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Abstract

Society is advancing by leaps and bounds in terms of technology in recent decades. These
advances come with new products and services, which are generally designed within a few
years, and potentially without undergoing tests to verify whether they are susceptible to
physical or logical attacks. In an increasingly connected world, it is necessary to highlight
the importance of cybersecurity. Within cybersecurity there is the field of hardware, where
products can also have vulnerabilities. For instance, the information that cryptographic
algorithms manage could be exploited by an attacker.

This thesis is based on one of the most innovative techniques for analysing side-channel
attacks: deep learning. In particular, the limits that may exist in the world of side-channel
analysis techniques applying deep learning are explored, introducing the readers to the
exciting world of hardware attacks. In addition, this thesis provides an introduction to
neural computation.

After gaining a detailed understanding of the functioning of ANN applied to SCA through
the experiments carried out, previous results based on the ASCAD database have been
improved using a better optimization of the models parameters.
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Resumen

La sociedad avanza a pasos agigantados en materia de tecnoloǵıa en las últimas décadas.
Estos avances vienen acompañados de nuevos productos y servicios, que generalmente
se diseñan en pocos años, y potencialmente sin someterse a pruebas para verificar si
son susceptibles de ataques f́ısicos o lógicos. En un mundo cada vez más conectado, es
necesario destacar la importancia de la ciberseguridad. Dentro de la ciberseguridad está
el campo del hardware, donde los productos también pueden tener vulnerabilidades. Por
ejemplo, la información que manejan los algoritmos criptográficos podŕıa ser explotada
por un atacante.

Esta tesis se basa en una de las técnicas más innovadoras para analizar los ataques de
side-channel : deep learning. En particular, se exploran los ĺımites que pueden existir en
el mundo de las técnicas de análisis side-channel aplicando aprendizaje profundo, intro-
duciendo a los lectores en el apasionante mundo de los ataques por hardware. Además,
esta tesis ofrece una introducción a la computación neuronal.

Tras conocer en detalle el funcionamiento de las ANN aplicadas a SCA a través de los
experimentos realizados, se han mejorado los resultados anteriores basados en la base de
datos de ASCAD mediante una mejor optimización de los parámetros de los modelos.
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Resum

La societat avança amb passes de gegant en matèria de tecnologia en les últimes dècades.
Aquests avanços venen acompanyats de nous productes i serveis, que generalment es
dissenyen en pocs anys, i potencialment sense sotmetre’s a proves per a verificar si són
susceptibles d’atacs f́ısics o lògics. En un món cada vegada més connectat, és necessari
destacar la importància de la ciberseguretat. Dins de la ciberseguretat està el camp del
hardware, on els productes també poden tenir vulnerabilitats. Per exemple, la informació
que manegen els algorismes criptogràfics podria ser explotada per un atacant.

Aquesta tesi es basa en una de les tècniques més innovadores per a analitzar els atacs de
side-channel : deep learning. En particular, s’exploren els ĺımits que poden existir en el
món de les tècniques d’anàlisis de side-channel aplicant l’aprenentatge profund, introduint
als lectors en l’apassionant món dels atacs hardware. A més, aquesta tesi ofereix una
introducció a la computació neuronal.

Després de conèixer detalladament el funcionament de les ANN aplicades a SCA a través
dels experiments realitzats, s’han millorat els resultats anteriors basats en la base de dades
de ASCAD mitjançant una millor optimització dels paràmetres dels models.
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cristian.fernandez.ortiz@estudiantat.upc.edu
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1 Project plan

1.1 Introduction

Applus+ Laboratories, an Applus+ division dedicated to Testing, Inspection and
Certification projects, leads this project contextualized in the field of hardware cyberse-
curity. This division is responsible for validating the security of devices that manufacturers
seek to certify before releasing them to the market.

Generally speaking, cybersecurity is strongly supported by cryptology. Cryptology is a
science dedicated to the study of secret writing, which is divided into cryptography and
cryptanalysis. Cryptography is of great importance and has the function of protecting
the confidentiality and integrity, among others, of secrets and sensitive information. On
the other hand, cryptanalysis is the group of techniques meant for breaking cryptography.
Therefore, security could be compromised if adequate measures are not taken into account
in our increasingly connected world, which is the reason for being of cryptanalysis, with
the aim of finding weaknesses in cryptographic techniques.

Within the world of cybersecurity, we can find different targets for attacks (hardware,
software, networks...). This project targets attacks and vulnerabilities associated with
hardware security.

In the field of cybersecurity, we must also consider technologies related to artificial intel-
ligence, which can allow us to verify that a product or service meets the requirements to
be certified as ’secure’ more quickly and easily, and even finding vulnerabilities in devices
that classical techniques are not capable of.

Thus, the main objective of the project, or what this project intends to cover, is to
improve the current artificial intelligence networks used by theApplus+ Cybersecurity
Laboratory to take a step forward in current limitations of hardware attacks.

These hardware attacks, where artificial intelligence is used, seek to locate and exploit
vulnerabilities in the hardware through the power it consumes and the electromagnetic
(EM) fields it radiates while operating, in order to obtain the keys of the different encryp-
tion algorithms, among other purposes detailed in the next section. That is the objective
of Side Channel Attacks.

