

Software upgrade for a short-circuit test up to 14 kA peak

Document:

Report

T
R

E
B

A
L

L
 D

E
 F

I
D

’E
S

T
U

D
IS

 Software upgrade for a short-
circuit test up to 14 kA peak

Author:

Renzo Nicolás Cáceda Peña

Director – Co-director:

Jordi Roger Riba Ruiz

Manuel Moreno Eguílaz

Degree:

Degree in Industrial Electronic and Automatic

Engineering

Call:

Prorogation/2022

Software upgrade for a short-circuit test up to 14 kA peak

1

ABSTRACT...2

RESUMEN..2

RESUM...3

INDEX OF FIGURES ...3

1 INTRODUCTION………………………………………………………………………………………….6
 1.1 OBJECTIVES………………………………………………………………………………………..6
 1.2 SCOPE……………………………………………………………………………………………….6
 1.3 REQUIREMENTS……………………………………………………………………………….…..6
 1.4 JUSTIFICATION…………………………………………………………………………………….7
 1.5 PLANNING……………………………………………………………………………………..……8

2 THE SHORT-CIRCUIT MACHINE………………………………………………………………..….…9
 2.1 DESCRIPTION OF THE SHORT-CIRCUIT MACHINE…………………………………………9
 2.2 HARDWARE…………………………………………………………………………………………9
 2.3 SOFTWARE…………………………………………………………………………………….…..11
 2.4 RUNNING THE SHORTCIRCUIT MACHINE………………………………………………...…12

3 HISTORY AND CURRENT STATE OF THE SHORTCIRCUIT MACHINE………………………13
 3.1 PROJECT BY JOSÉ BAILÓN………………………………………………………………..…13
 3.2 PROJECT BY POL MONREAL…………………………………………………………………14
 3.3 CURRENT BUGS AND PROBLEMS…………………………………………………...………19

4 TOOLS AND DEVICES……………………………………………………………………………..…25
 4.1 DEVICES ……………………………………………………………………………….…………25

 4.1.1 PIC MICROCONTROLLER…………………………………….…………………………25

 4.1.2 DAQ OMEGA…………………………………………………………………………….…26

 4.1.3 DAQ NI………………………………………………………………………………………26
 4.2 PROGRAMMING LANGUAGES…………………………………………..……………………27

 4.2.1 VISUAL BASIC.NET………………………………………………………………………27

 4.2.2 C LANGUAGE ……………………………………………………………….……………29

 4.3 COMMUNICATIONS……………………………………………………………………...………30
 4.4 SOFTWARE PACKAGES………………………………………………………………..………31

 4.4.1 VISUAL STUDIO 2022……………………………………………………………………31

 4.4.2 PROTEUS DESIGN SUITE………………………………………………………………31

 4.4.3 CONFIGURE VIRTUAL SERIAL PORT DRIVER…………………………..…………32

 4.4.4 MPLAB IDE V8.63……………………………………………………………………..…33

5 DEVELOPMENT…………………………………………………………………………………..….34
 5.1 METHODOLOGY……………………………………………………………………………..…34
 5.2 SOLUTIONS……………………………………………………………………………….…….35

6 RESULTS…………………………………………………………………………………………...…47
 6.1 TEST AND VALIDATION…………………………………………………………………….…47

7 ENVIRONMENTAL IMPACT……………………………………………………………………..…58

8 CONCLUSIONS………………………………………………………………………………………59

9 FUTURE WORK………………………………………………………………………………….……59

Software upgrade for a short-circuit test up to 14 kA peak

2

10 BIBLIOGRAPHY………………………………………………………………………………….60

Abstract

The objective of this project is to improve an existing graphical interface software written in
Visual Basic.NET for the control and configuration of a transformer used in short-circuit tests.
The improvement will make it easier to perform tests because the original interface of a
previous project contained efficiency errors that made it impossible to carry out several tests
continuously and was not very intuitive to use.

The interface software sends the indicated parameters to a PIC18F2580 microcontroller
which is in charge of controlling the operation of the short-circuit machine.

The main functions performed are the calculation of phase shift measurements indicated by
the interface between the voltage and current through the transformer generated by pulses
and making a short circuit with a duration and firing angle also indicated by the interface.

The development of the project had two parts, the first was part of the development of a first
interface design and using the Proteus Design Suite Simulator to simulate operation and
MPLAB IDE environment because it was necessary to make a small modification and other
environments to verify communication and data transfer with the microcontroller.

The development of the second part has consisted in the adaptation of this design, in the
original project found in the AMBER laboratory, that previously its communication has been
tested.

Due to it is part of a larger project, a study and annotations had to be made to understand
the operation of this project, it was also necessary to gather knowledge regarding the
VB.NET programming language.

As will be seen in the following points, it was possible to carry out tests with the new design
and save the recorded data in a much more efficient and intuitive way.

Resumen

El objetivo de este proyecto es mejorar un software de interfaz gráfica existente escrito en
Visual Basic.NET para el control y configuración de un transformador utilizado en pruebas
de cortocircuito. La mejora facilitará la realización de pruebas ya que la interfaz original de
un proyecto anterior contenía errores de eficiencia que hacían imposible realizar varias
pruebas de forma continua y no era muy intuitivo de usar.

El programa de interfaz envía los parámetros indicados a un microcontrolador PIC18F2580
el cual se encarga de controlar el funcionamiento de la máquina de cortocircuito.

Las principales funciones que realiza son el cálculo de las medidas de desfase indicadas
por la interfaz entre la tensión y la corriente a través del transformador y la realización de
un cortocircuito con una duración y ángulo de disparo también indicados por la interfaz.

El desarrollo del proyecto tuvo dos partes, la primera fue parte del desarrollo de un primer
diseño de interfaz, utilizando el simulador Proteus Design Suite para simular el
funcionamiento y el entorno MPLAB IDE porque era necesario hacer una pequeña
modificación y otros entornos para verificar la comunicación y transferencia de datos. con
el microcontrolador.

Software upgrade for a short-circuit test up to 14 kA peak

3

El desarrollo de la segunda parte ha consistido en la adaptación de este diseño, en el
proyecto original encontrado en el laboratorio AMBER, que previamente ha sido probado
su comunicación.

Debido a que es parte de un proyecto más grande, se tuvo que hacer un estudio y
anotaciones para entender el funcionamiento de este proyecto, también fue necesario
recopilar conocimientos respecto al lenguaje de programación VB.NET.

Como se verá en los siguientes puntos, fue posible realizar pruebas con el nuevo diseño y
guardar los datos recogidos de una manera mucho más eficiente e intuitiva.

Resum

L'objectiu d'aquest projecte és millorar un software d'interfície gràfica existent escrit a Visual
Basic.NET per controlar i configurar un transformador utilitzat en proves de curtcircuit. La
millora facilitarà la realització de proves, ja que la interfície original d'un projecte anterior
contenia errors d'eficiència que feien impossible fer diverses proves de forma contínua i no
era gaire intuïtiu de fer servir.

El software d’interfície envia els paràmetres indicats a un microcontrolador PIC18F2580 el
qual s’encarrega de controlar el funcionament de la màquina de curtcircuit.

Les funcions principals que realitza són el càlcul de les mesures de desfasament indicades
per la interfície entre la tensió i el corrent a través del transformador i la realització d'un
curtcircuit amb una durada i un angle de tret també indicats per la interfície.

El desenvolupament del projecte va tenir dues parts, la primera va ser part del
desenvolupament d’un primer disseny d’interfície, utilitzant el simulador Proteus Design
Suite per simular el funcionament i l’entorn MPLAB IDE perquè calia fer una petita
modificació i altres entorns per verificar la comunicació i transferència de dades amb el
microcontrolador.

El desenvolupament de la segona part ha consistit en l'adaptació d'aquest disseny, al
projecte original trobat al laboratori AMBER, que prèviament ha estat provat la seva
comunicació.

Com que és part d'un projecte més gran, es va haver de fer un estudi i anotacions per
entendre el funcionament d'aquest projecte, també va caldre recopilar coneixements
respecte al llenguatge de programació VB.NET.

Com es veurà en els punts següents, va ser possible fer proves amb el nou disseny i
guardar les dades recollides d'una manera molt més eficient i intuïtiva.

