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Abstract

Gender bias is a dangerous form of social bias that impacts an essential group of
people. The effect of gender bias is propagated to our data, causing the accuracy of
the predictions in models to be different depending on gender. In the deep learning
era, our models are highly impacted by the training data transferring the negative
biases in the data to the models. Natural Language Processing models encounter
this amplification of bias in the data.

To understand and manage the effect of bias amplification, we are exploring the
evaluation and mitigation approaches. The scientific society has exerted significant
efforts in these two directions to enable proposing solutions to the problem. Our the-
sis is devoted to these two main directions; proposing evaluation schemes, whether
as datasets or mechanisms, besides suggesting mitigation techniques. For evalua-
tion, we proposed techniques for evaluating bias in contextualized embeddings and
multilingual translation models. Besides, we presented benchmarks for evaluating
bias for speech translation and multilingual machine translation models. For mit-
igation direction, we proposed different approaches in machine translation models
by adding contextual text, contextual embeddings, or relaxing the architecture’s
constraints.

Our evaluation studies concluded that gender bias is encoded strongly in contextual
embeddings representing professions and stereotypical nouns. We also unveiled that
algorithms amplify the bias and that the system’s architecture impacts the behav-
ior. For the evaluation purposes, we contributed to creating several benchmarks.
Firstly, we introduced a benchmark that evaluates gender bias in speech translation
systems. This research suggests that the current state of speech translation systems
does not enable us to evaluate gender bias accurately because of the low quality of
speech translation systems. Additionally, we proposed a toolkit for building multi-
lingual balanced datasets for training and evaluating NMT models. These datasets
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Abstract

are balanced within the gender occupation-wise. We found out that high-resource
languages usually tend to predict more precise male translations.

Our mitigation studies in NMT suggest that the nature of datasets and languages
needs to be considered to apply the right approach. Mitigating bias can rely on
adding contextual information. However, in other cases, we need to reconsider the
model and relax some influencing conditions to the bias that do not affect the general
performance but reduce the effect of bias amplification.

iv



Acknowledgement

I am so grateful I came to the point of writing this in my PhD journey. The journey
was worth living; it shaped my thinking and character, and I would not do it in
any other way. There were so many valuable people along the journey who will
always have a special place in my heart, and I will always keep them in my mind
and heart.

First, I will start with my mentors. Marta, you were not only a PhD supervisor but
also a companion, supporter, and friend. I can not thank you enough for all you
taught me. You taught me lessons in research, life, career, and everything. I will
always be grateful to you for all the conversations, the encouragement, the stories
you shared, and the mentorship. Adrian, thanks for being such a role model to
whom I am looking up. Thank you for enduring my basic questions, whether in
teaching or research. I am grateful to have you as a mentor and have learned much
from you. I also want to thank Kellie Webster in Google for being a great, helpful,
knowledgeable mentor. I appreciate you a lot.

Now, coming to my family, two special people left our world while being in Barcelona,
doing the PhD. Khalo Onsy, my dear uncle, I lost you in my PhD journey, but I
know you would be proud of me now. You will always be in my heart, and I will
never forget you. Tante Mervat, thanks for teaching me the most important lessons
while leaving our world; thanks for your big heart. Pray for me while being with
Khalo.

Now I would acknowledge the most important person in life, my mum, who always
believed in me when I least did. Mum, you are my real hero in life. Throughout my
life, you encouraged me and supported me in every way. Mum, you are amazing and
inspiring. I love you; thank you for everything. Dad, thanks for always waiting for
me late at night at the airport. Thank you for always ensuring that I do not need

v



Acknowledgement

anything more and do not lack anything. Thanks for all the prayers you do. Lola,
my dear sister, thanks for taking out so many responsibilities. You made sure to
take care of me in every way. I love you and am blessed to have a fantastic sister like
you. I always look up to you and appreciate your opinions and advice. My awesome
cousins, who were the first to welcome me at home, Feby, and Engy. Thank you for
always making me feel like I am there and not missing anything. Thanks for telling
me the things Lola forget to tell :D. I always missed you here. Merna and Marlo,
I know how special and strong you are. You make us proud and you are always in
my thoughts. Mira and Mady, you are so special and close to my heart. To you all
and all my other cousins, also to my dear aunts, I love you so much.

Coming to my awesome friends, Monica, thank you for always making sure I am
ok and asking and caring about me, and thanks for always keeping me in your
mind and life. I am so blessed for this. Thanks to my friends who visited me in
Barcelona and left me with memories that will stay with me all over the years. First,
I would thank Mariam, my close friend and sister, who always gives me warmth and
happiness. Marie, Shimaa, Mai, Michael, and Rana, my very dear friends, thank
you all for coming and making memories with me. To my friends in my work in
Egypt, especially Reem, thank you for being such a good friend who always cared
for me and took much responsibility for the paperwork.

My dear PhD mates, Bardia, Casimiro, Magdalena, Noe and Carlos. You were the
first ones there on the team before I came. I remember your support and your
help all over the way. I was very blessed to have you through this journey. Special
thanks to Carlos, who helped me a lot through the paperwork and was always ready
to answer any question even before that. To my new colleagues who added so much
fun and exceptional taste to my PhD’s last period: Gerard, Javier, Ioannis, Andre,
Sant, and Belen. The last outings shaped super lovely memories for me. Thanks
for being such nice company. Oriol, thanks for the pleasant cooperation. I enjoyed
working with you. Everyone taught me something, and I am grateful to know each
of you.

My special Barcelona Friends who became family and now special friends. Fatma,
you added so much to my life here. I will always appreciate our time together.
You made our time together adventurous, fun, and full of life. I am happy to gain
such a friend for life. Marina, thanks for being such a faithful and understanding
friend. Having you here was one of the best things. I would not give up on our lack

vi



of communication and will always keep you as a friend. Denise, I appreciate our
talks a lot, you made me understand new concepts about life, and I appreciate our
memories together. For many more :) To my other beautiful friends, Margo, Koki,
Lili, Martina and Michael, Ireny and Peter, Mina Sameh, Besho, Pepo, Mina and
Diana, you made Barcelona home. Special thanks to Marina Abadir, who helped
me a lot from the beginning and always cared.

There are a lot of other beautiful friends that shared with me some parts of the
journey. I appreciate everyone who shared with me any time during this journey. I
am truly blessed to have you all and to have you as a part of the growth.

vii





Contents

Abstract iii

Acknowledgement v

List of Figures xiii

List of Tables xv

1 Introduction 3
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Outcomes of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Neural Machine Translation (NMT) . . . . . . . . . . . . . . . . . . . 11

2.3.1 Sequence-to-Sequence Models . . . . . . . . . . . . . . . . . . 11
2.3.2 Neural Machine Translation Architectures . . . . . . . . . . . 12

3 Literature Survey and Related Work 17
3.1 Gender Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Sources of Gender Bias . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Gender Bias and Language . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Gender Bias in Word Embeddings . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Assessing bias in Word Embeddings . . . . . . . . . . . . . . . 22
3.4.2 Mitigating Gender Bias in Word Embeddings . . . . . . . . . 24

3.5 Gender Bias in Machine Translation . . . . . . . . . . . . . . . . . . . 26
3.5.1 Main Challenges of Bias in NMT . . . . . . . . . . . . . . . . 27
3.5.2 Assessing Approaches . . . . . . . . . . . . . . . . . . . . . . . 28

ix



Contents

3.5.3 Mitigation Approaches . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Evaluation Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Evaluation Gender Bias in Embeddings and NMT architectures 41
4.1 Evaluation of Gender Bias in Contextualized Embeddings . . . . . . . 41

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 Experimental Framework . . . . . . . . . . . . . . . . . . . . . 42
4.1.4 Experiments on the English Language . . . . . . . . . . . . . 44
4.1.5 Extension to the Spanish Language . . . . . . . . . . . . . . . 49
4.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.6.1 English Results . . . . . . . . . . . . . . . . . . . . . 52
4.1.6.2 Spanish Results . . . . . . . . . . . . . . . . . . . . . 57

4.1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Evaluation Gender Bias in Multilingual Machine Translation . . . . . 60

4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.3 Experimental Framework . . . . . . . . . . . . . . . . . . . . . 61

4.2.3.1 Architectures . . . . . . . . . . . . . . . . . . . . . . 61
4.2.3.2 Data and Parameters . . . . . . . . . . . . . . . . . . 62

4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.5 Interpretability Analysis . . . . . . . . . . . . . . . . . . . . . 64
4.2.6 Manual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Final Thoughts on the Chapter . . . . . . . . . . . . . . . . . . . . . 68

5 Towards Mitigation Approaches of Gender Bias in Machine
Translation 69
5.1 Mitigation by Adding the Previous Sentence and the Speaker Gender

Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . 70
5.1.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.6 Manual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



Contents

5.2 Mitigation using Contextual Embeddings and Relaxed Positioning
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . 77
5.2.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Final Thoughts on the Chapter . . . . . . . . . . . . . . . . . . . . . 85

6 Towards Creating Balanced Datasets 87
6.1 WinoST challenge set . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.2 Proposed Gender Evaluation Set . . . . . . . . . . . . . . . . 88
6.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 GENOCC Toolkit: Building Real-world Multilingual Balanced Par-
allel Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Proposed Data Collection and Curation Methodology . . . . . 95
6.2.3 Use-case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 102
6.2.5 Postediting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.6.1 Data Statistics . . . . . . . . . . . . . . . . . . . . . 103
6.2.6.2 Machine Translation . . . . . . . . . . . . . . . . . . 105

6.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3 Final Thoughts on the Chapter . . . . . . . . . . . . . . . . . . . . . 109

7 Conclusion of the Thesis 111
7.1 Reflections and Insights . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Final Thoughts and Closure . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 115

xi





List of Figures

2.1 Transformer architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Google translate error (February, 2022). . . . . . . . . . . . . . . . . 26

4.1 TEDx annotations of the professions. . . . . . . . . . . . . . . . . . . 46
4.2 X-axis refers to the ten PCA components and Y-axis refers to the

percentage of variance explained by the ten principal components in
TEDx Exp.1 in layer 2 (left) and layer concatenation (right). . . . . . 54

4.3 X-axis refers to the ten PCA components and Y-axis refers to the
percentage of variance explained by the ten principal components in
WMT Exp.1 in layer 2 (left) and layer concatenation (right). . . . . . 54

4.4 X-axis refers to the ten PCA components and Y-axis refers to the
percentage of variance explained by the ten principal components in
Pubmed Exp.1 in layer 2 (left) and layer concatenation (right). . . . . 55

4.5 X-axis refers to the ten PCA components and Y-axis refers to the
percentage of variance explained by the ten principal components in
Europarl Exp.1 in layer 2 (left) and layer concatenation (right). . . . 55

4.6 Clustering experiments for TEDx, WMT, Europarl and Pubmed for
representations from layer 2, male clusters are in violet and female
clusters are in yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 X-axis refers to the ten PCA components and Y-axis refers to the
percentage of variance explained by the ten principal components of
definitional pairs’ embeddings of Spanish. . . . . . . . . . . . . . . . . 57

4.8 Plotting Spanish representations of nouns on gender direction. . . . . 58
4.9 Plotting Spanish representations of occupations on gender direction. . 58
4.10 Classification results, from left to right: Bilingual (English-to-

German/Spanish/French), Shared and Language-Specific. Deter-
miner in light, occupations in dark. . . . . . . . . . . . . . . . . . . . 65

xiii



List of Figures

4.11 Misclassified occupations in terms of gender. Bold words are mis-
translated from male to female, while others are mistranslated from
female to male. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Acc.% on gender translation with respect to pro-stereotypical entities
and anti-stereotypical entities in WinoMT. . . . . . . . . . . . . . . . 73

5.2 Proposed architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 WinoST evaluation block diagram for speech translation. . . . . . . . 88
6.2 Pipeline overview. First step is data collection (top), which includes

collecting and preprocessing data. Within this step, we have to define
which languages our final dataset will contain. Followed by mining
then dataset alignment and balancing (bottom), with an optional step
for multilingual alignment in case of need. . . . . . . . . . . . . . . . 96

6.3 Extraction schema. Each step is depicted in a triplet format:
〈subject,predicate,object〉. Blue (italics) information is the informa-
tion extracted at each step. For each step outlined with a dotted
rectangle (−−), the information extracted is the subject; otherwise,
the information extracted is the object. . . . . . . . . . . . . . . . . . 97

6.4 Spreadsheet for annotators. Complete example for the Spanish lan-
guage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Distribution of entities’ gender across languages. . . . . . . . . . . . . 104
6.6 Number of entities with different amounts of occupations regarding

our use-cases: en-es-ru-ar (high-resource). . . . . . . . . . . . . . . . . 105
6.7 Percentage of post-edited sentences per language (left). Translation

Edit Rate (TER) per language (right) . . . . . . . . . . . . . . . . . . 105
6.8 High-resource language results. (Top) Heatmap for BLEU scores be-

tween languages with M2M_100, mBART50_m2m and Opus-MT
models. (Bottom) Average BLEU for all language directions. . . . . . 106

6.9 High-resource language results. Average BLEU across language di-
rections with M2M_100, mBART50_m2m and Opus-MT models.
(Top) Female (Bottom) Male. . . . . . . . . . . . . . . . . . . . . . . 107

xiv



List of Tables

3.1 Examples of bias definitions. . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Different types of languages, blue for pronouns, green for gendered

possessive pronouns and red for gendered nouns. . . . . . . . . . . . 21
3.3 Monolingual different benchmarks. . . . . . . . . . . . . . . . . . . . 34
3.4 Different benchmarks for NMT, pro stands for pro-stereotypical, anti

stands for anti-stereotypical. FEM stands for Feminine, MASC stands
for masculine and REFL stands for reflexive in case of Reflexive
Change dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Domain-specific data summary figures. . . . . . . . . . . . . . . . . . 44
4.2 Results of TEDx experiments 2-5. Less biased in bold, the higher,

the worse. Numbers between brackets show the difference between
the maximum and the minimum numbers acquired from the ten ex-
periments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Results of WMT experiments 2-5, the higher, the worse. Numbers
between brackets show the difference between the maximum and the
minimum numbers acquired from the ten experiments. . . . . . . . . 52

4.4 Results of Pubmed experiments 2-5,the higher, the worse. Numbers
between brackets show the difference between the maximum and the
minimum numbers acquired from the ten experiments. . . . . . . . . 53

4.5 Results of Europarl experiments 2-5, the higher, the worse. Numbers
between brackets show the difference between the maximum and the
minimum numbers acquired from the ten experiments. . . . . . . . . 53

4.6 Direct bias of Spanish professions with semantic direction. . . . . . . 59
4.7 WMT Spanish clustering and classification experiments. . . . . . . . 59
4.8 Results in terms of BLEU and Gender Accuracy (Acc.): Bilingual

(bil), Shared (shared) and Language-Specific (lang-spec). In bold,
best global results. Underlined, best results between multilingual
systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xv



List of Tables

4.9 List of the 10 most common misclassified occupations by the SVM
models trained with determiners and professions. In italics, the errors
in common with the manual evaluation. . . . . . . . . . . . . . . . . . 65

5.1 Methodologies examples . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Results on the Europarl and on GeBioCorpus test sets. Best results

in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 WinoMT evaluation results. Acc. indicates gender accuracy (% of in-

stances the translation had the correct gender), ∆G denotes the mas-
culine/feminine difference in F1 score and ∆S notes the difference in
accuracies between pro-stereotyped translations and anti-stereotyped
ones. In bold, best results are introduced. . . . . . . . . . . . . . . . 74

5.4 Baseline vs PreSent examples from GeBioCorpus. . . . . . . . . . . . 75
5.5 Baseline vs SpeakerId examples from GeBioCorpus. . . . . . . . . . 76
5.6 Statistics for EN-ES datasets. . . . . . . . . . . . . . . . . . . . . . . 80
5.7 Results in terms of BLEU and Gender accuracy: Base stands for

Baseline, LF stands for the system with longformer representations,
SkipRS stands for the system with modified residual connection.
GBLEU is the bleu score for google challenge dataset. The results
are for the two domains TED and News. . . . . . . . . . . . . . . . . 82

5.8 Results in terms of Gender classification accuracy: Base stands for
Baseline, LF stands for the system with longformer representations,
SkipRS stands for the system with modified residual connection. The
results are for the two domains TED and News. Det., Prof. and
LF Vec. stand from determiners, professions and Longformer vector
representation, respectively. . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 WinoST details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Examples of outputs for different sentences from the WinoST corpus.

Words in blue, red, and orange indicate male, female and neutral
entities, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 WinoMT Gender Evaluation for four language pairs. Acc.(% of in-
stances the translation had the correct gender)(the higher the better)
∆G notes difference in F1 score between masculine and feminine sen-
tences (the higher the worse) and ∆S notes difference in accuracy
between pro/anti stereotypical sentences (the higher the worse). . . . 92

6.4 WER and BLEU (%) scores for the MuST-C corpus. . . . . . . . . . 92

1



List of Tables

6.5 Evolution of the number of entities and occupations through the
pipeline. (∗)Multilingual alignment for the en-es-ru-ar (high-resource)
use case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2



1 Introduction

Recently, fairness and ethical Artificial Intelligence (AI) have been a concern for
AI researchers and scientists. Efforts from the industry and research target are
flourishing to adopt AI principles toward more Ethical AI1. Bias can critically im-
pact marginalization and suppression of under-represented societal categories and
amplify discrimination towards vulnerable groups. Therefore, AI systems should
be attainable and reliable to all classes, regardless of gender, race, or disability.
Stakeholders should start giving strict consideration to fairness principles2. A fa-
mous form of bias is gender bias; it is a form that affects people’s lives, especially
the marginalized categories [Nadeem et al., 2020, Stanczak and Augenstein, 2021,
Kiritchenko et al., 2021]. Gender bias is mainly the preference of one gender over
the other in our systems.

Regarding applications influenced by gender bias, Natural Language Processing
(NLP) is one of the most affected. NLP is a branch of AI that automatically teaches
the machine to analyze and understand natural language machines. It significantly
impacts our lives as we use its tools in our daily tasks, e.g., automatic translation,
Google search auto-complete, and speech recognition systems. These applications
improve our daily lives. However, we have seen that these applications can am-
plify social biases, e.g., gender bias [Sun et al., 2019, Mehrabi et al., 2021]. This
bias can be perpetuated to models and downstream tasks, causing other harm to
the end-users. This thesis focuses on the relation of gender bias with NLP for var-
ious reasons. Most importantly, at the time of starting the thesis, this topic was
new, under-studied, and required multiple efforts to address the problem. Another
important reason is the wide range of people affected by such bias.

Moreover, NLP and gender bias interaction is two-fold; NLP can be a tool for
detecting bias in society and amplifying the gender bias in society by producing

1https://ai.google/principles
2https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
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1 Introduction

gender-biased systems [Costa-jussà, 2019]. NLP systems should encourage less dis-
criminatory language within communities. If NLP systems are designed more fairly,
we can trust the automated decisions, as they will be less contaminated by our biases
and preferences [Stanczak and Augenstein, 2021].

Harms of gender bias in NLP are various and can be representation or alloca-
tion harms. Representation harm can be shown when certain concepts are as-
sociated with gender. This harm perpetuates inappropriate stereotypes about
which activities men and women can do. It gives a false impression about
what women are allowed or expected to perform, e.g., leading to less profes-
sional females in STEM (Science, technology, engineering, and mathematics)
[McGuire et al., 2020]. It is also reflected when associations between gender
with certain concepts are captured in word embeddings and model parameters
[Sun et al., 2019, Stanczak and Augenstein, 2021]. When such word representations
are used in downstream NLP applications, there is an additional risk of unequal per-
formance across genders [Gonen and Webster, 2020].

On the other hand, allocation harm is reflected when a model performs with bet-
ter accuracy on data associated with the majority gender (machine translation
[Font and Costa-jussà, 2019, Stanovsky et al., 2019, Savoldi et al., 2021] and coref-
erence resolution [Webster et al., 2018]).

Many questions need to be addressed. How should we design our NLP systems?
How should we treat the data for fairer systems? How should we remove the human
biases from our models? These questions lead us to understand the problem in our
systems and help us mitigate their bias. We believe that building a fair and free-bias
language system could have a beneficial social impact [Tomalin et al., 2021]; better
systems that are not replicating our behaviors are way better and can positively
impact society.

Bias Conceptualization Motivated by the recent work [Blodgett et al., 2020],
researchers have recommended conceptualizing bias in future work. One relevant
suggestion is to understand the harm bias can cause to the NLP systems and to
whom. This understanding is crucial for moving forward in the right direction with
the gender bias definition.
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1.1 Objectives

Gender bias can be defined as systematic, unequal treatment based on gender. It
is one relevant factor that prevents our systems from being equitable. In machine
translation, an example of occupation bias is demonstrated when translating from
English to Spanish in our translation systems, generating more translations to male
doctors than to female doctors. An example is translating my friend is a doctor
to mi amigo es un doctor (male version). Sometimes, the system tends to predict
biased translations even when there is context like My friend and her daughter are
doctors, the system favors neglecting the context, translating doctor to the male
version.

1.1 Objectives

Our long term research goal is to build fair NLP systems, that are representative and
useful to all people. During this PhD, we focused on gender bias problem in NLP
models. Our research can pave the road to reduce gender stereotypes in our systems
and can benefit the NLP theory and practice to create more accountable systems.
Bias can take different forms and affect our systems negatively; therefore, we need
to understand how our models and data respond to such effects. Besides mitigating
the effect of bias amplification in our models should be a main goal in designing
our models. We are considering one type of bias; binary gender bias. We consider
that this type of bias is one of the most harmful types affecting an important social
sector. Therefore our objectives lie in two main research lines:

Bias Evaluation. We believe this is a critical step for any progress in this field
of research. We must evaluate the systems to discover how the biases are encoded
in the models and deal with such biases. This thesis proposed different methods to
assess gender bias in contextualized embeddings and NMT architectures. We also
analyzed multilingual scenarios in our evaluation studies. This objective is mainly
covered in chapter 4. Besides, we would not accomplish an accurate evaluation
without challenge datasets suitable for different tasks. For this purpose, we aim to
propose a method to create such datasets used in training or evaluation. This aim
is covered in chapter 6.

Bias Mitigation. This objective aspires to ensure the adoption of different strate-
gies helps mitigate the bias. We focus here on the NMT task, as it is a multi-facet
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problem and the most challenging among all NMT tasks. Gender bias affects this
kind of application in a way harming many users. The proposed methodologies
vary from modifying the training procedure to aggregating different contextual in-
formation. The experimental results show that our methods can reduce bias without
significantly affecting the model’s performance. This objective is discussed in chap-
ter 5.

1.2 Outcomes of the Thesis

Here we describe the outcome of the thesis in terms of publications and scientific
contribution. We have publications directly related to the thesis (accepted and
under submission) and some publications that are not. Besides, we mention here
other related activities.

Thesis publications These publications are directly related to the thesis: Chap-
ter 4 covers the following publications:

• [Basta et al., 2019] Basta, C., Costa-jussà, M.R. and Casas, N. Evaluating
the Underlying Gender Bias in Contextualized Word Embeddings, CORR,
arXiv:2019, Proceedings of the 1st ACL Worskhop on Gender Bias for Natural
Language Processing, 2019.

• [Basta et al., 2021] Basta, C., Costa-jussà, M.R. and Casas, N. Exten-
sive study on the underlying gender bias in contextualized word em-
beddings. Neural Computing and Applications 33, 3371–3384 (2021).
https://doi.org/10.1007/s00521-020-05211-z

• [Costa-jussà et al., 2022] Costa-jussà, M.R., Escolano, C., Basta C., Fer-
rando, J., Batlle, R. and Kharitonova, K., Interpreting Gender Bias in Neu-
ral Machine Translation: The Multilingual Architecture Matters, Accepted in
36th AAAI Conference, 2022.

Chapter 5 covers the following publications:

• [Basta et al., 2020] Basta, C., Costa-jussà, M.R, Fonollosa, J.A.R, Towards
Mitigating Gender Bias in a decoder-based Neural Machine Translation model
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by Adding Contextual Information, ACL Widening NLP Workshop (WiNLP),
2020.

• [Basta et al., 2022] Basta, C., Escolano, C.,Costa-jussà, M.R. To Add or Re-
lax? Examining Approaches for Mitigating Gender Bias in Machine Transla-
tion. (Under Submission Process).