Obtaining this type of sensitive information, such as keys of the different encryption
algorithms, is not trivial. Normally, the artificial neural network trained for one device is
not capable to obtain information from another device in the same way and it is necessary
to train again a new model. In general, training deep-learning models are expensive in
terms of time and computing resources and usually the evaluators do not have enough time
or resources to train new models. This amount of time and computing resources can be
considered two limits, but not the only ones, when applying deep-learning models in Side-
Channel analysis techniques. This project looks forward to analyze these deep-learning
limits applied in Side-Channel attacks.

For this purpose, different deep-learning models will be trained to study the effect of the
different configurations, modifying deep-learning parameters, topologies, etc. Different
metrics will be evaluated to check the models results using a set of public traces obtained
using side-channel techniques, available for researchers.
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The starting point of this project is the paper ”Study of Deep Learning Techniques for
Side-Channel Analysis and Introduction to ASCAD Database” [1] published by Emmanuel
Prouff et al. in 2018. The authors evaluated the results of different configurations of
deep-learning models using their own dataset (or traceset) which contains traces obtained
with Side-Channel techniques over an AES-128 implementation in a 8-bit microcontroller.
Advanced Encryption Standard (AES) is a symmetric cryptography algorithm that uses
the same key to cipher and decipher. It is large implemented nowadays. See Appendix
A for AES explanation step by step to understand the algorithm. This dataset is used
during all this project to compare the authors results and analyze the limits of deep-
learning applied in Side-Channel.

In addition, with the objective to improve deep-learning models, two recent papers have
been choosen to implement the two proposed deep-learning techniques and analyzing the
results in terms of best results and perfomance. These recent papers are:

• ”Ranking Loss: Maximizing the Success Rate in Deep Learning Side-Channel Anal-
ysis” [2] published by Zaid et al. in 2020. This paper introduce the Ranking Loss
function, proposing use this new loss function for training deep-learning models.

• ”The Need for Speed: A Fast Guessing Entropy Calculation for Deep Learning-based
SCA” [3] published by Guilherme Perin et al. in 2021. This paper introduce the
Fast Guess Entropy as an alternative metric in deep-learning models.

Both techniques and the experimental procedure are explained in more detail in section
2.2 and 3, respectively.

1.1.1 Introduction to Side-Channel Analysis (SCA)

The world of cybersecurity is quite a wide world. In this area, we can find network security,
hardware security and software security. Within each area, we find different threats, and
specialized attack topologies for each of these cybersecurity threats. This project will
address hardware security, concretely the attack method of Side-Channel Analysis (SCA),
utilizing artificial intelligence for that.

These SCA techniques seek to obtain sensitive information (such as the secret key of an
encryption algorithm: AES, DES...) by measuring the power consumption or the elec-
tromagnetic radiation of the device while performing the cryptographic operations. This
power consumption varies depending on the functions that the device is being carried out.
These variances between the power consumption or electromagnetic fields that are gen-
erated by the current that circulate in the device, allows to analyze the different steps of
the algorithms that the device is being carried out. Once the signals are measured and the
interest points of the algorithm has been located in function of the power consumption,
they are analyzed by these artificial intelligence algorithms to retrieve the sensitive data,
such as byte values of a sensitive variable utilized by the algorithm that can be related to
the secret key.

In general terms, there are three analysis methods to obtain leakages from devices:

• Electromagnetic fields analysis : monitoring the radiation that devices emanate when
they are processing, for instance, cryptographic algorithms. Is possible concentrate

13



the probe tool in one hardware module to obtain an ’unique radiation’ and depreciate
the radiation of the other modules.

• Power consumption analysis : during cryptographic algorithms the hardware con-
sumes a characteristic power consumption that contains sensitive information such
as the output of one S-BOX, if device applies AES or other symmetric key encryption
method.

• Timing analysis : such as the other analysis, timing analysis consist of measuring
and analyzing how much time is needed to do mathematical operations or others
crucial operations that contain sensitive information.

In particular, this type of attacks will be applied to Smartcards. A Smartcard is a card
containing a small chip in charge of processing sensitive operations such as performing
payments in a payment terminal or to identify a user e.g. the Spanish DNI. The informa-
tion these devices contain is sensitive information and therefore it is necessary to verify
that it complies with the security requirements/standards defined by the organizations in
charge of managing and controlling the payment network, the census of a country, or the
organizations issuing e-Passports, among others. The figure below shows a general SCA
setup using EM techniques.

Figure 1: Side-Channel Analysis setup using EM techniques. Adapted from [4]

The hardware needs more power when try to perform more complex and costly operations
or functions due to many logic gates and transistors are activated, manipulate data, change
state, etc. This principle of SCA allows to identify differences in power consumption.

The traces obtained will show an increase in power consumption when the device works
with more complex functions or algorithms. Even so, it is not easy to observe these
differences and to locate the points of interest during the algorithms of interest. These
traces may contain noise that masks, unintentionally or intentionally as a countermeasure
created by the hardware developer, the points of interest or the real power consumption
of the device.

These traces obtained are analog traces, which after processing to digitize them are com-
posed of samples. The set of traces is called traceset. The number of traces is consequently
high because of the large quantity of traces needed to visualize or identify patterns due
to the noise added during the power consumption or EM fields acquisition. Once these
patterns are identified, it is possible to find the ‘critical execution time’, e.g. when the

14



hardware is doing the encryption algorithm and consequently the device is working with
private keys.

1.1.2 Introduction to Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) are used to obtain and identify patterns or useful
information within these traces obtained with SCA techniques. The next image represents
a standard configuration of ANN.