Index of figures

FIGURE 1. GANTT DIAGRAM OF THIS END OF STUDIES PROJECT SOURCE: ORIGINAL PROJECT 8

FIGURE 2. SHORT CIRCUIT MACHINE ASSEMBLY DIAGRAM SOURCE: ORIGINAL PROJECT 9

FIGURE 3. MICROCONTROLLER CONNECTIONS SOURCE: ORIGINAL PROJECT ... 10

FIGURE 4. TRIGGER PULSE CIRCU SOURCE: ORIGINAL PROJECT ... 10

FIGURE 5. TRANSFORMER EQUIVALENT CIRCUIT SOURCE: ORIGINAL PROJECT .. 11

FIGURE 6. PROGRAM VISUAL STUDIO SOURCE: ORIGINAL PROJECT.. 11

FIGURE 7. ASSEMBLING THE CHARGE ADDED TO THE AUTOTRANSFORMER SOURCE: ORIGINAL PROJECT 13

FIGURE 8. VOLTAGE AND CURRENT SIGNALS SOURCE: ORIGINAL PROJECT .. 13

file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948

Software upgrade for a short-circuit test up to 14 kA peak

4

FIGURE 9. TRIGGER PULSE OFFSET SOURCE: ORIGINAL PROJECT .. 14

FIGURE 10. SHORT-CIRCUIT DURATION SOURCE: ORIGINAL PROJECT .. 14

FIGURE 11. GENERAL SCHEME PROTEUS SOURCE: POL

PROJECT……………………………………………………………….…….ERROR! BOOKMARK NOT DEFINED.5

 FIGURE 12. PULSE GENERATOR ICON SOURCE: NEW PROJECT .. 15

FIGURE 13. PULSE GENERATOR PROPERTIES SOURCE: NEW PROJECT ... 15

FIGURE 14. INCLUDES DECLARATION SOURCE: POL PROJECT ... 16

FIGURE 15. VARIABLE DECLARATION SOURCE: POL PROJECT ... 16

FIGURE 16. INTERRUPT INITIALIZATION SOURCE: POL PROJECT... 16

FIGURE 17. INTERRUPT INITIALIZATION SOURCE: POL PROJECT... 16

FIGURE 18. VARIABLE INITIALIZATION SOURCE: POL PROJECT .. 16

FIGURE 19. VARIABLE INITIALIZATION SOURCE: POL PROJECT .. 16

FIGURE20. HIGH_ISR SUBPROGRAM SOURCE: POL PROJECT... 17

FIGURE 21. HIGH_ISR SUBPROGRAM SOURCE: POL PROJECT... 17

FIGURE 22. FLUX DIAGRAM SWITCH DECODER SOURCE: POL PROJECT ... 18

FIGURE 23. PROGRAM VISUAL STUDIO SOURCE: ORIGINAL PROJECT ... 19

FIGURE 24. OMEGA CONFIGURATION SOURCE: ORIGINAL PROJECT .. 20

FIGURE 25. NI CONFIGURATION SOURCE: ORIGINAL PROJECT ... 20

FIGURE 26. AUTOGENERATED PART OF CODE SOURCE: ORIGINAL PROJECT………………………………….............20

 FIGURE 27. INITIALIZECOMPONENT FUNCTION OF CODE SOURCE: ORIGINAL PROJECT…………………….............21

FIGURE 28. VARIABLE INITIALIZATION SOURCE: ORIGINAL PROJECT .. 21

FIGURE 29. FORM1_LOAD SUBPROCESS SOURCE: ORIGINAL PROJECT... 22

FIGURE 30. SUBPROCESS TO OPEN SERIAL PORT SOURCE: ORIGINAL PROJECT .. 22

FIGURE 31. SUBPROCESS TO SEND DATA SOURCE: ORIGINAL PROJECT ... 23

FIGURE 32. SUBPROCESS TO RECEIVED DATA SOURCE: ORIGINAL PROJECT .. 23

FIGURE 33. SUBPROCESS TO RECEIVED DATA SOURCE: ORIGINAL PROJECT .. 23

FIGURE 34. SUBPROCESS TO CHOOSE DIRECTORY SOURCE: ORIGINAL PROJECT 24

FIGURE 35. BUTTON TO DETERMINATE MEAN DATA SOURCE: ORIGINAL PROJECT 25

FIGURE 36. PIC18F2580 MICROCONTROLLER. SOURCE: HTTPS://WWW.MICROCHIP.COM/EN-
US/PRODUCT/PIC18F2580 .. 25

FIGURE 37. DAQ OMEGA. SOURCE: HTTPS://ES.OMEGA.COM/PPTST/OM-DAQ-USB-2400.HTML....................... 26

FIGURE 38. DAQ USB 6000. SOURCE: HTTPS://WWW.NI.COM/ES-ES/SUPPORT/MODEL.USB-6000.HTML 26

FIGURE 39. VISUAL BASIC.NET LOGO SOURCE: HTTPS://ES.WIKIPEDIA.ORG/WIKI/VISUAL_BASIC_.NET 27

FIGURE 40. CLASS EXAMPLE. SOURCE: VISUAL STUDIO .. 27

FIGURE 41. VOID FORM. SOURCE: VISUAL STUDIO .. 28

FIGURE 42. EXAMPLE FORM. SOURCE: VISUAL STUDIO .. 28

FIGURE 43. EXAMPLE EXECUTION FORM. SOURCE: VISUAL STUDIO .. 28

FIGURE 44. INCLUDE EXAMPLE INITIALIZATION. SOURCE: MPLAB IDE ... 29

FIGURE 45. VARIABLE EXAMPLE INITIALIZATION. SOURCE: MPLAB IDE ... 29

FIGURE 46. EXAMPLE MAIN FUNCTION. SOURCE: MPLAB IDE ... 30

FIGURE 47. EXAMPLE IF CONDITION. SOURCE: MPLAB IDE .. 30

FIGURE 48. EXAMPLE FOR LOOP. SOURCE: MPLAB IDE ... 30

FIGURE 49. VISUAL STUDIO LOGO. SOURCE: GOOGLE IMAGES .. 31

FIGURE 50. PROTEUS SIMULATOR LOGO. SOURCE: GOOGLE IMAGES... 32

FIGURE 51. INTERFACE CONF. V.SERIAL PORT. SOURCE: GOOGLE IMAGES ... 32

FIGURE 52. MPLAB IDE LOGO. SOURCE: GOOGLE ... 33

FIGURE 53. MODIFICATION CODE. SOURCE: POL PROJECT ... 35

FIGURE 54. SCHEMATIC SKETCHES ... 36

FIGURE 55. NEW INTERFACE. SOURCE: NEW PROJECT .. 36

FIGURE 56. NEW INTERFACE SOURCE: NEW PROJECT .. 36

FIGURE 57. CHECK AND PICTURE BOX. SOURCE: NEW PROJECT ... 37

file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
https://www.microchip.com/en-us/product/PIC18F2580
https://www.microchip.com/en-us/product/PIC18F2580
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
https://www.ni.com/es-es/support/model.usb-6000.html
https://es.wikipedia.org/wiki/Visual_Basic_.NET
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948

Software upgrade for a short-circuit test up to 14 kA peak

5

FIGURE 58. SEND DATA SUBPROCESS. SOURCE: NEW PROJECT .. 38

FIGURE 59. MESSAGE BOX FOR OFFSET TEST. SOURCE: NEW PROJECT ... 38

FIGURE 60. MESSAGE BOX OF SHORT-CIRCUIT TEST. SOURCE: NEW PROJECT ... 38

FIGURE 61. SUBPROCESS TO ENTER, CALL CREATE FILE AND SEND DATA. SOURCE: NEW PROJECT 39

FIGURE 62. NEW MESSAGE BOX. SOURCE: NEW PROJECT ... 39

FIGURE 63. MESSAGE BOX CODE. SOURCE: NEW PROJECT .. 39

FIGURE 64. CLEAN VARIABLES SUBPROCESS. SOURCE: NEW PROJECT .. 40

FIGURE 65. DATA RECEPTION FLUX. SOURCE: NEW PROJECT .. 41

FIGURE 66. DATA RECEPTION FLUX. SOURCE: NEW PROJECT .. 42

FIGURE 67. CREATE FILE SUBPROCESS. SOURCE: NEW PROJECT ... 43

FIGURE 68. NEW LOAD SUBPROCESS. SOURCE: NEW PROJECT .. 44

FIGURE 69. NEW INTERFACE. SOURCE: NEW PROJECT.. 44

FIGURE 70. SUBPROCESS TO CREATE THREADS. SOURCE: POL PROJECT .. 45

FIGURE 71. VARIABLE INITIALIZATION. SOURCE: POL PROJECT .. 45

FIGURE 72. NEW INTERFACE. SOURCE: VISUAL STUDIO... 46

FIGURE 73. SHORT-CIRCUIT SIMULATED TEST. SOURCE: VISUAL STUDIO SCREENSHOT 48

FIGURE 74. OFFSET SCREENSHOT. SOURCE: PROTEUS SCREENCHOT .. 48

FIGURE 75. DURATION SCREENSHOT. SOURCE: VISUAL STUDIO SCREENSHOT 49

FIGURE 76. BIT FRAME. SOURCE: PROTEUS SCREENSHOT .. 50

FIGURE 77. OFFSET MEASUREMENT TEST. SOURCE: VISUAL STUDIO SCREENSHOT 50

FIGURE 78. BIT FRAME. SOURCE: PROTEUS SCREENSHOT .. 51

FIGURE 79. SHORT-CIRCUIT FILE NAME. SOURCE: NEW PROJECT ... 51

FIGURE 80. DATA SAVED. SOURCE: NEW PROJECT ... 52

FIGURE 81. MEAN DATA SAVED. SOURCE: VISUAL STUDIO SCREENSHOT .. 52

FIGURE 82. DATA SAVED. SOURCE: VISUAL STUDIO SCREENSHOT .. 52

FIGURE 83. MEAN DATA SAVED. SOURCE: VISUAL STUDIO SCREENSHOT .. 52

FIGURE 84. OFFSET MEASUREMENT REAL TEST. SOURCE: VISUAL STUDIO SCREENSHOT 53

FIGURE 85. OFFSET MEASUREMENT REAL TEST. SOURCE: VISUAL STUDIO SCREENSHOT 53

FIGURE 86. NEW MESSAGEBOX. SOURCE: VISUAL STUDIO SCREENSHOT .. 54

 FIGURE 87. STATE TRAMA PIC RECIBIDA. SOURCE: VISUAL STUDIO SCREENSHOT 49

FIGURE 88. OFFSET TEST FILE NAME. SOURCE: NEW PROJECT ... 54

FIGURE 89. DATA SAVED. SOURCE: NEW PROJECT .. 55

FIGURE 90. REAL SHORT-CIRCUIT TEST. SOURCE: VISUAL STUDIO SCREENSHOT 55

FIGURE 91. NEW MESSAGEBOX. SOURCE: VISUAL STUDIO SCREENSHOT .. 56

FIGURE 92. SHORT-CIRCUIT TEST. SOURCE: VISUAL STUDIO SCREENSHOT ... 56

FIGURE 93. SHORT-CIRCUIT VOLTAGE-CURRENT FILE NAME. SOURCE: NEW PROJECT 57

FIGURE 94. SHORT-CIRCUIT TEMPERATURE FILE NAME. SOURCE: NEW PROJECT 57

FIGURE 95. SHORT-CIRCUIT VOLTAGE-CURRENT DATA. SOURCE: NEW PROJECT 57

FIGURE 96. SHORT-CIRCUIT TEMPERATURE DATA. SOURCE: NEW PROJECT ... 57

file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948
file:///C:/Users/Usuario/Downloads/MemoriaTFG_revisada_MME_2022_09_22%20(1).docx%23_Toc67643948

Software upgrade for a short-circuit test up to 14 kA peak

6

1 Introduction

1.1 Objectives

The objective of this Bachelor’s Degree Final Project is to improve an existing software,
programmed in Visual Basic, for the control of a high current low voltage transformer used
in short-circuit tests of up to 14 kA peak. The software must allow the user to set the
parameters of the test, control the test and obtain the data generated during the test.

1.2 Scope

The scope of this Bachelor’s Degree Final Project includes:

- Analysis of the existing code for the microcontroller for a better understanding of the
operation of the project.

- Review of the existing code for PC to understand how it works and detect its bugs, with
the aim of improving the structure of the new code.

- Carry out an improvement of PC software to control and establish various parameters of
the microcontroller in charge of applying the functions of phase shift measurement,
triggering of the short-circuit test and reading of the different sensors.

- It will be required to perform a search on the syntax of the Microsoft Visual Basic
programming language.

- Some tests will be carried out in an emulated environment, that is, without the short-circuit
machine or the real hardware, using the Proteus Design Suite software.

- Once the code in the emulated environment works correctly, the tests will be carried out
in the laboratory of the AMBER-UPC High Voltage Research and Testing Center, to check
the correct operation of the software in a real environment.