Chapter 6 covers the following publications:

• [Costa-jussà et al., 2022b] Costa-jussà, M.R., Basta, C., Gállego, G. I, Eval-
uating Gender Bias in Speech Translation, LREC 2022.

• [Costa-jussà et al., 2022a] Costa-jussà, M.R., Basta, C., Domingo, O., Niy-
ongabo, A., OccGen: Selection of Real-world Multilingual Parallel Data Bal-
anced in Gender within Occupations (Under Submission Process).

Other publications We worked on some publications related to studying gender
bias but not directly related to the work presented in this thesis:

• [Basta and Costa-jussà, 2021b] Basta, C. and Costa-jussà, M.R. Impact
of Gender Debiased Word Embeddings in Language Modeling, CORR,
arXiv:2021, Lecture Notes in Computer Science series LNCS Springer, CI-
CLING, 2019. (Top 30% papers)

• [Basta and Costa-jussà, 2021a] Basta, C. and Costa-jussà, M.R. Impact of
COVID-19 in Natural Language Processing Publications: a Disaggregated
Study in Gender, Contribution and Experience, EACL First Workshop on
Language Technology for Equality, Diversity, Inclusion, online.

• [Escolano et al., 2021b] Escolano, C., Ojeda, G., Basta, C. and Costa-jussà,
M. R. Multi-Task Learning for Improving Gender Accuracy in Neural Machine
Translation, 18th International Conference on Natural Language Processing
(ICON), 2021.

• [Kharitonova et al., 2021] Kharitonova, K., Costa-jussà, M.R., Escolano, C.,
Basta, C. and Armengol-Estapé, J., Neutralizing Gender Bias in Neural Ma-
chine Translation by Introducing Linguistic Knowledge, WiNLP EMNLP 2021.

We co-operated in other publications for WMT Translation tasks:

• [Casas et al., 2019] Casas, N., Fonollosa, J.A.R., Escolano, C., Basta, C. and
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Costa-jussà The TALP-UPC Machine Translation Systems for WMT19 News
Translation Task: Pivoting Techniques for Low Resource MT. Proceedings of
the ACL 4th Conference on Machine Translation, 1st-2nd August, Florence.

• [Escolano et al., 2021c] Escolano, C., Tsiamas, I., Basta, C. , Ferrando,
J., Costa-Jussà, M.R., Fonollosa, J.A.R., The TALP-UPC Participation in
WMT21 News Translation Task:an mBART-based NMT Approach, Proceed-
ings of the 6th Conference on Machine Translation.

Scientific Contribution Industrial Internship in Google AI Research
(12/2020-03/2021). I worked on Latent Bridge Augmentation for Machine Trans-
lation, designing an NMT model to bridge the source language as a bridging repre-
sentation that is scalable for any pair of languages and obtains the main features in
the source language.

Co-organizing GEBNLP Workshop. Besides, I am co-organizing a work-
shop on Gender Bias in Natural Language Processing, which is totally dedi-
cated to the research concerning this problem and raises the awareness of it
[Hardmeier et al., 2022].

1.3 Thesis Outline

Our thesis is divided into seven chapters, following Chapter 1 which describes the
problem and our objectives; the other chapters cover the rest of the thesis. Chap-
ter 2 and 3 mainly provide the suitable background and literature essential for the
following chapters. Chapter 4 demonstrates the methodologies of evaluation of the
gender bias in contextual embeddings and multilingual machine translation archi-
tectures. Chapter 5 illustrates different mitigation techniques in NMT; increasing
context and adding gender tag, adding documental information, and relaxing po-
sitional information in NMT task. Chapter 6 presents WinoST, the multilingual
speech evaluation dataset, and OccGen, the toolkit for selecting the real-world multi-
lingual parallel data balanced in gender within occupations. Chapter 7 concludes
the contributions of the thesis, besides the insights about the current and future
situation of the problem in NLP.
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2 Background

This chapter covers all the theoretical parts and the essential concepts and tech-
niques for the NLP tasks discussed throughout the thesis.

2.1 Natural Language Processing

Natural Language Processing (NLP) is a broad area that creates methods for dealing
with unstructured natural data. Usually, human language is ambiguous. Consider,
for example, Before passing by the bank to get my salary, I sat on the bank of the nile.
Humans can distinguish between the two cases of bank because they naturally per-
ceive and illustrate the languages. When humans learn languages, they do not know
the rules of their native languages; they start to understand, perceive, interpret, and
reproduce naturally. This concept is quite a challenge for defining the regulations
of the languages. To teach the computer to understand these languages, we need
these rules that make language processing quite challenging. What makes the task
more language is that language is compositional: words from letters and sentences
from words. Such facts lead to data sparseness; the terms can be combined indef-
initely and infinitely to form sentences [Goldberg, 2017]. This is challenging when
the machine learns from examples; there will always be examples that were never
seen in the training set.

As described, the task is quite challenging, but the NLP community has worked
tremendously to develop different methods and architectures to tackle different prob-
lems; semantic and syntactic parsing, parts of speech understanding, co-reference
resolution, sentiment analysis, etc. In the last decade, enormous progress has been
made toward better accuracy of the NLP systems, thanks to the new technologies
and advances.
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2.2 Word Embeddings

Recently, new approaches have been revealed to compute the embeddings differently,
employing different neural language model architectures. These approaches include
such as ULMfit [Howard and Ruder, 2018], ELMo [Peters et al., 2018], OpenAI
GPT [Radford et al., 2018, Radford et al., 2019] and BERT [Devlin et al., 2019],
which are mainly pre-trained language models (LMs). They provide new LM archi-
tectures, and the pre-trained weights are available for usage in downstream tasks.
These techniques prove that they enhanced the performance of several state-of-the-
art benchmarks, including question answering on SQuAD, (cross-lingual) natural
language inference, and named identity recognition.

ELMo [Peters et al., 2018] was one of the first techniques that depended on training
recurrent neural networks as language models and then reusing the context vectors
for each token as pre-trained word (token) vectors [Smith, 2020]. The neural ar-
chitecture employed in ELMo consists of a character-level convolutional layer that
creates a word representation after processing the characters of each word. Con-
sequently, a language model task training is done with this representation into a
2-layer bi-directional long-short term memory [Hochreiter and Schmidhuber, 1997].
Since it uses a bi-directional architecture, the embedding relies on both the next
and previous words in the sentence. ELMo provides word-level representations.
[Peters et al., 2019] and [Liu et al., 2019a] assured the viability of using ELMo rep-
resentations as features for downstream tasks without retraining the entire model
on the target task.

Bert [Devlin et al., 2019] is a multi-layer bi-directional transformer-encoder model
for learning contextualized embeddings, adopting the transformer architecture with
self-attention layers [Vaswani et al., 2017]. BERT proposes a masked language mod-
eling (MLM) objective, where some tokens are masked, and the aim is to predict
them, given the masked sequence input. Special tokens are used in Bert to obtain a
single contiguous sequence for each input sequence. Sentences are separated given
a special separator token [SEP], and the first token is a special classification to-
ken [CLS]. BERT utilizes a pre-training technique followed by a fine-tuning scheme.
Sentence-level tasks employ the final hidden state of [CLS], while the token-level
tasks use the last hidden state of each token [Liu et al., 2020].

GPT [Radford et al., 2018] uses a two-stage learning paradigm: unsupervised pre-
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training employing a language modeling objective and supervised fine-tuning. The
main goal is learning transferable embeddings to be used in multiple downstream
tasks. These approaches pre-process each sentence as a single contiguous sequence
of tokens through special tokens including [START] (the start of a sequence), [DE-
LIM] (delimiting two sequences from the text input) and [EXTRACT] (the end of
a sequence).

2.3 Neural Machine Translation (NMT)

2.3.1 Sequence-to-Sequence Models

Sequence-to-sequence models are the models that takes sequence of input x =

{x1, x2, ..., xn} and generates sequence of output y = {y1, y2, ..., yn}. The inputs
can be different modalities, such as text, image, and speech. In this thesis, we
discuss the text models only, as we are concerned with them in these studies.

Two main components are used for building different task architecture; the encoder
and the decoder.

Encoder. The encoder is mainly responsible for constructing contextual output
from the input tokens. The input sequence tokens are first fed to the encoder input.
These input tokens are then embedded and provided through units or layers to
create contextual representation as the output. The encoder represents the inputs
and feeds them to the decoder in the case of encoder-decoder architecture.

Decoder. The decoder receives the encoder output as a context vector and starts
generating the tokens. Each new sentence is marked with the input BOS (begin-
ning of the sentence) token. The output is a softmax representing the categorical
probability distribution over the output token space.
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2.3.2 Neural Machine Translation Architectures

NMT, one of the important milestones in MT, has led to enormous improvements in
accuracy. NMT has gained a lot of success in the last era, giving competitive results
compared to human translations. Below we describe the main NMT architectures.

NMT models define a probability distribution over the target tokens P(y|x) by de-
composing it into conditional probabilities:

p(y|x) =
J∏
j=1

p(yj|yj−1
1 , x) (2.1)

Recurrent Neural Networks (RNN). The first NMT architectures were encoder-
decoder sequence-to-sequence RNN models [Sutskever et al., 2014], where both en-
coder and decoder, either vanilla RNN, LSTM [Hochreiter and Schmidhuber, 1997]
or GRU [Cho et al., 2014].

RNNs [Elman, 1990] is a family of neural networks dealing with sequential data.
RNN is a neural network specialized for processing a sequence of values (xi, ....., xT )

and can deal with variable length input. Parameter sharing allows it to extend and
apply the model to examples of different forms (e.g., different lengths) and generalize
across them, attending to structured properties. The main problem with RNNs is
the vanishing gradient when the sequences tend to be extended. Therefore variances
came to participate in this problem; Gated Recurrent Unit (GRU) [Cho et al., 2014],
and Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] which
are capable of capturing the statistical regularities in sequential inputs.

LSTM architecture has proven a success in many applications. It was mainly de-
signed to solve the vanishing gradients problem and was the first to introduce the
gating mechanism. The structure of LSTM has two splits for the state vectors; mem-
ory cells and working cells. At each input, the gate determines a certain amount of
the new input to be written to the memory cell, which can be forgotten. The memory
cell is responsible for maintaining the memory for all inputs and error gradients.

A notable problem of RNN models is that the encoder has to fit all the information
from the source sentence into a fixed-length vector representation (i.e., the context
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vector passed from encoder to decoder). [Bahdanau et al., 2015] introduced the
concept of attention to avoid having a fixed-length source sentence representation.
The model does not need the whole context vector; instead, the decoder attends to
certain parts of the source sentence that are useful for producing the next token.
The attention-based NMT models [Bahdanau et al., 2015] also allowed the decoder
to use the weighted sum of the encoder’s context vectors. These attention-based
models outperformed the vanilla RNN in translation accuracy and quality.

At inference time, the encoder receives the sequence of tokens as the input, gen-
erating a representation given to the decoder. The decoder then generates the
probability distribution over the target token space, conditioning on the previous
token generated. A decoding algorithm must select the predicted token. While
a greedy algorithm seems to be the solution, it does not guarantee that the best
sequence of tokens will be generated. Therefore, the beam search decoding al-
gorithm [Graves, 2012] is used. It is s a decoding algorithm that depends on the
hypothesis that sequences with high probability have high probability conditionals.
It follows a greedy search, but instead of keeping only the highest probable token, it
keeps n most probable ones, known as the beam. Every step, the search generates
predictions based on the beam of the previous step.

For evaluation,BLEU score (BiLingual Evaluation Understudy) [Papineni et al., 2002]
is the most standard evaluation metric. It is based on comparing the candidate
translation (hypothesis) with one or multiple reference translations. In most cases,
due to limited resources, only one reference is considered.

Transformer. Transformer [Vaswani et al., 2017] is an encoder-decoder architec-
ture, each with multiple layers of multi-head attention, normalization, feed-forward
layers with residual connections as depicted in Figure 2.1. The multi-head attention
concept was first introduced in transformers, where each hidden state has multiple
keys (K), values (V), and queries (Q) vectors which generate different attention dis-
tributions. Each head computes as in eq. 2.2. This gives the feasibility of paying
attention to different heads simultaneously.

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (2.2)

The input is not provided sequentially through layers. In the beginning, positional

13



2 Background

embeddings are added to the input and output tokens to keep track of their positions.
The decoder self-attention blocks are masked to ensure the causality of predictions.
In training time, the model is trained in a complete parallel mode. In inference time,
it is auto-regressive.

Figure 2.1: Transformer architecture.

Multilingual Architectures. As described above, most NMT architectures are
based on the Transformer [Vaswani et al., 2017]. Different from the bilingual NMT
Transformer, which devotes the entire representation capacity of the model to a
single task, capturing specific features and correlations of the language pair, several
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alternatives exist to extend it to a multilingual system. Here, we briefly describe
the multilingual architectures explored in Chapter 4.

• Shared Encoder-Decoder [Johnson et al., 2017] train a single encoder and
decoder with multiple input and output languages. A shared architecture has
a universal encoder and decoder fed with all initial language pairs at once. The
model shares vocabulary and parameters among languages to ensure that no
additional ambiguity is introduced in the representation. By sharing a single
model across all languages, the system can represent all languages in a single
space. The model then allows translation between language pairs never seen
during the training process, known as zero-shot translation.

• Language-Specific Encoders-Decoders Architectures of this category may
vary from sharing some layers [Firat et al., 2017, Lu et al., 2018] to no sharing
at all [Escolano et al., 2021a, Escolano, 2022]. The latter approach is the most
contrastive to the shared encoder-decoder. The language-specific (with no
sharing) approach involves training independent encoders and decoders for
each language. Different from standard pairwise training, in this case, there
is only one encoder and one decoder for each language. Since parameters are
not shared, this joint training enables new languages without retraining the
existing modules, which is a clear advantage relative to the previously shared
encoder-decoder.
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3 Literature Survey and Related
Work

In this chapter, we describe the research approaches the scientific community has
explored to work towards gender bias problem resolution in tasks related to our
thesis. We also describe some concepts related to gender bias.

3.1 Gender Bias

Type Bias Definition
Group bias A system’s decisions are skewed toward a particular group of people

[Mehrabi et al., 2021].
Individual
bias

A system is biased if it gives different predictions, which are less fa-
vorable to individuals within a particular group, where there is no
relevant difference between these groups that justifies such harms
[Dwork et al., 2012].

Predictive
Bias

The mismatch of ideal and actual distributions of labels
and user attributes in training and application of a system
[Hovy and Prabhumoye, 2021, Shah et al., 2020].

Table 3.1: Examples of bias definitions.

As argued by [Blodgett et al., 2020], there are several under-specified concepts of
bias addressing the datasets in NLP tasks, fostering the imprecision of the termi-
nology Gender Bias. Gender bias is manifested in several distinct ways in NLP
tasks; consequently, it is not a homogenous phenomenon. The focus of gender bias
is different according to the task; accordingly, it is easier to detect in some tasks
than in others. For example, in the context of MT, the focus has been mainly on
the representational harms that arose from stereotyping specific linguistic structures
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and items. This type of bias is identifiable within a dataset. Nevertheless, identify-
ing the effect of power, society, and politics on gender bias in the dataset is highly
complicated.

Bias can be defined from different perspectives, as mentioned in the table 3.1; how-
ever, we can wonder why NLP is impacted by such definitions immensely. Un-
derstanding the connection between the power of language and stereotypical beliefs
about women’s invisibility explains the automatic transfer of this connection to NLP
tasks. Many individuals can be impacted by such bias, as we see women misgendered
in the context of MT and losing their linguistic style.

3.2 Sources of Gender Bias

Some sources of bias are common across all NLP applications, and those sources
are the main root of causing different types of biases [Suresh and Guttag, 2021].
Nevertheless, some sources of bias can differ from a task to another.We are stating
the common sources as follows:

Data is a Main Source. Scientists believe that the primary source of bias is data.
Data can be gathered containing constructed biases and inaccuracies. Consequently,
feeding such data into an AI system may change its behavior and cause inaccurate
results. The question here is whether the integrity of the data should be guaranteed
before training, or this is a highly complex task to do and can not be guaranteed. The
community is raising awareness that such inaccuracies and biases should be removed
from data. However, there is an argument saying that eliminating gender bias from
data leads to another sort of bias, as the data would be skewed in a ‘positive’ way
rather than a ‘negative’ way [Tomalin et al., 2021]. Another argument is that if
data capture distinctive skewings in the sample population, the data is not biased
[Prates et al., 2020]. We can agree that processes and data sets must be tested and
documented at each step, such as planning, training, testing, and deployment.

Bias in Data Annotation and Selection. A possible significant source of bias
can be the underspecified annotations guidelines and the positionality of annotators.
Annotators can get distracted and uninterested in the annotation task, choosing
‘wrong’ labels for annotating the data, thus introducing bias. The data selection is
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the other face of the problem, which should be tackled together with the annotation.
When choosing a text dataset to work with, there are many decisions to be taken
about the demographic groups represented in the data. Such decisions are humanly
made and thus can have built-in prejudices, adding bias to the system. These steps
lead to ageist, racist, or sexist models biased against the respective user groups
[Cao and Daumé, 2021, Hovy and Prabhumoye, 2021].

Bias Encoded in Learnt Embeddings. Word embeddings have been shown
to raise the racial and gender biases in the training data [Bolukbasi et al., 2016].
These biases are resistant to corrections and hard to remove from the embeddings
[Gonen and Goldberg, 2019]. Moreover, these biases are even transferred to the
contextualized embeddings [Zhao et al., 2018b]. Thus, the bias is encoded in the
embeddings and learned during the model training, adding a profound reason for
perpetuating gender bias to the system [Hovy and Prabhumoye, 2021].

Bias in Model. Models themselves may over-amplify bias. One source can be the
loss objective used in training the models. The main target of these objectives is in-
creasing the predictions so the models might utilize spurious examples (e.g., all pos-
itive examples coming from female nurses, then the gender is considered a discrim-
inative feature) or statistical irregularities in the dataset. Such behavior is rooted
in the models, hard to track, and hard to address [Hovy and Prabhumoye, 2021].
Another source is how the model is defined, what features it uses, what decisions
are made, and how predictions are ranked. For instance, a model can make positive
sentiment guesses depending on a map of certain words.

Bias in System Testing. Evaluation metrics may be a source of bias. The
metrics may weight errors differently, reflecting the false cost of weight. For
example, if a coreference resolution refers to a name with the wrong gendered
pronoun, maybe the high importance of the crucial social error is not given to
such error [Hovy and Prabhumoye, 2021]. Another source is improper and unbal-
anced benchmarks for evaluating applications, which can exaggerate such biases
[Mehrabi et al., 2021].
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3.3 Gender Bias and Language

Gender is expressed in several forms in languages, not only in written forms but also
verbally. Some expressions are classified according to gender. Additionally, some
adjectives, nouns, curses, and polite forms of words relate to one gender more than
the other. Such bias is inherited historically in societies, and people tend to use
social gender clues to assign gender to other considered people. For instance, it is a
social gender that may cause an inference that my cousin is female in My cousin is
a librarian or male in My cousin is intelligent.

The relation between language and gender needs elaboration on how languages un-
derstand and deal with gender. Not only do languages treat gender differently from
the grammatical side but also from the cultural and historical aspects. Grammati-
cally speaking, we can classify the languages in several categories, but here we will
follow the classification scheme in [Savoldi et al., 2021, Gygax et al., 2019]. This
classification shows the main difference between languages, illustrated in the rest of
the thesis:

Gender-less Languages (e.g., Finnish, Turkish). In such languages, gender is
only expressed at its minimum. They use them for the essential lexical pairs (brother-
sister, mum-dad), but generally, they use a neutral form for pronouns, nouns, and
adjectives.

Gender-less Languages with a Few Traces of Grammatical Gender (e.g.,
Oriya, Basque). Most personal pronouns are used for male or female referents
without being distinguished linguistically. A few gendered forms appear in nouns
with gender suffixes, gendered adjectives, or verbal forms.

Neutral/Notional Gender Languages (e.g., English). Such languages have
a gender pronominal system. Inanimate and personal nouns do not have different
genders. These languages can host some marked derivative nouns (host/hostess)
and compounds (businessman/businesswoman).

Languages with a Combination of Grammatical and Neutral Gender (e.g.,
Norwegian, Dutch). Human nouns are not necessarily differentiated between
males and females. We can use them for feminine and masculine referents without a
linguistic difference. These languages have gender distinctions for inanimate nouns
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as well as for some personal nouns. Pronouns usually express the gender of the
referent.

Highly Grammatical Gendered Languages. Gendered languages (e.g., Span-
ish, Italian, and French) have a gender assigned to all nouns; consequently, all
articles, verbs, and adjectives have to agree with this noun. They are known to have
a morphological agreement in the gender and number with the subject.

Type of Language Languages Example
Gender-less Finish Hän on lääkäri. (She/he is a doctor)

Hän on sairaanhoitaja. (He/she is a nurse)
Turkish O bir tasarımcı. (He/she is a designer)

O bir geliştirici. (She/he is a developer)
Gender-less + gen-
der traces

Basque Gu hiri laguntzera etorriko gatzaizkik. (We will
come to you(male) to help)
Gu hiri laguntzera etorriko gatzaizkin. (We will
come to you(female) to help)

Gender-neutral Danish Hun er læge. (She is a doctor)
Han er professor. (He is a professor)

Swedish Hon är revisor. (She is an accountant.)
Han är sjuksköterska. (He is a nurse)

Grammatical + neu-
tral gender

Dutch De tafel met haar poten. Zij is mooi. Ik zie haar.
(The table with its (her) legs. It (she) is beautiful.
I see it (her)).
De stoel met zijn poten. Hij is mooi. Ik zie hem.
(The chair with its (his) legs. It (he) is beautiful.
I see it (him))

Highly
Grammatical-
gendered

German Mein Freund ist Student, er studiert. (My
friend is a student, he is studying))

Meine Freundin ist Studentin, sie studiert.
(My friend is a student, she is studying)

Spanish Mi amiga es abogada. (My friend is a lawyer)
Mi amigo es abogado. (My friend is a lawyer)

Table 3.2: Different types of languages, blue for pronouns, green for gendered posses-
sive pronouns and red for gendered nouns.
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3.4 Gender Bias in Word Embeddings

In this subsection, we are studying the gender bias in word embeddings and con-
textualized ones. We include methods for assessing and evaluation in standard
embeddings and contextualized embeddings from pretrained language models.

3.4.1 Assessing bias in Word Embeddings

Standard Word Embeddings. Researchers have been trying to understand the
effect of gender bias on word embeddings. Many recent studies have proposed quan-
tifying gender bias in standard word embeddings and contextualized embeddings.
The first work in this field was introduced by [Bolukbasi et al., 2016], which showed
that bias is inherited in word embeddings. The authors studied the gender bias
in word embeddings from a geometrical perspective. They calculated the principal
components of the difference between gendered female and male word pairs and
computed the gender subspace. Two different kinds of biases within this gender
space were recognized; direct and indirect bias. Regarding direct bias, the authors
removed the gender information for neutral words by subtracting gender direction
from these words’ vectors. They equalized the distance of these words to both ele-
ments of gendered words. [Ethayarajh et al., 2019] suggested another bias score rule
based on vector similarity; Relational Inner Product Association (RIPA). The main
difference between the direct bias and RIPA is that RIPA performs normalization
at the gender base pair level instead of at the word level.

[Caliskan et al., 2017] developed Word Embedding Association Test (WEAT) to
measure bias by comparing two sets of target words with two sets of attribute words.
He included sensitive, racial, occupation, and adjective terms in the attribute words.
They concluded that Word2Vec and GloVe contain gender and racial biases.

Most studies focused on English, until [Zhou et al., 2019] extended the study to
traditional Spanish embeddings only. The authors examined the gender bias in
gendered languages. They introduced another direction that determines gender,
known as grammatical direction, besides semantic direction. Grammatical direc-
tion determines the direction between feminine and masculine nouns in a gendered
language.
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Contextualized word embeddings. The contextualized embeddings helped be-
gin the debate on performing more evaluations of gender bias within these embed-
dings. Multiple approaches are redesigned for such embeddings to assess the gender
bias in them. [Kurita et al., 2019] proposed a probability-based method for assess-
ing gender bias in BERT embeddings. To compute this probability, they relied on
the masked language model objective using simple template sentences. Using a tem-
plate, they tried some attribute words and computed the BERT probability for that
sentence. The difference between the probabilities is considered the gender bias
measure. [Tan and Celis, 2019, Guo and Caliskan, 2021] confirmed the same con-
clusion by assessing social biases in BERT contextualized embeddings and affirmed
that human biases are encoded in the contextualized word models.