Figure 2: Artificial neural network general schematic. Adapted from [5]

Warren M. and Walter P. introduced the idea of ANN in 1943. They created the first
computational model for ANN. During the 40s decade, Hebb introduced a learning hy-
pothesis based on the behavior of neurons. This was known as Hebbian learning, nowadays
known as unsupervised learning. Approximately twenty years later, the research of neural
networks stopped due to Minsky and Papert discovered that perceptrons were incapable
of processing the exclusive-or circuit and computers had not sufficient power to process
useful neural networks. The major limitation for ANN was the poor computational power
that existed in these years. It was not until around 1995, when the ANN were implemented
in stock market and self-driving cars models and then started a revolution in artificial in-
telligence (IA). For more information about the history of ANN see the chapter History
in [6].

The first element that can be found in ANN are perceptrons, or better known as neurons,
introduced by Frank Rosenblatt in [7], published in 1958.

Figure 3: General perceptron/neuron scheme. Adapted from [8]
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Neurons are characterized by having an activation function, similar to the human neurons
behaviour, which can vary and have different shapes, such as:

Figure 4: Typical activation functions. Adapted from [9]

With one of these neurons it is possible to distinguish between two colors, for instance
red and blue. Should the ANN have to identify more colors, more than one neuron will
have to be used.

The purpose of these ANN models is the correct performance in solving data classification
or regression problems to make possible predictions.

There are different configurations of ANN. This paper will focus on the development and
performance comparison of the architectures:

• Convolutional Neural Networks (CNN): used by Kevin J. et al. in [10] and based on
backpropagation techniques and the gradient descent optimizer, which are still used
nowadays. The backpropagation technique was introduced by Seppo L. in [11]. This
technique allows backward steps for each of the neurons from the output to check
whether the network is learning correctly and to correct the behavior of the ANN.
The optimizers, such as gradient descent optimizer, are mathematical methods that,
when used in neural networks, it is possible to achieve maximum or minimum points
in order to improve learning.

Figure 5: Example of CNN model. Adapted from [12]

The main feature of CNN is that they are widely used in image classification, as
they are able to obtain features in images that allow distinguishing between objects
or recognizing, for instance, people or gestures. Filters are applied to reduce the
search size of these intrinsic image features. An instance of the use of filters can be
seen in Figure 11, where Pooling Layers are used to search for these patterns in the
initial image. At the end, these features are added as input in MLP containing a set
of fully connected neurons to perform the classification.

16



• Multi-layer Perceptron Networks (MLP): explained in detail in [13] by L. Noriega,
MLP consist of several hidden layers with a distribution of neurons in each of them.
In this way all neurons of the hidden layer can be connected with the all neurons of
the next hidden layer.

Figure 6: Example of MLP model. Adapted from [14]

MLP can also rely on the Backpropagation technique to adjust each neuron to check
the correct learning of the network and use the gradient descent optimizer or another
optimizer.

Once these two classes of ANN have been introduced, it is necessary to introduce the
way ANN work. By introducing a large dataset, the ANN will perform three phases:
training, validation, and testing. The data from the dataset is approximately divided
in the following way: 70% of the data for training the network, 20% for validating the
training, and finally 10% for testing the trained ANN.

The validation phase is used to check the correct behavior of the ANN, whether overfitting
or underfitting occurs. Overfitting and underfitting refer to the concept that ANN learn
incorrectly and fail to solve classification or regression problems as they should. In the
case of overfitting, the trained ANN is not capable to generalize, i.e. to adapt to different
scenarios other than the one it has learned, and will always try to solve it in the same
way. As for underfitting, the trained ANN is not capable to identify patterns and thus,
solve the initial problem and the other possible scenarios.

Figure 7: Overfitting, underfitting and correct behaviour. Adapted from [15]
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All perceptrons (neurons) begin training with random or assigned initial weights. During
training, these weights change based on the loss function and the optimizer working
together.

The ANN classes explained before are applied in SCA techniques to facilitate the work of
evaluators. Increasingly, countermeasures are implemented to prevent information leaks
and sensitive information from being obtained through SCA techniques.

1.2 Requirements and Specifications

Within this point there are defined the requirements or functionalities that will be achieved
with the implementation of different deep learning techniques applied to SCA. Project
requirements and specifications:

• ASCAD dataset contains traces to train the models and validate the training of
deep-learning models. This free dataset published by ANSSI (Agence nationale de
la sécurité des systèmes d’information) is available online for researchers for testing
ANN in SCA. In addition, there are available Python Scripts for training and testing
models using this dataset. See 3.1 for more detail of ASCAD dataset and scripts.

• Python programming environment to modify Python Scripts (published by the AS-
CAD paper author’s) and implement others techniques.

– Python V3.7.8

– Tensorflow V2.4.0

– Keras V2.4.3

– Numpy V1.21.6

– H5PY V3.6.0

– Matplotlib V3.5.1

1.3 Methods and procedures

The project starts from scratch, as it is not a continuation of any other project. The main
objective is to improve performance and obtaining results by including two deep-learning
techniques proposed by the community/researchers. In this way, training, validation and
testing phases will be carried out using these techniques to check if the improvements in
the projects associated with deep learning and the use of ANNs are relevant.

By implementing these techniques, we intend to achieve a number of objectives:

• Improving the performance and training speed of ANNs applied to SCA.

• Techniques and/or improvements to avoid or prevent ANN overfitting.

• Improving or facilitating the selection of hyper-parameters of ANNs.

