hand, the design of the LPV controller is based
on the nonlinear model (1), which is expressed as a quasi-LPV
model

G :

{
ẋ =A(β, v)x+B1(β, v)δ +B2Mz,TV ,

y =Cx,
(7)

where the state vector is x = [β ψ̇]T ,

[
A(β, v) B1(β, v)

]
=
[
A0 B1,0

]
+

5∑
i=1

fi(β, v)
[
Ai B1,i

]
,

B2 = [0 1/Jv]
T , and C = [0 1]. Functions fi(·) are defined

as

f1(β) = Cf (β), f2(β, v) = Cf (β)/v,

f3(v) = 1/v, f4(β, v) = Cf (β)/v2,

f5(v) = 1/v2,

and the constant matrices Ai and Bi (i = 0, . . . , 5) are selected
such that both the extended model (1) and the LPV model (7)
represent the same differential equations. Notice that Cr is
assumed constant as mentioned in Section III-A.

Model (7) can be used to design an LPV controller by
using tools such as those in [29]. However, such design would
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Fig. 7. Frequency responses corresponding to LTI obtained at frozen
parameter values of the complete and simplified LPV model

result in a controller rather complex to implement. A trade-
off can be reached considering part of the nonlinear terms in
(7) as additive uncertainty. In particular, the model (7) can be
simplified as

Gr :

{
ẋ =A(ρ1, ρ2)x+B1(ρ1, ρ2)δ +B2Mz,TV ,

y =Cx,
(8)

where[
A(ρ1, ρ2) B1(ρ1, ρ2)

]
=
[
A0 B1,0

]
+ ρ1

[
A1 B1,1

]
+ ρ2

[
A3 B1,3

]
,

ρ1 = Cf (β), and ρ2 = 1/v. Figure 7 shows the frequency
responses corresponding to frozen parameter values for the
complete model in (7). The differences between the complete
quasi-LPV model (7) and the approximated one (8) are quite
small and can be taken into account in the controller design
with a proper selection of the parameters of Wu.

The resulting LPV controller is given by

K(ρ) :

{
ẋc = Ac(ρ)xc +Bc(ρ)e,

u = Cc(ρ)xc +Dc(ρ)e,

where xc is the controller state vector, and[
Ac(ρ) Bc(ρ)
Cc(ρ) Dc(ρ)

]
=

[
Ac,0 Bc,0
Cc,0 Dc,0

]
+

2∑
i=1

ρi

[
Ac,i Bc,i
Cc,i Dc,i

]
.

with Ac,i, Bc,i, Cc,i and Dc,i constant matrices produced with
the design algorithm in order to solve the optimization problem
(4). Notice that the implementation of the LPV controller is
similar to any LTI one once the previous matrices are updated
with the measures of v and β.

IV. TORQUE DISTRIBUTION

As presented in Figure 1, there are two control signals,
F refx,V and Mref

z,TV , determined by the driver, that should be
tracked by a coordinated action between the four vehicle
actuators. With this tracking objective, a constrained TD-
related multi-objective optimization problem (Section IV-C) is
designed with the aim to establish the best possible (optimal)
combination of wheel torques that ends up generating a
suitable Fx,V and Mz,TV based on a quasi-static vehicle
model (Section IV-A). In the case study considered in this

Fig. 8. Vehicle Free-Body Diagram illustrating the forces applied to the
vehicle

paper, the TD optimization problem must converge to an
optimal solution within the period of Ts=20 ms, which is
the established sampling time determined by the electrical
machines controllers.

A. Quasi-Static Model

The free-body diagram3 shown in Figure 8 illustrates the
forces applied to the vehicle through the tires. The corre-
sponding expressions in terms of the wheel torque vector
Γ = [ΓFL ΓFR ΓRL ΓRR]T are

Fx,V (Γ) =
1

Rw
[cos(δ1) cos(δ2) 1 1]Γ, (9a)

Mz,TV (Γ) =
1

Rw

[
−Λ(δ1) Λ(δ2) − tf

2

tf
2

]
Γ, (9b)

with Λ(δi) = lf sin(δi)− tf
2 cos(δi), where δi [rad] (i = 1, 2)

is the steering angle for each of the front tires, tf [m] is
the front track, tr [m] is the rear track and Rω [m] is the
wheel radius. Expressions in (9) are used to solve the TD-
related optimization problem determining the individual set-
point torques for each one of the electrical machines.

