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The early-life exposome modulates the effect of
polymorphic inversions on DNA methylation
Natàlia Carreras-Gallo 1,19, Alejandro Cáceres1,2,3,19, Laura Balagué-Dobón 1, Carlos Ruiz-Arenas 4,5,6,

Sandra Andrusaityte 7, Ángel Carracedo8,9, Maribel Casas1,2,6, Leda Chatzi10, Regina Grazuleviciene 7,

Kristine Bjerve Gutzkow11, Johanna Lepeule 12, Léa Maitre 1,2,6, Mark Nieuwenhuijsen1,2,6, Remy Slama12,

Nikos Stratakis1, Cathrine Thomsen11, Jose Urquiza 1,2,6, John Wright13, Tiffany Yang13,

Geòrgia Escaramís2,14,15, Mariona Bustamante 1,2,6,16, Martine Vrijheid 1,2,6, Luis A. Pérez-Jurado 4,5,6,17 &

Juan R. González 1,2,18✉

Polymorphic genomic inversions are chromosomal variants with intrinsic variability that play

important roles in evolution, environmental adaptation, and complex traits. We investigated

the DNA methylation patterns of three common human inversions, at 8p23.1, 16p11.2, and

17q21.31 in 1,009 blood samples from children from the Human Early Life Exposome (HELIX)

project and in 39 prenatal heart tissue samples. We found inversion-state specific methy-

lation patterns within and nearby flanking each inversion region in both datasets. Additionally,

numerous inversion-exposure interactions on methylation levels were identified from early-

life exposome data comprising 64 exposures. For instance, children homozygous at inv-

8p23.1 and higher meat intake were more susceptible to TDH hypermethylation

(P= 3.8 × 10−22); being the inversion, exposure, and gene known risk factors for adult

obesity. Inv-8p23.1 associated hypermethylation of GATA4 was also detected across

numerous exposures. Our data suggests that the pleiotropic influence of inversions during

development and lifetime could be substantially mediated by allele-specific methylation

patterns which can be modulated by the exposome.
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Inversions are segments of DNA that run in the opposite
direction to a reference genome. They are balanced mutations
of different sizes, from a gene’s exon to a chromosome’s

portion1. Because of their role in adaptation to the environment,
chromosome evolution, and sex-determination systems in mul-
tiple species, polymorphic inversions have traditionally displayed
a great interest in evolutionary biology2,3. Recent studies have
shown that they are important contributors to the genetic basis of
common complex diseases in humans, such as obesity, diabetes,
asthma, cancer, and neurological conditions such as depression or
neuroticism4–11. By capturing multiple functional variants,
inversions can confer simultaneous risks to different diseases,
and, as such, increase the frequency of the diseases’ comorbidities.
Human inversions at 8p23.1, 16p11.2, and 17q21.31 are large,
common, and associate with multiple diseases, including those
co-occurring with obesity5,8. In addition, they have been strongly
correlated with the expression of the several genes they encap-
sulate across multiple tissues8,12–14. There are different mechan-
isms from which inversions can modulate gene expression. First,
inversions can break genes or displace regulatory elements with
important functional and phenotypic consequences10,12,15. Sec-
ond, recombination is suppressed in the inverted region in het-
erokaryotypes. As such, inverted and noninverted alleles
accumulate different genetic variants that support differences of
gene expression between alleles2,16,17. Although several studies
have demonstrated the effect of inversions on gene expression, it
is unknown the extent to which inversions are also characterized
by specific methylation patterns.

DNA methylation, the addition of a methyl group in a CpG
DNA site, plays an important and complex role in the regulation
of gene expression18. Depending on the relative position of the
CpG site within the gene, its methylation can increase or decrease
the gene’s expression19. Methylated promoters are often asso-
ciated with deactivation of transcription, while methylation
within the gene’s body avoids alternative start sites20. Methylation
is often strongly correlated across contiguous CpG sites, a fact
that is used to determine differentially methylated regions (DMR)
of kilobase-pair lengths21. At larger distances, coherent methy-
lation patterns may be supported by genomic variants such as
copy number variants22. However, it is unknown if methylation
patterns in inverted regions can also be detected. We, therefore,
hypothesized that the common human inversions at 8p23.1,
16p11.2, and 17q21.31 are correlated with the methylation of
multiple CpG sites within and surrounding the inverted region,
creating allele-specific methylation patterns. In support of this
hypothesis, some studies have already reported associations
between inversion and phenotypes likely modulated by specific
methylation changes6,23,24. Besides, since CpG methylation is
involved in regulating chromatin structure25, these methylation
patterns could be associated with different tridimensional (3D)
DNA structures for each allele. This would be in line with the
influence on 3D DNA structure by large structural variants
reported by Shanta et al.26.

The epigenetic landscape of genes can be altered due to
environmental exposures, leading to disease27–29. In 2005, Wild
introduced the term “exposome” that encompasses all the
environmental exposures to which an individual was subjected,
from conception to death30. This concept has evolved and now it
does not only include environmental exposures but also expo-
sures to diet, behavior, and endogenous processes31. Common
exposures, like air pollution, stress, and heavy metals, among
many others, have been associated with distinct epigenetic marks
in relevant genes. For example, psychosocial stressors early in life,
even in utero, can induce methylation changes on specific genes
in the brain32. Studies have demonstrated, for instance, that
abnormal DNA methylation can lead individuals to be more

sensitive to stressful stimuli, increasing the stress burden and
anxiety over the life course33. More generally, Teh et al.
demonstrated that only 25% of the interindividual variation in
neonatal DNA methylation was explained by genetic variants,
while the 75% was better explained by the interaction of genotype
with different in utero environments (considering maternal
smoking, maternal BMI, and maternal depression, among
others)34. Therefore, given its strong link with exposome and
genetic variation, methylation is currently considered an impor-
tant target of gene-environment interactions35.

Here, we first evaluated whether three common polymorphic
inversions in humans affect the methylation patterns of their
encapsulated and surrounding DNA sequences in blood cells
from children and in prenatal heart tissue. Second, using a large
set of 64 early-life exposures, we then asked which of these
exposures had a different impact on DNA methylation according
to the inversion status at 8p23.1, 16p11.2, and 17q21.31.