1.3 Requirements

In this section the requirements for the realization of this Bachelor’s Degree Final Project
are listed:

- Knowledge of C programming language for microcontrollers.

- Knowledge of Microchip's MPLAB IDE development environment.

- Knowledge of Microsoft Visual Basic programming language.

- Knowledge of Microsoft Visual Studio development environment

- Knowledge of the Proteus Design Suite emulation environment.

- Knowledge of Virtual Serial Port Drive serial port emulation software.

- Knowledge of the short-circuit machine installed in the laboratory of the High Voltage
Research and Test Center AMBER-UPC.

Software upgrade for a short-circuit test up to 14 kA peak

7

1.4 Justification

The realization of this project arises since the control software of the short-circuit machine
installed in the laboratory of the High Voltage Research and Test Center AMBER-UPC
presents serious operating problems, preventing systematic short-circuit tests. In effect, the
software exhibits anomalous behavior almost randomly. Sometimes the short circuit is not
activated. At other times, the captured data is not saved correctly.

The short-circuit machine control software was developed in 2016, thanks to a technician
from the AMBER laboratory, who developed both the hardware (electronic board based on
an 8-bit microcontroller) and the system software (microcontroller and PC).

This microcontroller has two general functions:

- To measure the phase between the voltage and current caused by the impedance of the
load located on the secondary of the transformer of the short-circuit machine.

- To generate a pulse capable of activating an SCR type thyristor, which connects the
primary of the transformer to the grid for a pre-established period of time.

Both original codes have significant design and programming errors (bugs), which make it
impossible for the short-circuit machine to work correctly.

For all of the above, in 2020 the AMBER laboratory published an offer to improve the
microcontroller code in C language, so that a student based his Bachelor’s Degree Final
Project on making this improvement. The code worked fine in an emulated environment,
but it could not be tested in a real environment due to the Coronavirus SARS-CoV-2 (Covid-
19) pandemic.

At the beginning of the year 2022, an offer was made to make an improvement, in this case,
of the PC code based on Visual Basic, due to the aforementioned problems that it presented.
Consequently, my Bachelor’s Degree Final Project consists of improving this code for the
PC.

The PC software allows entering the parameters and giving the commands to the
microcontroller, while receiving the results (voltages, currents and temperatures) and
processing them.

The Proteus Design Suite emulation software is used to simulate the operation of the
microcontroller, without having to be physically in the AMBER laboratory. Once the correct
operation is verified, the appropriate tests are carried out to confirm the correct behaviour
in a real physical environment.

Finally, I believe that developing a desktop application that will be used for future tests within
the AMBER laboratory can provide me with knowledge. Although it is true that this type of
development has not been studied in the Degree in Industrial Electronic Engineering and
Automation, certain programming subjects have given me enough knowledge to be able to
carry out this project without great difficulties.

Software upgrade for a short-circuit test up to 14 kA peak

8

1.5 Planning

1. Study of the microcontroller code written in C language

As a first step to be able to start with the project, it is necessary to review the code in C
language in order to understand the behaviour.

2. Study of the PC code written in Microsoft Visual Basic

On the other hand, it is also necessary to know how the PC code works and what
relationship of variables it has with the microcontroller code, so that code will be analyzed.

3. Propose the methodology to follow

Once you have knowledge of the operation of both codes, it is necessary to consider what
steps will be taken into account and how to proceed to improve the code in Visual Basic.

4. Make improvements of the PC code

This process will be the longest, since it will contain the development of code improvements
in terms of efficiency and functionality.

5. Carry out tests in the AMBER laboratory

Once the code has been improved and its operation tested in the emulated environment
with the simulator, we will go to the laboratory to carry out different tests and check that
there are no errors or, if there are, solve them.

6. Write the corresponding report

Finally, it will be necessary to finish writing the report with all the information collected from
the different tests carried out and the improvements made to the code.

 You can see in Fig. 1 the Gantt chart with the prior planning to follow during the completion
of this Bachelor’s Degree Final Project. This is an initial estimation regarding the duration
of each section, which may lead to changes during the development.

Figure 1. Gantt diagram of this End of Studies Project.

Software upgrade for a short-circuit test up to 14 kA peak

9

2 The short-circuit machine

2.1 Description of the short-circuit Machine

The short-circuit machine is located in the AMBER laboratory for the Electrical Department
of the Polytechnic University of Catalonia. The parts that make up the machine are the
following:

- Hardware, components and other devices that allow the physical test to be carried
out, as well as those that allow the generation of the desired voltage and/or the
acquisition of data. In the next point they will be named in detail.

- And software, composed of the programs that allow communication, data transfer
and which allows the control and operation of the test.

2.2 Hardware

The design of the short-circuit machine is made up of various parts and components. In
Figure 2 you can see the components dedicated to the control system, power, the
transformer used and two of the DAQ's for data acquisition, both for voltage-current and
temperature.

 Figure 2. Short circuit machine assembly diagram. Source: Original project

Software upgrade for a short-circuit test up to 14 kA peak

10

The subsystem dedicated to control the short-circuit machine consists of a PIC18F2580
microcontroller and several integrated circuits and small power converters, there are also
two pins (21 and 22) that receive the pulses for the voltage and current signals obtained
by the power supply from the electrical grid, which feeds the primary of the transformer.
Figures 3 and 4 belong to the design implemented for the simulator [1].

The power part consists of a high current low voltage transformer and the SCR model
MCC162-16IO1 (see Figure 4), capable of connecting the primary of the transformer with
the grid and a previously mentioned autotransformer that allows us to vary the voltage and
current that circulates through the primary, fed by the grid at 230V [2].

The transformer used for the tests is 10 kA (RMS) and resistive and inductive loads are
connected to the secondary so that the operation for the short-circuit tests varies. The
equivalent circuit is as follows:

Figure 3. Microcontroller connections. Source: Original project

Figure 4. Trigger pulse circuit. Source: Original Project.

Software upgrade for a short-circuit test up to 14 kA peak

11

Finally, there are the measurement devices, which are the DAQ to acquire the voltage-
current data from the primary and the temperature DAQ connected with thermocouples to
the secondary at different points to record and save the recorded values [3,4].

2.3 Software

The software design was implemented jointly with the development of the short circuit
machine. On the one hand, the software for the control of the SCR is implemented in the
PIC18F2580 microcontroller. The operation of this code basically has two main functions to
perform: launching the pulse signal that initiates the short circuit, indicating the duration and
angle of the shot and calculate the measured phase shift between the voltage and current
signals. The development will be explained in detail in the next sections.

On the other hand, the graphical interface software was designed to be able to send and
configure different parameters required in the test. Through it, the parameters referring to
the short-circuit test are introduced.

Figure 5 Transformer equivalent circuit. Source: Original Project.

Figure 6. Program Visual Studio. Source: Original Project.

Software upgrade for a short-circuit test up to 14 kA peak

12

In Figure 6 the layout of the GUI is shown. On the right side the buttons for data acquisition
are configured and, on the left, the parameters to be entered required for the test, both the
measurements and the trigger pulse to activate the short circuit.

2.4 Running the short-circuit machine

The way to execute both tests is detailed in the following points.

1- The Visual Studio project is executed, so the application will open. The COM port and
the appropriate communications speed (COM2 and 9600) are selected manually. Finally,
the Open Port button is pressed to open the serial port connection.

2- Next, the Proteus project is executed to connect with the microcontroller. We will see that
the Serial Port State indicator will turn green, confirming the connection.

It should be noted that the Visual Studio project must be executed first and then, the Proteus
project, because the microcontroller sends the byte 0xEE to confirm the connection. Thus,
when you first run Visual Studio, the application is put into standby mode to receive that
data. Otherwise, the data will be sent and cannot be read by the application, as previously
mentioned. The status icon would turn green, but if you do not follow this order, you will not
be able to due to the code structure.

3- Once the connection between the microcontroller and the PC has been established,
either of the two tests can be carried out. We start with the measurements, so we click on
the “Measure” button and the data that gives the order to the microcontroller will be sent.
Continue entering the value of the number of offset measurements to be calculated in the
“DURATION” field. Continue clicking on the “Browse” button to determine in which folder
and file the received offset data will be saved. As the last steps, click on “INTRO” and a
message appears to confirm and finally, it is sent by pressing the “SEND” button.

4- So that once the frame corresponding to the calculation of measurements has been sent,
the icons of "Command to PIC Received" and "Data PIC Received" will change color to
green, indicating that the microcontroller has confirmed the reception of the frame correctly
and the offset data has been received.

5- In the event that you want to know the average value of the test, press the "Browse"
button to be able to choose the folder and view the list of files where the data is saved and
select the one you want. Once the file is selected, the “Obtener Desfase” button will be
pressed and the average value of the offsets will be seen in the “PHASE TIME” text field.

6- In order to carry out a short-circuit test and since a test was previously carried out, the
"CLEAR" button must be pressed to initialize the variables used to default values again,
since they were modified in the previous test. Continue pressing the "PULSE" button to
indicate that you want to perform a pulse for the short circuit test.

7- Proceed by entering in the “DURATION” and “PHASE TIME” fields, the duration of the
short-circuit in hundredths of a second and the phase angle in seconds, respectively. Like
the previous test, “INTRO” was pressed, we confirmed and the “SEND” button was pressed.

8- In this case the only icon that changes color will be “COMMAND TO PIC RECEIVED”, to
confirm the reception of the parameters by the microcontroller.

Software upgrade for a short-circuit test up to 14 kA peak

13

3 History and current state of the short-circuit machine

3.1 Project by José Bailón

The description of the short-circuit machine previously mentioned was part of the project
carried out by José Bailón. Beyond the hardware and software design of the project, he
carried out different tests to verify the operation of the system. So, for the phase shift
measurement test, he implemented an equivalent circuit with a low power autotransformer.
Using three inductive loads and one resistive load several phase measurements were done
[5].

Figure 7 shows the test assembly implemented with the autotransformer to be able to carry
out the mentioned tests. Applying voltage to the RL load, the two signals were obtained at
the input pins of the board.

Figure 7. Assembling the charge added to the autotransformer. Source: Original Project.

Figure 8. Voltage and current signals. Source: Original Project.

Software upgrade for a short-circuit test up to 14 kA peak

14

It can be verified that the signals are out of phase between 1 and 2 milliseconds, before
passing through the square wave converter circuit.

To check the trigger pulse, the phase was configured from the interface with a 2 ms delay,
as can be seen in Figure 9.

To verify that the duration is also the one previously introduced in the interface, another test
was carried out, so that it could be seen that it worked correctly. The duration of 100ms is
correct.