1.4 Work plan

The methodology to organize the project consists of a breakdown structure where we find
the different work packages. In each of the work packages the tasks to be performed are
specified, with their corresponding deliverables and delivery times. In addition, a Gantt
Diagram is also included for the organization of time and tasks to be performed.
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1.4.1 Work Breakdown Structure

Figure 8: Work Breakdown Structure

1.4.2 Work Packages
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1.5 Gantt Diagram

Figure 9: Gantt Diagram Time Plan
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1.6 Deviation from the original plan and incidences

As a consequence of contracting Covid-19, Cristian Fernandez stopped the progress of
the project from March 7 to March 14 as he was unable to attend Applus+ Laboratories
where he was carrying out the project. Therefore, the planning of the project had been
modified before to deliver Critical Review document.

The first Gantt Diagram Time Plan was modified. The week from March 7 to March
14 had been removed as working week. All work weeks had been delayed by one week.
Furthermore, some tasks changed:

• T1 – Understanding techniques #1 and #2: added one working week

• T2 – Programming techniques #1 and #2: added one working week

• T3 – Integration with ApShadow tool (#1, #2): removed one working week

• T4 – Testing techniques #1 and #2: removed one working week
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2 State of the art of the technology used or applied

in this thesis

Side Channel Analysis techniques have been improved over the years, as have the tech-
nologies and/or techniques used in the world of deep learning and neural networks. This
section will focus on the current situation regarding deep learning techniques applied to
SCA. An overview will be made and it will be explained what the thesis will be based on
or at least what it is intended to cover.

2.1 State of the Art of Side Channel Analysis

The Side Channel Analysis (SCA) techniques were first introduced by P. Kocher in the
paper [17] published during the CRYPTO’96 conference in 1996. P. Kocher analyzed
how to extract the secret key from RSA [18], Diffie-Hellman [19] and other asymmetric
cryptographic algorithms and protocols by analyzing the timing of operations conducted
by the device during the modular exponentiation of these algorithms. Kocher also defined
the countermeasures that should be used to avoid these side channel techniques on these
asymetric cryptographic algorithms.

A few years laters, two of the most important techniques of side channel analysis were
described in [22] by P. Kocher. The Differential Power Analysis and Simple Power Anal-
ysis, known as DPA and SPA respectively, which consist of analyzing a group of traces
to find the critical points where the sensitive information are processed by cryptographic
algorithm. SPA consists of obtaining a reduced number of traces to contrast them to find
the critical points where the sensitive information are processed. Unlike SPA, DPA is
capable, through statistical methods and exploiting the power consumption leakage, to
identify the interest byte value in these critical points.

Later on, in [23] published by E. Brier et al., the Correlation Power Analysis technique was
introduced. This technique is similar to DPA but this one resorts to pearson coefficients
to obtain the leakage information in the consumption traces obtained. This technique also
allows to identify the interest byte value of the key with more precision than DPA.

When the techniques of electromagnetic analysis were introduced in [24] by Dakshi A.
the way to obtain the power traces were based on using a electromagnetic probe, such
as micro-antennas, and pre-processing the traces with low-pass filters to reduce the noise
and finally obtain the desired traces.

Other technique presented by S. Chari et al. in [25] are the Template Attacks. Basically,
this technique consists of characterise one ’open’ device to obtain certain patterns to
identify the critical points where the sensitive information are processed, to exploit infor-
mation in other ’closed’ device (with the equal behaviour and features). At this point, it
is necessary to introduce the difference between profiled and non-profiled attacks.

In [26], B. Timon explained the two different classes of Side-Channel Analysis techniques
that involve these analysis methods, profiled and non-profiled attacks:

• Profiled Attacks : consist of an attack in which the attacker needs to have access to
two identical devices, known as the ’target’ device and the ’profiling’ device. The
attacker knows and has full control over the ’profiling’ device. This ’profiling’ device
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allows to recognize the behavior of the ’target’ device in terms of power consumption,
cryptographic algorithm execution time, etc. The attacker will use the information
obtained in the ’profiling’ device to exploit and find in sensitive information on the
’target’ device.

Examples of Profiled Attacks: Template Attacks (explained above), Stochastic At-
tacks introduced in [27] by W. Schindler and Machine-learning-based Attacks in-
troduced in [28] by G. Hospodar. These attacks are very similar and pretend to
characterize one controlled device to exploit information in another closed device
with the same features.

• Non-Profiled Attacks : unlike Profiled Attacks, Non-Profiled Attacks consist of an
attack in which the attacker does not need two devices, but is able to collect several
side-channel traces from one device, knowing the inputs or outputs and not know-
ing the value of the fixed key (for cryptographic algorithms). The attack relies on
statistical methods such as Pearson Correlation or Mutual Information to infer, for
instance, the key value of the cryptographic algorithm.

Examples of Non-Profiled Attacks: Differential Power Analysis, Correlation Power
Analysis and Mutual Information Analysis (MIA) introduced in [29] by B. Gierlichs
(these non-profiled attacks are not considered in this thesis).