Results
Frequency of inversions at 8p23.1, 16p11.2, and 17q21.31. We
analyzed data from the Human Early Life Exposome (HELIX)
project, a multicenter European cohort (Spain, United Kingdom,
France, Lithuania, Norway, and Greece). This project comprises
1301 children with genomic, transcriptomic, epigenomic, and
exposome data36. HELIX has the goal of characterizing the
exposome during early life and evaluating its relationship with
molecular signatures and child health outcomes. The genome-
wide blood DNA methylation and blood cell transcriptome were
measured at the ages between 6 and 11. From this dataset, we
selected children with genetic and methylation data. We used
Peddy37 to estimate major population ancestry groups and indi-
viduals of European ancestry were kept in the analysis, resulting
in a total of 1009 children included in the analyses.

We called 8p23.1, 16p11.2, and 17q21.31 inversion genotypes
from the selected children using scoreInvHap11 on imputed SNP
array data. Inversion genotypes were labeled as N/N for
noninverted homozygous, N/I for heterozygous, and I/I for
inverted homozygous. We observed that the frequencies for the
inverted allele were consistent with those reported for Europeans
(55.70%, 35.70%, and 21.95% for inversions at 8p23.1, 16p11.2,
and 17q21.31, respectively)1,11. As expected, we did not observe
significant variation between sexes (Supplementary Fig. 1a–c), but
we observed some variations across cohorts (Supplementary
Fig. 1d–f). As previously reported8, we evaluated the south–north
gradient for the inverted allele frequency and we observed a
positive correlation for inv-16p11.2 (r= 0.79, P= 0.058), and a
negative correlation for inv-17q21.31 (r=−0.92, P= 0.009)
(Supplementary Fig. 2). For the inv-8p23.1, we did not observe
a significant south–north gradient (r=−0.33, P= 0.519).

Inversions as eQTLs in blood cells. We first evaluated the
inversion status as expression quantitative trait loci (eQTL) of the
genes within the inversion regions ±1Mb. We performed the
association analyses of the inversions in each separate cohort
adjusting by sex, age, cell-type proportions (inferred from
methylation data), and 10 genome-wide principal components of
genomic SNP variation (N= 790). We then combined the results
with a meta-analysis across cohorts. The results were considered
significant when they passed Bonferroni’s correction for multiple
comparisons. We confirmed that the inv-8p23.1 and inv-16p11.2
were eQTLs for the numerous neighboring genes and the genes
they encapsulate (see Supplementary Data 1 and Supplementary
Fig. 3). We observed 12 genes that were significantly associated
with inv-8p23.1. We detected significant upregulation of BLK,
SLC35G5/SLC35G4, FAM86B1/FAM86B2, and FAM86B3P, and
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downregulation of FDFT1, FAM167A, FAM66D, SGK223, XKR6,
and LOC100506990 for the inverted allele. In the case of the
polymorphic inversion at 16p11.2, we observed 10 significant
associations, including upregulation of TUFM, MIR4721, EIF3C/
EIF3CL, LAT, SPNS1, and NPIPB9/NPIPB8/NPIPB7 for the
inverted allele and downregulation of SGF29, SBK1, LOC388242,
and SULT1A1. Finally, for inv-17q21.31, we did not observe eQTL
effects, perhaps because single-copy genes within this inversion
are mostly expressed in the brain14. We thus confirmed the effect
of the inversions 8p23.1 and 16p11.2 on the gene expression in
blood in 6–11-year-old children, as previously observed in adults
across different tissues8,12–14.

Inversions as mQTLs in blood cells. We then studied the asso-
ciations of the genotypes of each of the three inversions with the
differential methylation of CpG sites within the ±1-Mb regions
containing the inversions (Supplementary Data 2). We removed
CpG sites with single-nucleotide polymorphic (SNP) variation.
We performed the analyses in each separate cohort adjusting by
the same covariates likewise the transcription analyses. We
combined the results with a meta-analysis across cohorts
(N= 1009). As illustrated in Fig. 1a–c, all three inversions were
significantly associated with differences in methylation across
multiple CpG sites after Bonferroni’s correction for multiple
comparisons. We also observed that the most significant asso-
ciations were in CpG sites within the inversion region or close to
the breakpoints. In particular, we observed that 15.21% (129 of
848) CpG sites within and around inv-8p23.1 had significant
differences in methylation levels according to to the inversion
status (min. P= 63.1 × 10−147, Fig. 1a), with 49 significant CpG
sites hypermethylated and 80 hypomethylated in the inverted
concerting the noninverted allele. For this inversion, we observed
24 genes with at least one significant differentially methylated
CpG site and five genes with more than five differentially
methylated sites; namely MSRA, MFHAS1, BLK, RP1L1, and
XKR6. For inv-16p11.2, we found 27 significant CpG sites dif-
ferentially methylated from a total of 401 (6.73%, min. P < 10−300,
Fig. 1b), with 9 significant CpG sites hypermethylated and 18
hypomethylated at the inverted allele. For this inversion, we
observed 11 genes with at least one significant CpG site. IL27 was
the gene with the greatest number of CpG sites (5) differentially
methylated (all hypomethylated at the inverted allele). Finally, 58
CpG sites from 666 (8.71%, min. P < 10−300, Fig. 1c) had sig-
nificant methylation differences for inv-17q21.31 (30 hyper-
methylated and 28 hypomethylated at the inverted allele).
CRHR1, MAPT, and KANSL1 were the 17q21.31 genes with the
highest number of differentially methylated CpG sites and a total
of 14 genes had at least one CpG site differentially methylated.
Therefore, each of these three inversions behaves as an extended
methylation quantitative trait loci (mQTL) covering hundreds of
kilobases, an observation that had not been previously reported.