3.2 Project by Pol Monreal

Due to the fact that during the development of the project the state of alarm and its
consequent quarantine was declared, the engineering student Pol Monreal was unable
to carry out real tests in the AMBER laboratory. Therefore, he tested all the new design

Figure 9. Trigger pulse offset. Source: Original Project.

Figure 10. Short-circuit duration. Source: Original Project.

Software upgrade for a short-circuit test up to 14 kA peak

15

of the microcontroller code written in C language, making use of a simulator Proteus
Suite Design [6].

In order to check that the code worked properly, a project was used in the Proteus simulator.
Since it was not possible to go to the laboratory to carry out tests, the project only worked
when it was simulated and, on the other hand, the data acquisition implemented in the
laboratory was not verified.

As can be seen in Figure 11, the schematic is made up of a set of components that generate
the square signal of voltage and current, emulating in some way the real components, the
PIC microcontroller with its respective input-output pins and finally, on the right side, you
can see the component that simulates serial port communication. In addition, it includes an
oscilloscope at the output of the generator to view the square signal and a couple of
windows in which to view the data that is sent and received [7].

This design was part of my project at the beginning, but due to software version issues,
some components of the signal generator stopped working. Therefore, the whole set was
replaced by a tool called Pulse Generator, which, as its name indicates, generates a square
signal with parameters adjustable by the user.

Figure 13. Pulse generator properties

Source: New Project.

Figure 11. General scheme Proteus. Source: Pol Project.

Figure 12. Pulse generator icon. Source: New Project.

Software upgrade for a short-circuit test up to 14 kA peak

16

The original code for microcontroller control had a messy structure and was unintelligible to
someone outside the project. Therefore, the design of the new code will be described in
more depth than the previous project because my project starts from it.

First of all, it is necessary to include the necessary libraries and declare the variables that
it will use during its execution.

It is worth mentioning that the entire code will not be shown due to its length, but it is included
in the annexes of this project.

Next, you can see part of the configuration of some interrupts provided by the
microcontroller and its initializations, which allows us to launch the interrupts when certain
conditions are met.

All program variables are initialized to 0.

Figure 14. Includes declaration Source:

Pol Project.

Figure 15. Variable declaration Source: Pol Project.

Figure 16. Interrupt initialization Source:

Pol Project.
Figure 17. Interrupt initialization Source:

Pol Project.

Figure 18. Variable initialization Source:

Pol Project.

Figure 19. Variable initialization Source:

Pol Project.

Software upgrade for a short-circuit test up to 14 kA peak

17

After the declaration of variables, an infinite loop is included, a typical while (1), because

the execution of the program will always be in operation waiting for a new data that arrives
through the serial port. Inside this loop there is a finite state machine for the control of the
different tests.

The last part of the code includes an interrupt vector, where the CPU jumps to each time an
interrupt occurs, which in turn calls the high_isr interrupt service routine. This interrupt

service routine has two main functions: the first is when an external interrupt occurs, so it
will initialize Timer1 to 0 and activate a variable because there has been a zero crossing.
Otherwise, if a current interruption is detected, it will save the value of timer1 in another
variable and activate another variable indicating that a new offset has been calculated.

In this way, the zero crossing of the voltage signal will indicate the beginning of the shift and
when the zero crossing of the current is detected, the time value will be saved to be sent as
a phase shift parameter.

As previously mentioned, during the execution of the loop, the measurement and short-
circuit test is carried out. The loop consists of a selection structure, switch-case type, divided
into 3 cases: the first consists of waiting and receiving data from the serial port, which,
depending on the value received, force one or another test.

The second case will be executed if it has been so indicated by means of a reception frame
decoded in the previous case, which consists of performing the pertinent calculations to
calculate the phase shift value between the voltage and current zero crossing, in turn
sending the value of each offset through the serial port to the application.

The third, on the other hand, makes the pertinent calculations to carry out the trip that allows
activating the SCR and carrying out the short-circuit test.

After the calculation of the short-circuit test, all the variables used during the execution are
initialized to zero so that there are no problems in the next test.

Figure 20. High_isr subprogram

Source: Pol Project.

Figure 21. High_isr subprogram

Source: Pol Project.

Software upgrade for a short-circuit test up to 14 kA peak

18

Figure 22 represents the structure implemented in the development done by Pol Montreal.

Regarding the communication between the graphical interface and the microcontroller, it is
possible to establish it through a serial port and a series of frames coded specifically for
this project.

The frame sent by the microcontroller to the PC consists of the following fields:

- The first byte sent during a frame transfer is 0xEE, whose value indicates that
communication has been established correctly through the serial port.

- The 0xBB byte is sent just after receiving the last byte of the frame corresponding to the
parameter that indicates the number of measurements in the case of a measurement test
or to the duration and phase angle parameters of the short-circuit test.

- 0x55 is the byte corresponding to the beginning of the frame sending of the offset data
generated by the measurement test.

- Finally, the offset data from performing the measurement test is sent, because the data is
16 bits, but the number of bits allowed in each packet sent through the serial port only allows
8 bits, for so the data is sent in two parts. First, the 8 most significant bits (MSB) and then,
the 8 least significant bit (LSB).

The frame sent by the PC consists of the following fields:

- The first sent byte, which indicates the start of data transmission, is 0xAA. This byte will
be sent each time a test is performed, even if it is continuous.

- After sending the previous byte and depending on the type of test to be carried out, one
byte or another is sent. In the case of carrying out the measurement test, it will be byte
0x53. It should be noted that this value, encoded in ASCII, corresponds to the character S,
and it will be used during the development of the application for its good understanding
with the microcontroller.

Figure 22. Flux Diagram Switch Decoder Source: Pol Project.

Software upgrade for a short-circuit test up to 14 kA peak

19

- As a consequence of carrying out the measurement test and sending its corresponding
byte, the number of measurements to be carried out (Nmeasurements in the VB code) is
sent. Because the number of bits is limited to 8, only 255 measurements can be made per
test.

- In case of wanting to carry out the short-circuit test, after sending the frame start byte,
the corresponding byte to carry out the short-circuit test is sent, 0x35 (character 5 in ASCII
code).

- Once the short-circuit byte is sent, the transmission of data bytes of both duration and
phase shift begins. First, the 8 most significant bits of the offset duration are sent. Then,
the remaining 8 and lastly the offset angle bits, first the 8 most significant bits (MSB) and
then, the last 8 least significant bits.

3.3 Current bugs and problems

The original graphical interface software presented a chaotic mess on the visual side, which
made it very difficult to deduce the right order of the buttons for configuration. On the other
hand, the code had several software bugs, unused variables, unused functions, etc. Many
of the buttons were not well conditioned since, during the tests, if you clicked on a button
by mistake, it allowed you to do it when you should not and at the same time, it completely
conditioned the operation of the application, the data acquisition did not have a consistent
relationship. Sometimes it worked a few times in a row and suddenly it stopped acquiring,
so the application had to be restarted as many times as necessary to be able to carry out
tests. Below there are some important points that reflect these errors.

Figure 23. Program Visual Studio. Source: Original Project.

Software upgrade for a short-circuit test up to 14 kA peak

20

As you can see in Figure 23, the code has 3 panels in this version. The lower left panel
contains the reading values of the voltage-current DAQ and the two on the right, even if
there is nothing, would contain the graphs obtained from the temperature DAQ. In later
sections we will see the results.

To begin with, the used form contains useless buttons, which only make it difficult to
understand how to configure the tests. As for the code, it is divided into four different parts.
The first contains the Imports of the different libraries necessary for the execution of the
code.

The other three remaining ones are inside the Mainform Class. The first begins with code
auto-generated by the project itself when the main form is designed, in it the class
constructor and the dispose function are defined, which allows freeing memory that has
been allocated. In addition, all components used in the design of the form are declared and
initialized.

Figure 24. Omega configuration. Source:
Original Project.

Figure 25. NI configuration. Source:

Original Project.

Figure 26. Autogenerated part of code. Source: Original Project.

Software upgrade for a short-circuit test up to 14 kA peak

21

As a third part of the code, the declaration of the variables that will be used during
execution appears. Some variables are initialized to 0, if they are declared as Integer,
True or False, if Boolean or String, because for use in the code it is necessary that they
have an initial value before execution.

Figure 27. InitializeComponent function of code. Source: Original Project.

Figure 28. Variable initialization. Source: Original

Project.

Software upgrade for a short-circuit test up to 14 kA peak

22

Finally, the different functions and procedures relevant to certain events or conditions are
declared.

The functionalities are divided into 3 regions, which is a way of packaging the type of
functions that each section of lines will perform. Before starting with the regions and their
functions, the functions Form1_FormClosed and Form1_Load are declared, which are the
functions referring to when the application is first loaded and when it is closed, respectively.
Both the variable declaration lines and these two functions are correct, as they are required
to initialize variables and initialize certain components for proper operation.

Next, the region that contains the functions related to the communication configuration and
produced events appears. In it, the open port button is initially declared, which configures
the serial port and its respective parameters, such as the length of data bits, the parity check
protocol, among others, in addition to establishing values in components. It continues with
functions such as the button to close serial port communication or clear variables after each
test. In this case, the first would be well defined, but the second in terms of efficiency could
be improved, making it automatic after the test.

Figure 29. Form1_Load subprocess. Source: Original Project.

Figure 30. Subprocess to open serial port. Source: Original Project.

Software upgrade for a short-circuit test up to 14 kA peak

23

Although up to now there have been no major bugs, it is in this function that it contains one:
it is the button that enables sending the pertinent data, both the measurement test and the
short-circuit test.

You can see that for each of the tests it has the same condition twice, with the difference of
having a different value in the variable called bit_USB. Throughout the code, this variable
has no effect other than making execution inefficient. The function timer1 is continued,

which disables the timer, but since it is not called again, it has no use.

The problems continue when it comes to entering the parameter values of both tests in the
variables that save said parameters, that is, the problem arises because once the test has
been chosen, the parameter is entered and the file is selected, when confirming the data, if
you want to cancel or modify the parameter, you cannot because the code has not been
programmed for the cancel option, even if the close tab cross is marked. It cannot be that
an application has these errors. Furthermore, it is not correct to use the same variable in

which to save the parameter of the two tests, as is the case of the variable param, which

stores the number of lag measurements and the duration of the test of short circuit. Up to
here the first region and continuing with the next one, in charge of storing the function that

receives the data coming from the micro. In this case, the SerialPort1_DataReceived

function is executed each time it detects that new data has arrived through the serial port.

Figure 31. Subprocess to send data. Source: Original Project.

Figure 32. Subprocess to received data.

Source: Original Project. Figure 33. Subprocess to received data. Source:

Original Project.