3Please note that that the self-aligning torques of the tires [30] are not
considered due to their low values compared to the yaw moment generated
by the tire forces in order to simplify (9).
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B. Friction circle of the tires

The friction circle of a tire has been widely studied in
the literature, see e.g. [31], [30]. In this paper, a simplified
version defined by longitudinal (Fx,i) and lateral forces (Fy,i)
is considered in order to introduce the dynamic limitations in
terms of grip inside the TD (i ∈ {FL,FR,RL,RR}).

Fig. 9. Simplified friction circle of a tire

For a tire i ∈ {FL,FR,RL,RR}, expression (10) gov-
erns the working point inside a simplified circle of friction,
Fwp,i (Fx,i(σi, Fz,i), Fy,i(βi, Fz,i)) and σi is the slip ratio of
the tire. To avoid exceeding the forces that a tire i is able to
handle, Fwp,i should always remain inside the limits of that
circle. Moreover,

Ft,i =

√
Fx,i

2 + Fy,i
2, (10a)

Fχ,i = µFz,i, (10b)
Fγ,i = Fχ,i − Ft,i, (10c)

where Fx,i corresponds to the longitudinal force, Fy,i corre-
sponds to the lateral force, Ft,i [N] is the module of the force
developed by the tire, Fχ,i [N] is the maximum force that the
tire can support in certain conditions and Fγ,i [N] is the extra
force that the tire may support in a given instant.

Regarding the tire forces involved in the TD problem,
multiple methodologies can be used to be obtained. In this
study, both Fx,i and Fy,i are determined by using the Pacejka
parametrization [27], in which case variables such as σi, αi
and Fz,i are required. Another common methodology is by
using estimators such as an Extended Kalman Filter (EKF),
among others. The design of this estimators is out of the scope
of this article, but detailed information regarding this topic can
be found in [32], [33], [34].

C. Multi-Objective Optimization Problem

As shown in Figure 1, the yaw moment reference M ref
z,TV

and the longitudinal force reference F ref
x,V are inputs for the

TD multi-objective optimization problem. This optimization
problem aims to fulfill the driver’s acceleration and maneuver
commands while considering the vehicle limitations, which

take into account the tire and power limits. Such a multi-
objective optimization problem is stated as follows:

minimize
Γ

3∑
m=1

αmJm (11a)

subject to

Γi,min ≤ Γi ≤ Γi,max, , (11b)
Fx,V,min ≤ Fx,V (Γ) ≤ Fx,V,max, (11c)

Mz,TV,min ≤Mz,TV (Γ) ≤Mz,TV,max, (11d)
4∑
j=1

Γj ωj
ηj
≤ Pmax, (11e)

where i ∈ {FL,FR,RL,RR}, αm (m = 1, 2, 3) are prior-
itization factors, Fx,V and Mz,TV are the longitudinal force
and the yaw moment given by (9a) and (9b), respectively.
The limits Fx,V,min, Fx,V,max, Mz,TV,min, and Mz,TV,max are
imposed by the friction circle of the tires given by (9). The
parameter ηj is the electro-mechanic efficiency corresponding
to each electrical machine, ωj [rad/s] is the angular velocity of
each wheel and Pmax [W] is the maximum allowable power.

The objective function (11a) consists of three terms that are
next explained. The first term in (11a) (for m = 1) aims to
minimize the error between the desired longitudinal force and
the one developed by the vehicle, i.e.,

J1 = ‖Fx,V − F ref
x,V ‖2, (12)

where F ref
x,V [N], is the longitudinal force indicated by the

driver. Although (12) is not considered the most important ob-
jective, it must be taken into account to considerably improve
the driving experience when accelerating.

The second term in (11a) (for m = 2) minimizes the yaw-
rate tracking error, i.e.,

J2 = ‖Mz,TV −M ref
z,TV ‖2. (13)

As the main objective of a TV system is to improve the
behaviour while cornering, this term is crucial to enhance the
overall vehicle performance in terms of time-lap reduction.

The last term in the objective function (11a) (for m = 3) is
written as

J3 = α3

∑
i

θiΓ
2
i , (14)

with i = {FL,FR,RL,RR}, where θi are scalar weights.
The implementation of this term seeks to achieve a suitable
control over TD among each axle (or each electrical machine,
if desired) that is going to be developed to reach the first
two objectives. This control consideration results quite useful
in offering the driver a versatile behaviour by implementing
a more-likely or less-likely rear wheel power-train actuation,
while also allows to proper manage the electrical machines
temperatures.

V. SIMULATION RESULTS

A. Control design settings

As mentioned in Section III-B, two yaw-rate controllers
were designed using the weighting functions in (5) considering
the following parameters:
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• H∞ controller: ke = 1, ωe = 0.1 rad/s, ku = 0.05, and
ωu = 10 rad/s.