To establish the degree to which the association between the
effect of inversion status on CpG methylation is associated with
changes in gene expression of surrounding genes, we searched for
the methylation changes that locate in differentially expressed
genes (Supplementary Fig. 4). We observed that four genes (BLK,
FDFT1, XKR6, and FAM167A) overlapped for the inv-8p23.1
with differentially methylated CpG sites. We analyzed whether
the observed expression changes were in the expected directions
based on the methylation of these regions, that is, hypermethyla-
tion of the promoters for downregulated genes, hypomethylation
of the promoters for upregulated genes, and hypermethylation of
the bodies for upregulated genes. XKR6 was a highly consistent
case whose downregulation and methylation, across 11 CpG sites
within its body, were associated with the inverted allele. For inv-

16p11.2, we observed four genes that were differentially expressed
and methylated by the inversion allele (TUFM, SBK1, SPNS1, and
SULT1A1). In this case, most of the CpG sites were in the
promoter region (TSS1500) and the relation between the
expression and methylation levels was consistent. We further
observed that SULT1A1 and TUFM had CpG sites in their
promoters (cg01378222 and cg00348858) that highly associated
with the effect of inversion in gene expression. We found that
cg01378222 mediated the 95% of the association between inv-
16p11.2 and the expression of SULT1A1 (P < 2 × 10−16), and that
cg00348858 mediated the 5% of the association between the
inversion and TUFM expression (P= 0.002).

These findings provided evidence of regulatory pathways where
inversion, methylation, and gene expression are all involved. In
addition, our observation that inv-17q21.31 did not show eQTL
effects in blood indicates that the three-way association of the
variables is tissue specific, as we observed a clear methylation
pattern for the inversion.

Inversion-state-specific methylation patterns. In order to define
whether the methylation patterns were specific to each inversion
allele, we performed principal component (PC) analysis of the
methylation levels of CpG sites within and around each inversion.
We thus quantified individual differences in methylation profiles
across the inverted regions. We included the region ±1Mb to
account for the effect of the inversions beyond the breakpoints.
Remarkably, the first component strongly correlated with the
inversion genotype of the individuals in all three inversions (inv-
8p23.1 PC 1: R2= 0.68, P < 2 × 10−16, inv-16p11.2 PC 1:
R2= 0.05, P= 1.34 × 10−12, and inv-17q21.31 PC 1: R2= 0.70,
P < 2 × 10−16), see Fig. 1d–f. We observed that the first PC clearly
separated the genotypes of inversions at 8p23.1 and 17q21.31,
possibly sustained by the haplotypic differences between inver-
sion status. While the first PC of inv-16p11.2 was significantly
associated with inversion genotypes, the second PC was also
needed to distinctly separate the genotypes (R2= 0.33,
P < 2 × 10−16). This is in line with the univariate differential
analysis, where inv-16p23.1 showed the smallest proportion of
CpG sites differentially methylated according to the inversion
status. This is possibly explained by the multiple haplotypes
supported by this inversion11. These analyses showed that hyper-
and hypomethylation patterns of CpG sites across the inverted
regions are specific to the inversion status.

Inversions as mQTLs in fetal heart DNA. We asked whether the
effect of the inversion on DNA methylation could be also seen
prenatally and in another tissue. Using methylation data of heart
DNA from 39 fetuses from interrupted pregnancies at
21–22 weeks of gestational age due to congenital heart defects38,
we performed the same differential analysis adjusting by sex. We
observed that all the inversions act as mQTLs during early
development from conception, although few CpG sites per
inversion passed Bonferroni’s threshold (Fig. 1g–i and Supple-
mentary Data 3). This can be explained by the small sample size.
Nonetheless, we observed that the distribution of the significant
associations was very similar to the one observed in HELIX data,
having greater differences in methylation in the CpG sites
between the breakpoints. In addition, we saw that 38 CpG sig-
nificant sites overlapped between heart (nominal P-value) and
blood (adjusted P-value) tissues, 32 of which were in the same
direction, suggesting that the effect of inversions on CpG
methylation may be sustained between tissues and stages of life.

Effect of inversion-exposure interactions on DNA methylation.
As these common human inversions at 8p23.1, 16p11.2, and
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17q21.31 offered a solid genetic context where allele-specific
methylation patterns were found, we then asked whether these
patterns were modulated by environmental exposures. Thus, we
assessed which of 64 exposures at early life differentially modified
the methylation levels of the CpG sites within the inversion
regions according to the inversion status.

We performed differential methylation analyses for the
interactions of the 3 inversions with 64 exposures (7 during

pregnancy and 57 at 6–11 years of age) grouped by 12 exposure
families, including build environment, air pollution, persistent
and nonpersistent chemicals, diet, and exposure to tobacco
smoke, among others (Fig. 2a and Supplementary Data 4). We
observed 36 exposures and 58 CpG sites implicated in at least one
significant inversion-exposure interaction after Bonferroni’s
correction for multiple comparisons (see Table 1 and Supple-
mentary Data 5). All exposure families had at least one exposure

Fig. 1 Inversion status as methylation quantitative trait loci (mQTL) of multiple CpG sites within and surrounding three common human inversions.
The first column in the plot panel corresponds to inv-8p23.1, the second to inv-16p11.2, and the third to inv-17q21.31. a–c Manhattan plots for the
significance of the associations between the differential methylation of the CpG sites and the inversion genotypes in child blood cells (N= 1009). The x
axes show the chromosome position (±1Mb between the inversions’ breakpoints). The y axes show the –log10 (P-value). The dashed red line indicates
Bonferroni’s threshold of significance. Green points are CpG sites with significant associations and those in gray are nonsignificant. The orange block
illustrates the inversions’ region. d–f Principal component (PC) analysis for methylation levels of CpG sites within and surrounding the inversions, revealing
remarkably distinctive methylation patterns among the different inversion statuses. Blue points illustrate noninverted homozygous (N/N), yellow illustrates
heterozygous (N/I), and orange illustrates inverted homozygous (I/I) individuals. In parenthesis, the methylation variance explained by each PC.
g–i Manhattan plots of differentially methylated CpG sites, depending on the inversion genotypes in fetal heart DNA (N= 40).
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that interacted with one of the three inversions, except natural
spaces and polybrominated diphenyl ether compounds (PBDE).
Remarkably, the exposure families with the greatest number of
significant interactions were metals (13 interactions), diet (11),
phenols (11), and organochlorines (OCs) (10) (Supplementary
Data 6).