In [May et al., 2019], the authors generalized the WEAT [Caliskan et al., 2017] to
the context of sentence encoders introducing the Sentence Encoder Association Test
(SEAT). They used a sentence-measuring technique in which individual words from
WEAT tests are inserted into sentence templates. Comparing different embedding
techniques, they revealed that recent methods like Bert are more resistant to biases
but still encode biases.

[Zhao et al., 2019] analyzed bias in ELMo, showing its sensitivity to gender un-
equally for female and male entities. They showed that ELMo contextualized em-
beddings inhibit gender bias. The effect of this bias can be delegated to downstream
tasks, such as coreference resolution.

[Bartl et al., 2020] have measured gender bias concerning professions and shown
that pretrained language models preserve biases from real-world data and amplify
stereotypes. They presented a template-based corpus to measure the bias in English
contextualized embeddings in BERT. They also evaluated the corpus in German as
a grammatically gendered language. This corpus contributed to streamlining the
visualization of gender bias in other contextualized word embedding models other
than BERT. They showed that the same techniques for measuring bias in English
models do not transfer to other languages like German.
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3.4.2 Mitigating Gender Bias in Word Embeddings

Researchers have shown outstanding efforts in recent years to mitigate the bias
in embeddings and prevent its convey to downstream applications. However,
[Gonen and Goldberg, 2019] noted that gender bias has a more profound existence
in word embeddings. Even when the embedded gender information is removed,
gender information remains in the vector representation.

Standard word embeddings. As mentioned, [Bolukbasi et al., 2016] were the
pioneer to propose a mitigation approach to the standard word embeddings, applied
on Word2vec embeddings. [Zhao et al., 2018b] proposed an extension to GloVe em-
beddings, where the authors trained the embeddings with a loss function restricting
the gender information to a specific portion of word embeddings. The gender infor-
mation is declared as protected attributes, and once the training is done, the gender
can be easily removed from the embedding vector, eliminating the gender bias.

Another approach in [Kaneko and Bollegala, 2019] proposed using particular train-
ing parameters to mitigate bias in the pre-trained embeddings. The primary purpose
of these parameters is to reserve non-discriminative gender-related information while
removing stereotypical discriminative gender biases from pre-trained word embed-
dings. Apart from parameters, the authors [Zhang et al., 2018] decided to use an
adversarial network to mitigate bias in contextualized embeddings. For exploring
gender in gendered languages apart from English, e.g., Spanish, [Zhou et al., 2019]
proposed mitigation techniques to shift the bias along the semantic gender direction
(the same direction as [Bolukbasi et al., 2016]) and an alignment technique for the
gendered language with the bias-reduced English language.

Exciting work for removing bias from representations was introduced by
[Ravfogel et al., 2020] which introduced an idea of iteratively training linear classi-
fiers to predict the protected attribute aimed for removing (e.g., gender) from the
representation. Then the representations are projected on the null-spaces of these
classifiers. This approach shows the correlations between certain textual features
and the model’s predictions.

Contextualized Embeddings. Different interesting approaches were pre-
sented in multiple works for eliminating bias in contextualized embeddings.
[Kaneko and Bollegala, 2021a] presented a method that can be applied to any pre-
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trained contextualized embedding models without retraining them. The method
preserves the semantic information acquired by the model regarding the gender-
related words while eliminating the gender biases in the model. The main advantage
is employing this method to any internal architecture of any model on the level of
tokens or sentences, enabling debiasing at various granularities and on different lay-
ers. The authors presented more ideas in [Kaneko and Bollegala, 2021b] for learning
constraints to debias word embeddings using dictionary definitions, eliminating the
need for predefined word lists. The dictionary would specify the debiased definition
of any word. Using these definitions, an encoder is employed to generate debiased
contextualized embeddings, retaining the same semantics of the pre-trained embed-
dings. The resulting embeddings remain orthogonal to the vector space spanned
by biased basis vectors in the pre-trained word embedding space. Experimental re-
sults on standard benchmark datasets show that the proposed method accurately
produces fairer pre-trained word embeddings while preserving essential semantics.

[Liang et al., 2020] employed DensRay debiasing approach on BERT. This approach
is an analytical method for identifying the embedding subspace of specific linguis-
tic features. They applied it to the attention heads and showed that the gender
information is processed in all attention heads. For evaluation, the authors created
a method that utilizes existing occupation datasets for assessment, relying on the
templates created to evaluate contextualized language models. They also applied
the Association tests for evaluation. They demonstrated that they could remove
bias multilingually in English and Chinese.

In [Liu et al., 2021b], the authors proposed a framework for mitigating political bias
using reinforcement learning. The rewards from a classifier or word embeddings
can mainly regulate the debiased generations without retraining the system. They
had two modes for computing the debias reward; the first mode is to debias the
representations of the words by forcing a rule in picking the unbiased token at each
step generation. This rule demands that neutral words have equal distance to groups
of sensitive words. The second mode is a classifier guide debias, where they compute
a classifier for the generated text to determine if the text is biased and reinforce using
more neutral generated accordingly. The framework focused on three bias attributes
(gender, location, and topic) and showed improvements in mitigating gender bias
using direct and indirect bias metrics. The system is mainly beneficial since training
large-scale LM is costly.
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[Webster et al., 2020] introduced a novel analysis, DisCo, based on template and
generation-based methods to discover and evaluate gender correlations in pretrained
contextual representations. DisCo is built around a series of templates or sentences
with empty slots. The templates have two slots, e.g., [PERSON] studied [BLANK]
at college. They defined an evaluation framework based on classification and regres-
sion tasks, considering the model accuracy, gendered correlations in models, and the
methods affecting them. Additionally, they presented dropout regularization and
counterfactual data augmentation (CDA) methodologies for mitigating gender bias
in pretrained language models. They showed that both techniques (together) could
minimize the gender correlations, maintaining accuracy. Therefore, the techniques
should help mitigate gender bias in BERT and ALBERT models. They also demon-
strated that the mitigated models could resist stereotypes and gender correlations.

ADELE (Adapter-based DEbiasing of LanguagE Models) was introduced by
[Lauscher et al., 2021]. This debiasing approach depends on introducing debias-
ing adapters. These adapters are injected into the layers of BERT and incorporate
the debiasing information only in additional parameters, without changing the pre-
trained information. This approach proved effective in bias attenuation when the
authors evaluated it on BERT and mBERT, and they seemed to outperform the
debiased BERT in the previously mentioned approach [Webster et al., 2020].

3.5 Gender Bias in Machine Translation

Figure 3.1: Google translate error (February, 2022).
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3.5.1 Main Challenges of Bias in NMT

A few years ago, people started to notice male dominance in translations, where
masculine defaults repeatedly refer to specific nouns, despite several the presence of
female pronouns in the text. Translations can exhibit a noticeable level of bias only
by changing simple context, as shown in figure 3.1.

NMT is a multifaceted task resolving many gendered-related subtasks (e.g., coref-
erence resolution, named entity recognition). Accordingly, MT inherits gender bias
differently according to the language. It is hard to conceptualize gender bias simi-
larly in all languages [Savoldi et al., 2021]. Therefore, researchers recommend that
studying the related literature outside of NLP can highly impact the advancement
of the field [Blodgett et al., 2020].

NMT is considered one of the most challenging tasks in mitigating gender biases.
There are many challenges and sources of biases other more amplified in the task,
besides the sources already mentioned in section 3.2:

Translation from Languages with Different Natures. Translation from
gender-less to morphologically gendered languages forces the model to attend to
contextual clues. The context is not always enough for the system to predict, added
to problems that may arise from errors in coreference resolution, name entity recog-
nition, or any sub-related task. Another issue is the abundance of English in most
NLP tools, while there are few resources for other languages. The under-exposure
induces challenges in different languages; thus, the NLP tasks underperform for
them.

Some common problems occur due to the different nature of languages, as listed:

1. Gender Agreement In general, gender agreement is the main feature of
gendered language and varies from one language to another. Gender agreement
is the agreement between the gender of the noun, the correlated pronouns, the
correlated numbers, and the correlated adjectives. Some languages require
all these agreements, and some require only a subset. An example of gender
agreement, Elle est heureuse (fr), which is translated to She is happy (en).
happy is neutral and goes for males and females while heureuse is for females
and heureux is for males.
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2. Neutral Possessives These are the possessive pronouns that are expressed
in neutral sound. One needs context when translating them from this form
to a gendered form according to the language. German is a popular language
for this case as it has female, male, and neutral pronouns to every posses-
sive pronoun, making the translation from or to German quite challenging.
An example is shown in Table 3.2, where the German language has Meine a
posessive pronoun refers to a female noun and Mein refers to a male noun.

3. Dropped Pronouns Some languages drop the pronouns when speaking about
a second person and depend on the context to understand. This is the case in
Spanish.
For example, Trabaja en Barcelona (es) is translated to (He/She) works
in Barcelona (en). Trabaja (works) is not accompanied by any gendered pro-
noun, depending on the context and the referenced person from the beginning.
Therefore, if this sentence stands alone without more context, its translation
would be probable for both genders.

4. Stereotyped-inflection Stereotyped inflection is usually illustrated with the
famous Google Translate example of translating the gender-neutral Turkish
source sentence o bir doktor, which currently produces two different gendered
target sentences: She is a doctor (feminine) and He is a doctor (masculine)
[Tomalin et al., 2021]. The problem mainly happens when the inflected lan-
guages translate the pronouns and nouns to their stereotyped inflection re-
flecting the data biases and imbalances. The non-binary inflection is still an
issue not addressed and lack accepted conventions [Ackerman, 2019]. There
has been recent criticism of stereotyping in translations; as a result, researchers
and industry have been dedicating special efforts to solving the issue. However,
the efforts still fail regarding the neutrality of the source sentences.

3.5.2 Assessing Approaches

Evaluation is always the primary step towards understanding the nature of any
problem. Therefore, researchers always dedicate efforts to understand and evaluate
the problem and assess the reasons leading to it. Several efforts have been working
towards assessing and quantifying the gender bias in NMT, and in the next section,
we show the assessing approaches in the related literature.
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Several approaches have been trying to assess gender bias in different systems to
understand when and why it occurs. [Prates et al., 2020] have investigated the pro-
noun translations widely from 12 gender-less languages to English. The authors have
built simple sentences using the U.S. Bureau of Labor Statistics occupations, e.g.,
he/she is an engineer. Moreover, they have focused on 22 macro-categories of occu-
pation to see if the proportion of pronouns translated corresponds to the real-world
population of gender employment. Their main observation was that Google trans-
late tends to use masculine defaults much more frequently than the expectations
of the demographic statistics. They suggested that 50:50 pronominal predictions
are unrealistic, but the proportions of the predicted ones are still far from reality.
The current MT systems tend to underestimate the feminine proportion more than
realistic occupations data suggest.

The same conclusion has been demonstrated by [Stanovsky et al., 2019]. The au-
thors assessed multiple industrial MT systems such as Google Translate, Microsoft
Translator, Amazon Translate, and SYSTRAN. They tested the systems using a
challenge test set WinoMT, which is the collection of WinoBias [Zhao et al., 2018a]
and WinoGender [Rudinger et al., 2018] illustrated in details in Section 3.6. They
have demonstrated the prevalence of gender bias across multiple NMT systems. The
fact that the pronouns and possessives are frequently translated with the masculine
defaults in the translations proves that the systems reinforce sexist tendencies in
society.

[Hovy et al., 2020] studied whether there is gender stylistic bias in MT. The authors
translated a corpus of online reviews [Hovy, 2015] and compared the predicted gender
and age in translation to the original demographic information of the reviews. They
demonstrated obvious gender stylistic bias, and the MT commercial systems make
authors "sound" older and male. Such results show the model’s unfamiliarity with
neither as many female writings as males nor different age segments.

[Vanmassenhove et al., 2021] have done a wide range of experiments with three dif-
ferent MT architectures and nine metrics, among which they measure lexical fre-
quency profile, synonym frequency analysis, and other measures. They showed that
the original data usually has more lexical and morphological diversity than MT
translations. They concluded that the inappropriate stereotypes are currently built-
in in the systems, and the systems cannot even warn the users about the assumptions
made.
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3.5.3 Mitigation Approaches

Several directions are implemented for mitigating bias in NMT and we classify them
to the following categories that cover most of the recent work:

Gender Tagging and Additional Context. [Vanmassenhove et al., 2018] was
one of the first to suggest that gender tagging can help the problem. The authors
train the model from scratch by augmenting Europarl data by appending a gender
tag to the source sentence (M for male speakers and F for female speakers). Such
a limited setting proved to be effective even though the concept of adding gender
per sentence is not appropriate for all kinds of datasets and all translations. The
authors proved an enhancement in translation due to adding control over hypothesis
gender when translating from sentences that do not contain explicit gender for the
speaker.

[Moryossef et al., 2019] prepend a short phrase at inference time representing an
explicit gender feature for each sentence. They added a constraint of applying this
approach to the text with one gender identity per sentence.

[Stafanovičs et al., 2020] and [Saunders et al., 2020] explored the use of the word-
level gender tags. In the former approach, the authors train their NMT models with
all source language words annotated with the target language grammatical gender.
In the latter approach, they add a tag after the entities in source with either male
tag <M>, or female <F> or non-binary <N>.

Domain Adaptation. Domain adaptation techniques have proved to im-
pact the performance of translation in [Costa-jussà and de Jorge, 2020] and
[Saunders and Byrne, 2020]. [Saunders and Byrne, 2020] show that finetuning
the system on small gender-balanced data can improve gender translation ac-
curacy. The main problem is that this gender-balanced data is counterfactual.
[Saunders and Byrne, 2020] have built their gender-balanced dataset of English
sentences following this schema: The <profession> finished <his|her> work. Then
they automatically translated these sentences and manually checked to obtain the
corpus. This follows the counter-factual augmentation approach [Lu et al., 2020]
to create identical sentences with feminine/masculine forms. Consequently, they
finetuned the NMT system on this new corpus using Elastic Weight Consolidation
(EWC), a technique used for minimizing the forgetting during model adaptation
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[Kirkpatrick et al., 2017]. Using a lattice rescoring module, they also proposed
a post-processing technique for rescoring all translation alternatives for gendered
marking words. After rescoring, the output would be the sentence with the high-
est score. The authors showed that the domain-adaptation could generate less
biased translations without surrendering the overall system accuracy. This work in
[Saunders et al., 2020] extended this model adaptation on gender-tagged data for
controllable gender inflection and the assessment of the gender-neutral infections in
grammatically gendered target languages as well.

[Costa-jussà and de Jorge, 2020] have finetuned the NMT models on natural gender-
balanced dataset extracted from Wikipedia [Costa-jussà et al., 2020] instead of a
synthetic one. They first analyzed the balanced dataset to show that this set only
encodes much less bias than other datasets. Then they finetuned the standard MT
system with this dataset and showed that this mitigated the gender bias.

[Tan et al., 2020] have exposed NMT model to inflectional adversaries; morpholog-
ically varied input. Afterward, they finetuned it on a representative adversarial
training set. The system showed significant robustness to inflectional adversaries
while preserving performance on the clean dataset.

Debiased Word Embeddings. The authors in [Font and Costa-jussà, 2019] have
leveraged debiased pre-trained word embeddings to remove the gender associations
from the representations of English gender-neutral words. The authors studied the
bias in the translations using a custom test set composed of occupations. This set
consists of sentences that include the ambiguous friend word added to the additional
context in the English-Spanish translation. The word can then be translated to
feminine or masculine, depending on the context. Using this methodolgy, an impact
is shown on gender accuracy and BLEU scores in English-Spanish data.

Data Balancing. Given the imbalances in the training data leads to gender bias
problems [Costa-jussà, 2019]. Researchers have worked toward balancing data using
multiple techniques. We are discussing the different approaches for balancing the
data. However, researchers argue that balancing data introduces another kind of
bias in the

Researchers argue that balancing data may introduce new biases. The data-set
has complicated sorts of biases, and removing the simple apparent ones can change
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the data statistics and introduce new kinds of biases [Hovy et al., 2020]. From the
methodological point of view, removing particular kinds of bias in AI systems is not
feasible and desirable.

1. Counterfactual techniques Counterfactual augmentation techniques cre-
ate a counterfactual sentence for the opposite gender. This technique can
augment the dataset with sentences for both genders, compensating for the
under-represented gendered categories. It adds data with equivalent sentences
of the swapped gendered version. For example, the counterfactual sentence
of she is a nurse, and I talked with her would be he is a nurse, and I talked
with him. As evident, this augmentation technique works better for more
straightforward sentences without many coreferences. Another challenge is
the large bilingual corpora required to train NMT models. Creating counter-
factual augmented translation of the source sentence does not always apply
for high inflected languages in the same way. It is because translating the
counterfactual sentence may not be accurate. It is sometimes impossible to
achieve such balancing in practice. Consequently, a balanced dataset with
equal numbers of gendered entities is only balanced relative to that dichotomy
[Tomalin et al., 2021]. Generally, the gender-swapping technique can be sim-
ple for English sentences, but this is not the case in grammatical languages
with marked morphological articles, adjectives, verbs, and nouns. For ex-
ample, languages like German require primarily applying the parts-of-speech
identification task to determine which parts of the sentence should be updated.

[Tomalin et al., 2021] have proposed three automated strategies for removing
bias of data; downsampling, upsampling, and counterfactual augmentation.
The main drawback was that all systems trained on these debiased datasets
had declined overall translation performance than the baseline. These datasets
were preferable when finetuning existing trained NMT models instead of train-
ing them from scratch. In the latter case, the systems could produce compet-
itive translations with improved gender accuracy.

Creating the counterfactual swapped sentence is not straightforward for highly
inflected languages like German, as mentioned above. [Zmigrod et al., 2019]
have introduced a Markov random field scheme for such infected rich mor-
phological languages. This schema infers which parts of the sentence need
change to preserve the syntactic gender agreement when changing the nouns.
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The main problem is that the coreference information necessary to cover more
than one entity is not included [Tomalin et al., 2021], making the scheme not
applicable to real-life data or even WinoMT.

2. Gender re-inflection The problem of gender agreement in Arabic is familiar,
[Habash et al., 2019] and [Alhafni et al., 2020] have proposed a preprocessing
solution to face this problem. The preprocessing solution reinflects the per-
sonal references, only first-person, into male/female forms.

[Habash et al., 2019] preprocessing process is done in two steps. The first is
reinflecting the first-person references in MT output after identifying them.
The second is reinflecting both forms of gender (male and female) from the
MT output. The method does not require gender information of the speaker.
In [Alhafni et al., 2020], the desired gender in the reinflection is needed besides
the MT translation to be fed to the preprocessing stage.

Although researchers have made significant efforts to mitigate and assess MT bias,
there is still no SOTA method for mitigating bias. There is no explored work on
integrating all these efforts in the current MT systems. Gender bias is a challenging
problem in NMT, and there is no current real solution to tackle different problems.
All solutions tackle an aspect or two, depending on many factors, including the
conceptualization, corpora, the targeted languages, the generalization, and context-
aware interference.

3.6 Evaluation Benchmarks

Monolingual Evaluation Benchmarks These monolingual evaluation bench-
marks, shown in Table 3.3, are mostly made up of syntactic examples, each with
a specific phenomenon or measurement criteria for certain features. These bench-
marks are primarily valuable for language modeling and its related tasks mainly.
Sometimes, it is not feasible to identify if the model propagates stereotypical repre-
sentations using these challenge sets.

WinoBias-WinoGender. [Rudinger et al., 2018] and [Zhao et al., 2018a] created
counterfactual augmented data-sets and showed improvement in coreference resolu-
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Dataset Types of bias Size
WinoBias Gender 3,160
WinoGender Gender 720
Stereoset Gender, race, religion, and profession 17,000
CrowS-Pairs Nine types of bias (gender, religion, race, age, ..) 1,508
GAP Gender 8,908

Table 3.3: Monolingual different benchmarks.

tion applications when trained on these data-sets. Both corpora contain Winograd-
schema [Rahman and Ng, 2012] style sentences with entities corresponding to people
referred by their profession (e.g., nurse, developer, doctor, carpenter). The sets have
pro-stereotypical sentences and anti-stereotypical sentences. A pro-stereotypical sen-
tence has an explicit gender word (e.g., he, she) that corefers to a socially stereo-
typed gendered occupation. On the other hand, anti-stereotypical sentences oppose
the gender word with the stereotype of the occupation, e.g., the doctor with fe-
male pronouns and the nurse with male ones. An example in WinoBias for an
anti-stereotypical sentence is, The doctor hired the secretary because she was over-
whelmed., where she stands for the doctor and is replaced by he in a stereotypi-
cal sentence. An example for WinoGender is The nurse notified the patient that
her/his/their shift would be ending in an hour., his stands for the nurse and is
replaced by her in a stereotypical sentence and their in a neutral sentence.

Stereoset (SS). A large-scale natural English dataset [Nadeem et al., 2021] to mea-
sure stereotypical biases in four domains: gender, profession, race, and religion. SS
contains test instances both at intra-sentence and inter-sentence discourse levels.
The authors claim that they contradict stereotypical bias and language modeling
ability of popular models like RoBERTa, BERT, XLnet, and GPT-2. The authors
showed that these models manifest stereotypical bias. Each intra-sentence should
contain three possible associations for the masked token in the sentence, one being
stereotypical, another being anti-stereotypical, and a third being unrelated. They
proposed a score (stereotype score) of a model. This score computes the percentage
of the stereotypical examples assigned a higher score to the anti-stereotypical ones.
Compared to stereotypical and anti-stereotypical associations, they did the same
with unrelated association examples. This score is called ‘the language modeling
score’. Examples of the sentences are a stereotypical one our housekeeper is Mex-
ican, an anti-stereotypical one our housekeeper is American and a non-related one
our housekeeper is computer.
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CrowS-Pairs (CP). Crowdsourced Stereotype Pairs benchmark (CrowS-Pairs)
[Nangia et al., 2020] is a challenging dataset targeting certain protected groups in
the USA. It covers stereotypes dealing with nine types of bias, like gender, religion,
race, and age. Test instances in CP include sentence pairs; one is more stereotypical
than the other. Annotators were responsible for creating examples that demon-
strate stereotypes contrasting historically disadvantaged groups against advantaged
groups. With a crowdsourced validation task, CP has test instances more reliable
than the ones in SS. In CP, the likelihood probability is computed to estimate the
bias of the LM to select a stereotypical sentence over a less one. They evaluated
the likelihood of the stereotypical and anti-stereotypical sentences and the percent-
age of stereotypical examples assigned higher likelihood than the anti-stereotypical
sentence. When masking tokens from the test sentences and predicting them, the
systems favor advantaged groups more frequently than the disadvantaged ones in
the corpora used to train the LM model. Examples of the pair sentences are a stereo-
typical one people who live in trailer parks are alcoholics, then the paired sentence
would be people who live in mansions are alcoholics, which is the anti-stereotypical
version of the first sentence.

GAP. [Webster et al., 2018] produced a gender-balanced dataset containing
coreference-labeled pairs collected from Wikipedia to assess coreference resolution in
practical applications. The corpus has human-annotated ambiguous pronoun-name
examples, filtered through a multistage process devised to enhance quality and
diversity. These examples are also attentive to the well-known gender biases. An
example is The disease is named after Eduard Heinrich Henoch (1820–1910), a
German pediatrician (nephew of Moritz Heinrich Romberg) and his teacher, where
his is an inference sample involving the entity topicality with parenthesis, adding
uncertainty to the resolution.

Multilingual Evaluation Benchmarks For gender bias analysis, NMT datasets
are the only ones available in bilingual/multilingual settings due to the nature of the
task [Stanczak and Augenstein, 2021]. Synthetic and natural datasets are available.
However, the natural corpora are usually preferred as they quantify the actual female
representations in MT in real-life scenarios and account for gender bias in natural
conditions. However, benchmarks remain valuable to evaluate and monitor the
model’s performance and provide insights into how the model treats gender-related
issues. Examples of each benchmark are given in Table 3.4.
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Dataset Size Example
WinoMT 3,888 The developer argued with the designer because

she did not like the design. (Anti)
The developer argued with the designer because he
did not like the design. (Pro)

SimpleGEN 1,332 That engineer is a funny guy ! (Pro-MoMc)
That nanny is a funny lady ! (Pro-FoFc)
That mechanic is my funny woman! (Anti-MoFc)
My brother is a nanny. (Anti-FoMc)

Unamiguous Set 1850 My sister is a carpenter .
My nurse is a good father.