• LPV controller: ke = 0.1, ωe = 0.1 rad/s, ku = 0.005,
and ωu = 25 rad/s.

The parameters of the LPV controller were assumed ranging
in 14574 ≤ ρ1 ≤ 28725 and 0.03 ≤ ρ2 ≤ 3.6, which
corresponds to 0 ≤ β ≤ 10 degrees and 1 ≤ v ≤ 120 km/h.
In order to design the H∞ controller, the nonlinear model
was linearized at an operating point corresponding to v0 =
67 km/h, δ0 = 0.005 rad and Mz,TV,0 = 0 Nm. The Ku value
to compute the reference signal was set at −0.003.

In order to evaluate the proposed TV control scheme, the
closed-loop system was simulated with IPG-CarMaker for use
with MATLAB/Simulink, a standard software used to validate
these systems. A thorough parametrization of the vehicle has
been carried in order to properly model a real FS competition
vehicle. The test circuit used in all cases, except for the
one presented in Section V-D, corresponds to a real FS test
circuit shown in Figure 10. The aim of this test circuit is to
reproduce a large range of driving situations, from sharp low-
speed curves to open high-speed curves. Regarding the TD
algorithm, the Quadratic Programming (QP) problem in (11)
was solved at each sampling time using CPLEX4 solver. The
prioritization weights in the objective function (11) were set
as α1 = 0.2, α2 = 0.6 and α3 = 0.2. This corresponds to
Case 6 in Table II; a detailed analysis about the selection of
these weights is given in Section V-B.

B. FS test circuit

Both yaw-rate controllers proposed in Section III-B were
evaluated by simulation in case of the FS test circuit shown in
Figure 10. The yaw-rate ψ̇ and the corresponding references
ψ̇ref for both controllers are shown in the top and middle plots
in Figure 11. The references in both cases results of applying
(6) to the steering angle δ imposed by the driver. The yaw-
rate ψ̇ is consequence of the tire forces for both lateral and
longitudinal forces (the ones controlled by the TV system).

4More information about the CPLEX solver: https://www.ibm.com/
support/knowledgecenter/SSSA5P 12.9.0/ilog.odms.cplex.help/CPLEX.
Other options could be CasADi: https://web.casadi.org or Gurobi:
https://www.gurobi.com.
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Fig. 11. Comparison between H∞ and LPV controllers corresponding to
closed-loop simulation for the FS test circuit in Figure 10.

The yaw-moment Mz,TV generated by the the two yaw-rate
controllers are presented in the bottom plot.

It can be observed that both controllers achieved a suitable
reference tracking. However, the LPV controller demands
slightly lower control action Mz,TV . The differences can
be better quantified defining two key performance indicators
(KPIs). In this case, the selected KPIs are the root square value
of the tracking error (RMSE) and the integral of the absolute
value of the control action (IACA). The former is an indicator
of the quality in the yaw-rate reference tracking, while the
latter evaluates the control effort needed to reach the desired
tracking. The results obtained with each controller are sum-
marized in Table I. From these KPIs, it can be concluded that
the LPV controller achieved a slightly better reference tracking
with considerable lower control effort. The implementation of
the LPV controller requires two additional measurements (the
scheduling variables v and β), which can be obtained from
the available INS sensor, and updating the controller matrix
functions. Nevertheless, this is not a significant increase in the
controller implementation complexity and the improvement
that the LPV controller offers compared to the H∞ one
is enough to consider it as the most suitable option to be
implemented and tested. In the following tests, only the LPV
based yaw-rate control will be used.

Figure 12 shows the yaw-moment, the force, the torque
developed by each motor and the power corresponding to the
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TABLE I
KPI COMPARISON BETWEEN H∞ AND LPV CONTROLLERS

Controller RMSE (ψ̇) [rad/s] IACA (Mz,TV ) [Nm]

H∞ 0.8662 2186.4
LPV 0.8628 2042.7

closed-loop system with the LPV controller. The yaw-moment
reference M ref

z,TV produced by the yaw-rate controller and the
one actually applied by the TD algorithm can be seen in the
top plot. The TD algorithm is able to distribute the torque
among the four wheels while the total yaw-moment Mz,TV

is close to the one demanded by the yaw-rate controller. In
plot c), it can be seen the reference and the developed Fx,V .
By implementing Case 6 of the TD problem, the Fx,V error
minimization has lower priority compared with the Mz,TV

one. The main reason of the larger difference between the
reference and developed Fx,V in comparison to the Mz,TV

is not due to the Fx,V lower priority, but because of the
power limitation and the tire saturation constrains. This can
be concluded from the plots c) and d) in Figure 12. When
The power limitation takes action, the tracking error of Fx,V
increases. Nevertheless, the tracking of F ref

x,V can be considered
satisfactory for a practical point of view.