Inversion at 8p23.1 had 36 significant interactions with
exposures from 9 different families (Fig. 2b). OC was the most
predominant exposure family involved in 8 interactions, followed
by diet with 6 and phenols with 5. The genes with the greatest
number of CpG sites differentially methylated according to the
interactions were GATA4 (hypomethylated for the inverted allele
in all but one), XKR6 (hypermethylated for the inverted allele in
all but one), TDH, and FAM167A, all of them seen differentially
methylated, depending on the inversion haplotype. In the case of

inv-16p11.2, we only found 4 significant interactions (Fig. 2c).
Notably, 3 interactions contributed to GSG1L methylation
changes: child vegetable intake (cg08755784, β= 0.006, P=
8.9 × 10−9), child mono-2-ethylhexyl phthalate (MEHP) levels
(cg03962082; β=−0.011, P= 3.0 × 10−8), and child perfluor-
ohexane sulfonate (PFHXS) levels (cg01896119; β=−0.014,
P= 3.3 × 10−8). For inv-17q21.31, we observed 24 significant
interactions with exposures from 6 exposure families (Fig. 2d).
The most frequent family was metals with 9 significant interac-
tions with inv-17q21.31. The most significant interaction of the
inversion was with the exposure to lead on HEXIM2 methylation
(cg19655070: β=−0.043, P= 4.5 × 10−27). Furthermore, several
CpG sites in the upstream region of C1QL1 were differentially
methylated according to the interaction of inv-17q21.31 with
phenols. In particular, a CpG site within C1QL1 promoter was

Fig. 2 Inversion-exposure interactions as methylation quantitative trait loci (mQTL) of multiple CpG sites within and surrounding three common
human inversions. a Number of exposures per family in the early-life exposome from the HELIX project. b–d Manhattan plots showing the significance of
the associations (N= 1009) between the differential methylation of the CpG sites and the inversion-exposure interactions across all 64 exposures in (a)
and the genotypes of three human inversions at 8p.23.1 (b); 16p11.2 (c); and 17q21.31 (d), illustrated by the orange block. The x axes show the chromosome
position (±1 Mb between the inversions’ breakpoints). The y axes show the –log10 (P-value) of the associations. The dashed red line indicates Bonferroni’s
threshold of significance. Significant results are colored according to the family exposure (a) and labeled according to the closest gene to the CpG (Illumina
annotation). Gray points are not significant.
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hypomethylated for the inverted allele when the ethyl paraben
(ETPA) exposure increased (cg24945657: β=−0.011, P=
3.2 × 10−9). In addition, three intergenic CpG sites near this
gene promoter were hypermethylated for the inverted allele when
the exposure to methyl paraben (MEPA) increased (cg06368300:
β= 0.008, P= 5.1 × 10−21; cg11178337: β= 0.019, P= 9.0 ×
10−16; cg07822074: β= 0.005, P= 3.6 × 10−11). It should be
noted that there are four genes (KANSL1, MAT, LOC100128977,
and WNT3) in this region with significant associations that were
also differentially methylated, depending on the inversion
haplotype.

Genes with the strongest and most numerous inversion-
exposure interactions. Within the significant interactions
(Table 1), we looked in detail at the genes that showed both the
highest significant levels and multiple interactions across different
CpG sites for the same gene. We identified three relevant genes
within inv-8p23.1, namely TDH, GATA4, and TRMT9B. Within
TDH, we found two CpG sites significantly associated with the
interaction between the inversion and meat intake: cg01489256
(β= 0.0156, P= 3.8 × 10−22) and cg02601489 (β= 0.0092, P=
1.8 × 10−8). More specifically, we observed that individuals
homozygous for the noninverted allele (N/N) had a negative
association, while heterozygous individuals did not present any
association, and homozygous for the inverted allele (I/I) had a
positive association (Fig. 3a). We also observed that the associa-
tion was consistent across all the cohorts, with no significant
heterogeneity (cg01489256: P= 0.39; cg02601489: P= 0.45), see
Fig. 3b. We further observed that the increase of meat intake
reduced the expression of TDH (P= 0.00398), while the asso-
ciated methylation effect on the expression depended on the
genetic context given by the inversion, adjusting by sex, age, and
cohort (CpG-inversion interaction, P= 0.00193) (Supplementary
Fig. 5). Remarkably, the gene, the inversion, and the exposure
have been independently associated with obesity in adults5,39–41.

GATA4 was the gene with the greatest number of CpG
sites that changed their methylation according to different
interactions between inv-8p23.1 and exposures from different
families. These interactions included manganese (cg26020513:
β=−0.033, P= 4.8 × 10−11), diethylphosphate (DEP) (cg22320
962: β=−0.005, P= 1.1 × 10−9), Mediterranean Diet Quality
Index for children and teenagers (KIDMED) (cg12395012:
β=−0.004, P= 5.1 × 10−9), mercury (cg27100236: β=−0.007,
P= 1.8 × 10−7), and PCB 138 (cg13293535: β= 0.013, P=
3.5 × 10−7) exposures. We observed that this CpG was hyper-
methylated in the individuals homozygous for noninverted allele
when increasing the exposure to manganese (Fig. 3c). The meta-
analysis also revealed consistency across cohorts with no
significant heterogeneity (P= 0.74) (Fig. 3d). Interestingly,
hypermethylation of GATA4 in developing heart DNA, particu-
larly at cg26020513, has been previously associated with
congenital heart defects in fetuses42.

Another interesting result of our analysis relates to the
methylation of the TRMT9B gene, also known as C8orf79 or
KIAA1456, a tRNA methyltransferase. The gene has been seen to
associate with laryngotracheitis, an upper respiratory tract disease
in chicken43,44. We observed that parental smoking during
childhood significantly modulated the inversion-associated
methylation of cg08196601 (β=−0.010, P= 1.3 × 10−10)
(Fig. 3e). The interaction of the inversion with maternal smoking
during pregnancy was also associated with the methylation of
cg08196601 (β=−0.020, P= 5.9 × 10−8). In addition, the
methylation of cg26339990 was associated with the interaction
of the inversion with outdoor PM2.5 (an air pollution exposure)
during pregnancy (β=−0.003, P= 5.5 × 10−8). In the three

cases, the noninverted allele was associated with increased levels
of methylation with the exposures. We observed that the
heterogeneity across cohorts was not significant (P= 0.63)
(Fig. 3f). In line with these observations, the noninverted allele
for inv-8p23.1 has been found to associate with asthma5 while
parental smoking and exposure to high levels of PM2.5 during
pregnancy or childhood increase the risk of respiratory diseases in
children45–47.