Software upgrade for a short-circuit test up to 14 kA peak

24

This was one of the big bugs, because there were absurd conditions that conditioned the
operation of acquiring data, as can be seen in Figure 32.

The main problem in this function is about what can be seen in Figure 32, the values
238,187 and 204 are the data in decimal that are transmitted between the interface and the
microcontroller in the test of shift measurement for the previously detailed communication,
correspond to 0xEE, 0xBB and 0xCC, respectively. Since as long as one of the data is read,
it enters the condition, that is the problem, since it may be that during the reception of the
measurement values there is some value that just matches these values and it should not
enter the condition during that reception but only when it should.

Another serious bug in the sequence can be seen in Figure 33, since it enters in a For loop
as long as the test type is that of offset measurement that corresponds to 0x53 and in ASCII
code, to "S". Because the communication process by the microcontroller during the
reception of the values is continuous, first one value after another, it cannot be in a loop
because it is more prone to errors during reception. It can be seen that the sequence is
defined by states and conditions. However, the conditions are erroneous since it prevents
it from entering as long as the data is 0x00, but it is very likely that some data read is, so it
would lead to an error in the transmission.

Certain inefficient and little-used functions were removed for testing in the lab.

The functions shown in Figure 34 simply create a list of the different files in which the offset
measurement data have been saved and display them in a component called ListBox. It
certainly is a little useless because is also related to the function in Figure 35, since when
selecting a file from this list and pressing the btnDesfase button, it generated the average
of the values recorded in the file and displayed it in a TextBox component in a way that was
too inefficient. As will be seen in the next sections, this will be corrected more efficiently.

Figure 34. Subprocess to choose directory. Source: Pol Project.

Software upgrade for a short-circuit test up to 14 kA peak

25

It is possible to see the complete code of the function as well as of the interface in the
project annexes.

There have been certain features not mentioned because they did not have a notable bug.
However, some were kept in future versions of the code while others were not.

Due to certain problems in sending the measurement data, the automaton in charge of
receiving the data, at certain times, did not receive the data in the correct way. It was
believed that it could be due to the speed of sending, the application of the interface may
have received them slower, consequently, there was an incorrect reception.

4 Tools and devices

4.1 Devices

4.1.1 PIC Microcontroller

Microcontrollers are integrated circuits, in which their operation is based on the execution
of orders stored in the program memory. The microcontroller used to control the short-circuit
machine is the PIC18F2580 from the Microchip company.

Figure 35. Button to determinate mean data. Source: Pol Project.

Figure 36. PIC18F2580 Microcontroller. Source: https://www.microchip.com/en-us/product/PIC18F2580#

https://www.microchip.com/en-us/product/PIC18F2580

Software upgrade for a short-circuit test up to 14 kA peak

26

4.1.2 DAQ Omega

They are data acquisition devices, which have several input channels through which they
collect data in memory, in order to be able to process the information in a computer. The
Omega module is an 8-channel DAQ and allows the user to use it as a voltage input or
thermocouple type J, K, T, E, R, S, B, N. It also has 4 cold junction compensation
temperature sensors and open thermocouple detection. In this case it is used to collect 8
temperature channels.

4.1.3 DAQ NI

The DAQ used for the acquisition of voltage and current is the USB-6000 module, it allows
us basic functions for data logging, portable measurements and academic use because it
has a low price. It is easy to connect sensors and signals with screw connectivity.

Figure 37. DAQ Omega. Source: https://es.omega.com/pptst/OM-DAQ-USB-2400.html

Figure 38. DAQ USB 6000. Source: https://www.ni.com/es-es/support/model.usb-6000.html

https://es.omega.com/pptst/OM-DAQ-USB-2400.html
https://www.ni.com/es-es/support/model.usb-6000.html

Software upgrade for a short-circuit test up to 14 kA peak

27

4.2 Programming Languages

4.2.1 Visual Basic.NET

It is a programming language, whose paradigm
and/or style in terms of its way of being developed,
is called object-oriented programming (OOP),
since the code is developed as if it were real-life
objects with their functionalities [8]. With a simple
example its meaning will be better understood:

Let's say that you want to create an application to
introduce information of a user and to be able to
represent all this information, the User class is
created, which in OOP is called in this way (Class) to
a template in which its attributes are defined such as
the user's name, surname, age, email, etc., and the methods that the user can perform or
functionalities that they have, such as logging in, editing profile, changing password, etc.

The object is the representation of the so-called Class, which contains each of its attributes
and methods, so that many objects of the User class can be created and each of them will
contain different information values. In this way, the relationship of the created system has
the different objects or classes separated and they can communicate with each other
without the need for the code to be designed sequentially, for example, the User class
communicates with a Product daemon class, in which user 'x' wants to buy 'y' product.

This language is the next evolution, so to speak, of the Visual Basic language, but with the
difference that it is implemented on the .NET framework.

This framework allows us to create desktop applications for Windows, that is, design and
program its graphical user interface (GUI). This interface allows better communication
between the program and the user, integrating a group of different components that make
up the graphic and visual part of the application.

Figure 39. Visual Basic.NET logo.
Source:
https://es.wikipedia.org/wiki/Visual_Ba

sic_.NET

Figure 40. Class example. Source: Visual Studio

https://es.wikipedia.org/wiki/Visual_Basic_.NET
https://es.wikipedia.org/wiki/Visual_Basic_.NET

Software upgrade for a short-circuit test up to 14 kA peak

28

To design these interfaces, a window called form is used, which contains these components.
These forms are also objects and we can modify their properties, such as their size, color
and font, among others.

It is important to note that these components, such as buttons, generate events that can be
associated with the execution of certain instructions to develop the application.

Figure 41. Void Form. Source: Visual Studio

Figure 42. Example Form. Source: Visual Studio

Figure 43. Example execution Form. Source: Visual Studio

Software upgrade for a short-circuit test up to 14 kA peak

29

4.2.2 C Language

The C language is a programming language developed in the 70s by Dennis Ritchie and
evolved from the B programming language, which is usually taught when starting to program,
since it is a very versatile language that allows us to develop various functionalities and/or
applications, at the same time that it is efficient and uses the structural paradigm, that is,
when executing the multiple instructions they are done sequentially, so it works step by step,
a fact that facilitates teaching and understanding when you start from scratch. Moreover,
that many other languages were based on it for its creation [9].

In the following sections, the specific development of the code in C language for the
microcontroller is detailed.

In the case of programming in C, libraries are needed to offer certain functionalities, such
as making use of timers, programming in communication types and in registers of a specific
microcontroller. Making use of #include <name of the library> you get what is described.

To be able to create variables and give them an initial value, the following code is needed.

The #define statement is used to give a value to a representative word in the execution of

the code.

In C language, the project executes the function called “main” at first and consequently,
everything it contains inside.

Figure 44. Include example initialization. Source: MPLAB IDE

Figure 45. Variable example initialization. Source: MPLAB IDE

Software upgrade for a short-circuit test up to 14 kA peak

30

There are also IF ELSE conditions, SWITCH and FOR WHILE loops to be able to condition
which instructions are executed depending on the given condition and how many executions
to repeat the same instructions while the condition is fulfilled.

In this case, the message “numero par” will appear on the console as long as the number
entered is even. In the case of the loop, it will be executed as many times as the variable
"i" is less than 101 and for each execution, it will be increased by 5 and will show the value
in the console in each of the executions, it would be type 0,5,10, etc.

4.3 Comunications

The microcontroller and the PC that control the short-circuit machines are communicated
by means of a serial link (USB-RS232).

The operation of this communication consists of a pair of conductors in which the
transmission of information goes in opposite directions since one sends and the other
receives in each device. The transmission is simple since it is done sequentially with a bit-
by-bit sending and asynchronously. In fact, in an established communication, at first an
initial bit is sent that indicates the beginning of its transmission, after sending the
corresponding coded frame, a stop bit is sent. Both the start and stop bits serve to prepare
the receiving mechanism, so that it is warned that there will be a frame to receive next and
that there will be a break before the next frame, respectively.

Figure 46. Example main function. Source: MPLAB IDE

Figure 47. Example if condition. Source:

MPLAB IDE

Figure 48. Example for loop. Source:

MPLAB IDE

Software upgrade for a short-circuit test up to 14 kA peak

31

As the data transmission is delimited in 8 bits and taking into account that both the
microcontroller and the interface send variables that occupy 16 bits, these data are sent in
two frames of 8 bits, respectively. Therefore, in both codes the division of the frame is
defined.

4.4 Software packages

4.4.1 Visual Studio 2022

As for the tool used to develop the software improvement, the Visual Studio 2022
development environment has been used, which provides us with the necessary tools to
develop the new code and many more properties that facilitate software development [10].

Visual Studio is an integrated development environment or IDE (Integrated Development
Environment), developed by Microsoft for various operating systems, in order to be able to
carry out various types of applications such as creating graphic designs, web applications,
among others.

The given utility of this environment for this Bachelor’s Final Project will be to allow us to
develop a significant improvement of the graphical user interface, both in its efficiency and
in its visual aspect.

4.4.2. Proteus Design Suite

This Bachelor’s Final Project is part of a project in which the Proteus Design Suite simulator
was used to emulate the phase shift and short circuit measurement tests during the
pandemic. Given its usefulness, it was decided to use it for enhancements to VB.NET in a
visual environment.

Consequently, the Proteus Design Suite is the software used to carry out communication
simulations between the microcontroller and PC application in a virtual environment. The
Proteus Design Suite, from the company Labcenter Electronics Ltd, is an electronic design
program that has a built-in virtual modeling system that allows us to carry out real-time
simulations in a totally virtual environment, since only a PC is required.

Figure 49. Visual Studio logo. Source:https://visualstudio.microsoft.com/es/vs/features/net-

development/

https://visualstudio.microsoft.com/es/vs/features/net-development/
https://visualstudio.microsoft.com/es/vs/features/net-development/

Software upgrade for a short-circuit test up to 14 kA peak

32

The fact that it has incorporated a wide library with a variety of electronic components,
measurement devices, communication systems and the possibility of simulating the
operation of a microcontroller with its respective input-output pins, allows us to use the
control code designed on it with the microcontroller that controls the short-circuit test.

4.4.3. Configure Virtual Serial Port Driver

In the same way that we use a simulator to carry out
tests, this software is necessary so that it allows us
to establish a virtual serial port communication. The
Virtual Serial Port Driver software allows you to
create as many virtual COM ports as necessary and
allows you to simulate with great precision the real
operation of a serial port communication. It is
specifically designed for creating, debugging
software and hardware with serial port [11].