The torques developed by each wheel can be seen in Fig-
ure 12c). These are the outputs of the TD-related optimization
problem. Some interesting conclusions can be drawn from this
plot. First, it is clear that during a whole lap, torques developed
by the rear motors are larger than those torques developed
by the front ones5 as a consequence of the TD problem
parametrization with the objective of enhancing a more similar
rear-wheel drive behavior. This suitable power distribution also
leads to a coordinated actuation of the motors in which none of
them work excessively over nominal conditions, which allow
to have better control over the motors temperature and, as a
consequence, energy efficiency is enhanced.

Finally, in the bottom plot in Figure 12, the suitable
implementation of the power limitation inside the TD can
be observed. In order not to exceed the power rate of the
electric equip, the limitations might be slightly below the
maximum allowed value. Due to the sampling time in which
the calculations are done, a little overshoot could appear,
reason why the maximum limit should be set around 78 kW.

C. TD comparison

As previously mentioned in Section IV-C, the TD-related
optimization problem involves three objectives. In order to
analyze the most adequate prioritization for each of them,
multiple lap simulations have been performed to compare
such objectives and to decide the most convenient combina-
tion of weights (optimization-based control tuning) based on
two new KPIs. These indicators are the Lap Time and the
Energy Consumption during one lap (Table II), and the results
corresponding to Case 6 are reported in Figure 12.

5Please notice that this comparison must be based on analyzing right and
left side electrical machines independently, not to consider the generated
Mz,TV as a variable in this sub-analysis.
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Fig. 12. Simulation results using the LPV yaw-rate controller in case of the
FS test circuit in Figure 10.

TABLE II
KPI OBTAINED WITH SEVERAL PRIORITY WEIGHTS IN THE OPTIMIZATION

PROBLEM (11).

Case Objectives Weights [%] Lap Time [s] Energy [Wh]

α1 α2 α3

1 40 50 10 59.06 267.31
2 30 60 59.08 272.32
3 20 70 58.55 280.32
4 10 80 58.95 272.05

5 30 50 20 58.65 268.65
6 20 60 58.28 276.37
7 10 70 58.94 266.71

From Table II, some interesting conclusions can be drawn.
Referring to the Lap Time KPI, it can be seen that neither
prioritizing the Mz,TV nor the Fx,V significantly improve
the results, but around a 65-25% ratio seems to be the most
convenient option in terms of reducing such a KPI. Also from
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this analysis, it can be determined that, although not being the best 
option, maximizing the Mz,T V would be better that doing
so with Fx,V .

Besides, referring to energy consumption, directly related
to control effort, a reduction of about 5% is achieved between 
cases. This is an important consideration since a reduction in 
energy consumption leads to a larger distance range or, quite 
important in racing, lowering battery dimensions leading to 
weight reduction.

Finally, the J3 term of (11) and its prioritization weight are 
discussed. J3 is considered as the component of the TD function 
which allows to manage the power proportion to each axle that 
determines how the other two objectives are achieved.
At first sight, it could be said that neither giving more nor less 
priority to J3 affects energy consumption of the vehicle in a 
significant way. However, analyzing at the same time both KPIs, it 
is remarkable that, with the same amount of energy, Lap Time gets 
reduced with a larger α3.

Once the considered possibilities to tune the TD-related 
multi-objective optimization problem are presented (Table II),
it can be concluded that the most suitable configuration corresponds 
to Case 6.

D. Active vs. not-active TV comparison

In order to evaluate the benefits of using the proposed TV,
the closed-loop model with the LPV controller is compared
with the case in which TV is not active, i.e. the torque is
equally distributed ΓFL = ΓFR = ΓRL = ΓRR = 0.25Γtot

(the total torque). In this case, simulations were carried out
in the skidpad test circuit shown in the top plot in Table
Figure 13. The reason to present this kind of results is due
to the fact that it allows us to study transient conditions at the
entry of a lap and at the driving direction change between laps
2 and 3, together with steady-state conditions through each
lap. A part from that, it is a standardized test and it allows
to suitably evaluate results such as the ones in III. Similar
results have been obtained in a slalom test, so it has not been
included to avoid redundancy.