Discussion
Here, we show that the common human chromosomal inversions
at 8p23.1, 16p11.2, and 17q21.31 have distinctive methylation
patterns in blood across the inverted regions and that the early-
life exposome modulates these patterns. We observed that during
childhood, approximately 10% of the CpG sites within the
inverted regions ±1Mb were significantly differentially methy-
lated according to the inversion genotype. The amount of the
differentially methylated CpG sites was high within the region
and sharply decreased after the breakpoints, indicating the tar-
geted effect of genomic inversions on DNA methylation. We
could also identify the effects of the inversions at prenatal stages
in heart tissue, suggesting their relevant role during development
even in utero. As such, inversions are early methylation quanti-
tative loci for the genes they enclose. Our findings, therefore, add
to other effects that inversions have on gene expression8,13,14,48,
derived from their genetic variability or from the displacement of
regulatory elements near the breakpoints10. While individual
CpG associations with the inversion may be due to the inversion
or to local genetic variability in linkage with the inversion, our
observations in the PC analysis reveal a spatial pattern given by
the correlation of several CpG-site associations that fits the
extension of the inversion. It is clear that the cause of such
extended pattern along the affected sequence has been produced
by the presence of the inversion, likely due to both the DNA
reconfiguration and the accumulation of specific genetic varia-
bility along the segment that results from the suppression of
recombination between inversion states.

We show that an important influence of inversions on phe-
notypes could be derived from the methylation patterns they
support. Few previous studies have analyzed targeted methylation
changes when studying a specific inversion or disease. We pre-
viously reported that the effect of inv-17q21.31 on colorectal
disease-free survival is more likely mediated by DNA methylation
than by gene expression6. Here, we document that the effect
of inversions on methylation is strong along the inverted
segment and already significant during early embryonic and
fetal development in heart-tissue DNA. One of the main estab-
lished mechanisms underlying the influence of inversions on
phenotypic traits and their pleiotropy is the suppression of
recombination within the inverted sequence in heterozygotes.
Allele combinations can thus be protected, leading to the gen-
eration and possible selection of specific haplotypes for each
inversion state10. In addition, inversion breakpoints can disrupt
coding regions or regulatory elements, altering gene expression or
generating novel transcripts with phenotypic consequences,
including deleterious effects15. These effects likely play a role in the
association of these three polymorphic inversions with complex
diseases, like obesity5,8, autoimmune diseases49, or neurodegen-
erative disorders50–52. For these diseases with important environ-
mental components, our results further suggest the additional role
of inversion-associated methylation that is modifiable by environ-
mental exposures.

Allele-specific methylation patterns in inversions can be caused
or facilitated by their specific genetic variability and/or different
chromatin structure. In our study, we removed probes with SNPs
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Fig. 3 Interaction and forest plots for TDH, GATA4, and TRMT9B genes. a Interaction plot illustrating differences across inv-8p23.1 genotypes in the
association between cg01489256 (TDH) methylation and meat intake (expressed in servings per week). Methylation means the given meat-intake status
and inversion genotype are represented with their 95% confidence intervals (N= 1009). b Forest plot showing the meta-analysis effect estimates of inv-
8p23.1–meat-intake interaction on cg01489256 methylation across HELIX cohorts. c Interaction plot illustrating differences across inv-8p23.1 genotypes in
the association between cg26020513 (GATA4) methylation and manganese (N= 1009). d Forest plot showing the meta-analysis effect estimates of inv-
8p23.1–manganese interaction on cg26020513 methylation across HELIX cohorts. e Interaction plot illustrating differences across inv-8p23.1 genotypes in
the association between cg08196601 (TRMT9B) methylation and parental smoking (N= 1009). f Forest plot showing the meta-analysis effect estimates of
the inv-8p23.1–parental smoking interaction on cg08196601 methylation across HELIX cohorts. Blue points and lines illustrate noninverted homozygous
(N/N), yellow illustrates heterozygous (N/I), and orange illustrates inverted homozygous (I/I) individuals. The error bar represents one standard deviation.
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within 5-bp distance and overall population frequency higher
than 1%, ruling out technical and genetic variation as main
contributors to the methylation differences. We observed that
inversions at 8p23.1 and 17q21.31 were strongly characterized by
their methylation patterns in the region. However, the effect was
less strong for inv-16p11.2, which can be due to the higher
number of haplotype groups supported by the inversion, that is,
two distinct haplotype groups in the standard allele and one in
the inverted allele, and the fact that this inversion is smaller in
size (0.45 Mb vs. 0.9 Mb for inv-17q21.31 and almost 4 Mb for
inv-8p23.1)8. These specific effects on the methylation patterns
could be mainly caused by differences in the three-dimensional
(3D) DNA configuration for each allele26, rendering some hap-
lotypes more accessible to the different factors that could facilitate
DNA methylation. This mechanism would explain how a recur-
rent but nonpolymorphic inversion at Xq28 causing Hemophilia
A has been associated with specific methylation changes23 or how
de novo inversions at 11p15.5 causing Beckwith–Wiedemann
syndrome can be hypermethylated24. The possible correlation of
inversion haplotypes with different 3D configurations and nuclear
localization should be investigated in future studies.

We found that while the effects of the inversion on gene
transcription and CpG methylation are widespread across the
affected region with some overlap, the specific expression changes
driven by inversion-association methylation need to be indivi-
dually assessed. While the extended pattern of methylation across
the inversion can be a consequence of the reconfiguration of the
chromatin structure, gene expression may be more susceptible to
the tissue and the local genetic variability in linkage with an
inversion allele. In the case of 17q21 inversion, for instance, we
found clear methylation patterns associated with inversion alleles,
but no expression differences, which suggests that these methy-
lation changes would have no relevant consequences in blood. By
contrast, we also identified a relevant and specific mediator role
by the methylation at promoters of TUFM and SULT1A1 on the
associations of their expressions with inv-16p11.2. Remarkably,
these are candidate genes in the association between inv-16p11.2
and the co-occurrence of asthma and obesity8.