Figure 10: Non-Profiled and Profiled Attacks. Adapted from [30]

This thesis focuses on Profiled Attacks. The objective is to try to exploit sensitive infor-
mation and try to discover the keys used in the cryptographic algorithms implemented, in
this case, AES-128 bits. The type of data and the methodology of work carried out in this
thesis is based on these attacks, whose procedure is defined in the book [31] published by
François-Xavier Standaert and François Koeuneis:

1. The attacker has full control over the profiling device, from which the characteristic
traces of the critical operations, such as AES-128 algorithm, can be obtained. Implic-
itly in the power or EM radiation traces, the sensitive information to be exploited
is found.
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Figure 11: Example of a trace with AES algorithm execution. Adapted from [32]

2. By utilizing a reduced number of traces, the attacker can compare them to find
the points of interest, based on the critical operations (e.g., AES-128 first SubBytes
output) to exploit the critical operations using the SPA and DPA techniques. This
technique is based on comparing, overlapping, or matching similarities between the
traces to identify these critical operations.

By having full access to the device, the attacker can check if the hypothetical point
of interest is in fact the point of interest to be exploited (e.g., checking the software
implementation). In Non-Profiled Attacks it is not possible because the attacker
does not have access to the software or firmware of the device.

3. Once the traces are contrasted with the device information, it is possible to model,
create templates, or characterize the points of interest where changes occur each
time the attacker executes the algorithm on the device. These points of interest
occur during the execution of the AES-128 bit encryption algorithm, as explained
before.

Before proceeding with the next steps, it is necessary to define which are the points of
interest and which characteristics help the attacker to identify them. SCA techniques are
based on the analysis of information leakage, and this leakage is especially important in
these points of interest.

Figure 12: AES SubByte transformation with
AddRoundKey XORed. Adapted from [33]

When implementing a cryptographic
algorithm such as AES-128, the points
of interest are the outputs of the Sub-
Byte or MixColumn transformations
of the first or last rounds of this algo-
rithm, due to the non-linearity and the
relationship with the SubKeys used.
The purpose is to be able to gener-
ate or deduce part of the key used
in the algorithm by being XORed in
these SubByte or MixColumn trans-
formations immediately after the Ad-
dRoundKey transformation.
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The outputs resulting from the transformations always have an associated leakage of
consumption and it can be translated into a leakage of information. One of the ways to
consider this leakage is based on the Hamming Weight, as explained in [34] by M. Akkar.
According to Hamming Weight it is possible quantify when one bit changes from ’0’ to ’1’
or viceversa, as can you see in Figure 16. These bits form the byte value that is attempted
to be identified.

Figure 13: Generic example of Hamming Weight for one byte. Adapted from [35]

By means of these variations of consumption, it is possible to characterize the points of
interest and identify each byte value according to the leakage generated.

4. Based on the information extracted from the profiled device (e.g., classifying the
different forms of leakage at the point of interest), the attacker creates templates to
characterize this information.

5. Then, the attacker checks whether the templates and the target device information
match.

The objective is to try to find the points of interest from the profiled device on the
target device, over which the attacker has no control. Once located, the attacker uses
the generated templates to check the leakage values (value of the trace at the points of
interest) so that the attacker can deduce the byte being used in the transformations and
thus obtain the possible value of the SubKey used. This can be repeated for each of the
bytes in order to find the key used in the AES-128 algorithm.

These templates can be generated either with the Template Attacks technique (manual
method) or through techniques based on deep learning (autonomous method), where
artificial neural networks are responsible for identifying and characterizing the points of
interest in order to determine these byte values. The latter can reduce the time required
to perform Profiled Attacks.
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2.2 State of the Art of Artificial Neural Networks

In [36], published by I. Goodfellow et al., it is possible to find a definition of the math-
ematics behind deep learning. From the definition of the different topologies of artificial
neural networks to defining the behaviours they can take on when trained: overfitting or
underfitting, and much more. This book is a good approach to introduce and understand
in detail the basics of deep learning based models.

Some basic concepts on Neural Networks and model assessment are reviewed by T. Hastie
et al. in [37]. Specially the chapters: the seven chapter where the introduction to bias,
variance and model complexity in relation to model assessment and selection of the best
model are explained and the eleven chapter where neural networks in terms of topologies,
overfitting and underfitting are explained.

Once the previous books have been introduced that allow to understand in more detail how
deep learning based models work, the most relevant articles in relation to deep learning
applied to side channel analysis techniques will be cited.

Hetweer et al. made a complete review of the state of the art of ANN aplied to SCA in
the article [38]. The authors introduced the relation between classical attacks in SCA and
deep learning-based attacks.

Bendadjila et al. completed the work of Hetweer et al. in [39]. They conducted a com-
prehensive study of deep learning techniques applied in SCA techniques. They chose the
ANN class of MLP and CNN to apply deep learning-based alternatives to typical attacks
in SCA and tested with different hyper-parameters to obtain a better accuracy/results.
In addition, they published an open dataset called ASCAD, containing AES-128 (fixed
and variable key) traces to exploit with trained deep learning models.

After the Bendadjila et al. publication, deep learning applied in SCA researchers and
investigators have focused on working with the ASCAD dataset.

Two useful examples due to the possible implementation with the scripts and the database
provided by the authors of the ASCAD, are ”Ranking Loss: Maximizing the Success Rate
in Deep Learning Side-Channel Analysis” [2] published by Zaid et al. in 2020 and the last
year publication by G. Perin et al. called ”The Need for Speed: A Fast Guessing Entropy
Calculation for Deep Learning-based SCA” [3].

In [2], the authors’ aim is to adjust deep learning models to the SCA context. The tech-
nique they propose is to replace the cross-entropy cost function, based on calculating the
entropy based on the probabilities that the network estimates and penalising if this is not
correct (with the aim of reducing uncertainty and allowing the network to get it right)
with the Ranking Loss function, which is based on learning to classify the probabilities
by rankings and penalising the network when the ranking is not as expected, depending
on the final position of the expected data in the first position.