Figure 50. Proteus simulator logo. Source:

https://www.labcenter.com/downloads/

Figure 51. Configure Virtual Serial Port.

Source: https://www.virtual-serial-port.org/ .

https://www.labcenter.com/downloads/
https://www.virtual-serial-port.org/

Software upgrade for a short-circuit test up to 14 kA peak

33

4.4.4 MPLAB IDE v8.63

MPLAB IDE is a development environment software for PIC microcontrollers from Microchip
company. It allows to develop and design the code that will be able to control the behavior
of the microcontrollers. It is a perfect environment since the microcontroller used in the
short-circuit tests is a PIC. This software allows us to compile the code to be able to check
for errors in the written code, as well as being able to enter the code written in the
microcontroller and be able to see how it works during its execution [12].

Figure 52. MPLAB IDE logo. Source: https://www.microchip.com/en-

us/tools-resources/archives/mplab-ecosystem

https://www.microchip.com/en-us/tools-resources/archives/mplab-ecosystem
https://www.microchip.com/en-us/tools-resources/archives/mplab-ecosystem

Software upgrade for a short-circuit test up to 14 kA peak

34

5 Development

5.1 Methodology

Before starting with the redesign of the graphical interface and programming, it is decided
to collect information regarding the project and this new programming language, Visual
Basic.

In the first place, it begins with the reading of both the report made by the AMBER-UPC
laboratory technician and by the previous TFG student. In this way, it is possible to
understand both the objective initially proposed and the design of both parts, that is, the
initial design of the interface and the redesign of the code for the control of the
microcontroller. The previous code written in C language by José Bailón is not taken into
account, because it contained structural errors and was no longer functional for the project.

Once you have read the previous project and have a more global idea of the work previously
carried out both in 2016 and 2020 by the technician José Bailón and the student Pol Monreal
Mira, respectively, you begin with the reading and analysis of the codes of both the
microcontroller and the of the PC.

Starting from the improvement of the C language code of the microcontroller, it is necessary
to understand the correct operation. Once the code in C language has been analyzed, we
proceed to analyze the operation of the previous version of the graphical interface. Different
tests are performed to understand the observed behavior and the different errors that may
arise due to different button configuration. Errors produced or bad behavior of the program
are noted down, to be clear about what problems to solve and improve.

It begins with the design of a new graphic structure and its button configuration after a first
sketch, in which both essays are encapsulated so that they contain their respective buttons
and save their parameters in different variables.

As mentioned in previous sections on code structure errors, the methodology consists of
modifying and designing a new graphical interface so that the objects behave in the desired
way, so that the buttons are conditioned to being pressed. Therefore, in this way there can
be no failures. In addition, after each change, an execution of the application is carried out
to check if the change made behaves as expected. Many times, it was not done, since there
were inconsistencies in the design, so that it did not perform its function.

Once the operation is clear, checks are made on the communication via serial port and it is
ensured that the transmission of bits is correct. Therefore, the operation of the code is
verified using the Proteus program, in which it can be verified that the short circuit is made
by means of an oscilloscope, the duration and the firing angle, etc. In the case of phase
shift measurements, it is verified that the phase shift between the voltage and current signal
is the same between the one displayed by the oscilloscope and the one stored in the files.

On the other hand, once the verification with the simulator is finished, it is a question of
using the new graphical interface in the AMBER laboratory, where the devices, short-circuit
machine and transformer, among others, are located. As mentioned above, it is based on a
different version than the one used in the laboratory, so the version used in the laboratory
has to be adapted. Modifications have to be made in the code so that it is compatible with
measurement and data acquisition devices.

Software upgrade for a short-circuit test up to 14 kA peak

35

As a step after the adaptation, various short-circuit tests are carried out to verify that it works
correctly. The changes and checks will be explained in the next sections.

5.2 Solutions

As commented in the current problems of the code, when receiving the data offset
measurement test. It was solved by adding 300 milliseconds of delay between the start byte
of the measurement frame, the first and second byte of the measurement data. In this way,
the automaton for receiving data, which will be detailed later, works correctly.

Bearing in mind that the interface version was different from the one adapted for the
simulator, a brief description of this version will be made.

To begin with, the code had three divided regions, the previously mentioned one about
communication with the PIC microcontroller and two new ones. DAQ Omega, which is the
temperature data acquisition module and the NI USB DAQ, a module that acquires voltage
and current data. Both have very similar functions, although with differences in the form of
development. They have, for example, functions in charge of making a reading of the device
so that it is detected by the program, those in charge of enabling the input channels through
which the value read is acquired, both by the thermocouple in the case of temperature and
by the voltage-current reading pins. Also, those dedicated to the creation of files and writing
in them with the acquired values, so that a graph is generated with these values.

It should be noted that the most important function is generated in the Omega region and
communicates the three regions, because, with the push of a button, it generates and
creates 3 execution threads, for the acquisition and visualization of data collected during
the test of short circuit. The first generated thread configures the NI USB DAQ functions to
create the files in which to save the read values, as the second generated thread is from
the following DAQ, it also configures the corresponding functions to create files. In this way,
the configuration of the parameters to carry out the short-circuit is finally left.

To start with the new design, both of the graphic part and the programming part, it is initially
considered how the distribution is desired in terms of button configuration, making a couple
of very schematic sketches for it. So, it is decided to make it as simple as possible so that

Figure 53. Modification code. Source: Pol Project.

Software upgrade for a short-circuit test up to 14 kA peak

36

once it is finished and functional, any user can perform a short-circuit test by clicking on
three buttons. In this way, many functions and buttons that were in the previous design are
eliminated. Once the graphic structure to be used has been decided, the buttons and other
components are placed within their respective blocks, as can be seen in Figure 51.

Regarding the new graphic design, as can be seen in Figure 52 and 53, to change the
configuration between PIC, Omega and NI, previously you clicked on the windows of a tool
called TabControl, which contained the components for the configuration of each test, so it
was decided to change this design to one in which it contained buttons. In this way, a format
is designed that contains a main form with buttons on one side and in the rest of the space,
there are the child forms, which are the ones mentioned above.

Figure 54. Schematic sketches.

Figure 55. New interface. Source: New Project.
Figure 56. New interface. Source: New

Project.

Software upgrade for a short-circuit test up to 14 kA peak

37

 It is decided to leave the components pertinent to the selection of communications speed,
the communication port and the lower icons, except for Data Pic Received. It should be
noted that the checkboxes were added in a later version, as will be discussed shortly. In
Figure 56 you can see the result of what would be the first design initially, but as will be
seen later, there are certain changes to make it even simpler.

To increase the ease of use, and as it is not possible to press buttons referring to another
test, it is decided to add the checkbox component with its respective PictureBox and to be
able to differentiate which test is being carried out at that moment.

Next, the changes and improvements within the code and the consequences that cause
new changes in the graphic part are detailed.

As for the charging function, opening and closing the port, there are only changes in
enabling certain buttons that were not in the previous version. As mentioned above, the
functions that are executed when a click event occurs in one of the two checkboxes, cause
the buttons relevant to the test to be performed to be enabled.

Consequently, by reducing the use of buttons to just enter parameters and send them as
was done in the previous version, it is decided to unify both in a button and call different
functions to enter the parameters in variables and then send them.

Figure 57. Check and picture box. Source: New Project.

Software upgrade for a short-circuit test up to 14 kA peak

38

As shown in Figure 56, both tests have their respective send button functions, so it would
only be executed if the fields where the value of the parameter is entered is not empty, since
if there is nothing written it will not allow press and nothing will be sent.

The first call to the IntroducerData function and the second SendData function is common
to both, since depending on the test to be carried out, it will enter one condition or another,
so after saving the values and before they are sent, a message will appear to confirm the
data. As for the SubmitData function, it contains the instructions that the submit button
contained in the previous version, without the repetition of instructions mentioned above.

To solve the error mentioned on previous sections and allow the confirmation message to
cancel if the parameters entered are wrong or if you want to not carry out that test, extra
lines are added in the IntroducirDatos function that allows us this option and not as in the
previous version that it showed the confirmation message without being able to cancel.

Figure 58. Send data subprocess. Source: New Project.

Figure 59. Message box for offset test.

Source: New Project.

Figure 60. Message box of short-

circuit test. Source: New Project.

Software upgrade for a short-circuit test up to 14 kA peak

39

Another problem is related to the pulse in the signal that allowed activating the SCR in the
previous version with a phase angle measured in time, more specifically in microseconds.
The units do not add up, since the angle is measured in degrees, but the previous version
used microseconds, since that was the magnitude and unit that the microcontroller
understands. To modify this and be able to simulate with Proteus, it is necessary to do a
conversion from degrees to microseconds. The frequency of the pulse generator used in
the simulation is 50 Hz, which is equivalent to a period of 0.02 s. Knowing that the period of
any signal is equal to 360º, it is only necessary to apply a rule of 3 and multiply by 10^6 to
go from seconds to microseconds.

𝐷𝑒𝑠𝑓𝑎𝑠𝑒(µ𝑠) =
𝐴𝑛𝑔𝑢𝑙𝑜 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑖𝑑𝑜(º) ∗ 0,02 (𝑠)

360(º)
∗ 106

In this way, it allows us to enter the firing angle that we want and that the microcontroller

understands it.

Figure 61. Subprocess to enter, call create file and send data. Source: New Project.

Figure 62. New message box. Source: New Project.

Figure 63. Message box code. Source: New Project.

Software upgrade for a short-circuit test up to 14 kA peak

40

As a later modification regarding the clear button in Figure 56, it is decided to eliminate the
button and introduce the instructions of the function just after the data has been sent, so
that in addition to clearing variables, the fields where the parameters are entered are also
initialized.

To continue with the design of the version, it is necessary to modify the function in charge
of receiving the data through the serial port, a function called SerialPort1_DataReceived.

As a consequence of the previous bad functionality, a finite state machine (FSM) is designed
to change the state every time it receives a different piece of data, based on the Select
Case structure.

If the expected data is not received, the FSM returns to the previous state or, in extreme
cases, to the initial state.

To begin with, status 1 indicates that correct communication has been established through
the serial port, since the byte read corresponds to 0xEE. As it is known, this byte is only
received once since the interface is opened and it is reflected in the FSM since the
sequence only passes through state 0 once. When passing to state 1, it waits to receive a
confirmation, value of 0xBB, from the microcontroller that the frame corresponding to the
test parameters has been received correctly. So that in each state the color icon will change
to indicate what has been explained.

State 2 only corresponds to the shift measurement test because data reception is required.
Therefore, when starting the reception of data sent by the microcontroller, for each data to
be sent it begins with a byte, 0x55, and then the two bytes of the offset, so that the first byte
of offset corresponds to state 3 and the second to state 4.