Previous studies have reported transcriptomic effects of inv-
17q21.31 in blood only in genes with multiple copies53,54. This is
a complex region with high variability in the gene copies within
the inversion alleles, high homology between the genes with
multiple copies, and low expression of the genes in blood14,55.
This could explain the lack of eQTL effects of inv-17q21 in blood
that we observed.

We have found that several methylation effects of inversions
are modifiable by numerous environmental exposures, suggesting
additional inversion-methylation effects to those driven by
genetic variability. We observed that inversions significantly
interacted with a wide range of exposures affecting DNA
methylation across the inverted segments. Therefore, inversions
are common copy-neutral polymorphisms that seem to be
important contributors to gene-environment interactions, whose
detection remains elusive in genomic and high-dimensional
exposure data56–58. We analyzed data from an exposome study,
covering a wide range of exposure families believed to affect
children’s development. The exposome data included environ-
mental exposures but also exposures from the diet, urban expo-
some, and chemical compounds31. In total, we assessed 64
exposures (7 during pregnancy and 57 at 6–11 years of age)
grouped in 12 families. We observed inversion interactions in
most of the exposure families, most prominently in metals, diet,
phenols, and organochlorines. Validation of these results and
their consequences remain to be evaluated. Our results support
the notion that inversions can change the way exposures affect a
child’s development by changing the genetic context. Carriers of

genomic variants, such as these inversions that may affect the
function of a set of genes in a specific direction, can be more
susceptible to (or naturally protected against) disease or devel-
opmental disorders if exposed to a relevant environmental risk
factor59. Thus, allele-specific methylation in response to different
environmental factors could also contribute to the positive
selection that has been documented for all three inversions in
some human populations8,12,60.

We found numerous significant inversion-exposure interac-
tions on methylation levels in important genes that deserve fur-
ther study. These include, among others, Alzheimer’s MAPT and
its associations with copper61, MSRA’s role in repairing oxidative
damage to proteins and its relation with diet and parental
smoking, and the oncogene WNT3 and its relation to molybde-
num and mercury exposure. Here, we highlight three interactions
with potential clinical interest and substantial support from
previous studies. First, we observed the interaction of inv-8p23.1
with meat intake associated with TDH methylation levels.
Remarkably, the inversion, the exposure, and the gene are inde-
pendently associated with obesity in adults5,39–41. Our data
revealed that noninverted homozygous individuals, those with a
higher risk of obesity, decreased methylation of two CpG sites
within TDH as meat intake increases. While further studies are
needed to describe the role that this pseudogene plays in obesity
during development, it is clear that these need to incorporate the
effects of the inversion and its methylation status. In addition,
clinical interventions of obesity aiming at managing meat intake
should consider the methylation of the gene and the inversion
genotype of individuals. Second, we observed that cg26020513
within GATA4 was hypermethylated in blood when manganese
exposure increased but only in noninverted homozygous indivi-
duals. It is notable that the hypermethylation of cg26020513 has
been strongly associated with congenital heart defects in fetuses42,
mutations in GATA4 have been associated with cardiac septal
defects62, and manganese toxicity in heart tissue is well
documented63. The inversion also interacted with other relevant
exposures on GATA4 methylation, including mercury, with
reported effects in heart-rate variability in children64, diethyl-
phosphate, Mediterranean diet, and PCB 138. Therefore, the
extent to which the inversion status can protect against the
positive association between these exposures and GATA4
methylation deserves further scrutiny. Third, we observed that the
effects of tobacco smoke (during pregnancy or in childhood) and
air pollution (outdoor PM2.5 exposure) on TRMT9B methylation
changed, depending on the inv-8p23.1 genotype. Since these two
exposures increase the risk of respiratory diseases45–47 and
TRMT9B is a gene associated with an upper respiratory tract
disease43,44, our results suggest a likely role of the gene in the
association between inv-8p23.1 and asthma5.

To the best of our knowledge, this is the first study to sys-
tematically assess the methylation landscape within three com-
mon human inversions and its interaction with the exposome.
We have shown that genomic inversions are associated with the
methylation of the CpG sites within the inversion region and that
this association is modulated by a wide range of environmental
exposures during childhood.

Methods
Study population. The Human Early Life Exposome (HELIX) project36 comprises
a total of 1301 mother–child pairs from six birth cohorts in Europe: BIB (Born in
Bradford; the United Kingdom)65, EDEN (Etude des Déterminants pré et post-
natals du développement et de la santé de l’Enfant; France)66, INMA-SAB (Infancia
y Medio Ambiente; Spain; subcohort Sabadell)67, KANC (Kaunas cohort;
Lithuania)68, MoBa (The Norwegian Mother, Father and Child Cohort study;
Norway)69, and Rhea (Greece)70. These mother–child pairs participated in a
common, completely harmonized, follow-up examination between December 2013
and February 2016, when children were between 6 and 11 years old71. The main
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goal of this project was to implement exposure assessment and biomarker methods
to characterize early-life exposure to multiple environmental factors and associate
these with omics biomarkers and child health outcomes. For these same children,
multi-omics molecular phenotyping was performed, including measurement of
blood DNA methylation (450 K, Illumina), blood gene expression (HTA v2.0,
Affymetrix), blood miRNA expression (SurePrint Human miRNA rel 21, Agilent),
plasma proteins (Luminex), serum metabolites (AbsoluteIDQ p180 kit, Biocrates),
urinary metabolites (1H NMR spectroscopy), and DNA microarray (Chemagen kit,
Perkin Elmer). All studies received approval from the ethics committees of the
centers involved and written informed consent was obtained from all participants.