The authors worked with CNN topology and three different datasets: the ASCAD, the
AES HD published by S. Picek in [40] and the Chipwhisperer (only ASCAD database is
analyzed in this project).

In [3], the author’s propose a new technique based on a new metric called Fast Guess
Entropy, which consists of the calculate of the guess entropy but using a few traces
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for validation phase during the model training to improve the training phase of deep
learning models. In addition, they suggest using this FGE technique to monitoring the
early stopping technique.

Before continue with the FGE explanation, it is necessary to understand the early stopping
technique used in deep learning.

Explained in [41] by L. Prechelt, the objective of this powerful technique is stopping the
training phase in an specific epoch when the metric, previously choosen by the evaluator
to analyze the learning path of the model, falls into divergence and fails to converge,
indicating that the model is generating overfitting or underfitting behaviour, following
the next figure:

Figure 14: Early-stopping concept. Adapted from [42]

Typically, the metric used in the validation phase in parallel with the training phase are
selected as monitor to early stopping. Well, the FGE author’s propose using the validation
FGE such as monitor to early-stopping, to select and save the network weights for the
best epoch where the model obtain the best behaviour. According to the authors, training
a model a small number of epochs can improve the generalisation of the network to new
data sets.

These two papers seek to improve the performance of ANN applied to SCA by modifying
the loss function of the models and using another valid metric for validating results,
respectively. More details will be provided in the experimental part (see 3).
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3 Methodology/Project Development

This section will explain the procedures performed to find the best model of MLP ANN
applied in SCA, modifying different parameters such as the number of layers, of neurons,
the optimizer used, etc. In addition, analyzing the Cross-Entropy loss function replacement
by the Ranking Loss Function (RL) proposed in the paper [2] and checking the results of
training with the Fast Guess Entropy (FGE) metric proposed in the paper [3]. The loss
function will be contrasted with the most standardized cross-entropy loss function and
the Fast Guess Entropy metric will be compared with the Mean Rank, explained in detail
in section 3.2. In addition, MLP class is used to test the behavior of these newly proposed
techniques.

EXPERIMENT PROCEDURE: In the First Stage, obtaining a good model for the
MLP class. The hyper-parameters tuning is based on the paper [1]. Emmanuel Prouff
et al. chose as the starting point a MLP base model. After a lot of tests with different
parameters, they obtained a MLP optimized model. The objective is to contrast the results
of these authors with the results of this thesis.

In the Second Stage, implementing the FGE metric and the RL function and testing the
results for a pre-adjusted ANN model using the public ASCAD dataset as input data. It is
important to note that the hyperparameters of the ANN model have been pre-adjusted,
i.e., they have been previously tuned to obtain accurate results for an MLP optimized
model through the modified Python scripts. The scripts are explained in 3.1.

In the Final Stage, comparing results of the First Stage and the Second Stage using the
FGE metric and the RL function.

EXPERIMENT RESOURCES: The dataset ASCAD, used in the project, is pub-
lic. All related information can be found in https://github.com/ANSSI-FR/ASCAD. The
ASCAD database consists of three groups of 60,000 traces originated from 8 bit AVR mi-
crocontroller ATMEGA8515, with an AES, fixed key and acquired with EM techniques.
For each group, 50,000 of the traces are destined to the training and validation phases,
and finally 10,000 for the attack phase (which corresponds to the testing phase). These
three groups of 60,000 traces include synchronized traces, traces with a desynchronization
of 50 time units delay, and traces with a desynchronization of 100 time units delay. The
leakage model is found in the first round of the AES-128 S-BOX (in Byte substitution
Transformation) and exploits the third byte of the subkey combined with the plaintext.
The following equation expresses the S-BOX output:

Y i(k) = SBOX[P i
3 ⊕ k] (1)

i is the number of round, P is the byte corresponding to the plaintext XORED with the
corresponding byte of the subkey, represented by k.

3.1 Zero Stage

The main objective of this section is to introduce the experimental part procedure. In this
Zero Stage, ASCAD Dataset and ASCAD Python scripts are introduced and explained.
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3.1.1 ASCAD Dataset

This dataset, published by ANSSI, is avalaible in https://github.com/ANSSI-FR/ASCAD.
The main purposes of this dataset are executing proves with SCA traces and training/test-
ing ANN applied in SCA.

Figure 15: ASCAD hierarchical
structure viewed on HDFview tool

The file type of ASCAD Dataset is H5. In order to
review the H5 file, which contains the information
of the ASCAD digitalized traces and the byte val-
ues corresponding to each of these traces, the open
source tool of HDF Group has been used. This HD-
FView V3.1.3 tool allows to visualize the digitalized
values of each of the traces and the byte value. By
using the h5 Python package, it is possible to modify
the data contained in this type of files. The hierar-
chical structure of ASCAD Database is in the right
image.

The form of ten digital traces in Profiling traces is the following:

Figure 16: ASCAD traces plotted viewed on HDFview tool

This tool allows to visualize the digitized traces. Each trace contains 700 integer value
samples. The Profiling traces also includes the labels section. This section includes, in
turn, the byte values of the third output byte of AES S-Box at round one that correspond
to each trace.

Figure 17: ASCAD traces byte values viewed on HDFview tool

Finally, in the metadata section there are defined the following: the plaintexts, the fixed
key, the random masking of S-BOX output bytes, the text ciphered, and the desynchro-
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nization applied, all used in the implementation of the AES-128 algorithm.