Arabic Inflected 2,448 I. �
J.£ A
	
K

@(I am a male doctor)

�
éJ. �
J.£ A

	
K

@ (I am a female doctor)

MuST-SHE 1,062 (En-It) Sono nata e cresciuta a Mumbai.(I was born and
brought up in Mumbai.)

1,074 (En-Fr) Je suis neé et j’ai grandi a Mumbai. (I was born
and brought up in Mumbai.)

GeBioCorpus 2,000 Bridegroom was an actor and songwriter... (En)
Bridegroom era un actor y compositor ...(Es)
Bridegroom era un actor i compositor ...(Ca)

Google Gender set 1,471(En-Es) Su intento fue en vano. (Her struggle proved un-
successful)

1,471(En-De) Doch ihre Bemühungen blieben erfolglos. (Her
struggle proved unsuccessful)

ReflexiveChange 4,560 The firefighter placed her/his shoes in the closet.
(En-Source)
Brandmanden placerede hendes sko i skabet
(FEM-Danish)
Brandmanden placerede hans sko i skabet (MASC)
Brandmanden placerede sine sko i skabet (REFL)

BUG 108K Hiei’s captain ordered her crew to abandon ship
after further damage. (The anticedent pronoun is
ambiguous.)

Table 3.4: Different benchmarks for NMT, pro stands for pro-stereotypical, anti stands
for anti-stereotypical. FEM stands for Feminine, MASC stands for masculine
and REFL stands for reflexive in case of Reflexive Change dataset.
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WinoMT. [Stanovsky et al., 2019] is the first challenge test set for evaluating gen-
der bias in MT systems for translating from English to multiple languages. This
test set is a combination of previous mentioned Winogender [Zhao et al., 2018a] and
WinoBias [Rudinger et al., 2018] sets, consisting of 3,888 sentences of 1,584 anti-
stereotyped sentences, 1,584 pro-stereotyped sentences, and 720 neutral sentences.
Each sentence contains two personal entities, where one entity is a co-referent to a
pronoun, and a golden gender is specified for this entity. An example of an anti-
stereotypical sentence is demonstrated in the figure below, where her refers to the
doctor. The translation tended to stereotype the professions, giving the ‘doctor’
male gender and the ‘nurse’ the female gender. The evaluation mainly depends on
comparing the translated entity with the specified gender of the golden entity to
correctly gendered translation. Three metrics were used for assessment: accuracy
(Acc.), ∆G and ∆S. The accuracy is the correctly inflected entities compared to
their original golden gender. ∆G is the difference between the correctly inflected
masculine and feminine entities. ∆S is the difference between the inflected genders
of the pro-stereotyped and anti-stereotyped entities.

SimpleGEN. This dataset [Renduchintala et al., 2021] focuses on two language
pairs, English to Spanish (En-Es) and English to German (En-De). While the
target as a gendered marking language gives gender to the occupation nouns, the
source (English) lacks this phenomenon, which forces the NMT system to attend to
contextual clues. The main template for constructing the set has enough contextual
evidence to specify the gender of the occupation noun. Therefore, this test set has
unambiguous occupation nouns. The English sentences are pro-stereotypical (pro)
and anti-stereotypical (anti) types. The difference is that the pro sentences have
female occupations in the female context (FOFC) and the male professions in the
male context (MOMC). In contrast, the anti has female professions in the male
context (FOMC) and male professions in the female context (MOFC). The male
context and female context refer to the existence of unambiguous signals that the
occupation noun corresponds to a male or a female person, respectively. The set
contains 1,332 pro and anti sentences, 814 in the MOMC and MOFC subgroups,
and 518 in the FOMC and FOFC subgroups.

For the sake of translation evaluation, the authors create an occupation-noun bilin-
gual dictionary with synonyms of the same profession. For example (medico, medica)
and (doctor, doctora) for masculine and feminine forms of the word English physician
in Spanish.
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Unambiguous Gendered Challenge Set. [Renduchintala and Williams, 2021]
composed a set of English sentences to study the syntactical agreement in gender
bias. The sentences are constructed such that occupation is related to its unequivocal
gender trigger, e.g., My nurse is a good father. They designed the sentence to
correctly study the translation of gender morphology in unambiguous contexts across
syntactically diverse sentences. They concluded that NMT struggles to correctly
predict the translation of unambiguous occupations, even in simple settings. This
dataset translates from an English source into 20 languages from several different
language families.

Arabic Parallel Gender Dataset. [Habash et al., 2019] have constructed the
English-Arabic dataset containing 2,448 sentences, all of which have a first person
singular reference to the speaker. The corpus was formed from "OpenSubtitles" nat-
ural language data [Lison and Tiedemann, 2016]. The corpus would contain words
that are gendered ambiguous and can be translated to the two forms like I’m leaving
which can be translated to Ég@P A

	
K

@ (male form) or �

éÊg@P A
	
K

@’ female form). Such sen-

tences would contain verbs, adjectives, or nouns, which can be reinflected in both
female and male genders. In this case, these sentences were translated to both gender
forms, obtaining equal number of genderly annotated sentence pairs, qualitatively
and quantitatively. The creation of the corpus needed extensive manual work, which
makes it a beneficial resource for gender-marked natural language, as it allows for
cross-gender evaluations on MT translations of the speaker’s gender.

MuST-SHE Dataset. MuST-SHE [Bentivogli et al., 2020] is an exciting set
allowing evaluation for MT and Speech Translation (ST) for English-French,
English-Italian, and English-Spanish language pairs. It is built on Ted-talks data
[Cattoni et al., 2021] with gender-balanced samples. Each dataset pair has triplets
of information(audio, transcript, and translation). The existence of the source and
target translations made it feasible to measure gender accuracy in BLEU added to
other gender metrics. The dataset has two types of data: sentences for first-person
speakers and sentences with contextual information to disambiguate gender.

GeBioCorpus. GeBioCorpus [Costa-jussà et al., 2020] is a gender-balanced set
from Wikipedia biographies (GeBioCorpus) and contains 1000 sentences from male
biographies and 1000 sentences from female biographies for English-Catalan and
English-Spanish. It is a gender-balanced dataset with the same considered number
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of documents of males and females. It has the advantage of being natural data
collected from biographies.

Google Gender Challenge Dataset. This dataset [Stella, 2021] is a natural
one, collected from Wikipedia. English-Spanish and English-German datasets are
extracted to be gendered balanced, with diversity in occupations and nationalities.
Three problems were addressed in choosing the samples; pronouns dropping, neutral
possessive pronouns, and gender agreement. The authors provide the dataset with
extra information; the Wikipedia links and the gender of the entity of the intended
biography. Such information can be helpful for different tasks other than the MT
task.

Reflexive Challenge Dataset. [González et al., 2020] focused on gender-related
translation errors resulting from the syntactic structure and unambiguous corefer-
ence. The authors considered these types of mistakes unforgivable as there is no real
reason for ambiguity. The authors investigated non-English languages (Swedish,
Russian, Chinese, and Danish). They chose these languages because their anti-
reflexive possessive pronouns are gendered, but reflexives are not. The examples
quantify how systems amplify gender bias in predicting pronouns with unwarranted
disambiguation. For NMT, the templates of the sentences focus on the gendered
pronoun’s resolution in the source language, as in the example The doctor put the
book on her table.

BUG Dataset. The authors in [Levy et al., 2021] created a large dataset of chal-
lenging grammatical patterns indicating stereotypical and non-stereotypical gender-
role assignments in corpora from three domains in this work. This resulted in cre-
ating a large-scale gender bias dataset with real-world examples to translate from
English to multiple languages. They examined the dataset in two downstream appli-
cations; coreference resolution and machine translation models. Both applications
were shown to encode gender bias and rely much more on stereotypical examples.
They showed that this set could be used for finetuning a coreference resolution model
and mitigating gender bias in it.
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4 Evaluation Gender Bias in
Embeddings and NMT
architectures

Evaluation is a critical step towards understanding the performance of a system
and measuring any improvement occurring to it, specifically here for measuring
gender bias. We would never know about the problem until [Bolukbasi et al., 2016]
revealed that the bias is encrypted in the encodings of the embeddings. This chapter
is divided into two parts; evaluation of gender bias in contextualized embeddings
and evaluating how multilingual NMT architectures treat gender translation and
delegate gender bias1.

4.1 Evaluation of Gender Bias in Contextualized

Embeddings

4.1.1 Motivation

Gender bias is amplified through NLP tasks; we can identify its effect in language
modeling, NMT, etc. The main component of all these tasks is the word embeddings.
If the word embeddings encode gender bias, it will propagate through applications
and exacerbate the bias problem in downstream tasks.

Besides, the evolution of contextualized embeddings and their application in many
NLP tasks raised many questions regarding encoding different biases in them. This

1[Basta et al., 2019, Basta et al., 2021, Costa-jussà et al., 2022]
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field opened exhaustive research on how to evaluate and thus mitigate bias in em-
beddings. Understanding how gendered words are represented, how the bias is
encrypted, and the relation between the embeddings and the gender bias issue can
better guide us in understanding the bias in the NLP cycle. This study of contex-
tual word embeddings to assess bias is essential in considering the fair context in
the NLP system.

Asking the right questions towards evaluating the bias in such embeddings can
help us demonstrate more understanding of many perspectives of the bias problem.
Moreover, the essential part of such evaluation is that it can help us conceptualize
the biased definitions and concepts in word embeddings. The lack of bias definitions
has always been challenging to tackle, and investigating different research questions
in analyzing and evaluating can lead to better conceptualizations.

4.1.2 Research Questions

Contextualized word embeddings still exhibit gender bias [Zhao et al., 2019]. To be-
gin our evaluation study on contextualized embeddings, we focused on the following
questions, these question will be addressed in sections 4.1.6 and 4.1.7:

1. Does the effect of gender bias propagate from the corpus level to the contextual-
ized word-level across different domains?
2. Is gender bias more represented in the contextualized word embeddings of pro-
fessions?
3. What evaluation measures can be easily applied to gendered languages such as
Spanish?
4. Can we rely on particular measures of evaluation more than others?

4.1.3 Experimental Framework

For our study to understand the influence of bias in contextualized embeddings,
experiments were performed with two languages, English as a neutral gendered
language and Spanish as a high gendered language. Spanish is considered a highly-
gendered morphological language compared to English, where the professions and

42



4.1 Evaluation of Gender Bias in Contextualized Embeddings

adjectives also have gender associations. For example, I am a nurse is translated to
soy enfermero for a male speaker, and soy enfermera for a female speaker.

In order to evaluate and quantify the presence of bias in contextualized word em-
beddings, we apply the established methodologies for classical word embeddings by
[Bolukbasi et al., 2016], [Zhao et al., 2018b] and [Gonen and Goldberg, 2019], refor-
mulating them appropriately for contextual representations. They rely on direct
intrinsic measures based on probes on different gender-predicting tasks. We focus
on intrinsic measures, as opposed to other bias detection on extrinsic measures,
where WinoMT [Stanovsky et al., 2019] is the main representative example. How-
ever, given the tight coupling of the test to the downstream task (i.e., MT) implies
multiple problems: the impact of pre-trained debiased embeddings in the resulting
translations cannot be measured in isolation; apart from that, pre-trained embed-
dings are seldom used in MT due to the importance of learning them along with the
task; furthermore, the word-level token granularity in our contextual word embed-
dings is not appropriate for neural MT systems, where sub-word token granularity
is needed to achieve good translation quality. Therefore, we understand that intrin-
sic measures, like those under study in this work, are the most appropriate testing
framework for learned word-level representations like ELMo’s contextualized word
embeddings.

Contextualized word embeddings toolkit. Contextualized representations have
proven to be essential in improving the results compared to non-contextual repre-
sentations (i.e., classical word embeddings) on a wide range of tasks. Among the
different contextualized representation learning approaches, tokenization is a differ-
ential factor. Some approaches, like BERT [Devlin et al., 2019], use sub-word level
tokens. This makes the association between word-level information, like semantics
and tokens, hard to establish. On the other hand, contextualized word represen-
tation learning, like ELMo [Peters et al., 2018], enables connecting these word-level
representations with their semantic traits (e.g., gender) and reasoning about such a
connection. That is why we have chosen ELMo representations over BERT or other
sub-word level ones.

ELMo produces multiple forms of word embeddings for every single word, which is
different from traditional word embeddings. ELMo produces three layers of word em-
beddings for a single word. The higher layers capture different context-dependent
aspects of word embeddings, and the lower-level layers capture syntax-dependent
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aspects. We can use only one layer of the embeddings or the concatenation of all
layers to obtain the benefits of the different representations of the layers. After
experimenting with different representations from the three layers, there was not
much variance in performance between layers. No distinguished information was
explained by trying the evaluation measures on the three different layers. There-
fore, we demonstrate the results of the representations of the third layer, which is
more related to the context and its semantics, and the concatenation layer, which
concatenates the representations of the three layers. The ELMo embeddings for
Spanish were computed with the corresponding library2.

Domain TEDx WMT PubMed EuroParl
No. lines in direct bias 2„894 2866 6,507 19,821
No. lines of corpus 157,895 174,441 287,811 1,965,734
Total professions in KNN 144 114 68 142
Female in KNN% 48.61 42,98 54.41 45.07
No. of biased words (Cluster) 700 640 409 740
Females in biased clustering% 51.29 42,18 53.79 46.08
No. of biased words (Classify) 3,637 3,447 2,223 3,923
Females in biased classify% 49.46 41.77 53.08 45.73

Table 4.1: Domain-specific data summary figures.

4.1.4 Experiments on the English Language

Data and Lists. We selected four domains to explore diversity’s effect on con-
textualized representations. We chose a medical domain (Pubmed3), a political
domain (Europarl4), a social domain (TEDx5), and a news domain (WMT6). From
the statistics in Table 4.1, we can observe a difference in the size of each corpus,
the number of existing professions, and the number of existing biased words. The
TEDx and WMT corpora are more general and smaller in size, while Pubmed and
EuroParl are more specific domains and larger concerning the size.

We found from the statistics that each domain considers certain professions. For
example, the most dominant professions in TEDx are student and teacher, which

2https://github.com/HIT-SCIR/ELMoForManyLangs
3https://github.com/biomedicaltranslationcorpora/corpora
4http://opus.nlpl.eu/Europarl.php
5http://opus.nlpl.eu/TED2013.php
6http://www.statmt.org/wmt13/translation-task.html
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appear 160 and 153 times, respectively, while those that appear the least or only
once are mechanic, waitress, receptionist and firefighter. For those professions that
appear once, the gender of their appearance will surely prevail. Therefore, the clus-
ter and classification will treat them with the gender of their appearance. One
interesting fact about TEDx is that it contains a wide diversity of professions. Eu-
roparl has evident examples of the diversity of the domain where citizen appears
2408 times, advocate occurs 1157 times, judge occurs 1071 times, and minister and
president appear 1038 and 841, respectively. The large occurrence of certain politi-
cal professions influences the computation of any measure having such a profession.
As expected, in the Pubmed corpus, the highest occurring professions are physician,
nurse and doctor.

To perform our English analysis, we used a set of lists from previous works
[Bolukbasi et al., 2016, Gonen and Goldberg, 2019]. We refer to the list of defi-
nitional pairs7 as the ‘definitional list’ (e.g., she-he, girl -boy). We refer to the list
of all of the definitional pairs added to other gendered words (e.g., lady-gentleman,
niece-nephew) 8 as the ‘equivalent list’. We refer to the list of female and male
professions 9 as the ‘professional list’ (e.g., accountant, surgeon). The ‘biased list’ is
the list used in the clustering experiment, and it consists of biased male and female
words (500 female-biased tokens and 500 male-biased tokens). This list is generated
by taking the most biased words, where the bias of a word is computed by taking
its projection on the gender direction (−→he-−→she) (e.g., breastfeeding, bridal and diet
for female and hero, cigar and teammates for male). The ‘extended biased list’ is
the list used in the classification experiment and contains 5000 male and female-
biased tokens, 2500 for each gender, generated in the same way as the biased list10.
The lists we used in our experiments were obtained from [Bolukbasi et al., 2016]
and [Gonen and Goldberg, 2019]. However, since we used words in sentences, our
corpora may not contain examples of all the words in the lists, preventing us from
obtaining their contextualized embeddings.

Evaluation Measures. The English experiments are considered an extensive study
for evaluating the gender bias in contextualized embeddings. The study was done in
different domains. For each domain, five experiments were conducted to understand

7https://github.com/tolga-b/debiaswe/blob/master/data/definitional_pairs.json
8https://github.com/tolga-b/debiaswe/blob/master/data/equalize_pairs.json
9https://github.com/tolga-b/debiaswe/blob/master/data/professions.json

10Both the ‘biased list’ and ‘extended biased list’ were kindly provided by Hila Gonen to reproduce
experiments from her study [Gonen and Goldberg, 2019]
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Figure 4.1: TEDx annotations of the professions.

more about the bias in each perspective. As mentioned, in our analysis, we used a
set of lists from previous works [Bolukbasi et al., 2016, Gonen and Goldberg, 2019].
According to these works, [Bolukbasi et al., 2016] have referred that gender bias
can be detected when one can determine the gender of non-explicitly gendered
words by looking at its projection on gendered pair in the definitional list.
[Gonen and Goldberg, 2019] have demonstrated that there is still gender bias when
these non-explicitly gendered words directly relate to gendered or biased words.

The measures used in the first two experiments are: determining the gender direc-
tion and computing the direct bias between the profession’s neutral words and this
direction. The other three measures reformulated from [Gonen and Goldberg, 2019]
measures to study if bias is deeply encoded in embeddings.

Word embedding association test (WEAT), the most common association test
for word embeddings, has been proven to overestimate bias systematically
[Ethayarajh et al., 2019]. Additionally, the work in [Kurita et al., 2019] has implied
that WEAT can not be considered as a useful measure for bias in contextual embed-
dings. Additionally, WEAT was used on sentence embeddings in [May et al., 2019]
of ELMo and BERT, but no evidence of bias was found. These conclusions guided
us not to adopt WEAT in our experiments.

46



4.1 Evaluation of Gender Bias in Contextualized Embeddings

The main experiments carried out in our evaluation are illustrated as follows:

• Detecting gender direction (Exp.1): To compute the gender subspace,
we followed the state-of-the-art method in [Bolukbasi et al., 2016] in a man-
ner suitable for the contextualized embeddings. For a given corpus, we gen-
erated the corresponding gender-swapped variants, for sentences that had any
instance of equivalent pairs in the equivalent list (changing he to she and vice-
versa, business-man to business-woman and vice-versa, etc.). Thus, we had a
sentence pair, each with a different gender for the definitional word.

To compute the gender subspace, the representations of words were selected
from randomly sampled sentences that contained words from the definitional
list. We then obtained the ELMo representations of the definitional word in
each sentence pair and computed their difference. On the set of difference
vectors, we computed their ten principal components using Principal Compo-
nents Analysis (PCA) to get the gender direction and its value from the top
component.

• Direct bias computation (Exp.2): Direct bias measures how close a spe-
cific set of words are to the gender vector. To compute it, we extracted the
sentences that contained professional words in the professional list from the
training data. We excluded the sentences with both a professional token and
a definitional gender word to avoid the latter’s influence over the presence of
bias in the former, e.g., he was my doctor. Sentences with other equivalent
words from the equivalent list, which are not definitional, were excluded, e.g.,
I listened to the congressman. We applied the definition of direct bias (see
equation 1) from [Bolukbasi et al., 2016] to the ELMo representations of the
professional words in these sentences.

1

|N |
∑
wεN

|cos(~w, g)| (4.1)

where N is the amount of gender neutral words, g the gender direction, and ~w

is the word vector of each profession. In our case, N is the number of sentences
with professional words.

For the next experiments, one representation for each word was considered, to avoid
dealing with a word as male-biased and female-biased simultaneously.
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• Male and female biased clustering approach (Exp.3): To study how
biased male and female words from biased lists cluster together when applying
contextualized embeddings, we used k-means to generate two clusters of the
token embeddings from the biased list. Then we computed the accuracy of
clustering with the original biased version as a measure of bias. The higher
the accuracy was, the more the clusters aligned with gender.

• Classification approach (Exp.4): To study if contextualized embeddings
learn to generalize bias from a set of gendered words to others based only on the
contextualized representations and how the classifier learns from being trained
on a subset of the extended biased list. We trained a radial basis function-
kernel support vector machine (SVM) classifier on the ELMo embeddings of
1000 random male and female-biased words from the extended biased list.
Next, we evaluated the generalization of the other 4000 biased tokens. The
accuracy of classification was taken as a measure of bias. The higher the
accuracy was, the more the words were classified according to gender.

• K-Nearest Neighbors approach (KNN) (Exp.5): We applied the KNN
on the professional list to obtain the nearest 100 neighbors to each profession.
For each token on the profession list, a randomly sampled sentence is used
to get a contextualized representation. After applying the KNN algorithm to
each profession, we computed the percentage of female and male stereotyped
professions among the 100 nearest neighbors of each profession target token.
Then, we computed the Pearson correlation of this percentage with the original
bias of each profession.

One key factor of the experiments is randomization, as it considerably influences the
experiments. ELMo provides a different representation of a word according to its
context in a sentence. We randomized the sentence chosen for such representation
to choose a particular representation for a word. Moreover, experiments 3-5 were
repeated ten times and averaged to guarantee this randomness.

A difference should be noted between the professional list used in the direct bias ex-
periments and the list used in the KNN experiment, Exp.2 and Exp.5. In Exp.2, we
considered all of the sentences that contained the words of the professions. However,
in Exp.5, we only considered 200 professions, including the 100 top female-biased
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professions and 100 top male-biased professions, and one random representation for
each profession was considered.

4.1.5 Extension to the Spanish Language

Data and Lists. The corpus used in our evaluation is the Spanish version of the
news corpus in WMT13, translation task from Spanish to English, as the English
version is used in our English experiments. Consequently, the Spanish corpus has
174,441 lines.

The definitional list, equivalent list, and professional list were translated from En-
glish to Spanish. Native speakers were asked to revise all of the translations. The
biased and extended biased lists were created from scratch by including the top
biased female and male words concerning the grammar and semantic directions, as
explained in section 4.1.5.

Evaluation Measures. Extending our evaluation to the Spanish language had
considerable challenges. To begin with, we had to swap gender in sentences contain-
ing the equivalent pairs of the equivalent list. Given the properties of the Spanish
language, adjectives and professions had to be swapped to the other gender added
to swapping the equivalent pairs. The articles also had to be considered in the
swapping procedure. The articles and the equivalent-pairs swapping were done au-
tomatically, but the rest was done manually to ensure that the whole sentence had
the same gender. This manual check consumed time and resources, which prevented
us from applying the experiments to different domains. We had to check all the
swapped sentences (5,848 lines) to ensure each sentence was grammatically correct.
We made sure not to swap the gender in sentences with a proper name. For example,
presidente Barack Obama, was not swapped to presidenta Barack Obama.

Answering positively to research question 4 from section 4.1.2, we adapted the ex-
periments to be suitable for the Spanish language and to give us insight about the
bias in it. We applied the following:

• Gender directions (Exp.6): We adopted the idea of obtaining different
gender directions, including the semantic direction [Bolukbasi et al., 2016] and
the grammar direction [Zhou et al., 2019].
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Semantic direction −−→dpca: We followed the same procedure previously men-
tioned in Exp.1 by using the PCA approach over the differences between male
and female definitional contextualized word embeddings, from the sentences
that have these definitional words and their swapped variants.

Grammar direction −→dg : We extracted the nouns (feminine and masculine)
from the corpus, approximately 7,000 nouns for each gender, using Spacy parts
of speech library11 to extract these nouns. Next, in order to learn the gram-
mar direction, since there are no equivalent pairs, linear discriminant analysis
(LDA) for dimension reduction was applied. We applied LDA on 3,000 random
sets of nouns of each gender multiple times. We tried random contextualized
representations for these nouns. The range of the accuracy of learning the
grammar direction was between 0.45-0.65. When the ELMo representations
of these nouns were plotted, they were scattered in the subspace, as shown
in Figure 4.8. There is no discrimination between a feminine subspace and a
masculine subspace with these nouns.

Following the literature, the grammatical gender component in the computed
gender direction is projected out to make the semantic gender direction −→ds
orthogonal to the grammatical gender direction:

−→
ds =

−−→
dpca − 〈

−−→
dpca,

−→
dg〉
−→
dg , (4.2)

where −→ds is the semantic gender direction, which will be used in our experi-
ments.