Molecular phenotypes
Inversion genotype data. DNA was obtained from buffy coat collected in EDTA
tubes at 6–11 years of age. Briefly, DNA was extracted using the Chemagen kit
(Perkin Elmer) in batches of 12 samples. Samples were extracted by cohort and
following their position in the original boxes. DNA concentration was determined
in a NanoDrop 1000 UV–Vis Spectrophotometer (ThermoScientific) and with
Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies). Genome-wide
genotyping was performed using the Infinium Global Screening Array (GSA) MD
version 1 (Illumina) at the Human Genomics Facility (HuGe-F), Erasmus MC
(www.glimdna.org). Genotype calling was done using the GenTrain2.0 algorithm
based on a custom clusterfile for 692,367 variants implemented in the GenomeS-
tudio software. Annotation was done with the GSAMD-24v1-0_20011747_A4
manifest, SNP coordinates were reported on human reference GRCh37 and Source
strand (Forward strand report in GenomeStudio). The initial dataset consisted of
1,397 samples and 692,367 variants. Samples with discordant sex, duplicated,
contaminated (high heterozygosity), and relatives (IBD > 0.185) were filtered out.
SNPs with variant call rate <95%, minimum allele frequency <1%, and HWE P-
value (1 × 10−6) were excluded. Major population ancestry groups were estimated
using Peddy37 and only individuals of European ancestry were kept in the analysis.
The final dataset consisted of 1,009 samples and 509,344 SNP variants. From this
dataset, we selected inversions that could be genotyped with scoreInvHap and had
more than 10 CpG sites in the inversion region: inv-8p23.1, inv-16p11.2, and inv-
17q21.31 (Table 2 and Supplementary Tables 2 and 3).

DNA methylation. The DNA was obtained using the same methodology as for
genetics data. DNA methylation was assessed using the Infinium Human Methy-
lation 450 beadchip (Illumina), following the manufacturer’s protocol. Minfi R
package72 was used for the preprocessing of DNA methylation data. MethylAid
package73 was employed to perform the first quality control of the data. Probes
with low call rates were filtered following the guidelines of Lehne et al.74. The
functional normalization method was further applied, including Noob background
subtraction and dye-bias correction75. Several quality-control checks were per-
formed: sex consistency using the shinyMethyl package76, consistency of duplicates,
and genetic consistency for the samples that had genome-wide genotypic data.
Duplicated samples and control samples were removed, as well as probes that
measure methylation levels at non-CpG sites77. Probes that cross-hybridize were
excluded. Moreover, we used InfiniumAnnotation from https://zwdzwd.github.io/
InfiniumAnnotation to filter probes where 30-bp 3′-subsequence of the probe is
nonunique, probes with INDELs, probes with extension base inconsistent with
specified color channel (type I) or CpG (type II) based on mapping, probes with a
SNP in the extension base that causes a color-channel switch from the official
annotation, and probes where 5-bp 3′-subsequence overlap with any of the SNPs
with global population frequency higher than 1%. Consequently, the number of
CpG probes analyzed was 371,533, initially available for 1192 subjects. We then
used Combat algorithm to remove the batch effects supported by the slide.
Methylation levels were expressed as beta values (average methylation levels for an
individual, between 0 for a never-methylated CpG site and 1 for an always-
methylated CpG site) and CpG sites were annotated to genes by Illumina HM450
manifest file (version 1.2). We discarded the subjects without inversion-status data
and without European ancestry based on genomic data, resulting in 1009 indivi-
duals for the analysis. For each inversion, we selected the CpG sites contained in
the inversion region ±1Mb, resulting in 848 CpG sites for inv-8p23.1, 401 for inv-
16p11.2, and 666 for inv-17q21.31 (Table 2 and Supplementary Table 2). Blood
cell-type proportions were estimated from methylation data according to House-
man et al. algorithm78 and Reinius reference panel79.

Gene expression. At the period of clinical examination that took place when chil-
dren were between 6 and 11 years old, RNA was extracted from whole blood
collected in Tempus tubes. Samples with RIN > 5 were considered. Gene expression
was assessed using the GeneChip® Human Transcriptome Array 2.0 (HTA 2.0)
(Affymetrix, USA) at the University of Santiago de Compostela (USC, Spain),
following the manufacturer’s protocol. Samples were randomized and balanced by
sex and cohort within each batch. Data were normalized at the gene level with the
GCCN (SST-RMA) algorithm, and batch effects and blood cell-type composition
were controlled with two surrogate variable analysis (SVA) methods, isva80 and
SmartSVA81, during the differential expression analyses. Gene expression values
were log2 transformed, and annotation of transcript clusters (TCs) to genes was
done with NetAffx annotation (version 36). Genes without Gene Symbol annota-
tion or with call rate <20% were removed, restricting to 25,255 genes. From this
number of genes, we selected those within the inversion regions ±1Mb (inv-8p23.1:
83 genes; inv-16p11.2: 58 genes; inv-17q21.31: 61 genes). From a total of
1158 subjects that had transcriptomic data, we selected individuals with European
ancestry (based on genomic data) who had available inversion-status data and cell-
type proportions assessed from methylation data, resulting in a total of 790 subjects
(Table 2 and Supplementary Table 1).

Exposome assessment. The assessment of the exposome has been previously
published82. In our study, we included 7 exposures assessed during pregnancy and
57 exposures assessed during childhood at age 6–11 y (Supplementary Data 4).
These 64 exposures were selected from the entire exposome dataset according to
the number of missing values they had. We did not include exposures that had
more than 10% of missings in the whole dataset or with more than 20% missing in
one or more cohorts. We also excluded exposures whose levels were not present in
all cohorts. Third, we selected the most representative exposures within each
family.

The pregnancy exposome consists of 7 exposures, including outdoor PM2.5,
normalized difference vegetation index (NDVI), 4 PFASs, and maternal smoking
during pregnancy. The postnatal exposome was divided into 12 exposure families:
outdoor air pollution (2), building environment (1), diet (6), metals (9), natural
spaces (1), organochlorines—OCs (8), organophosphate pesticides—OP pesticides
(5), polybrominated diphenyl ethers—PBDEs (2), perfluorinated alkylated
substances—PFAS (5), phenols (7), phthalates (10), and second-hand exposure to
tobacco smoke (1) (Fig. 2a). Metals, OCs, OP pesticides, PBDEs, PFASs, phenols,
and phthalates were assessed by biomarkers in children at the time of the clinical
examination, from a pool of two urine samples or one serum sample83. Air
pollution, natural spaces, and building environment quantification were assessed
during the year before child examination or during pregnancy by environmental
geographic information systems (GIS). Tobacco smoke and diet were evaluated by
questionnaires. Missing values for all exposures were imputed using the method of
chained equations84, as described in detail elsewhere82. Most exposure variables
were transformed as described in Supplementary Data 4.