Figure 18: ASCAD traces metadata viewed on HDFview tool

The three groups of traces to be analysed are: synchronised, desynchronised 50 random
time delays and desynchronised 100 random time delays. The structure of these traces
are as follows:

Figure 19: Synchronised
traces

Figure 20: Desynchronised
traces (50 time units)

Figure 21: Desynchronised
traces (100 time units)

3.1.2 ASCAD Python scripts

Before testing the new techniques, it is necessary to modify ASCAD’s public Python
scripts to change the execution flow and make them more user-friendly, facilitating the
configuration of the models to be trained through keyboard inputs or improving the
interpretability of the results through plots. The Python scripts that can be found in
https://github.com/ANSSI-FR/ASCAD are:

• ASCAD generate.py : allows an evaluator to generate datasets with the equal form
of the ASCAD dataset published by the ASCAD authors.

• ASCAD train models.py : allows an evaluator to train the ASCAD datasets or their
own generated datasets. This script is used in this thesis and it will be modified
(the code can be found in Annex C.1).

• ASCAD test models.py : allows an evaluator to test the ASCAD datasets or their
own generated datasets. This script is used in this thesis and it will be modified
(the code can be found in Annex C.2).

For ASCAD train models.py, renamed as ASCAD training.py, the configuration of the
parameters and the network type has been modified to be more user-friendly. The param-
eters to be modified can be entered quickly and easily through the terminal. The users can
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create MLP and CNN topologies, defining the typical parameters for one of the topologies.
In addition, FGE metric can be used such as monitor metric for early-stopping technique,
also available as option, and Ranking Loss function also has been implemented. Once the
training is finished, the model is saved in a .h5 file to be able to perform different phases
of testing a posteriori and study the performance of each of the trained models.

For ASCAD test models.py, renamed as ASCAD testing.py, the Mean Rank metric im-
plemented in previous Python script has been re-used to check the results of the trained
models. The code has been modified to be able to run more than one test phase for dif-
ferent trained models in the same script execution. In addition, it is possible to compare,
through graphs of the metrics, the results for different trained models. Other functionality
added is the calculus of the Mean Rank averaged calculated when all attack traces (in
testing phase) has been processed. Fundamentally, this Mean Rank averaged is a unique
value to obtain a better approach in terms of an average ANN learning behaviour. These
metrics, Mean Rank and Mean Rank averaged metric, have been added for all models
tested in parallel. These metrics allow an evaluator, when ranking a better model, to
review this last Mean Rank averaged value and Mean Rank during all the testing phase
to have an orientation of the ranking capacity that the trained model may have. See 3.2
for more details about the Mean Rank and accuracy metrics.

Additionally, main.py script (Annex C.4) has been created to execute both scripts, AS-
CAD testing.py and ASCAD training.py in the same execution. Metrics.py script (Annex
C.3) has also been created to manage the results plots.

3.2 First Stage

In this First Stage, the search of a better model for MLP topology is defined. In addition,
the weights of the different hyperparamentes, such as the number of layers, number of
neurons, etc. are analyzed in order to understand the importance of these hyperparameters
using different SCA traces, synchronised and desynchronised.

Before starting to searching the best model, it is important understand the difference
between Mean Rank and accuracy metrics and why is useful use Mean Rank metric.

Mean Rank is a very important metric in ANN applied to SCA, as it allows users to
estimate how close they have been to the correct byte for each trace tested in ANN.
Basically, Mean Rank calculates the differences in positions with respect to the estimated
byte with the correct byte of the key used. Users can check if for each trace they give to
the network, it is training correctly and the network are getting closer to the correct byte
each time or the trained model have not fit enough during the training phase to identify
correctly the different bytes values.

The objective is: obtaining a smaller number of traces that allows users to obtain the value
of the bytes in a correct way, and that is able to get closer and closer to the ”correct”
byte index.

The accuracy metric is not the best way to check the correct learning of the networks as
it is quite difficult to identify with exact precision the byte used, since the leakage that
allows the network to identify the byte used varies very little from one byte to another.
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Therefore, Mean Rank is used as the main metric to check the behaviour of the trained
ANN during the testing phase.

It is important to note that not only 1 byte is usually attacked, but several bytes of interest
to try to obtain the whole key (or reduce the effort in a brute-force attack). Applied to
deep learning, this is known as multi-label, which allows users to select which byte the
neural network has to learn to identify.

The search of these best models have been based on [1].

• MLP: 6 layers, 200 neurons (with ReLu activation) for each layer and last layer
with 256 neurons (with Softmax activation), RMSprop optimizer, 1e-5 as learning
rate and cross-entropy loss function.

The number of epochs is set to 200 with a batch size of 100. It shows a good trade-off
between execution time and results (preventing over-fitting/under-fitting).

The tests will be carried out with the three sets of traces published for ASCAD: sync,
desync50 and desync100. One best model will be obtained for each dataset, for MLP
class. The aim is to analyse the limits of deep learning models and the importance of
pre-processing the data before introducing them into the neural networks.