In this test, the vehicle should complete two laps turning
left (Laps 1 & 2), change cornering direction, and other two
laps turning right (Laps 3 & 4). The lower plots in Figure 13
shows the yaw-rate ψ̇ and its corresponding reference. In both
cases, the aim is to reach the maximum average ψ̇ in order to
reduce the lap time6. It can be observed that when the TV is
active, the vehicle takes less time to finish the test, as the TV
system improves the average achieved yaw-rate and corrects
the natural understeering behaviour of the vehicle, leading to
higher cornering speed.

Table III summarizes different characteristics observed in
the yaw-rate responses shown in Figure 13. When the TV
is active, the general cornering performance of the vehicle
improves quite considerably. The average yaw-rate increases
0.11 rad/s when the TV is active, 9.3% increase in comparison
with the response when TV is not active. This improvement
allows the vehicle to reduce the skidpad time in 0.4 s, which

6In a skidpad test, the measured time for each turning direction corresponds
to the second lap for each direction (which are laps 2 & 4).

Fig. 13. Yaw-rate tracking comparison between the proposed TD scheme
and the used of equally torque distribution. Top: skidpad test circuit, middle:
response with the proposed TD scheme, bottom: response with torque equally
distributed

TABLE III
DIFFERENT CHARACTERISTICS OBSERVED IN THE YAW-RATE RESPONSES

IN FIGURE 13

Characteristic TV enabled TV disabled Units

Peak yaw-rate 1.5 1.26 rad/s
Average yaw-rate (during laps) 1.29 1.18 rad/s

Lap 2 duration 4.87 5.32 s
Lap 4 duration 4.85 5.20 s

Average duration 4.86 5.26 s

is quite noticeable considering that when TV not active this
time increases to 5.26 s.

VI. CONCLUDING REMARKS

This paper has proposed a new closed-loop control scheme
for the efficient TD among the four electrical machines
in 4WD formula-type competition vehicles. The proposed
scheme consists of a yaw-rate control and an optimization
based algorithm to distributed the torque among the wheels.
Two control strategies, an H∞ and an LPV control approach,
have been considered and compared for the design of the yaw-
rate controller. Both controllers were designed using a novel
and improved version of the well-known bicycle model, which
has been validated with experimental data.

The solution of the constrained TD-related multi-objective
optimization problem has shown to suitably distribute the
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power among the four electrical machines while fulfilling the
yaw-rate controller and longitudinal force demands. In general
terms, the TV implementation has shown a quite noticeable
improvement in achievable yaw-rate, cornering speed, stability
and ability to constantly work over high-demanding working
conditions. Moreover, results have also shown the enhance-
ment in energy efficiency given the versatility offered in terms
of vehicle behavior.

As further work, the inclusion of regenerative braking inside
the TV algorithm will be considered together with the use of
an improved tire model to achieve better results and tire forces
control together with tire waste management.
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J. Pérez, “On nonlinear model predictive control for energy-efficient
torque-vectoring,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 1, pp. 173–188, 2021.

[6] J. Ghosh, A. Tonoli, and N. Amati, “A torque vectoring strategy for
improving the performance of a rear wheel drive electric vehicle,” in
Proc. of the IEEE Vehicle Power and Propulsion Conference (VPPC),
2015, pp. 1–6.

[7] T. Goggia, A. Sorniotti, L. D. Novellis, A. Ferrara, P. Gruber, J. Theunis-
sen, D. Steenbeke, B. Knauder, and J. Zehetner, “Integral sliding mode
for the torque-vectoring control of fully electric vehicles: theoretical
design and experimental assessment,” IEEE Transactions on Vehicular
Technology, vol. 64, no. 5, pp. 1701–1715, 2015.

[8] B. Lenzo, M. Zanchetta, A. Sorniotti, P. Gruber, and W. D. Nijs,
“Yaw rate and sideslip angle control through single input single output
direct yaw moment control,” IEEE Transactions on Control Systems
Technology, vol. 29, no. 1, pp. 124–139, 2021.

[9] L. De Novellis, A. Sorniotti, P. Gruber, J. Orus, J.-M. R. Fortun,
J. Theunissen, and J. De Smet, “Direct yaw moment control actuated
through electric drivetrains and friction brakes: Theoretical design and
experimental assessment,” Mechatronics, vol. 26, pp. 1–15, 2015.

[10] V. Ivanov, K. Augsburg, and D. Savitski, “Torque vectoring for improv-
ing the mobility of all-terrain electric vehicles,” in Proc. of the 12th
European Regional Conference of the International Society for Terrain-
Vehicle Systems, 2012.
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