In this last state, the collected data is written to a file and a counter variable is increased by
1 so that, if this variable is equal to the number of measurements, it writes the average value
at the end of the same file, exits from state 4 and returns to state 1, to wait for the
confirmation of a new test, otherwise it returns to state 2 to receive the next data.

Figure 64. Clean variables subprocess. Source: New Project.

Software upgrade for a short-circuit test up to 14 kA peak

41

Figure 65. Data reception flux. Source: New Project.

Software upgrade for a short-circuit test up to 14 kA peak

42

Figure 66. Data reception flux. Source: New Project.

Software upgrade for a short-circuit test up to 14 kA peak

43

Finishing the improvements in the code, the creation of a file in which to save the
measurements has been automated. Since the default test is short-circuit, the fact of
changing to the measurement test by selecting the corresponding checkbox automatically
creates a file in which the phase shift measurement data is saved. It is also added in the
function that refers to the click event, on the save button, which automatically generates a
file name for each measurement test that you want to perform. In this way, the name would
also change, because a counter is implemented that indicates the number of tests carried
out.

So that each time a new file is saved, the next one has a different name from the previous
one, by default the following nomenclature is used: the name "Measures1", the number 1
refers to the first file after the execution of the interface. In case you want to put another
name, it would also be possible, although the counter would increase anyway.

As a last important modification, the permissions in the fields in which the parameters are
entered are limited. In this way, it is only allowed to enter numeric characters, control
characters and as a decimal indicator, the comma “,”.

These changes were during the development of the improvement using the Proteus
simulator. While when it was wanted to adapt to the version of the AMBER laboratory, there
were changes in the interface and code.

Since there were certain problems related to the version used in the laboratory, such as the
project references that allow using the functions and libraries to generate graphs, ZedGraph
or the one that allowed configuring daq Omega, it was decided to use again the design in
which the button configuration was inside the TabControl component and reuse the design
to change the configuration between PIC, Omega or NI, so that there will no longer be child
forms as in the simulated version and instead of generating a new project for the laboratory,
the original was used, changing parts of the code and modifying the graphic part to the one

explained above.

Taking this into account, the Main Form_Load function had certain changes since now it
would have to initialize variables and call functions referring to the three mentioned
configurations.

Figure 67. Create file subprocess. Source: New Project.

Software upgrade for a short-circuit test up to 14 kA peak

44

Figure 68 corresponds to a fragment of the Load function, in which the call to the
Main_omega2() and setchannels_ni() functions is shown. These functions communicate
with the data acquisition devices and confirm if the PC has established communication with
these devices and can acquire the log data.

The graphic part of the design had some changes to simplify its use.

Figure 68. New Load subprocess. Source: New Project.

Figure 69. New interface. Source: New Project.

Software upgrade for a short-circuit test up to 14 kA peak

45

Regarding the development of the version adapted to the laboratory, the most important
function of the project will be the following.

As a version used in the laboratory, when carrying out the short-circuit test, the short-circuit
button should be able to generate, when carrying out the test itself, the acquisition of data
and its graph.

In order to simplify and make this process more efficient, it was decided to automate the
generation of the files for both tests. A function capable of creating the files with the time
and day as the file name was designed, so that each test would have its generated file and
it would be unique.

Figure 68 shows the generation of the file for the offset measurement test, as for the short-
circuit test, it is practically identical.

The generaHilos() function creates two threads of execution almost simultaneously. The
first generated thread is the one corresponding to the acquisition and generation of a graph

Figure 70. Subprocess to create threads. Source: Pol Project.

Figure 71. Variable initialization. Source: Pol Project.

Software upgrade for a short-circuit test up to 14 kA peak

46

on the data collected on voltage and current during the short-circuit test. The second thread
corresponds to the temperature data collected during the test.

Each of these threads has had some superficial modification since it corresponded to the
generation of the graphics of the original project and they already worked correctly.

During the start of the first thread, it makes a call to the function startButton_Click_1, which
corresponds to the writing of the file in which to save the voltage and current data. In parallel
to this, this same function makes the call to the EnviarDatos() function. In parallel, the thread
corresponding to runOmega(), configures the channels of the temperature DAQ, generates
the graph and saves in the corresponding file.

In order to simplify the use of buttons, the COM port selection buttons, baudrate, open and
close port have been suppressed. Since the port is opened automatically once the graphical
interface application is opened, this was achieved knowing that the port through which it
communicates is COM3. Some code instructions were written that would always connect to
that port, set the baudrate to 9600, and once these two parameters were set, the port
communicated correctly. Only waiting to connect the microcontroller board since, as
previously mentioned, the interface had to be opened first and then the micro connected.
So, the “Estado Puertoserie” icon changed color to green.

Figure 72. New interface. Source: Visual Studio screenshot.

Software upgrade for a short-circuit test up to 14 kA peak

47

6 Results

6.1 Test and validation

Before starting with the tests carried out, I will begin to detail the process of carrying out
both tests.

So, when selecting any test and clicking on the button to carry out the shift measurement
test or short circuit test, the sequence in which it is carried out is as follows:

It begins with the configuration of the autotransformer until the desired voltage is reached,
in the case of the tests 158V was used.

We start with the offset measurements test, we select the corresponding checkbox so that
it allows us to click on the button to perform that test.

By default, it has the value of calculating 100 measurements, being possible to change the
value.

As a consequence, the "Realizar ensayo de desfases" button is pressed and confirm the
test.

The machine will make a noise so that it is doing the test during the time it takes to calculate
100 shifts or whatever.

The values will be saved in a file with the recorded data and the calculated average offset
value.

As for wanting to carry out the short-circuit test, it is very similar. It begins by changing the
checkbox corresponding to this test.

By default, it is established that the short circuit lasts 1 second with an angle of 90º, being
also possible to change it.

Once the test parameters have been established, continue pressing the "Realizar ensayo
de cortocircuito" button and confirm the test.

It will be possible to listen to the short circuit during the period that duration was entered.

Both voltage-current and temperature data collected by the DAQs will be saved in files,
each file for its corresponding DAQ.

For the verification of both tests in the simulator, a test of a short-circuit test of 2 seconds
duration and 100 microsecond of angle was carried out, as can be seen, it was before
making changes and improvements for the version adapted to the laboratory. However, the
operation of sending and receiving data is the same. In this case, instead of pressing the
"Realizar ensayo de desfases" button, the "Enviar" button of the Measurement or Pulse
block would be pressed and then its corresponding confirmation.

Software upgrade for a short-circuit test up to 14 kA peak

48

The proteus simulator allowed us to verify that the 500 µs lag is reflected, 372.01 ms -
371.50 ms = 0.51 ms = 500 µs, let's ignore the 0.01 ms, because it was not possible to
place the cursor exactly in the simulator.

As we can see, the duration of the short circuit was also 2 s.

410 ms = 0.41 + 1.59 s = 2 s.

Figure 73. Short-circuit simulated test. Source: Visual Studio screenshot.

Figure 74. Offset screenshot. Source: Proteus screenshot.

Software upgrade for a short-circuit test up to 14 kA peak

49

As it can be verified in the following capture, the upper terminal corresponds to the frame
sent by the interface to the microcontroller.

- The value 0xFF corresponds to the frame start byte for the microcontroller itself

- The value 0xAA is the frame start byte, but it corresponds to the communication logic
between the devices.

- Byte 0x35 corresponds to the short-circuit test as explained above.

- The next two bytes, 0x00 and 0xC8, correspond to the most and least significant byte of
the duration in hundredths of a second (200) because the logic programmed for the control
of the microcontroller so established.

- Bytes 0x01 and 0xF4 correspond to the most and least significant byte of the phase shift
angle in microseconds, 500.

- The last byte 0x0D, corresponds to the final byte of the frame for the microcontroller.

The lower terminal corresponds to the frame sent by the microcontroller.

- 0xEE, corresponds to the byte that established communication.

- 0xBB, corresponds to the byte to confirm that the parameters have been sent correctly to
the microcontroller.

Figure 75. Duration screenshot. Source: Proteus screenshot.

Software upgrade for a short-circuit test up to 14 kA peak

50

To verify the operation of the offset measurement test, it was checked with a 5 measurement.

- The value 0xFF corresponds to the frame start byte for the microcontroller itself

- The value 0xAA is the frame start byte, but it corresponds to the communication logic
between the devices.

- Byte 0x53 corresponds to the offset measurement test as explained above.

- Byte 0x05, corresponds to the number of measurements to perform.

Figure 76. Bit frame. Source: Proteus screenshot.

Figure 77. Offset measurement test. Source: Visual Studio screenshot.

Software upgrade for a short-circuit test up to 14 kA peak

51

- The last byte 0x0D, corresponds to the final byte of the frame for the microcontroller.

The data is saved in a file with a format previous of the laboratory.

The data is saved inside the file with the following composition. We can see that there are
6 data, the first 5 correspond to the measured data and the last one to the average value,
which since they all coincide.

Pressing on the “Media Desfase” button, the value appears in its text field.

Figure 78. Bit frame. Source: Proteus screenshot.

Figure 79. Short-circuit file name. Source: New Project.

Software upgrade for a short-circuit test up to 14 kA peak

52

When performing the test with more measurements to calculate, it provides us with the
different stored values. The following test is with 10 measurements.

Figure 80. Data saved. Source: New Project.

Figure 81. Mean data saved. Source: Visual Studio screenshot.

Figure 82. Data saved. Source: Pol Project.

Figure 83. Mean data saved. Source: Visual Studio screenshot.

Software upgrade for a short-circuit test up to 14 kA peak

53

We continue with tests carried out in the laboratory. Offset measurement test for 10 periods
to be calculated.

1 – It begins by opening the interface application, once it has been fully loaded, the
microcontroller is executed and it will be seen how the “Estado Puertoserie” icon changes
to green.

Figure 85. Offset measure real test. Source: Visual Studio screenshot.

Figure 84. Offset measure real test. Source: Visual Studio screenshot.

Software upgrade for a short-circuit test up to 14 kA peak

54

2 – Enter 10 in the “Periodos a calcular” field, to indicate that there are 10 units of
measurement that you want to record.

3 – Proceed to press the button “Realizar ensayo de desfase”.

4 – A message appears to confirm that these are the parameters with which you want to
perform the test.

5 – It is confirmed by clicking Yes and then the color of the icon. “Trama PIC recibida”
changes.

6 – The data collected during the shift measurement are saved in files with this type of name
explained above.

Figure 86. New Messagebox. Source: Visual Studio screenshot.

Figure 88. offset test file name. Source: New Project.