Fetal heart-tissue samples. Human fetal samples from 40 fetuses of terminated
pregnancies due to a major congenital heart defect (gestational age 21–22 weeks in
all cases) were obtained from Biobanc Hospital Universitari Vall d’Hebron
(HUVH) in a related project addressed to define the genetic and epigenetic basis of
congenital heart defects38. Informed consent was obtained from parents and the
study was approved by the institutional ethics committee. Heart-tissue DNA was
obtained following necropsy using standard procedures, whole-genome sequencing
was performed at Centogene, and DNA methylation was measured with Infinium
MethylationEPIC38.

After quality control, one sample was discarded (Supplementary Table 4).
During the preprocessing of methylation data, probes with a single-nucleotide
polymorphism (SNP) with overall population frequency higher than 1% based on
InfiniumAnnotation from https://zwdzwd.github.io/InfiniumAnnotation were
removed. Selecting the CpG sites within the inversion region ±1Mb, we analyzed
898 CpG sites from inv-8p23.1, 409 from inv-16p11.2, and 698 from inv-17q21.31.

Statistics and reproducibility
Genome-wide analysis. Differential methylation analyses were performed using
MEAL Bioconductor’s package85. We performed a differential mean analysis

Table 2 Characteristics of HELIX data relating 3 common polymorphic inversions in humans.

Genomic inversion Length (kb) Inversion region ±1Mb Inversion frequency (%) Omics Number of samples Number of features

8p23.1 3924.86 chr8:7055789-12980649 57.95 Methylome 1009 848
Transcriptome 926 83

16p11.2 364.17 chr16:27424774-29788943 34.49 Methylome 1009 401
Transcriptome 926 58

17q21.31 710.89 chr17:42661775-45372665 23.96 Methylome 1009 666
Transcriptome 926 61

The table shows the length in kb, the mapping coordinates hg19 ±1Mb, the frequency of all the inversions obtained from scoreInvHap11, and the number of samples and features used in transcriptome and
methylome analysis for each inversion.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03380-2

10 COMMUNICATIONS BIOLOGY |           (2022) 5:455 | https://doi.org/10.1038/s42003-022-03380-2 | www.nature.com/commsbio

http://www.glimdna.org
https://www.google.com/url?q=https://zwdzwd.github.io/InfiniumAnnotation&sa=D&source=hangouts&ust=1619185625977000&usg=AFQjCNFtLMhgGf99BPKG_bzeO20r4GsnYA
https://www.google.com/url?q=https://zwdzwd.github.io/InfiniumAnnotation&sa=D&source=hangouts&ust=1619185625977000&usg=AFQjCNFtLMhgGf99BPKG_bzeO20r4GsnYA
https://www.google.com/url?q=https://zwdzwd.github.io/InfiniumAnnotation&sa=D&source=hangouts&ust=1619185625977000&usg=AFQjCNFtLMhgGf99BPKG_bzeO20r4GsnYA
www.nature.com/commsbio


(DMA) on inversion genotypes using the function runDiffMeanAnalysis that calls
limma86. Based on a priori knowledge, we adjusted all the regression models by sex,
age, population stratification (using the first 10 principal components of the GWAS
that highly correlated with cohort), and cell type (Supplementary Tables 1 and 2).
To correct for the variance between cohorts, we performed this analysis for each
cohort separately, and we meta-analyzed the results using the function metagen
from meta package87. For each inversion, in each cohort, we fitted models

Ej ¼ αj þ βjkIk þ ΣrγrCr þ εj ð1Þ
where Ej is the methylation or expression-level vector across individuals at probe j,
Ik are the individuals’ genotypes for inversion k (8p23.1, 16p11.2, and 17q21.31), Cr

is the r covariate and its effect γr, and εj is the noise that follows the distribution of
methylation or expression levels with mean 0. βjk is the effect of interest measuring
the effect of the inversion. The βjk were then meta-analyzed across cohorts. P-
values derived from the meta-analyses were corrected for multiple comparisons for
the number of probes using Bonferroni’s correction. The inflation or deflation of P-
values across the methylome or transcriptome was tested with Q–Q plots.

Exposome-wide interaction analysis. Based on the genome-wide analysis, the same
functions were implemented for the exposome-wide interaction analysis. In this
case, the effect of interest was the inversion-exposure interaction in the model

Ej ¼ αj þ βjikðXi ´ IkÞ þ ΣrγrCr þ εj ð2Þ
where Xi is the level of exposure i across individuals. βjik is the effect of interest
given by the exposure-inversion interaction. In this case, the covariates also
included exposure i, the inversion genotypes, maternal education level, and child
body mass index (BMI). P-values were corrected for multiple comparisons across
CpG sites and exposures using Bonferroni’s correction. The inflation or deflation of
P-values across the methylome was tested with Q–Q plots.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying Figs. 2a, 3a and e are available in Supplementary Data 7. The HELIX
data warehouse has been established as an accessible resource for collaborative research
involving researchers external to the project. Access to HELIX data is based on approval by
the HELIX Project Executive Committee and by the individual cohorts. Further details on
the content of the data warehouse (data catalog) and procedures for external access are
described on the project website (http://www.projecthelix.eu/index.php/es/data-inventory).
The data used in this analysis are not available for replication because specific approvals
from HELIX Project Executive Committee and the University of Southern California
Institutional Review Board must be obtained to access them. Please contact the
corresponding author for more information regarding access to HELIX data.

Code availability
Any custom code or software used in our analysis is available at https://doi.org/10.5281/
zenodo.6417926 (URL: https://zenodo.org/badge/latestdoi/296552532).
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