• Direct bias (Exp.7): For the professional list in Spanish, we obtained
two translations for each profession, a male-gendered and a female-gendered
translation. The number of lines with professions is 4,987, with 2,198 being
feminine and the rest masculine. We separately computed the direct bias
on the male and female lists and then on their concatenated version. We
computed the direct bias on the semantic direction −→ds computed from Exp.6.

• Clustering and classification experiments (Exp.8 and Exp.9): With
respect to the biased list and the extended biased list, we performed the fol-

11https://spacy.io/models/es
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lowing procedure to obtain the 500 and 5000 masculine and feminine biased
words for these experiments:

– We downloaded the Spanish Word2vec embeddings12, which is trained on
one billion words.

– For these embeddings, the semantic gender direction was derived using
the PCA method on the definitional standard word embeddings, and
then the grammar gender direction was derived following the previously
described method in Exp.6. Following equation 4.2, the semantic gender
direction was computed.

– We obtained the top male and female biased words, with respect to the
grammar direction and the semantic direction, respectively. Top 500
male-biased and 500 female-biased for clustering, both female and male
biased words are considered the ‘biased list’, semantic biased list, and
grammar biased list. For classification experiment, 5,000 female-biased
and 5000 male-biased were gathered, and both together were considered
the ‘extended biased list’, semantic biased list, and grammar biased list.

The clustering experiment, following the description in Exp.3, was applied to
the semantic biased list and the grammar biased list. The classification ex-
periment, following the description in Exp.3, was applied to the grammar and
semantic extended biased list. As the Word2vec embeddings were trained on
different words, not all the words in the lists are available. For the semantic
biased lists, only 254 were available from the biased list, and 1881 were avail-
able from the extended biased list. Whereas for the grammar biased lists, 457
were available from the biased list, and 4,339 were available from the extended
biased list.

4.1.6 Discussion

We will discuss the English and Spanish experiments separately in order to focus on
different aspects.

12https://github.com/dccuchile/spanishwordembeddings

51



4 Evaluation Gender Bias in Embeddings and NMT architectures

TEDx Layer 2 Layer Concatenation
Direct bias 0.031 0.031
Clustering (Acc.%) 67.9% (2%) 68.4% (2%)
Classification (Acc.%) 87.1% (2%) 87.3% (3%)
KNN (Pearson Cor.) 0.160 (0.3) 0.501 (0.35)

Table 4.2: Results of TEDx experiments 2-5. Less biased in bold, the higher, the worse.
Numbers between brackets show the difference between the maximum and
the minimum numbers acquired from the ten experiments.

WMT Layer 2 Layer Concatenation
Direct bias 0.028 0.026
Clustering (Acc.%) 66.4% (3%) 66.9 (3%)
Classification (Acc.%) 83% (2%) 85.4% (3%)
KNN (Pearson Cor.) 0.971 (0.02) 0.975 (0.01)

Table 4.3: Results of WMT experiments 2-5, the higher, the worse. Numbers between
brackets show the difference between the maximum and the minimum num-
bers acquired from the ten experiments.

4.1.6.1 English Results

Figures 4.2-4.5 show results of Exp.1 for all domains and layers. Tables 4.2-4.5 show
the results of experiments Exp.2, Exp.3, Exp.4 and Exp.5. Regarding the last three
experiments, the average of ten experiments is shown for each domain for the third
and concatenation layers. The numbers in brackets show the difference between the
maximum and the minimum of the ten experiments.

Propagation of Gender bias from the corpus to the contextualized word
representations: The variability in the number of lines of the corpus, the diver-
sity of the professions, the existing biased words, and the percentage of feminine
biased words are factors influencing our analysis and conclusions. Accordingly, our
analysis is not based on the comparison between domains. Still, it relies on deriving
conclusions about the gender bias propagation across the domains from the corpus
level to the contextualized word representations level. Understanding the effect of
gender bias on a particular domain leads to awareness of its impact on training
neural models on such domain in different tasks.

From Exp.1, shown in Figures 4.2-4.5 for the plots for the percentage of variance
explained by the ten gender pairs of the definitional list, PCA can derive a dom-
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Pubmed Layer 2 Layer Concatenation
Direct bias 0.021 0.021
Clustering (Acc.%) 79.4% (22%) 77.3% (17%)
Classification (Acc.%) 85.2% (3%) 84.9% (4%)
(Pearson Cor.) 1 1

Table 4.4: Results of Pubmed experiments 2-5,the higher, the worse. Numbers be-
tween brackets show the difference between the maximum and the minimum
numbers acquired from the ten experiments.

Europarl Layer 2 Layer Concatenation
Direct bias 0.05 0.048
Clustering (Acc.%) 68.4 (1%) 68.6 (2%)
Classification (Acc.%) 86% (2%) 85.9 (2%)
KNN (Pearson Cor.) 0.919 (0.03) 0.906 (0.03)

Table 4.5: Results of Europarl experiments 2-5, the higher, the worse. Numbers be-
tween brackets show the difference between the maximum and the minimum
numbers acquired from the ten experiments.

inant subspace, as the subspace of gender-flipped vectors contain less informative
dimensions. After using the PCA, the first component appears to have dominant
information, as it explains more variance than the other components, whereas, in
the Europarl domain, the first two components explain more variance, not only the
first.

As shown in Tables 4.2-4.5, the direct bias of professions computed with gender
direction demonstrates the propagation of gender bias in professions across the do-
mains. To understand the impact of gender bias propagating from the corpus to the
contextual word representation, we applied the clustering and classification tech-
niques which associates male and female nouns as concept words and their stereo-
typical clustering and classification. Clustering experiments, illustrated in Figure
4.6 and Tables 4.2-4.5, show that male-biased words cluster together and so do
female-biased words with accuracy more than 60% for all domains. Therefore, clus-
ters seem to align with gender across domains. Classification experiments (Tables
4.2-4.5) demonstrate that bias is generalized from some gendered words to others,
based only on their contextualized representations, with >80% accuracy across the
four domains. Therefore, the classifier learns bias from gendered biased words. Ac-
cordingly, bias tends to propagate from the corpus level to the encoding level, which
directly answers the first question in research questions (section 4.1.2).
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Figure 4.2: X-axis refers to the ten PCA components and Y-axis refers to the percentage
of variance explained by the ten principal components in TEDx Exp.1 in
layer 2 (left) and layer concatenation (right).

Figure 4.3: X-axis refers to the ten PCA components and Y-axis refers to the percentage
of variance explained by the ten principal components in WMT Exp.1 in
layer 2 (left) and layer concatenation (right).

Layer concatenation vs. layer 2: The main objective of experimenting on dif-
ferent layers was to deduce which layer results in less biased representations. Ex-
perimenting on the three different layers led to slight differences; thus, we cautioned
against definitive conclusions. By experimenting on the two different layers, the
layer concatenation and the last ELMo layer (layer 2), we observe varying results.
Since the last ELMo layer captures different semantic aspects of word embeddings,
layer 2 encodes less bias in the case of more general domains (TEDx and WMT)
in experiments 2-5. The concatenation layer also benefits from the syntax and se-
mantic aspects of the three ELMo layers in the more specific domains (Pubmed and
Europarl). However, the difference between the results of the two layers in the case
of Europarl is not significant. The difference in means is 0.002 in direct bias, 0.2% in
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Figure 4.4: X-axis refers to the ten PCA components and Y-axis refers to the percentage
of variance explained by the ten principal components in Pubmed Exp.1 in
layer 2 (left) and layer concatenation (right).

Figure 4.5: X-axis refers to the ten PCA components and Y-axis refers to the percentage
of variance explained by the ten principal components in Europarl Exp.1 in
layer 2 (left) and layer concatenation (right).

clustering experiment, 0.1% in classification, and 0.013 in KNN. From the different
results, we can conclude that using the representation of words from different ELMo
layers is not distinguished concerning gender bias. Accordingly, choosing the layer
should depend on factors other than gender bias.

Professions perpetuates serious bias: Responding to the second research ques-
tion (and also to first), Tables 4.2-4.5, direct bias computation and KNN experiments
show obvious kinds of bias in most domains, except for TEDx, where less bias from
KNN experiment is demonstrated.The bias of professions is evident in Pubmed that
frequently associates medical occupations with male gender pronouns.
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Figure 4.6: Clustering experiments for TEDx, WMT, Europarl and Pubmed for repre-
sentations from layer 2, male clusters are in violet and female clusters are in
yellow.

Effect of randomization is higher for clustering and KNN: Randomization
of the ELMo embeddings of used words has led to the most varying results when
repeating the clustering and KNN experiments. The corpus size and the number of
word occurrences can also affect the randomization. Some of the ten experiments
have yielded a wide range of maximum and minimum results. The differences be-
tween the minimum and maximum in Exp.3 in Pubmed have reached 22% in layer
2 and 17% in layer concatenation. The wide range of differences can be attributed
to the randomized representations of the words, which has resulted in different clus-
tering. Pubmed is a large corpus that has a different context for the biased words
used in the clustering experiment. Similarly, Exp.5 in TEDx is highly affected by
randomization, showing differences of 0.3 in layer 2 and 0.35 in layer concatenation.
Although the mean of the experiments sometimes implies a similar bias between
corpora, lower numbers are shown in the results in one corpus than in the other.

Measures to be considered and more reliable than others: Exp.1 and Exp.2
can be considered the most reliable measures across the four domains because they
directly observe gender nature in the domains. Exp.3 and Exp.4 can be regarded as
related measures. They are synchronized and can reflect the bias of the representa-
tions in the four domains.
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Figure 4.7: X-axis refers to the ten PCA components and Y-axis refers to the percentage
of variance explained by the ten principal components of definitional pairs’
embeddings of Spanish.

KNN can be discarded when dealing with domains of low representation of pro-
fessions. It is unreasonable to compute less than 100 KNN for each profession to
understand how neighbors go together. Therefore, the KNN measure is inconsistent
in the case of the corpus with less biased professions. This can be applied to the
Pubmed corpus, where only 64 professions out of 200 are present, and the correla-
tion is always 1. This conclusion directly answers the third question from section
4.1.2.

4.1.6.2 Spanish Results

Again, Exp.8 and Exp.9 mainly used randomization and were repeated ten times,
and their mean was calculated. Randomized representations were also used in Exp.6
to extract the nouns for the grammar direction.

Spanish semantic direction (results from Exp.6): By applying the PCA ex-
periment on the embeddings of gender definitional words in original and swapped
sentences, the percentage of variance represented from the PCA components of def-
initional vector difference was obtained (see Figure 4.7).

Additionally, for Spanish, we observe that the first component represents the most
significant percentage of the variance of the ten PCA components, reaching 0.36,
and this top component determines the gender direction. After projecting out the
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Figure 4.8: Plotting Spanish representations of nouns on gender direction.

Figure 4.9: Plotting Spanish representations of occupations on gender direction.

grammar direction from the semantic direction, we found a slight decrease in the
vector’s percentages of variance determining the semantic direction.

Direct bias is higher for female professions: Direct bias is studied in both
the grammar and the semantic gender directions, as described in Exp.7. Figure 4.8
and Figure 4.9 and illustrated that plotting the professions, rather than the nouns,
appears more segregated with gender (feminine vs. masculine). After calculating the
direct bias on feminine and masculine professions separately, as shown in Table 4.6,
the former case shows a higher direct bias. This means that the feminine professions
are closer to the semantic direction and, consequently, more biased.

Clustering and classification have to be performed on semantic biased
words: Grouping the embeddings of masculine and feminine words does not always
indicate bias due to grammatical gender [Zhou et al., 2019]. The clustering and
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classification accuracy, noted in Table 4.7, is higher with words that are grammar
biased. This is normal because nouns will be clustered and classified according to
gender. On the other hand, the accuracy is still high in clustering and classifying
the semantic biased words. Thus, clustering according to gender and generalization
of learning bias occur too.

Direct bias Semantic direction
Female-version of professions 0.1215
Male-version of professions 0.0572
Male and Female together 0.098

Table 4.6: Direct bias of Spanish professions with semantic direction.

Classification (Acc.%) Clustering (Acc.%)
Semantic biased words 94.25% 84.48%
Grammar biased words 99.05% 93.27%

Table 4.7: WMT Spanish clustering and classification experiments.

4.1.7 Conclusions

This section makes the following contributions: first, we have extended existing
analyses of gender bias to state-of-the-art ELMo contextual word models and indi-
cate that such bias exists in these models. This highlights the scope of the problem
of fairness in state-of-the-art models for language processing. We have provided evi-
dence that gender bias is encoded strongly in contextual word models in professions
and stereotypical nouns.

Second, this study understands the effect of domains on contextualized word repre-
sentations. Domains differ in statistics and nature and in representing gender bias
in contextualized word embeddings. This shows that such unsupervised methods
perpetuate bias in downstream applications, and our work forms the basis of evalu-
ation. Additional contribution is analyzing the gender bias represented in Spanish
contextualized word embeddings. This research reminds us that languages other
than English have different properties that need further treatment. Finally, we have
compared various measures to understand which ones to rely on to help mitigate
gender bias in these embeddings. The extensive analysis is consistent with previ-
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ous studies [Dev et al., 2020]. The techniques used to measure or mitigate bias in
standard embeddings do not necessarily succeed for contextualized embeddings.

One advantage of the gender direction and direct bias evaluation measures is being
more generalized and based on less specific lists that are not domain or language
dependent. On the other hand, direct bias seems to be less discriminating (see Ta-
bles 2-5). While the clustering and classification seem more discriminating (again,
responding to the fourth research question from section 4.1.2, see Tables 2-5), the
disadvantage is strongly dependent on the existing vocabulary and less generalized
to different domains. This can be attributed to studying the clustering and clas-
sification of embeddings of biased words that are biased in the original Word2vec
embeddings. At the same time, each corpus may have its own set of different biased
words. Again, applying clustering and classification of the biased words of each
corpus would not be comparable from one domain to another; therefore, obtaining
the biased set from the original embeddings is still more reasonable. KNN can be
neglected as a measure when there are few biased professions. As professions do not
have enough neighbors, it is difficult to evaluate whether they are truly biased or
just a matter of lacking neighbors.

4.2 Evaluation Gender Bias in Multilingual

Machine Translation

4.2.1 Motivation

There are various sources of gender bias; one is model bias. The model architecture
can impact the behavior of the model towards gender bias. The bilingual NMT ap-
proaches are studied in various studies [Stanovsky et al., 2019, Saunders et al., 2020,
Saunders and Byrne, 2020] showing that these models amplify bias when translating
to stereotypes. The research never studied the same trend in multilingual architec-
tures. Multilingual neural machine translation architectures mainly differ in the
number of sharing modules and parameters applied among languages. That can
help us study whether the chosen architecture, when trained with the same data,
influences gender bias from an algorithmic perspective. This work is a part of more
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extensive research presented in [Costa-jussà et al., 2022]. We only mention what is
related to our thesis and our study.

4.2.2 Research Questions

To start the study, we are motivated to answer a number of research questions
concerned with multilingual architecture. These questions are answered in sections
4.2.4 and 4.2.5:
1- What is the effect of parameters sharing on multilingual gender biased transla-
tions?
2- How gender information is encoded in the embeddings in multilingual architec-
tures and what is their effect on the translation accuracy?

4.2.3 Experimental Framework

In this section, we report the details of the experiments including data and training
architecture and parameters.

4.2.3.1 Architectures

The architectures used in this experiment are described as follows:

Bilingual Encoder-Decoder. Bilingual models are trained on a single translation
task between a single source and target language. This approach would be taken as
a reference in our experiments, as such architectures devote the entire representation
capacity of the model to a single task, capturing specific features and correlations
of the language pair.

Shared Encoder-Decoder. [Johnson et al., 2017] trained a single encoder and
decoder with multiple input and output languages. Given a language set, a shared
architecture has a universal encoder and decoder fed with all initial language pairs
at once. The model shares vocabulary and parameters among languages to ensure
that no additional ambiguity is introduced in the representation. By sharing a
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single model across all languages, the system can represent all languages in a single
space. This allows translation between language pairs never seen during the training
process, which is known as zero-shot translation.

Language-Specific Encoders-Decoders. This work uses the no sharing ap-
proach [Escolano et al., 2021a] since it is the most contrastive to the shared encoder-
decoder. This language-specific approach involves training independent encoders
and decoders for each language. In contrast to standard pairwise training, in this
case, there is only one encoder and one decoder for each language. Since parameters
are not shared, this joint training enables new languages without the need to retrain
the existing modules, which is a clear advantage relative to the previously shared
encoder-decoder.

4.2.3.2 Data and Parameters

Experiments are performed on EuroParl data [Koehn, 2005] for English, German,
Spanish and French with parallel sentences among all combinations of these four
languages and with approximately 2 million sentences per language pair. Systems
are trained in English, German, Spanish, and French with parallel sentences among
all four languages. We also built pairwise bilingual systems (based on the trans-
former) on the corresponding language pair data. As validation and test sets, we
use newstest2012 and newstest2013 from WMT13. All data are preprocessed using
standard Moses scripts [Koehn et al., 2007]. Experiments are performed using the
approach provided by Fairseq14. We use six layers, each with eight attention heads,
an embedding size of 512 dimensions, and a vocabulary size of 32k subword tokens
with byte pair encoding [Sennrich et al., 2016] (per pair). Dropout is set as 0.3 and
trained with an effective batch size of 32k tokens for approximately 200k updates
using the validation loss for early stopping. We use Adam [Kingma and Ba, 2015]
as the optimizer, with a learning rate of 0.001 and 4000 warmup steps. We report
gender bias evaluation using WinoMT with metrics accuracy (Acc.), ∆G, ∆S and
M:F proposed by [Saunders and Byrne, 2020].

13http://www.statmt.org
14Release v0.6.0 available at https://github.com/pytorch/fairseq
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Language Set en,de,es,fr
Lang System BLEU↑ Acc↑ ∆G↓ ∆S↓ M:F ↓
ende bil 21.61 64.10 5.7 8.30 1.84

shared 21.39 53.86 23.59 8.33 3.87
lang-spec 22.01 56.28 17.45 7.83 2.92

enes bil 25.82 46.00 22.90 2.40 3.13
shared 28.08 51.67 24.77 5.49 4.09
lang-spec 29.53 54.19 20.73 7.64 3.66

enfr bil 26.73 42.18 21.59 14.16 2.67
shared 28.43 45.55 24.99 0.06 3.88
lang-spec 29.74 45.81 28.45 5.64 4.63

Table 4.8: Results in terms of BLEU and Gender Accuracy (Acc.): Bilingual (bil),
Shared (shared) and Language-Specific (lang-spec). In bold, best global re-
sults. Underlined, best results between multilingual systems.

4.2.4 Results

We report the results in terms of translation quality and gender accuracy. Table
4.8 reports the results in terms of BLEU and gender accuracy for the architectures
described in section 2.3.2. When comparing bilingual vs. multilingual architecture,
and consistently with previous studies [Johnson et al., 2017], multilingual systems
improve upon bilingual systems in terms of translation quality. However, we cannot
conclude the same in terms of gender accuracy. The multilingual architecture im-
proves upon the bilingual architecture for two of the three language pairs in terms of
gender accuracy and ∆S. Regarding the rest of the gender measures, the bilingual
system tends to be better, especially for M:F.

When comparing the multilingual architectures, we observe that the language-
specific architecture shows consistent gains in BLEU of approximately 0.4-3.6%.
Such superiority of the language-specific system is kept in terms of gender accu-
racy. The conclusions are similar when comparing ∆G and M:F values, with the
language-specific system showing gains of up to 6% and clearly superior in 2 out of
3 language pairs. Since WinoMT is divided into 46,97% male, 46,86% female and
6.17% neutral cohorts, 46% accuracy can be easily achieved by predicting the same
gender most of the time. For the shared architecture, we observe that the high ∆G

is explained by having a strong preference for predicting male gender.

Regarding ∆S, the results tend to be better for the shared architecture. These
differences in ∆S are attributable to the fact that the accuracy of the shared system,
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for both pro- and anti-stereotypical occupations, is much lower than the language-
specific system, which derives from fewer differences. Overall, we can conclude that
gender accuracy is much stronger for language-specific architecture. These results
and conclusions give us answers to question one in section 4.2.2.

4.2.5 Interpretability Analysis

Gender information in source embeddings. Studying how source contex-
tual embeddings codify gender information can promote understanding about how
gender is predicted in translations and answer question two in section 4.2.2.
We followed our classification approach in the previous evaluation study in con-
textualized embeddings (section 4.1), which uses embeddings to train an SVM
[Cortes and Vapnik, 1995] and classify in two groups. We applied the same clas-
sification measure on two word types for source embeddings classification by using
the information provided by WinoMT to measure how gender information is re-
flected in their contextual embeddings, determiners (The) and occupations. The
first category is initially neutral, as it is equally employed in all categories. There-
fore, all gender information present in these embeddings must come from the context
of the sentence. For each system and word type, we trained an SVM classifier with a
radial basis function kernel on 1000 randomly selected sentences from WinoMT and
tested the remaining 2888 sentences from the set. Words are represented as their
first subword in case they are split in the vocabulary.

We performed ten independent experiments to guarantee the randomization of token
representations. Achieving more accuracy in the classification results means that
more information on gender is encoded in the source embeddings. Figure 4.10 shows
the results for this classification for all bilingual and multilingual systems (from left
to right) for both determiners and occupations.

Bilingual systems show that the target language substantially impacts the amount
of gender information encoded in the contextual representations. While the trans-
lation results are similar between all language pairs, the English-German system
outperforms by a significant margin (30%) all other pairs even when trained on
the same domain and using similar training set sizes. These results correlate with
the gender accuracy illustrated in Table 4.8 showing that the systems that encode
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Figure 4.10: Classification results, from left to right: Bilingual (English-to-
German/Spanish/French), Shared and Language-Specific. Determiner in
light, occupations in dark.

more gender information on their contextual representations produce more accurate
gender translations.

When comparing multilingual systems, we find that the language-specific approach
outperforms the shared method on both determiners and occupations, demonstrat-
ing the inclusion of more gender information. For all cases, the amount of gender
information encoded in the embeddings correlates with gender accuracy in transla-
tion. With this, we answer the second research question in 4.2.2.

determiners professions
mechanic mechanic
cleaner cleaner
baker baker
receptionist clerk
nurse nurse
carpenter carpenter
hairdresser hairdresser
librarian librarian
physician chief
janitor guard

Table 4.9: List of the 10 most common misclassified occupations by the SVM models
trained with determiners and professions. In italics, the errors in common
with the manual evaluation.

Table 4.9 reports the list of the 10 most common misclassified occupations by our
classifier. We report in italics the errors in common with the manual evaluation,
reported later in this thesis. We observe that there is a great proportion of errors
that coincide both in classification and in translation.
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4.2.6 Manual Analysis

In this section, we perform a manual analysis of occupation errors across languages.
Previous works [Lewis and Lupyan, 2020] demonstrate that culture greatly impacts
the forms of career-gender terms where older populations tend to show stronger
associations between career and gender. Such an impact affects male/female repre-
sentations in the data [Madaan et al., 2018] where some occupations are represented
with the masculine form only, or a higher proportion of males is represented. Figure
4.11 shows that mistranslated occupations vary from one language to another. Our
study covers occupations incorrectly predicted in 35%15 of the sentences containing
them and in bilingual, shared and language-specific systems. In what follows, we
offer a non exhaustive explanation covering an appropriate proportion of the errors
shown in Figure 4.11.

developer
driver

sheriff

construction-
worker

clerk

supervisor

guard

nurse

French
Spanish

German

CEO

physician

lawyer

cook

carpenter

analyst

auditor

designer

editor

farmer

janitor

mover

hairdresser

baker

analyst

house-keeper

laborer

librarian
salesperson

secretary
tailor

receptionist

teacher

writer

Figure 4.11: Misclassified occupations in terms of gender. Bold words are mistranslated
from male to female, while others are mistranslated from female to male.

In bold, we show the occupations that are wrongly predicted to female, whereas
the rest are occupations that are wrongly predicted to male. We observe that most
errors come from associating occupations to male rather than to female. This may

15This was a trade-off between the percentage of errors and number of sentences enabling us for a
manual analysis
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be because of having a higher male representation in our data [Madaan et al., 2018].
This conclusion is consistent with previous studies [Stanovsky et al., 2019]. More
than this, we see that the occupations that are wrongly translated vary with the
language. However, when comparing Romance languages (Spanish and French)
common errors in occupations raise up. As follows we try to come up with some
linguistic/cultural explanation of why we are obtaining these common errors.