Figure 87. State Trama PIC recibida . Source: Visual Studio screenshot.

Software upgrade for a short-circuit test up to 14 kA peak

55

7 – Data is saved into these files with this layout, in microseconds. As you can see there
are 11 values, the last one represents the arithmetic mean of the 10 registered values.

Short circuit test for 1 second and 90 degrees firing angle.

1 – In the event that the short-circuit test is carried out at first, the first point 1 explained
above would have to be followed. In the event of carrying out the short-circuit after a
measurement test, it would only be necessary to select the checkbox of the corresponding
test.

2 – Enter 1 in the "Duracion" field to indicate that the duration to be recorded is 1 second
and 90 in the "Angulo de disparo" field.

Figure 89. Data saved. Source: New Project.

Figure 90. Real Short-circuit test. Source: Visual Studio screenshot.

Software upgrade for a short-circuit test up to 14 kA peak

56

3 – Proceed to press the button “Realizar ensayo de cortocircuito”.

4 – A message appears to confirm that these are the parameters with which you want to
perform the test.

5 – It is confirmed by clicking Yes and then the color of the “PIC frame received” icon
changes, as in the previous case.

6 - As can be seen in Figure 92, the test has generated voltage for 1 second and has a
value of 158 V RMS limited by the autotransformer. A slight delayed onset is observed due
to the 90º.

7 – The data collected during the test are stored in this way and in this arrangement.

Figure 91. New Messagebox. Source: Visual Studio screenshot.

Figure 92. Short-circuit test. Source: Visual Studio screenshot.

Software upgrade for a short-circuit test up to 14 kA peak

57

8 – Values come inside files with this layout.

Figure 93. Short-circuit voltage-current file

name. Source: New Project.

Figure 94. Short-circuit temperature file

name. Source: New Project.

Figure 95. Short-circuit voltage-current data. Source:

New Project.

Figure 96. Short-circuit temperature data. Source: New Project.

Software upgrade for a short-circuit test up to 14 kA peak

58

7 Environmental impact

Due to the short-circuit test, it will not only be useful to collect data from the test itself or to
be able to specify the values of the equivalent circuit, but during the test the voltage and
current generated will produce heat through the circuit and its respective components,
which It will allow to determine what types of materials such as steel, iron, etc. of the different
components used for the charge will reach more or less temperature. Also how the
temperature of the circuit will be reflected to the variation of the magnitude value of a
resistance, for example.

Not only thermal tests can be extrapolated during the short circuit, but also the well-known
aging tests to be able to study the behavior over time and the way that affects on the
different materials that make up the cables of the circuit or the components.

However, it is possible to carry out many more types of tests on the circuit itself or its
components than those mentioned above, such as insulation tests on the transformer itself
to verify the behavior of the insulation after several short-circuit tests. And related to this
test, the measurement of dielectric rigidity to see the resistance capacity of these insulators.

Each of these extrapolated tests can be used to determine how external agents such as
excessive heating, aging, humidity, etc. affect them.

Having the possibility of being able to carry out more than one test with the same short-
circuit machine, the environmental impact will be reduced since the use of materials will
consequently be considerably less. In turn, the economic cost will also be reflected, more
materials can be used efficiently.

As mentioned before in the budget, the energy cost will also be reflected because the use
of the laboratory PC for more than one type of test at the same time instead of one for each
system dedicated to the mentioned tests, will make even more reduce environmental impact.

Software upgrade for a short-circuit test up to 14 kA peak

59

8 Conclusions

Once the tests are finished and we see that it has worked correctly, we come to the following
conclusions.

Due to possible problems that could be generated during the reception of the data in the
measurement test, the designed finite state machine was solid and being able to check the
correct operation in the simulated version assured us a high probability in the work
environment. Fact that was also validated using the short-circuit machine.

The main objective has been achieved, improving the software used for the graphical
interface in a much more efficient and simple way and correctly performing the two types of
tests that the short-circuit machine allowed us.

The new design allows us to carry out tests by pressing the minimum number of buttons,
just 2 or 3 buttons, so that as many tests as desired can be carried out.

It was possible to automate the creation and saving of data in files in such a way that
pressing the button to perform tests is generated with a specific name automatically, without
the need to search for the location or name to give the file.

We tried to give it a more visual design using the buttons for the three configurations, but
due to complications in the laboratory related to the version of the work environment, the
original was used, although it is also very practical.

After all that has been done and problems that occurred during the adaptation in the
laboratory, it is worth highlighting the effort invested in this work and being able to verify that
it will be useful in the future in future tests that are required for the electric department.

9 Future work

Due to problems regarding the adaptation of the simulated interface design used for the
three configurations, it could be proposed to be able to develop, as a future improvement,
a new version of the one installed in the AMBER laboratory with the commented design,
since the structure organized in buttons is visually more pleasant. , in addition to being much
more practical to be able to switch between configuration panels with buttons of a
considerable size.

However, the functions developed for the configuration of the two data acquisition modules
were functional, they had certain efficiency errors that could be simplified.

Taking these two points into account, a much more robust version could be used in the
laboratory.

Software upgrade for a short-circuit test up to 14 kA peak

60

10 Bibliography

[1] PIC18F2580 Microcontroller. A: Microchip [online]. Microchip Technology Inc., 2022. [Con-
sultation: June 2022]. Available to: <https://www.microchip.com/en-us/product/PIC18F2580#>.

[2] Modul SCR MCC162-16IO1. A: RS [online]. RS Components , 2022. [Consultation: June 2022].
Available to:< https://es.rs-online.com/web/p/tiristores/0194041>.

[3] Omega DAQ Module. A: Omega [online]. OMEGA®, 2022. [Consultation: August 2020]. Availa-
ble to: <https://es.omega.com/pptst/OM-DAQ-USB-2400.html>.

[4] DAQ USB-6000. A: National Instruments [online]. NATIONAL INSTRUMENTS CORP., 2022. [Con-
sultation: August 2022]. Available to: <https://www.ni.com/es-es/support/model.usb-6000.html>.

[5] José Bailón. PROYECTO DE CORTOCIRCUITO.Diseño de sistema de medición de desfase y dis-
paro de cortocircuito, UPC, Escola Superior d’Enginyeries Industrial, Aeroespacial i Audiovisual de
Terrassa. Departament d'Enginyeria Eléctrica, 2016 [Consultation: February 2020]. Not available.

[6] Pol Monreal i Mira. MILLORA D’UN SOFTWARE DE CONTROL D’UNA MÀQUINA PER FER AS-
SAIGS DE CURT CIRCUIT, Final degree project, UPC, Escola Superior d’Enginyeries Industrial,
Aeroespacial i Audiovisual de Terrassa. Departament d'Enginyeria Eléctrica,2020 [Consultation:
February 2020] Available to : <https://upcommons.upc.edu/handle/2117/331170>.

[7]Proteus Software. A: Proteus[online]. Labcenter Electronic, 2022. [Consulta: February 2022].
Available to: <https://www.labcenter.com/downloads/>.

[8] Visual Basic.NET. A: Wikipedia [online]. Wikimedia Foundation, 2022. [Consultation: February
2020]. Available to: <https://es.wikipedia.org/wiki/Visual_Basic_.NET>.

[9] Language C. A: Wikipedia [online]. Wikimedia Foundation, 2022. [Consultation: February
2022]. Available to: <https://es.wikipedia.org/wiki/C_(lenguaje_de_programaci%C3%B3n)>

[10] Visual Studio 2022. A: Microsoft [en línia]. Microsoft Corporation, 2022. [Consulta: February
2020]. Available to:<https://visualstudio.microsoft.com/es/vs/features/net-development/>.

[11] Virtual Serial Port Driver. A: Virtual Serial Port [online]. Electronic Team, Inc. 2022.
[Consultation: February 2020]. Available to: <https://www.virtual-serial-port.org/>.

[12] MPLAB IDE. A: Microchip [online]. Microchip Technology Inc., 2022. [Consultation: February
2022]. Available to: <https://www.microchip.com/en-us/tools-resources/archives/mplab-
ecosystem>.

https://www.microchip.com/en-us/product/PIC18F2580
https://es.rs-online.com/web/p/tiristores/0194041
https://es.omega.com/pptst/OM-DAQ-USB-2400.html
https://www.ni.com/es-es/support/model.usb-6000.html
https://upcommons.upc.edu/handle/2117/331170
https://www.labcenter.com/downloads/
https://es.wikipedia.org/wiki/Visual_Basic_.NET
https://es.wikipedia.org/wiki/C_(lenguaje_de_programaci%C3%B3n)
https://visualstudio.microsoft.com/es/vs/features/net-development/
https://www.virtual-serial-port.org/
https://www.microchip.com/en-us/tools-resources/archives/mplab-ecosystem
https://www.microchip.com/en-us/tools-resources/archives/mplab-ecosystem

	Index of figures
	1 Introduction
	1.1 Objectives
	1.2 Scope
	1.3 Requirements
	1.4 Justification
	1.5 Planning

	2 The short-circuit machine
	2.1 Description of the short-circuit Machine
	2.2 Hardware
	2.3 Software
	2.4 Running the short-circuit machine

	3 History and current state of the short-circuit machine
	3.1 Project by José Bailón
	3.2 Project by Pol Monreal
	3.3 Current bugs and problems

	4 Tools and devices
	4.1 Devices
	4.1.1 PIC Microcontroller
	4.1.2 DAQ Omega
	4.1.3 DAQ NI
	4.2 Programming Languages
	4.2.1 Visual Basic.NET
	4.2.2 C Language
	4.3 Comunications
	4.4 Software packages
	4.4.3. Configure Virtual Serial Port Driver
	5 Development
	5.1 Methodology
	5.2 Solutions

	It is decided to leave the components pertinent to the selection of communications speed, the communication port and the lower icons, except for Data Pic Received. It should be noted that the checkboxes were added in a later version, as will be discu...
	To increase the ease of use, and as it is not possible to press buttons referring to another test, it is decided to add the checkbox component with its respective PictureBox and to be able to differentiate which test is being carried out at that moment.
	Next, the changes and improvements within the code and the consequences that cause new changes in the graphic part are detailed.
	As for the charging function, opening and closing the port, there are only changes in enabling certain buttons that were not in the previous version. As mentioned above, the functions that are executed when a click event occurs in one of the two check...
	Consequently, by reducing the use of buttons to just enter parameters and send them as was done in the previous version, it is decided to unify both in a button and call different functions to enter the parameters in variables and then send them.
	6 Results
	6.1 Test and validation

	7 Environmental impact
	8 Conclusions
	9 Future work
	10 Bibliography