Regarding German errors, nurse tends to be assigned the feminine form (Kranken-
schwester = sick + sister), which is mostly used in everyday language. The mascu-
line form is Pfleger/Krankenpfleger, which presents the barely used feminine form
Pflegerin/Krankenpflegerin.

When comparing Romance languages (Spanish and French), standard errors in oc-
cupations increase. Because the default gender in Spanish and French was masculine
in the past [Frank et al., 2004], such errors relate to linguistics and culture together.
In French culture, masculine forms are predominantly used as gender neutral, and
only the article may vary for some occupations, such as présidente/président (CEO),
even in cases where the feminine form exists. Thus, some speakers say e.g., madame
LE président, even if the feminine version madame LA présidente is the correct
form. In the case of analyst, the French translation is neutral analyste and gender is
determined by the article, but the gender of the article is missed by the apostrophe
l’analyste.

This can help us explain some errors observed, such as the translation of the word
(clerk), as the clerk ’s role was historically assigned to males. Consequently, both lan-
guages have only the masculine form, although suitable feminine/masculine transla-
tions would be possible. Moreover, some words have the same form for both genders,
such as sheriff, where only the article differs. An interesting example of a feminine
mistranslation is the word guard. In the French and Spanish culture, the guard (le
garde/la guardia) has feminine morphological gender and there is a popular French
expression "mise en garde" which leads to higher feminine representations of guard
in the corpus.
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4.2.7 Conclusions

By evaluating the different architectures with WinoMT evaluation metrics and then
analyzing the gender information in the embeddings, we can understand why the
multilingual NMT architecture impacts gender accuracy. Our interpretability anal-
ysis shows that source embeddings in the language-specific architecture retain more
information on gender. Comprehending this along with the performance of the sys-
tems in the synthetic benchmark of WinoMT, we can conclude that the language-
specific model outperforms the shared one.

Finally, a manual analysis shows that most errors are made by assuming a masculine
occupation instead of a feminine occupation. In contrast, the inverse error occurs
when a feminine version of a word with another meaning is possible.

4.3 Final Thoughts on the Chapter

Evaluation is the key. Evaluating different architectures, different data domains,
and representations of embeddings are the key to explaining the nature of bias,
conceptualizing it, and understanding its impact on our system. Evaluation is the
most critical step toward interpreting how our systems deal with it.

Contextualized embeddings encodes bias. Gender bias is encoded strongly in
contextual word models in professions and stereotypical nouns. While gender infor-
mation can be helpful for specific tasks, biased embeddings can inflect stereotypes
and biased forms in other tasks. For the task of NMT, It is worth mentioning that
a neutral word in a neutral context should not have any gendered information, e.g.,
my friend is a doctor, while the gender information in neutral words would be useful
if there is already a gender hint in the sentence, e.g., my friend and her cousins are
managers.

Architectures matter. Bias tends to be attributed to data [Costa-jussà, 2019].
However, our evaluation study shows that algorithms amplify the bias and that the
system’s architecture impacts the behavior. This conclusion can be considered in
research/deployment by systematically evaluating our algorithms regarding bias.
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5 Towards Mitigation Approaches of
Gender Bias in Machine
Translation

This chapter proposes methods for mitigation of amplification of bias NMT, these
methods are adapted from our papers [Basta et al., 2020, Basta et al., 2022]. Each
section will discuss one of the following methods with its details:

1. Mitigation by adding the previous sentence and the speaker gender identifier,
in section 5.1.

2. Mitigation using contextual embeddings and relaxed positioning conditions, in
section 5.2.

5.1 Mitigation by Adding the Previous Sentence

and the Speaker Gender Identifier

5.1.1 Motivation

There are multiple problems with current paradigms in NMT; one of them is oper-
ating on a sentence-by-sentence basis. This is a structural limitation of our systems
[Läubli et al., 2018], mainly when translating a coherent context, due to the cur-
rent sentence’s need for the previous one for better translation and specifically for
better gender understanding. Another problem is missing information when trans-
lating from different morphological languages. One of this information can be the
gender of the speaker leading to a lack of agreement on gender with the subject.
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Both problems arouse a lack of fluency and adequacy of the translated sentence and
gender-related errors.

Gender-related errors are not only causing harm to translations, but also perpet-
uating a male bias amounting to female discrimination in society. Such problems
motivated us to study the effect on translations of two directions; adding more con-
text and aggregating a gender tag related to the speaker. We studied the approaches’
potentiality in general translations’ accuracy and gendered inflections.

5.1.2 Research Questions

Given the previous two motivated problems, we sought to answer the following
research questions, later the answers are given in sections 5.1.5 and 5.1.6 :

1. What effect does adding a previous sentence or a speaker’s gender tag to a
sentence have on the translation and gender accuracy?

2. Other than gender accuracy, can we get further benefits from these techniques?

5.1.3 Proposed Methodology

To understand the impact of adding previous sentence or speaker gender iden-
tifier on the gender accuracy of NMT, we chose a different NMT baseline
[Fonollosa et al., 2019]. As follows, we describe the baseline system and the tech-
niques.

Baseline System. Neural Machine Translation with joint source-
target self-attention is an alternative architecture to the standard trans-
former [Vaswani et al., 2017]. It is a more simplified architecture1 by
[Fonollosa et al., 2019], which only uses the decoder block and it adopts the
idea of language modeling for translation task, instead of having both encoder and
decoder. The joint source-target representations are learned in the early layers, and
positional embeddings are applied independently to the source and target. In the
system, language embeddings are employed to represent the language of the source
and the target separately. Unlike the self-attention in standard transformers, the

1https://github.com/jarfo/joint
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Methods Examples
Baseline I have only done this once before.
+PreSent I have only done this once before. <sep> This is not a joke.
+SpeakerId MALE I have only done this once before.

Table 5.1: Methodologies examples

authors propose a locally constrained attention to attend only to a token’s locality
and form a reduced receptive field. A simplified version always leads to fewer
parameters and better memory usage.

Enriching Methodologies. We consider the following techniques, where differ-
ent kind of information is added in each way, Table 5.1 shows examples of both
techniques.

• Adding the previous context sentence (PreSent): This method is
mainly concatenating two consecutive sentences with a separator token.
The main idea is increasing related context adopting the method from
[Junczys-Dowmunt, 2019].

• Incorporating the speaker gender identification (SpeakerId): Incor-
porating the information of the gender of the speaker in NMT by adding the
gender tag before each sentence [Vanmassenhove et al., 2018]. This approach
is beneficial when translating from a less inflected language to a more inflected
one, e.g., English to Spanish.

5.1.4 Experimental Setup

Data. Spanish has two features accounting for its suitability for our task. The first
is that it is a high grammatical gendered language, and the second is that omission of
pronouns makes the translation in English-Spanish task more challenging. These are
core motivations to choose to test our work on this particular English-to-Spanish
task. However, our conclusions may be extendable to other English-to-Romance
languages such as Italian, French, and Portuguese. For training, we have chosen the
data motivated by the fact that the data contains the information of the gender of the
speaker added to the document-level information. Europarl data, compiled in the
previous work by [Vanmassenhove et al., 2018], meets these requirements. The size
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of the English-Spanish dataset is considered moderate, with 1,419,507 sentences. For
testing, we have used two test datasets: a random set of Europarl (2000 sentences)
following the work of [Vanmassenhove et al., 2018] and the gender-balanced set from
Wikipedia biographies (GeBioCorpus) [Costa-jussà et al., 2020] that contains 1000
sentences from male biographies and 1000 sentences from female biographies. The
gender of the main character in the biography article is used as the gender tag.

Parameters. The model is built on top of fairseq2 library and the parame-
ters are customized as follows: Adam optimizer, 30K training steps, 14 layers,
512 as embedding dimensionality, feedforward expansion of dimensionality 2048
and 8 attention heads, based on best performing parameters from previous work
[Fonollosa et al., 2019].

5.1.5 Results

Methods Europarl GeBio
Baseline 44.01 36.34
+PreSent 45.10 36.55
+SpeakerId 44.18 36.51

Table 5.2: Results on the Europarl and on GeBioCorpus test sets. Best results in bold.

BLEU Results (Table 5.2). These results have been acquired by testing the Eu-
roparl test set and GeBioCorpus. Adding the previous sentence has a higher impact
in Europarl (+1.09) than in GeBioCorpus (+0.21) since documents in GeBioCorpus
are not coherent (all sentences belong to the same document, but some sentences
are not sequent to each other). Adding the gender tag shows the same effect in
GeBioCorpus than in Europarl (+0.17), even if the speaker identification differs be-
tween Europarl and GeBioCorpus sets. In the former, the speaker tag relates to the
speaker, whereas it relates to the main biography character in the latter. By this
we answer question one in section 5.1.2 regarding the translation quality.

Evaluating on WinoMT (Table 5.3 and Figure 5.1). Evaluating on WinoMT
dataset by [Stanovsky et al., 2019] system relies on judging the accuracy of the trans-
lated gender of certain entities in the sentences compared to the gold gender of these
entities. It is important to note that we are evaluating the behavior of the trained

2https://github.com/pytorch/fairseq
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Figure 5.1: Acc.% on gender translation with respect to pro-stereotypical entities and
anti-stereotypical entities in WinoMT.

systems without adding any additional information to the WinoMT sentences. As
shown in Figure 5.1, the systems are performing better on the pro-stereotyped por-
tion of WinoMT than on the anti-stereotyped one.

Among the three translation systems (baseline, PreSent and SpeakerId), as shown
in Table 5.3 and Figure 5.1, the PreSent has the highest accuracy in detecting the
gender. It shows better performance, whether in pro-stereotyped or anti-stereotyped
translations, with 61% accuracy and 12.2% ∆G, the lowest f1-score difference be-
tween them pro-stereotyped male and female translations. The PreSent has the
lowest ∆S of 9.2, which shows that it has the best performance in translating anti-
stereotyped occupations with a difference of 2.8 with the baseline.

On the other hand, the SpeakerId system has the least translation accuracy of
52.5% with higher ∆G and ∆S, demonstrating that it favors the pro-stereotyped
translations in general, especially the male ones.

As mentioned, WinoMT is a test set that does not contain information at the level
of the document nor speaker identification, so translation with our methodologies is
done without this information. However, we can note that adding the information of
the previous sentence makes the system more robust even when making inferences
without such information. Reaching that, we get the answer to the last part of
question one in section 5.1.2 regarding gender quality with these methodologies.
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Methods Acc.↑ ∆G↓ ∆S↓
Baseline 56.0 18.7 12.0
+PreSent 61.0 12.2 9.2
+SpeakerId 52.5 22.2 15.5

Table 5.3: WinoMT evaluation results. Acc. indicates gender accuracy (% of instances
the translation had the correct gender), ∆G denotes the masculine/feminine
difference in F1 score and ∆S notes the difference in accuracies between pro-
stereotyped translations and anti-stereotyped ones. In bold, best results are
introduced.

5.1.6 Manual Analysis

To answer the second question in section 5.1.2 regarding other advantages when
using the approaches, we had to do manual analysis to inspect the translations thor-
oughly. In Table 5.4 and Table 5.5), we report some translation examples for both
PreSent and SpeakerId techniques. We have observed the following advantages:

Helping Towards Name Entity Disambiguation (in terms of gender). Both
SpeakerId and PreSent techniques seem to impact name disambiguation positively.
The challenge of resolving names occurs when the translation system can not predict
its gender correctly, as it did not adequately learn it during training. Therefore, if
the trained system does not recognize the names, they can be wrongly translated,
and most of the time, to the male-gendered translation. Both approaches improve
the translations in this case, even in the case of GeBio test-set, as shown in Table
5.4 and Table 5.5).

Improvement in Morphological Agreement and Translation Quality.
Adding the contextual info (PreSent) improves the morphological agreement of the
subject and its related nouns. In Table 5.4 , we can see that adjective (catalana)
and nouns (analista, activista) agree with the female subject (Míriam). We can
also note an improvement in the style of translation, giving a better arrangement of
words defensora española in the last example in Table 5.4.
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Named Entity Disambiguation
Source María del Carmen Pérez ...is a Spanish Egyptologist , curator and researcher.
Baseline María del Carmen Pérez ...es un egipcio pintor , curador e investigador español.
+PreSent María del Carmen Pérez ...es una ciudadana española egipcia , curadora

e investigadora.
Better dealing with articles

Source Míriam Hatibi ... is a Catalan data analyst and activist.
Baseline Míriam Hatibi ... es un analista de datos catalán y un activista.
+PreSent Míriam Hatibi ... es una analista y activista catalana en materia de datos.

Better style of translations
Source Helena Maleno Garzón ... is a Spanish human rights defender , journalist,

researcher , documentalist and writer.
Baseline Helena Maleno Garzón ... es un defensor de los derechos humanos español, periodista,

investigador , documentalista y escritor.
+PreSent Helena Maleno Garzón ....es una defensora española de los derechos humanos,

periodista, investigadora , documentalista y escritora.

Table 5.4: Baseline vs PreSent examples from GeBioCorpus.

5.1.7 Conclusion

In this work, the primary goal is to study whether we can exploit contextual or
external information, PreSent and SpeakerId methodologies, in which we add ei-
ther the previous sentence or the gender tag, to help mitigate gender bias in NMT
systems.

It has been shown that PreSent methodology allows more accurate translations and
resolves ambiguous names. Furthermore, the PreSent methodology achieves the best
performance regarding gender translation. This conclusion remains valid even in the
case of making inferences without the previous sentence information, mainly when
applied on WinoMT, achieving the highest accuracy of 61%.

While other researchers debate that removing the gender information will be ben-
eficial for some tasks [Elazar and Goldberg, 2018], which have to deduce decisions
without considering gender. We show that the SpeakerId methodology, which adds
the gender information as a tag at the beginning of the source sentence, can help
remove the speaker’s ambiguity and give better translations from a neutral language
to a gendered language. However, the improvement of SpeakerId methodology gets
surpassed by PreSent methodology, implying that adding more context achieves
better performance.
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Named Entity Disambiguation
Source Bianca Maria Piccinino ... is an Italian writer , journalist and television hostess.
Baseline Bianca Maria Piccinino ... es un escritor italiano , periodista y centro de televisión.
+SpeakerId Bianca Maria Piccinino ... es una escritora italiana , periodista y anfitriona

de televisión.

Table 5.5: Baseline vs SpeakerId examples from GeBioCorpus.

5.2 Mitigation using Contextual Embeddings and

Relaxed Positioning Conditions

5.2.1 Motivation

Neural machine translation (NMT) models struggle to generate gender inflections in
translations correctly. This struggle is a consequence of many factors; one of them
is due to the current sentence-based schemes, and another factor relies on strict
alignment with source tokens.

To approach these two problems, we are motivated to examine two independent ap-
proaches; adding contextual-level information and relaxing conditions by removing
residual connections. The first approach takes advantage of the Longformer archi-
tecture [Beltagy et al., 2020] to add information at the document level (previous
and following sentences), which produces more informed translations. The second
approach is to relax conditions by removing skip connections in some layers, leading
to a less position-dependent and more flexible grammatical structure. The primary
purpose is to investigate whether the system benefits more from appending contex-
tual information or excluding information that is not relied on in all scenarios.

5.2.2 Research Questions

For exploring the approaches feasibility in our gender bias problem, we are motivated
to answer the following research questions, these questions should be answered in
section 5.2.5 and section 5.2.6:
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1. Is it helpful to embed contextual information with the sentence embeddings
regarding translation and gender accuracy?

2. Should we maintain the strict alignment between inputs and outputs ensured
by the skip connections to preserve the translation quality?

3. What should be our preference when choosing between the two independent
techniques?

5.2.3 Proposed Methodology

Figure 5.2: Proposed architecture.

This section describes our system, mainly the two contributions: adding Longformer
document embedding and relaxing residual connections.

Longformer Contextual Embedding (LF). [Beltagy et al., 2020] presented
Longformer, a modified transformer architecture with a self-attention operation that
scales linearly with the sequence length, making it versatile for processing long doc-
uments. Longformer proposes an attention mechanism that scales linearly with the
sequence length utilizing a sliding window that attends to a subset of tokens, relying
on the importance of local context. The authors also have introduced the dilated
sliding window, a variant of the sliding window, which allows each token’s attention
range to be increased without increasing the complexity. In most NLP tasks, special
tokens such as [CLS] and [SEP] are used to attend to the entire sequence, which
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is not possible with the sliding window. The authors approach this problem by
introducing task-specific, global attention on special tokens. The global attention
is symmetric, which means that the special token can attend to every token in the
sequence, and every token can attend to it.

We use LongFormer for preparing the contextual embedding; which is mainly consid-
ered to be Longformer document embedding. We feed full documents to Longformer,
enabling the document embedding to contain information from the whole document
context, including those sentences that appear after the current translated one. As
shown in Figure 5.2, each document is tokenized and passed to the Longformer
model. Sequentially, we obtain the document representation embeddings with the
size of all tokens. Following [Macé and Servan, 2019], we consider the document
embedding to be the averaging of all the tokens of the document, with Equation
5.1, where x is the row representing the token embedding, N is the size of tokens,
and k is the document number.

Dock =
1

N

N∑
j=1

xi,k (5.1)

The resulting mean of the embeddings is projected to the projection layer, which
is a linear layer with embedding size as the output dimensionality. The resulting
projected mean is then concatenated to the token embeddings, representing the
input for the encoder of the NMT model.

Modifying Residual Connections (SkipRS). Residual connections are applied
in every layer for both the multi-head attention and the feed-forward layer in trans-
formers [Vaswani et al., 2017]. The connections can facilitate the flow of informa-
tion through layers; they also impose one-to-one alignment between inputs and
outputs. As suggested by [Liu et al., 2021a], relaxing this condition of strict align-
ment can cause the encoder outputs to be less position-dependent and dependent
on language-specific alignments. Moreover, setting one or two encoder layers free
from the constraint of the positional correspondence enables the encoder to create
its own ordering instead of one-to-one mapping with the input. They applied this
relaxation in zero-shot translation to see its impact on the translation accuracy in
such cases.

We study the impact of relaxing positional constraints, the dashed red residual con-
nection in the encoder in Figure 5.2, in one or two encoder layers. Relaxing the
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alignment condition can stimulate diverting attention enforcing the attention mech-
anism to attend to further tokens for context, leading to better gender generation
and decreasing gendered correlation with prior data seen in training. We study
this impact on translation accuracy and on mitigating gender bias in a bilingual
setting.

5.2.4 Experimental Setup

In this section we introduce the datasets used for training our systems and we go
through the data filtering process that was applied in each one of them.

Datasets. When choosing the language pair, we chose English-Spanish after ac-
counting that Spanish is a high grammatical gendered language and that it has
pronoun dropout features leading to the omission of pronouns. Such features make
translation in English-Spanish tasks more challenging.

To have document-level contextual embedding, we have the requirement of document
annotation on the training and evaluation dataset. The training and evaluation
need to have defined document boundaries; thus, each sentence would be able to
have a global document tag number. For the data domain diversity, we chose the
News-commentary and TED-talks datasets. For the News-commentary, the training
documents were obtained fromWMT3, considering newstest2015 as the valid set and
newstest2016 as the test set. In addition, the TED-talks (IWSLT) were obtained
from IWSLT16 competition from the wit3 site4, considering IWSLT16-dev2010 as
the valid set and IWSLT16-test2010 as the test set. For the comparative analysis,
we used the same filtered data in the LF and SkipRS experiments.

Data Preparation. Data preparation with Longformer can process sequence
lengths up to 4,096 tokens. Knowing that the new lines and the beginning of
paragraphs represent tokens, we hypothesize that 250 lines per document can be
considered an average number for getting less than 4,096 tokens. Therefore, we fil-
tered the documents folder, removing documents exceeding 250 lines. In addition,
we filtered the documents that had the wrong language than the specified pair in ei-

3http://data.statmt.org/news-commentary/v14/documents.tgz
4https://wit3.fbk.eu/2016-01-d
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Corpora Partition Original Files Filtered Files No. Lines

News
Train 6,845 6,665 248,025
Valid 99 99 3,003
Test 52 52 3,000

TED-Talks
Train 1,820 1,795 207,256
Valid 8 8 887
Test 11 11 1,570

Table 5.6: Statistics for EN-ES datasets.

ther the target or source. The filtering steps reduced the total documents, as shown
in Table 5.6.

To collect the training data from the files in News-commentary and the talks in TED-
talks, we kept only the text data, removing any extra information. Each document
is tagged with a unique ID so that each sentence in the document is mapped to this
ID. The same steps are done for the valid and test files.

Document Representations Preparation. To prepare the document represen-
tation, it is tokenized using Longformer Tokenizer and passed to the Longformer
Sequence Classifier model, both from huggingfaces5. Global attention is applied to
the first token in the document sequence, the start token. After averaging the to-
kens’ embeddings, the embedding dimension is transformed using linear projection
to be mapped to the embedding dimension of the encoder’s input in the transformer.
A map of the documents’ IDs and their representations is prepared for the training
process. These decisions were made after experimenting with different Longformer
models, language models, and sequence classifier models. In addition, embeddings
of different tokens were included in experiments aside from the average, and the
averaging was observed to perform better.

Training Details. The experiments are performed on a transformer
[Vaswani et al., 2017], Fairseq6 library, with 6 encoder and decoder layers. We
use 4 attention heads, an embedding size of 512, an inner size of 1,024, a dropout
rate of 0.1, and a label smoothing rate of 0.1. We use the learning rate of 0.001 and
the inverse square root schedule from [Vaswani et al., 2017], with 4,000 warmup
steps. During the training, the mapping between the sentence and its document is

5https://huggingface.co/transformers/model_doc/longformer.html
6https://github.com/pytorch/fairseq
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retrieved and then the documentation is replaced and concatenated to the source
tokens.

To relax the positioning constraints, the residual connections of different layers were
modified. We modify the residual connections in the middle of the feedforward layer,
as advised by [Liu et al., 2021a], in our case layer three and layer four out of the
six layers. Several configurations of layers were tested, and we report only the best
performing configuration. It is worth noting that configurations using noncontiguous
skip connections lead to nontrainable models.

We apply the classifiers as a probing task of the gender information contained on con-
textual embeddings proposed in sections 4.1 and 4.2 for more results interpretability.
For these gender classification experiments, classifiers are implemented using SVM
with a radial basis function using the Sk-learn [Buitinck et al., 2013] implementa-
tion with default parameters using the WinoMT dataset. One thousand random
sentences are extracted for training, using the remaining 2,888 sentences as the test.
To ensure that the results are not conditioned on sampling, all experiments are
performed ten times, reporting their average results.

5.2.5 Results

When treating gender bias in NMT, a tradeoff between gender accuracy and
general translation accuracy can occur [Renduchintala et al., 2021]. In this sec-
tion, we analyze the results regarding both to understand the impact of our
approaches on both accuracies. The WinoMT gender bias evaluation frame-
work is widely used among researchers in evaluating gender bias in NMT
[Saunders et al., 2020, Saunders and Byrne, 2020, Costa-jussà and de Jorge, 2020,
Stafanovičs et al., 2020]. This framework can reveal how systems resolve or am-
plify gender-stereotyped translations.

Moreover, we used our systems to translate the Google gendered challenge set
[Stella, 2021] with many challenging patterns. If increased accuracy is observed,
this shows that the systems can overcome some of the problems introduced in the
patterns. This set has the advantage of being a natural dataset, showing how the
system can affect gendered real-life examples. To apply the Longformer experi-
ments for the WinoMT and Google sets, we created the Longformer representations
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for the set, considering that each sentence is the document representation for itself.
This approach also may be helpful to compare when the system considers a whole
document as the contextual embedding versus the sentence itself.

Domain System BLEU↑ Acc↑ ∆S↓ ∆G↓ GBLEU↑

News
Base 27.48 46.5 3.7 35.6 32.8
Base+LF 27.87 45.9 2.9 33.2 33.2
Base+SkipRS 27.67 46.6 1.0 33.2 33.5

TED-Talks
Base 38.86 45.4 6.2 37.8 28.6
Base+LF 39.12 45.2 5.6 34.4 29.0
Base+SkipRS 39.12 45.1 4.0 36.2 28.7

Table 5.7: Results in terms of BLEU and Gender accuracy: Base stands for Baseline,
LF stands for the system with longformer representations, SkipRS stands
for the system with modified residual connection. GBLEU is the bleu score
for google challenge dataset. The results are for the two domains TED and
News.

Translation Accuracy (Table 5.7). In both domains, News and TED-Talks,
we can observe that our approaches can lead to a consistent enhancement in the
translation accuracy, considering the BLEU metric. In the News domain, LF out-
performs the baseline by 0.39 BLEU points and SkipRS surpasses it by 0.19 BLEU
points. On the other hand, in the TED-Talks domain, the two techniques increase
the translation accuracy by 0.26 BLEU points. To guarantee the consistency of this
increase regardless of the random initialization, we repeated the experiments three
times in each approach in the two domains.

Gender Bias Results (Table 5.7). LF has a tradeoff of the general gender accu-
racy with the male dominance of translations, LF could achieve weaker preference
for predicting male and increased accurate anti-stereotyped translating, sacrificing
0.6% accuracy in total gendered accuracy compared to the baseline. This differ-
ence is mainly the difference of correct pro-stereotyped instances in the case of the
baseline. When examining the translations, we observed that the difference between
WinoMT accuracy in the baseline is higher due to translating fewer instances of
pro-stereotyped correctly. In addition, we noticed that the WinoMT framework can
give higher accuracy to the correct gender; however, the occupation is not correctly
translated. Nevertheless, LF shows an improvement in translating anti-stereotypes
by 0.8 in ∆S and less prevalent male-gendered instances by 2.4 ∆G. On the other
hand, the superiority of SkipRS in gender accuracy can be observed in the News
domain, with gains in all WinoMT metrics. Translating anti-stereotype entities re-
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sulted in an enhancement of 2.7 ∆S with a lower prevalence of males in translation
by 2.4 ∆G.

In the TED-Talks domain, we noticed improvements regarding the anti-stereotyped
translations in LF systems and SkipRS, with differences of 0.6 and 2.2 in ∆S com-
pared with the baseline. The decrease in ∆G in the two systems is a result of less
preference for male translations.

Regarding the Google dataset evaluation, LF sustains the same improvement of 0.4
BLEU points, compared to the baseline. On the other hand, SkipRS has a better
impact in the News domain, with an improvement of 0.7 BLEU points compared
to the baseline. Reaching this, we have answered the first two questions in section
5.2.2 regarding the performance of the two techniques in translation and gender
accuracy.

The difference of results between the two datasets may be attributed to the nature
of the data; TED-Talks are mainly inspiring talks, which may have less occurrence
of multiple professions. Moreover, as shown in Table 5.6, all data in TED-Talks
cover only 26.9% of documents compared to News, and the broader coverage of
News may lead to better usage of professions and different gendered patterns. In
the case of SkipRS, the News domain can benefit more from relaxing the alignment
and positioning conditions.

Gender Classification Results (Table 5.8). In this task, we aim to measure the
gender information contained in the contextual embeddings of our translation models
by training SVM classifiers on determiners and professions tokens. We observe
significant differences between domains, especially on tokens that correspond to
professions, with a 24.11% accuracy gap between baseline systems. These results
may explain the observed differences in ∆S and GBLEU, as models seem to express
gender differently according to the domain used for training.

Our modifications show that the LF vector introduces gender information to the
system, with classification accuracies 10% higher than the other tokens encoded by
the same system. This is consistent in both domains, especially on News, where
we observe a more consistent representation of gender between determiners and
professions than the baseline system.
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Domain System Det. Profs. LF Vec.

News
Base 50.01 73.35 -
Base+LF 63.45 65,13 76.81
Base+SkipRS 47.06 45.10 -

TED-Talks
Base 44.42 49.24 -
Base+LF 43.15 42.15 55.77
Base+SkipRS 43.81 42.51 -

Table 5.8: Results in terms of Gender classification accuracy: Base stands for Baseline,
LF stands for the system with longformer representations, SkipRS stands for
the system with modified residual connection. The results are for the two
domains TED and News. Det., Prof. and LF Vec. stand from determiners,
professions and Longformer vector representation, respectively.

On the other hand, applying SkipRS reduces the positional information encoded
by our systems, making them less reliant on specific tokens associated with gender.
The results show this behavior in both domains, reducing the accuracy gap between
determiners and professions to less than 2%. Our intuition is that by not focusing
attention on specific tokens that encode most of the gender information, the model is
bound to attend to longer dependencies, focusing on a broader context and reducing
the impact of learned biases. This emphasizes the answers we got from the previous
results regarding the first two questions in section 5.2.2.

5.2.6 Conclusion

Throughout this work, we have focused on the impact of adding information to the
NMT architecture or relaxing connections in training to better generalize, showing
that both approaches can improve our models by addressing different aspects of
the problem. We have particularly applied the two different techniques to mitigate
gender bias in the NMT transformer model.

We found that LF document embedding in the LF model incorporates gender in-
formation, disambiguating gendered professions in WinoMT, and increasing correct
translations of the Google gendered challenging patterns. The LF model’s main
limitation is lacking scalability to all datasets, as it depends on document-level in-
formation.

Regarding the SkipRS model, we concluded that positional information allows the
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system to associate certain patterns with specific tokens in the sentence. Therefore,
reducing such information enforces wider cross-attention, attending to the context
of the sentence instead of stereotypical words. However, strict positioning may be
essential for specific pairs of languages, whose nature demands such positioning.

We conclude that both techniques help mitigate gender biases, and we advise making
the choice between the techniques while taking into account the nature of languages
and datasets. Now, we reach to answer the last question in section 5.2.2 regarding
how to decide between the two techniques.

5.3 Final Thoughts on the Chapter

This chapter investigates ways to mitigate the effect of gender bias in downstream
applications; NMT task. We can conclude the following from our studies:

• Gender bias is a multi-faceted problem that is challenging to mitigate in a
downstream application. However, a series of actions and considerations can
help mitigate the amplification of gender bias in downstream applications,
which is also helpful for fairer NLP applications.

• Mitigation gender bias can be defined differently from one task to another.
This results from different effects of gender bias in different downstream ap-
plications. Therefore, defining how to mitigate a task can help approach the
problem differently.

• Additional context can enable the system to understand the gender better and
resolve the ambiguity related to genders in many cases, mainly translating from
a neutral gendered language to a high grammatical gendered language.

• Depending on the nature of datasets and languages, mitigating bias does not
always rely on adding features or information. Rethinking the model and
relaxing some conditions that do not affect the general performance can lead
to the same or better effect on mitigating the amplification of bias.
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To certify and qualify the existence and scale of gender bias across several lan-
guages, researchers have been working on dedicated benchmarks for this pur-
pose. In this chapter, we are proposing two different datasets. The first is a
speech version of WinoMT [Costa-jussà et al., 2022b], especially for evaluating gen-
der bias in speech translation systems. The second proposes a toolkit for building
training and evaluation multilingual datasets, balanced in gender per occupation
[Costa-jussà et al., 2022a] for training and evaluation. Besides, we are presenting a
balanced multilingual dataset for evaluation.

6.1 WinoST challenge set

6.1.1 Motivation

Biases have been shown in the NMT task when translating from neutral or
less grammatical to high grammatical gendered languages [Stanovsky et al., 2019,
Saunders and Byrne, 2020]. Additionally, Automatic Speech Recognition (ASR)
has demonstrated biases having a higher error rate for female voices than males
[Tatman, 2017]. Speech Translation (ST) intersects ASR and MT tasks, perpetuat-
ing biases from both tasks. Therefore, the problem of gender bias in the case of ST
is more challenging.

Such a challenge motivates us to benefit from the WinoMT [Stanovsky et al., 2019]
evaluation protocol in favor of ST task, allowing us to measure how biased our
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Figure 6.1: WinoST evaluation block diagram for speech translation.

ST systems are. This evaluation protocol enables evaluating from English to any
language, complementing the work of MuST-SHE [Bentivogli et al., 2020], which
has three language pairs for evaluation. Another difference, MuST-SHE contains
naturally occurring gender phenomena; WinoST is a synthetic challenge set. This
difference has several implications, not only in terms of the size of the resources
themselves (generating synthetic data is somehow easier than collecting them in the
wild) but also in terms of their applicability in realistic evaluation settings. Both
types of resources are valuable and much needed.

6.1.2 Proposed Gender Evaluation Set

WinoST is the speech version of WinoMT, recorded in off-voice by an American fe-
male speaker, and consists of 3, 888 speech audios in English. By nature, sentences
from WinoST contain information in the utterance content, not in gender informa-
tion in the speaker’s voice. An example of these sentences is The developer argued
with the designer because she did not like the design., where she refers to developer,
meaning that the developer is actually a female.

WinoST serves as an input of the ST system to be evaluated, and the output text of
the systems follows the same evaluation protocol as WinoMT. Figure 6.1 shows the
block diagram of this procedure. As a side-product, and not shown in the figure,
WinoST can also be used as a challenge set for evaluating ASR gender bias.

Further technical details on WinoST are reported in Table 6.1, including the num-
ber of files, total hours/words, audio recording, and format. The voice mastering
process we applied to the recordings includes dynamic voice processing, broadcast-
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ing, equalization, and filtering. WinoST is available under the MIT License1 with
the limitation that recordings cannot be used for speech synthesis, text to speech,
voice conversion, or other applications where the speaker’s voice is imitated or re-
produced.

# Files 3, 888

# Hours ∼ 6

# Words ∼ 50, 500

Audio format WAV (48 KHz, 16-bit)

Table 6.1: WinoST details.

6.1.3 Experiments

In this section, we are describing the first experiments with WinoST. We describe
the baseline ST systems we are using and the results we obtain in gender accuracy.
We limit our experiments to four language pairs, but WinoST is extendable to any
language pair with English as a source language. The only requirement is to have a
part-of-speech for the target language.

Data preprocessing. Before training the model, we preprocessed both speech
and text data. We extracted 40-dimensional log-Mel spectrograms from the au-
dio files, using a window size of 25 ms and hop length of 10 ms, with XNMT
[Neubig et al., 2018].2 We normalized the punctuation from text data, tokenized it,
and de-escaped special characters using the Moses scripts.3 Furthermore, in the case
of transcriptions, we lowercased them and removed the punctuation. We used the
BPE algorithm [Sennrich et al., 2016] for encoding translation texts, using a vocab-
ulary size of 8000 for each language but a character-level encoding in the case of
transcriptions.

Speech Translation System. We trained a ST system to evaluate its gender
bias with the methodology we are presenting. We used an end-to-end ST approach
that directly translates the utterance without obtaining the intermediate transcrip-
tions. This approach was introduced by [Bérard et al., 2016], and recently it had

1https://github.com/gabrielStanovsky/mt_gender/blob/master/LICENSE
2https://github.com/neulab/xnmt
3https://github.com/moses-smt/mosesdecoder
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a growing interest in the research community [Weiss et al., 2017, Vila et al., 2018,
Liu et al., 2019b]. The data we used to train it is the MuST-C corpus consisting of
speech fragments from TED Talks, transcriptions, and translations into 8 European
languages [Cattoni et al., 2021].

The architecture we used is the S-Transformer, a popular adaptation of the Trans-
former for ST [Gangi et al., 2019]. It applies a stack of convolutions and self-
attention layers to process the log-Mel spectrograms extracted from the speech ut-
terances. The two bidimensional (2D) convolutional layers are in charge of capturing
local patterns in the spectrogram, in both time and frequency dimensions. More-
over, they reduce the feature maps by four, which is crucial to avoid memory issues
when feeding the Transformer with long sequences. Then, the two 2D self-attention
layers introduced by [Dong et al., 2018] model long-range dependencies that convo-
lutional layers cannot capture. Finally, the self-attention layers of the Transformer
encoder also include a logarithmic distance penalty that biases them towards the
local context [Sperber et al., 2018].

Following a common approach, we pre-trained the S-Transformer encoder for
ASR to improve the performance of the final ST system, as introduced by
[Bérard et al., 2016] and recommended by the authors of the S-Transformer.

System Details. The model we used has two convolutional layers with a kernel
size of 3, 64 channels, and a stride of 2. The Transformer has an embedding size
of 512, 6 layers at the encoder and decoder, 8 self-attention heads, and a feed-
forward network hidden size of 1024. We trained the S-Transformer with an Adam
optimizer, with a learning rate of 5 · 10−3, and an inverse square root scheduler.
The training has a warm-up stage of 4000 updates, in which the learning rate grows
from 3 · 10−4. We used a cross-entropy loss with label smoothing by a factor of 0.1.
Moreover, a dropout of 0.1 and a gradient clipping to 20 was applied. Furthermore,
we generated the outputs with a beam search of size 5. We loaded 8 sentences per
update, with a frequency of 64, which supposes an effective batch size of 512. Those
audios longer than 14 seconds and sentences with more than 300 tokens weren’t used
during training.
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Source transcription [Target lang.] Pre-
dicted translation

Phenomenon

1 The nurse sent the car-
penter to the hospital be-
cause he was extremely
cautious

[ES] El enfermero envió
el carpintero al hospital
porque era extremada-
mente consciente

The gender of “nurse” is
correctly inferred from
the coreference.

2 The construction
worker asked the nurse
for an examination
because she was injured

[ES] El trabajador de
la construcción le pidió
a la enfermera una ex-
aminación porque estaba
herida

“Construction worker” is
stereotyped to its male
inflection, with a mis-
matched adjective gen-
der.

3 The construction worker
asked the nurse for an
examination because he
was the best

[ES] El trabajador de la
construcción le pidió a la
enfermera una exami-
nación porque él era el
mejor

“Nurse” is stereotyped
to its female inflection,
with a mismatched pro-
noun and adjective gen-
der.

4 The farmer asked the
designer what she could
do to help

[FR] L’agriculteur a
demandé au designer
ce qu’elle pouvait faire
pour aider

Although the pronoun
is translated correctly,
“farmer” has a biased
translation form.

5 The writer wrote a book
about the carpenter
because her story is very
moving

[FR] L’écrivain a écrit un
livre sur le charpentier,
parce que son histoire est
très émouvante

Biased form for “carpen-
ter” with a neutral pos-
sessive gender

Table 6.2: Examples of outputs for different sentences from the WinoST corpus. Words
in blue, red, and orange indicate male, female and neutral entities, respec-
tively.

6.1.4 Results

This section describes the results of evaluating the ST system on WinoST and its
performance in terms of gender. We are also interested in evaluating ASR English
transcriptions and perceive if they contain any gender bias.

General ASR and ST Evaluation. We use the standard WER and BLEU mea-
sures to report the ASR and ST performance, respectively in Table 6.4. Our results
concur with the results in [Cattoni et al., 2021].

Gender Bias Evaluation in ST. Our main objective is to evaluate the accuracy of
the systems for each of the language pairs. The high accuracy demonstrates that the
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ST Acc. (↑) ∆G (↓) ∆S (↓)

en-de 51.0 1.7 1.5
en-es 45.2 25.7 12.3
en-fr 43.2 13.7 14.5
en-it 37.3 23.6 5.6

Table 6.3: WinoMT Gender Evaluation for four language pairs. Acc.(% of instances the
translation had the correct gender)(the higher the better) ∆G notes difference
in F1 score between masculine and feminine sentences (the higher the worse)
and ∆S notes difference in accuracy between pro/anti stereotypical sentences
(the higher the worse).

Language ASR (WER ↓) ST (BLEU ↑)

en-de 24.24 17.8
en-es 24.76 21.9
en-fr 23.98 28.2
en-it 24.18 18.3

Table 6.4: WER and BLEU (%) scores for the MuST-C corpus.

system is able to translate the gender of the entities correctly. We also report ∆G

and ∆S in Table 6.3. Ideally, these values should be close to 0. High ∆G indicates
that the system translates males better, and high ∆S denotes that the system tends
to translate pro-stereotypical entities better than anti-stereotypical entities.

The English-to-German (en-de) system has the highest accuracy 51%. This system
also shows the minor difference in treating males and females translations (lowest
∆G, 1.7) and the minor difference in the pro-stereotypical and the anti-stereotypical
entities (lowest ∆S, 1.5). The surprising behavior comes with the English-to-Italian
(en-it) system, which has the lowest accuracy of 37.3%. Still, it performs reason-
ably towards the anti-stereotypical entities translations, with the second lowest ∆S

difference (5.6). However, the system still favors the male translations with a high
∆G difference (23.6). Both English-to-Spanish (en-es) and English-to-French (en-
fr) have similar accuracies (45.2 and 43.2, respectively). However, there is a big
difference in the ∆S, which is much higher in the case of en-es (25.7), showing a
higher bias towards male translations. With these accuracy results, we are show-
ing that the four translation directions present a significant amount of bias, and
they are far from approaching gender parity in performance. Moreover, after man-
ually investigating the translation outputs, we observe that some professions are
not correctly translated. nurse is always translated to the female version in en-es
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and en-it. Similarly, developer is always translated to the male version in en-it and
en-fr, showing that stereotypes are perpetuated in ST. As illustrated in Table 6.2,
many inflection errors can occur due to these stereotyped translations. Example 1
shows an anti-stereotypical co-reference case of ’nurse’. One of the common errors
happens when translating the gendered adjective or pronoun correctly according to
the context while referencing the wrong gendered stereotyped profession, as shown
in examples 2 and 4. Another common problem is mismatched pronouns; the trans-
lation of the noun contradicts the profession’s translation due to biased translation
in one of them, e.g., example 3. Example 5 shows a biased translation with a neutral
pronoun.

Gender Bias in ST vs MT. Using the S-Transformer, the gender accuracy in the
four languages is lower than the reported accuracy of MT commercial systems in
the original WinoMT paper [Stanovsky et al., 2019]. The best reported accuracies
from commercial systems reached 74.1% in en-de, 59.4 % in en-es, 63.6% in en-fr,
and 42.4% in en-it, while in ST case, it is lower for all language pairs as shown in
Table 6.4.

This may be since ST is much more challenging than MT, and lower system perfor-
mance implies higher biases. This big gap is reduced when comparing in terms of
∆G and ∆S. In this case, ST becomes closer to MT (when comparing in absolute
terms), showing even better results in: ∆G for en-it (in MT, 27.8); ∆S for en-de (in
MT, 12.5) and en-it (in MT, 9.4).

Gender Bias Evaluation in ASR. ASR systems have demonstrated gender bi-
ases for female speakers outputs [Tatman, 2017]. However, gender bias associated
with the context has not been studied in ASR yet, and WinoST allows this analysis.
We may expect that ASR is less prone to show gender bias in contextual patterns
because of the nature of the task, which inherently combines the purpose of acoustic
and language modeling. The acoustic part does not consider long context informa-
tion, but it tends to benefit from local context information [Sperber et al., 2018].
However, the language modeling part considers the long-range context, and thus it
may induce bias [Bordia and Bowman, 2019, Basta and Costa-jussà, 2021b].

For further analysis of employing WinoST for ASR gender bias evaluation, it is
required to distinguish between the gender’s errors in transcriptions and the general
ones. Therefore, we computed the global accuracy in WinoST for the ASR best
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system in Table 6.4, en-fr, and got a 74.5% accuracy. However, this global accuracy
includes 680 misspelled professions. Discarding these misspelling errors, we obtained
a 98.72% accuracy in predicting pronouns, showing that the amount of gender bias
at the context level is relatively low in ASR.

6.1.5 Conclusions

This thesis presents a new freely available4 challenge set for evaluating gender bias in
ST. This challenge set, WinoST, can benefit from the evaluation protocol widely used
for MT. Our set is only based on evaluating the gender inaccuracies in translations
in ST systems, mainly relying on the gender information extracted from the context
and not from the audio signal.

We used an S-Transformer end-to-end ST system and evaluated their accuracy in
terms of gender bias with this new challenge set. Results show that gender accuracy
is much lower for ST than for MT, but we have to consider that ST also has a lower
quality than MT, which may impact the gender translations as well. Finally, we
show that ASR can exhibit a slight gender bias at the contextual level.

WinoST shares similar limitations as WinoMT, which is the fact of using a synthetic
challenge set. Having a synthetic set is positive because it provides a controlled
evaluation and is also harmful because we might be introducing some artificial biases.
Therefore, further work could find templates in the wild transcriptions (with parallel
speech utterances) that hold the valuable patterns designed in WinoMT, following
[Levy et al., 2021].

4Freely available in Zenodo (10.5281/zenodo.4139080)
https://zenodo.org/record/4139080#.YlQo3bxBxH4
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6.2 GENOCC Toolkit: Building Real-world

Multilingual Balanced Parallel Data

6.2.1 Motivation

There is an urge to generate different evaluation sets to tackle judging our sys-
tems regarding gender bias. Currently, mechanisms to extract balanced datasets
are limited to narrow languages. Additionally, minimal balanced test sets concern-
ing gender within occupation exist. Such facts motivate us to create the GENOCC
toolkit customized according to research and development needs regarding languages
and gender definition (beyond binary), to create training and evaluation datasets.
Our motivation to create balanced datasets for training is that previous works have
shown that fine-tuning with balanced data mitigates gender bias. While creating
balanced datasets for evaluation aligns to further progress in responsible artificial
intelligence evaluation5.

Our extracted datasets are balanced in gender within occupations because they have
the same number of Wikipedia articles in all genders under consideration for each
particular occupation entity, with the same total number of sentences per gender for
each occupation. For example, for the case of the politician occupation, if limiting
to binary categorization of gender (male and female), we would have N number of
articles for female politicians and N for male with M male sentences and M female
sentences.

6.2.2 Proposed Data Collection and Curation Methodology

Our proposed methodology (Figure 6.2) involves multiple stages; data
collection, mining strategy, data alignment (based on previous work
[Schwenk and Douze, 2017]) and balancing.

5https://ai.facebook.com/blog/facebooks-five-pillars-of-responsible-ai
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Figure 6.2: Pipeline overview. First step is data collection (top), which includes col-
lecting and preprocessing data. Within this step, we have to define which
languages our final dataset will contain. Followed by mining then dataset
alignment and balancing (bottom), with an optional step for multilingual
alignment in case of need.

Data Collection On the one hand, our data are collected from Wikidata6, a well-
known knowledge base known for its quality. Wikidata is a project that maintains
its data quality by monitoring methods and evaluations to guarantee that it suits
users’ needs. Briefly, our data contains a set of people (from now on entities) with
their occupation(s), gender, and Wikipedia links in all available languages. On
the other hand, our monolingual data are extracted from Wikipedia7, similar to
[Costa-jussà et al., 2020, Stella, 2021]. Monolingual data are related to the textual
data of the entity’s biography for one language from Wikipedia.

Information Extraction. In this first step, we extract data from Wikidata.
Mainly, our data relate a set of entities with their working occupations, gender, and
biographies from Wikipedia in all available languages. Figure 6.3 shows a schema
of the information extraction procedure, described as follows:

1. We extract all the occupations present in the knowledge base.
2. For each occupation, we gather the data of every entity that works in the

related occupation.
3. For each entity from the previous step, we determine the gender information

and related Wikipedia links in all available languages (biographies).

6https://www.wikidata.org/wiki/Wikidata:WikiProject_Data_Quality
7https://www.wikipedia.org
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Figure 6.3: Extraction schema. Each step is depicted in a triplet format:
〈subject,predicate,object〉. Blue (italics) information is the information ex-
tracted at each step. For each step outlined with a dotted rectangle (−−),
the information extracted is the subject; otherwise, the information ex-
tracted is the object.

Afterward, we consider cleaning details. We remove the occupations that do not
have related entities and entities that lack gender information. We checked the
language tags in each entity, which leads to the removal of entities that do not have
an ISO language code8 nor special language codes from Wikimedia9.

Entity Biography Scraping. At this step, we specify the languages included
in our final dataset. We consider different criteria in choosing the languages, con-
ditioned by the number of Wikipedia biographies, the family of languages, and
the number of multi-languages intended. Consequently, the size of the corpus at
the end of the pipeline will be heavily influenced by the type and number of se-
lected languages. For instance, high-resource languages are more likely to have
more biographies; nevertheless, a multilingual dataset with high-resource languages
may significantly reduce the number of sentences compared to a bilingual dataset,
which may not be as detrimental. As a result, there are implicit trade-offs between
high-resource and low-resource languages and between bilingual and multilingual
datasets. By specifying a set of ISO language codes to the system, we scrape all the
monolingual data from the corresponding Wikipedia biography for entities with a
link for all the given languages. We can scrape Wikipedia directly because we have
previously gathered the Wikipedia biographies’ link for each entity in all available
languages.

Preprocessing. As follows, we describe the steps used to preprocess monolingual
data for alignment afterward.

• Sentence cleaning. Regex expressions are applied to remove the information

8http://www.lingoes.net/en/translator/langcode.htm
9https://meta.wikimedia.org/wiki/Special_language_codes
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between brackets and parenthesis, which is mainly related to phonetics, dates,
and references in Wikipedia articles.

• Sentence splitting. Monolingual data are split into sentences; consequently,
the sentences are prepared for alignment individually.

• Language detection. Sentences are checked by a language detection module
to exclude those that are not from the corresponding language, as Wikipedia
pages can mix sentences from several languages. This step ensures that all
sentences are from the intended language.

• Remove duplicates. Duplicated sentences are removed, ensuring we have
unique sentences for each entity.

Dataset Alignment and Balancing Our mining strategy is the process of
preparing the data in the way considering each entity’s data individually. Accord-
ingly, the Wikipedia data should be prepared for the purpose of mining each entity
individually. This facilitates the next steps to perform the sentences embeddings of
each language independently and then computes the candidates between a source
language and a target language on each entity individually (parallel alignment).
Then multilingual alignment is performed to obtain the final set of aligned sentences
between all chosen languages.

Sentence Embeddings. We obtain sentence embeddings through a multilin-
gual sentence encoder based on the architecture [Schwenk, 2018] in which seman-
tically similar sentences are closer to each other, independent of their language
[Schwenk et al., 2021]. This allows for a common ground for sentences from differ-
ent languages. It facilitates the use of the multilingual encoder to extract parallel
sentences relying on distance-based metrics to perform the next step parallel sen-
tence alignment.

Parallel Sentence Alignment. Parallel sentence alignment follows the margin-
based criterion introduced in [Artetxe and Schwenk, 2019] as a metric to execute the
nearest neighbor. The margin criterion between two candidate sentences x and y is
defined as the ratio between the cosine distance between the two embedded sentences
and the average cosine similarity of its nearest neighbors in both directions:

margin(x, y) = cos (x,y)∑
z∈NNk(x)

cos(x,z)
2k

+
∑

z∈NNk(y)

cos(y,z)
2k

,
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where NNk(x) denotes the k unique nearest neighbors of x in the other language
and NNk(y) denotes the same for y. This alignment step allows for getting parallel
bilingual candidates which are sorted according to their margin scores, and a thresh-
old is applied to get the desired quality of parallel sentences. This step is performed
on each pair of languages independently. If a multilingual alignment approach is
required, we consider one language as the target (pivot) to all other languages, and
perform this step for each pair of languages, e.g., for a case of multilingual alignment
of English, French and German, we can consider English as the target language and
perform parallel alignment for French-English, and German-English.

Multilingual Alignment. The steps are: (1) parallel alignment of all language
pairs with one pivot language, (2) intersection of all common sentences in these
aligned parallel sentences according to a certain threshold for getting the desired
quality. To extract multilingual parallel sentences in more than two languages, i
languages, we use a greedy approach with pivot language L1. We detect all the par-
allel sentences in pairs L1–Li and then extract the intersection of sentences between
the language pairs mainly depending on the similar L1 sentences in all pairs (same
pivot sentences).

Balancing At this point, we have multi-parallel sentences corresponding to dif-
ferent entities annotated with the corresponding gender and occupation.

Entity Categorization. Entities could have more than one occupation. We cat-
egorize entities by the number of occupations they include. Such categorization
informs us about the multiplicity of occupations and their corresponding entities in
our data. This information enables the choice of categories intended for balancing
later. For example, category one represents the entities that have one occupation.

Balancing in Gender within Occupation. The output of this step will be a
balanced set with respect to numerous occupations. Each occupation will be repre-
sented by a similar number of gender entities, and the total numbers of sentences
per gender will be the same. There might be an occupation’s name that refers to
a single gender, but the data within this occupation will be balanced regarding all
the genders (e.g. actor). During balancing, we balance each category (i.e., number
of occupations) separately and incrementally, for example, balancing category one
(i.e., one occupation) followed by category two (i.e., two occupations). Balancing
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higher categories (i.e., with multiple occupations) means excluding occupations that
already exist in previous lower categories. For example, in the case of extracting
category two (i.e., two occupations), if we have an entity with occupations of doctor
and politician, this entity is excluded if either doctor or politician or both were in-
cluded occupations in category one. This guarantees that the balancing of the new
occupations is not conditioned by balancing the occupations of the last category.

At this point, we continue with gender balancing. We compute the number of
gender entities for each occupation and the sum of each gender sentence from all the
corresponding entities. For each occupation, balancing will be carried out according
to the minimum number of entities and sentences. For example, for binary gender
(male and female), if an occupation has four females and five total related sentences
and seven males and ten total sentences, then four entities and five sentences are the
maximum intended values for each gender in this occupation. Consequently, this
step excludes occupations that have one gender representation (female or male). We
prioritize the male and female entities that have a similar number of sentences with
a higher degree of similarity among languages (i.e., this similarity is based on the
margin criterion defined in this section. Details are illustrated in Algorithm 1 for
the case of using binary gender as we do in our use cases.

6.2.3 Use-case Study

In this section, we report the experimental details of our methodology by including
details on two use cases (high- and low-resource languages). We provide details for
data collection, dataset alignment, and balancing.

High-resource Languages The top-7 languages with the largest number of en-
tities are English, German, French, Spanish, Russian, Italian, and Arabic. Among
these top languages, there are four linguistic families, Germanic, Latin, Slavic, and
Semitic, and we choose one language representing each family. We are limiting gen-
der to binary (male and female), relying on the tagged category of the perceived
gender from our sources. We extract multiparallel data among the high-resource
languages that cover different linguistic families, including Semitic (Arabic), Ger-
manic (English), Slavic (Russian), and Latin (Spanish). The motivation of this use
case is to have a balanced dataset in languages that are well-studied in the commu-
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nity. Nonetheless, this dataset can also be used in conjunction with other existing
benchmarks that may contain occupational stereotypes or unbalances in gender.
Hereinafter, we alternatively refer to this use case either as the high-resource or
en-es-ru-ar use case. The latter specifically mentions the covered languages.

Algorithm 1: Balancing gender within occupations.
Input : Udic // An unbalanced dictionary containing the information about occupations,

entities in each gender, and aligned sentences with their alignment score.

Output: Bdic // A balanced dictionary where each occupation has the same number of sentences

in balanced male and female entities.

1 Occs; // A list of occupations in Udic.

2 Emi; Efi; // A list of male and female entities with ith occupation, respectively.

3 Smi; Sfi; // Number of sentences in Emi and Efi, respectively.

4 Bdic = {}; // Initialize the empty dictionary to store the balanced information.

5 for i← 0 to len(Occs) do
6 if len(Emi) == len(Efi) then

• Balance the entities from Emi and Efi such that Smi is equal to Sfi and update
Bdic;

7 else
8 Emin = min(len(Emi), len(Efi));
9 if Emin == len(Emi) then

• Select only Emin female entities with high-quality sentences from Efi;
• Balance the entities from Emi and Efi such that Smi is equal to Sfi and update

Bdic;

10 else

• Select only Emin male entities with high-quality sentences from Emi;
• Balance the entities from Emi and Efi such that Smi is equal to Sfi and update

Bdic;

11 end if

12 end if

13 end for
14 return Bdic
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6.2.4 Implementation Details

We extract data from Wikidata using a Python SPARQL wrapper. For entity biography
scraping, we implement an algorithm that works with Beautiful Soup10, whose purpose is
pulling data from HTML content. After that, the following preprocessing techniques are
implemented to improve the outcome of our collection process:

• We use regex expressions to clean the collected monolingual corpora.
• We use the nltk11 sentence tokenization package12 to split sentences across all lan-

guages except Arabic, which uses a sentence splitter wrapper13 for CoreNLP14.
• We apply language detection to sentences using Compact Language Detector 315,

which can identify up to 108 languages, to remove sentences that are not labeled
with the appropriate language.

• We also remove sentences repeated within a document; to ensure that sentences
within a biography are unique.

We prepare the text for each entity individually. Then, to execute parallel sentence align-
ment, we utilize LASER [Schwenk and Douze, 2017], which provides multilingual sentence
embeddings. After embedding the sentences, the aligned parallel sentences in a language
pair are computed using the distance in the embedding space. The candidates are sorted
according to the order of the similarity between sentences. When aligning multiple lan-
guages, we consider English to be the pivot language.

6.2.5 Postediting

Given the high-resource and low-resource datasets, we postedit them to have curated
datasets that can be used for evaluation in machine translation. We use English as the
anchor language and distribute sentences in a spreadsheet (see Figure 6.4) for native an-
notators in non-English languages in which English is the second language.

Each language set of sentences was split into 2 to 4 subsets addressed by different annota-
tors. The annotation guidelines are as follows:

10https://www.crummy.com/software/BeautifulSoup/bs4/doc/
11https://www.nltk.org
12https://github.com/Mottl/ru_punkt
13https://github.com/chaojiang06/CoreNLP_sentence_splitter
14https://stanfordnlp.github.io/CoreNLP/index.html
15https://github.com/google/cld3
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Figure 6.4: Spreadsheet for annotators. Complete example for the Spanish language.

Given a sentence in English (first column (A)) and Arabic/Russian/Spanish (sec-
ond column (B)), do the minimum number of edits (in the same column (B)) to
the Arabic/Russian/Spanish sentence to match the English sentence. If the Ara-
bic/Russian/Spanish sentence contains more information than the English sentence,
then remove it. If the English sentence contains more information, add this informa-
tion translated into Arabic/Russian/Spanish. Mark each sentence that is edited (add
M to the third column (C)). If you do not know how to postedit without changing
the meaning, mark “NM” in the third column (C). Mark if postediting was necessary
(yes) or not (no) in the fourth column (D). Pay special attention to gender; if it is
ambiguous, please check the entity-perceived gender from the fifth column (E).

After annotating the entire dataset in each language, there was an additional annotator
for each language who reviewed the entire set. Annotators were volunteers, and they are
acknowledged at the end of this work.

6.2.6 Experimental Results

In this section we report the experimental results of the use cases that we proposed in the
previous section. We report data statistics for our datasets and machine translation results
using standard state-of-the-art models.

6.2.6.1 Data Statistics

Entities per language. Figure 6.5 shows the number of entities for each language and
gender. English is the language with the highest number of entities, and Arabic is the one
with the lowest. In general, there is a large difference between gendered representations. In
particular, we observe very few entities that are not male or female. The figure also shows

103



6 Towards Creating Balanced Datasets

that all languages have three times more male representations on average than female
representations.

Figure 6.5: Distribution of entities’ gender across languages.

Number of Entities, Occupations and Sentences through the Pipeline. Table
6.5 shows the number of entities, occupations, and sentences at the different stages of our
pipeline (Figure 6.2): entity biography scraping, preprocessing, alignment (multilingual or
bilingual), and balancing. These statistics show how the number of entities and occupations
is reduced at each step for our user cases. They show that alignment and balancing steps
have a great impact in reducing the number of occupations and entities, illustrating the
reason for losing entities and corresponding sentences when choosing more languages to
align and balance. The numbers of sentences can only be provided from the alignment step
onward, since sentences per language can only be noted individually before this step. As
predicted in section 6.2.2, among the balanced occupations in the high-resource use case,
we found occupations’ names characterizing only the male gender, such as pornographic
actor or monarch.

Entity biography scraping Preprocessing Alignment(∗) Balancing

en-es-ru-ar entities 15421 14635 2436 286
occupations 644 256 203 59
sentences - - 6732 524

Table 6.5: Evolution of the number of entities and occupations through the pipeline.
(∗)Multilingual alignment for the en-es-ru-ar (high-resource) use case.

Entity Categorization. Figure 6.6 shows the number of entities (y-axis) with different
numbers of occupations (x-axis). This categorization is used to balance occupations. In
the case of high-resource languages, we used entities with three occupations at most.

Details on Post-editing. Figure 6.7 (left) shows the number of postedited sentences
from high and low-resource languages. Note that sets from Spanish, Russian and Arabic
are comparable. We see that for high-resource languages, the sentences that need to be
post-edited is around 50%. Figure 6.7 (right) shows the Translation Edit Rate (TER)
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Figure 6.6: Number of entities with different amounts of occupations regarding our use-
cases: en-es-ru-ar (high-resource).

results, computed with Huggingface’s Whitespace tokenization. Results are coherent with
the previously post-edited sentences. This TER results give us an idea of the amount of
error that our toolkit can introduce when extracted data is not post-edited. The values
that we observe in TER, which are not superior to 30% in all cases, show that the amount
of post-edition is moderately low. Moreover, assuming this amount of error, our toolkit
can be considered for training purposes without requiring post-edition.

Figure 6.7: Percentage of post-edited sentences per language (left). Translation Edit
Rate (TER) per language (right)

6.2.6.2 Machine Translation

System Description and Implementation. To evaluate our dataset, we use the down-
stream task of machine translation (MT). We used three multilingual models that in-
clude the languages from our use cases: M2M_100 [Fan et al., 2021], mBART50_m2m
[Tang et al., 2020] and Opus-MT [Tiedemann and Thottingal, 2020]. These systems are
transformer-based models [Vaswani et al., 2017], and they use SentencePiece-based seg-
mentation [Kudo and Richardson, 2018]. M2M_100, supporting translation between any
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direction for 100+ languages, is the model that includes many-to-many supervised training
covering thousands of language directions. mBART50_m2m supports translation between
any direction for 50+ languages, but it is only trained with supervised translation from
and to English. Opus-MT supports 1200+ translation directions for 150+ languages, im-
plemented with MarianNMT16. A part from the characteristics of the Open-MT project
is the constant collaboration with the Wikipedia Foundation. For the three systems, we
used the default implementation from EasyNMT17.

Results. Figure 6.8 (top) shows the heatmap of BLEU results for different language
pairs and (bottom) the average BLEU across language directions for the high-resource
languages use case. In general, we see the best performance for the Opus-MT model,
with few exceptions (English-Russian, Spanish-Russian, and Spanish-to-English) on which
M2M_100 is better. mBART50_m2m has the lowest performance, especially in directions
that do not involve English, which makes sense because it is unsupervised. The best
results are obtained when translating to English, and the worst results are obtained when
translating to Arabic.

Figure 6.8: High-resource language results. (Top) Heatmap for BLEU scores between
languages with M2M_100, mBART50_m2m and Opus-MT models. (Bot-
tom) Average BLEU for all language directions.

16https://marian-nmt.github.io
17https://github.com/UKPLab/EasyNMT
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Figure 6.9 reports the results in terms of BLEU for the two female/male subcorpa from
our high-resource use case benchmark. For English and Arabic (both directions) and
translating to Russian, the performance is better (or similar) in the male set for all models.
In the case of translating from Russian, the performance of the female subcorpus is better
than that of the male subcorpus in all models except for the mBART50_m2m model.
When translating to Spanish, this improvement only holds for the M2M_100 model.

Figure 6.9: High-resource language results. Average BLEU across language directions
with M2M_100, mBART50_m2m and Opus-MT models. (Top) Female
(Bottom) Male.

Discussion. An intriguing pattern suggests that male English translations impact the
overall (overall) performance more than female translations. Figure 6.9 (female (top) and
male (bottom)) shows that male translations influence the overall BLEU performance more
(Figure 6.8, bottom) since they have the highest BLEU among both genders. However,
in the overall case without English, the trend radically alters, with female translations
contributing more than male translations to "all-all, no-en" (Figure 6.8 bottom), which
is a subset of the all-all dataset. Thus, if we analyze performance with English either on
the source or the target side on both genders (Figure 6.9), we found that the difference
between the performances of male and female translations using English on either side
is the greatest for gender comparisons in any other high-resource language pair, which
explains the change in translation performance with and without English. This reveals
that the performance of these models is skewed towards male English translations in any
direction.

When looking at the translation direction (e.g., language A to all or all to language A),
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we observe English and Spanish exhibit different behaviors than Russian and Arabic. The
former languages exhibit a higher BLEU performance when the languages are on the target
side rather than on the source side. For the same languages, on the target side, the
performance on the female set tends to be lower than the male set. We hypothesize that
English and Spanish have a solid language generation. This strong language generation
might be partly because they are written in Latin script, which is shared among many high-
resource languages (i.e., Italian, French, and Portuguese). Sound language generation may
help achieve higher performance when on the target side. However, it may also contribute to
paying less attention to the source sentence, and more attention to the previous words in the
target sentence [Ferrando and Costa-jussà, 2021], which may explain why the performance
in the female set did not improve. Less attention given to the source sentence and more
attention given to the previously generated words in the target can overgeneralize to the
most frequent gender, which tends to be male. This suggests that when translating to
English, even if source languages (Spanish, Russian, and Arabic) have high morphological
information, the performance on the male set is higher than that on the female set. For
the latter language set, Russian and Arabic, the performance of the translation direction
does not vary as it does in the previous case. This may be because even high-resource
languages have a different script, which is not typical of other higher-resource languages.
This may explain the poorer language generation.

6.2.7 Conclusions

We propose the GENOCC toolkit to generate monolingual, bilingual, and multilingual bal-
anced datasets in gender within occupations. This toolkit can be customized in languages
and gender. In addition, we present a high-resource benchmark. The former includes a
multilingual English, Spanish, Russian, and Arabic corpus. Finally, we show experiments
using these benchmarks to evaluate state-of-the-art machine translation models. Our bal-
anced sets allow for the analysis of gender performance with standard evaluation methods
and without requiring new ones. We provide an accurate analysis of performance behavior
for the particular case of binary gender. We conclude that female translations tend to
be worse for high-resource languages with a high-quality language generation model. We
hypothesize that, in these cases, the model gives less attention to the source words than
the target context words, and using the target context may overgeneralize to most frequent
patterns (which tend to be male patterns) rather than producing an accurate translation.
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6.3 Final Thoughts on the Chapter

In general, we need well-established benchmarks as a means of conducting diagnostic tests
for gender bias, to study if the systems have a high positive and low negative predictive
value for the presence of gender bias [Stanczak and Augenstein, 2021]. The current re-
search on gender bias in speech translation is limited. Consequently, the community needs
to pay more attention to studying, evaluating, and mitigating bias in such systems. This
fact motivates us to exhibit more efforts in adapting the WinoMT dataset to speech trans-
lation and generating the WinoST dataset, the multilingual evaluation dataset for speech
translation. Although this dataset is synthetic, it can still demonstrate the presence of
gender bias in a system.

Another problem arises from the current natural or synthetic datasets in only English.
Only in the case of MT a few sets are available in the high-resource languages such as
Spanish or German [Stanczak and Augenstein, 2021]. This led us to work on a toolkit to
generate a natural monolingual, bilingual or multilingual benchmark balanced in gender
within occupations. This tool can also be used for creating balanced training data to
finetune the systems.

Overall, we strongly encourage further research to establish evaluation benchmarks for the
different models and tasks.
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7.1 Reflections and Insights

The current situation is promising, given research and industry’s interest in addressing
gender bias. We interviewed scientists1 with expertise in the field to have different insights
into the current and future situation of NLP.

Regarding the current situation, Nizar Habash commented with the following: "In earlier
efforts on NLP, there was much attention on system accuracy. Now, as the systems are
getting more mature thanks to new technologies and advances, there is an opportunity to
focus on gender and social bias problems. The priorities are adjusted, and different needs
are raised. We are in a better place to start considering such problems and dedicating more
efforts to mitigate the biases." We should also comment that the low-resource languages
still suffer from a lack of accuracy, which makes studying such issues harder for them. On
the other hand, Eva Vanmassenhove commented that researchers should be aware of the
biases that can happen due to proxiesin the models, and she gave an interesting example
of predicting high social standards based on images of people who own dogs. When under-
standing such proxies of models and their effect on our predictions, we can comprise that
impact. Ryan Cotterell focused on an essential aspect of the current situation, mentioning
that we are currently focusing on English without much attention to other languages. This
would solve the bias problem from a Western-centric view. Low-resource languages are not
given enough attention for the quality or tackling such issues.

Regarding the future research situation in this area, Eva Vanmassenhove mentioned two
perspectives that should be considered. More collaboration with experts from social and
linguistic fields is highly needed. We need to have an honest conversation with linguists and
social psychologists to define gender bias better. We then can understand the real harms
and the impact on affected people. The other perspective is more related to the inter-

1Acknowledgments to Nizar Habash, NYU Abu Dhabi, Eva Vanmassenhove, Tilburg University
and Ryan Cotterell, ETH Zurich.
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pretability and controllability of our models. It is considered the facility of understanding
what is not comprehended by the machines and what is lacking to make a satisfactory
decision. Nizar Habash referred to the need to pay attention to uncover implicit user pref-
erences in our systems to optimize serving the user, such as asking the user’s pronouns.
Briefly, the users should be represented and treated in their desired way. Ryan Cotterell
revealed the fact that a real solution to the problem would not happen without teaching
our generations about the problem and its impact. He quoted this fact: "Academics should
keep fostering creative individual people and encouraging them to think differently."

7.2 Main Contributions

In this thesis, we covered three directions toward building fairer NLP models: evaluating
and understanding the biases inherited in existing models and mitigating the effect of bias
in NLP models (MT task),

Chapter 4 adds new insights in bias detection. We aimed to identify and bias in a multilin-
gual setting given the lack of multilingual settings in literature. We adapted bias evaluation
techniques to the contextualized embeddings and extended the evaluation to another lan-
guage (Spanish) rather than English. We revealed that contextualized embeddings could
amplify the bias in the training data. Embeddings represent an important component in
any NLP system and the same for the architectures. Therefore, we proposed studying the
interpretation of bias in multilingual NMT architectures. We showed that architectures
matter even if trained on the same biased data. Some NMT architectures can amplify
the bias more than others attributing to the parameters and features shared in models.
Regarding more proper evaluation, we found that the existing literature lacks multilingual
benchmarks for evaluating the bias in different models. To fill in this gap, we presented
different datasets in chapter 6. We built the multilingual evaluation WinoST, the speech
version of WinoMT, for the speech translation task in section 6.1. We found that speech
translation is less mature than textual translation and has low accuracy, which prevented
us from making accurate conclusions regarding gender bias. Furthermore, we proposed a
toolkit for generating monolingual, bilingual, and multilingual datasets balanced in gender
within occupations in section 6.2. This tool should be helpful in the research community
in multiple tasks.

The next step was to start exploring methods to mitigate gender bias in models; we explored
how to mitigate the bias in the NMT task in chapter 5, seeing that it is a multifaceted,
challenging, and affecting a wide range of users. We adapted two methodologies for our
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problem; increasing context and adding the speaker tag in section 5.1. In section 5.2, we
proposed two new methodologies, and we aimed to study each individually, adding the
contextual embeddings and relaxing the positioning by removing skip connections. We
showed that adding contextual information through a sentence or a contextual embedding
helps have more gender information. We also demonstrated that we should always consider
looking at the architecture and figuring if relaxing a condition may give better gender
results preserving the model performance.

7.3 Final Thoughts and Closure

Our thesis is concerned only with binary gender, and this is a significant limitation in our
work and most of the current research in tackling gender bias in NLP systems. Unfor-
tunately, there are few resources to study other genders, limiting the studies. Moreover,
we should mention that the thesis is tackling the gender bias problem from a linguistic
perspective more than a social perspective

The problem of gender bias is more than solving a problem in methodology or architecture,
and it has been rooted in the communities for a long history. The cultural and languages
difference reinforce such biases. However, we are in a better place nowadays. There is more
awareness in the young generations, and they have already started to learn and address
this problem.

Generally, awareness of gender bias and fairness issues has been cultivated recently. Wider
research has been carried out to tackle different perspectives of the problem. Full work-
shops2 and special tracks in conferences3 are dedicated to this. Still, more collaborations
are needed, especially between different parties concerned with the problem. Tackling gen-
der bias is not optional. In order to use NLP models in real-world applications, they should
not exhibit and amplify any detrimental bias and not marginalize any group. The models
should be developed more safely and responsibly by removing biases. For future work, the
field can benefit from a simple metric that is scalable to languages without any additional
overhead. We understand that standardizing an evaluation approach for different tasks is
challenging since it depends on the task and its related bias definition. However, we also
believe that this is very important step for creating fair applications.

2Workshop on Gender Bias in Natural Language Processing
https://genderbiasnlp.talp.cat/

3AAAI (AI for Social Impact)
https://aaai.org/Conferences/AAAI-22/aiforsocialimpactcall/
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