3.2.1 Hyperparameter tuning using SYNC. TRACES

ASCAD AUTHOR’S
The configuration of the different models follows the next layout:

MLP(#layers, #neurons per layer, optimizer, learning rate, loss function)

The reference is taken as the optimised model that the authors developed and tested in
the paper [1], following the following layout:

MLP optimized: (6, 200-200-200-200-200-256, RMSprop, 1e-5, cross-entropy)

The performance of this model has been tested, using both RMSprop and ADAM, which
is another optimiser widely used during evaluations in practice as it performs well when
training different models. The results have been:

Figure 22: MLP optimized model: Comparison RMSprop vs. Adam for sync. traces
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RMSprop has shown a ’faster’ and more optimised behaviour in differentiating between
bytes. In addition, it required fewer traces to perform a good classification.

The testing traces are introduced to the network, and Mean Rank checks that the plaintext
of the XORed algorithm with the key (of fixed value) and applied to the output of the
S-BOX is the same byte as the byte predicted by the network. In this way for each trace
it is checked, with Mean Ranks it is possible to analyze how the metric tends to 0 because
the predicted byte at the output is the correct one.

From now on, different trainings will be carried out by modifying the parameters seen
before (See Annex B.1 for all test results).

NUMBER OF LAYERS
The first test carried out to obtain an MLP model with good performance is the modifi-
cation of the number of layers. Starting from the MLP optimised model, the number of
layers has been modified to 3, 4, 5, 6, 7 and finally 8:

MLP(X, 200-200·X-256, RMSprop, 1e-5, Cross-Entropy)

Figure 23: MLP searching best model: #layers for sync. traces

The result after training 6 models with different numbers of layers can be seen in the plot
above. The structure that has always been used: input layer with 200 neurons, hidden
layer variable according to the assigned layers, but with 200 neurons, output layer with
256 neurons. For 3 layers a good result has been obtained, in fact, for 3 and for 6, more
than acceptable results have been obtained in terms of behaviour. Even so, will continue
the experiments with the choice of 6 layers, as this allows us to modify the number of
neurons in the next step.
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NUMBER OF NEURONS
The second test, which is carried out after having chosen the number of layers equal to 6,
is to modify the distribution of neurons by layers.

MLP(6, X-Y-Z-...-256 , RMSprop, 1e-5, Cross-Entropy)

The models that have been used to test the results of using networks are smaller models,
speeding up execution and training time, and larger models to see if they are really
effective. A model based on 64 neurons has been selected, another with 128 neurons to
see if performance improves by doubling the number of neurons, etc. The models between
200 and 500 neurons perform very well, converging to 0 quickly. Two models, Small-
Large-Small (such as 256-512-1024-512-256) and Large-Small-Large (such as 256-128-64-
128-256), have also been considered, represented by the following analogy:

Figure 24: MLP searching best model:
Small-Large-Small analogy

Figure 25: MLP searching best model:
Large-Small-Large analogy

The result after training 8 models with different numbers of neurons can be seen in the
following plot. The structure remains the same: output layer with 256 neurons.

Figure 26: MLP searching best model: #neurons for sync. traces

The model proposed by the authors, with 200 neurons, has a very good behaviour and a
rather fast convergence to 0 (few traces are needed).

However, the models that stand out for Mean Rank averaged are the Small-Large-Small
model and the 320 neurons per layer model. Consider that any model chosen based on
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the number of neurons in the range of Mean Rank averaged less than four could still be
trained. The 320 neurons per layer model is selected as the best option due to the
runtimes between the Small-Large-Small model and 320 neurons are x10 apart. Please
note that the number of neurons of the last layers is fixed: 256 neurons because we aim
the ANN at distinguishing the value of a byte, which has 256 possible values.

OPTIMIZER
The third test is performed after having chosen the number of layers equal to 6 and the
distribution of neurons in 320-320-320-320-320-256 by modifying the optimiser used.

MLP(6, 320-320-320-320-320-256 , X, 1e-5, Cross-Entropy)

The result after training with 5 different optimizers, in adition to Adam and RMSprop
trained in ASCAD AUTHOR’s models proposed, can be seen in the following plot:

Figure 27: MLP searching best model: optimizers for sync. traces

The model performs very well with the RMSprop and ADAM optimizers, as expected.
RMSprop is used by the authors of the paper as it gives good results and ADAM is used
in production due to the good results also obtained with this optimiser.

RMSprop uses an adaptive learning rate instead of an initial learning rate as a hyperpa-
rameter. This means that the learning rate changes over time and maybe this feature is
useful for training ANN applied in SCA.

Adam is the most generalised optimiser for any deep learning application, as it uses con-
cepts of operation from both, RMSprop and Adadelta. These optimisers are based on the
descent gradient, as explained in section 1.1.2. RMSprop is based on a similar algorithm,
which maintains the behaviour of the descending gradient but averages the exponential
differences of the squares of these gradients for each iteration. Adadelta maintains a train-
ing factor for each of the weights, based on a window of the previous iterations and not
observing from the beginning of the run like AdaGrad. ADAM is a combination of both,
so the performance is expected to be superior.

In this case we see that RMSprop is a better fit, therefore it is chosen as the best option.
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LEARNING RATE
The fourth and last test is performed after having chosen the number of layers equal to
6, the distribution of neurons in 320-320-320-320-320-256 and the RMSprop optimiser by
modifying the learning rate used.

MLP(6, 320-320-320-320-320-256 , RMSprop, X, Cross-Entropy)

The result after training with 6 different learning rates can be seen in the following plot:

Figure 28: MLP searching best model: learning rates for sync. traces

Values around 1e-5 behave correctly, while learning rates that are far from this initial
value of 1e-5 do not train correctly and, therefore, do not conclude in an adequate model.
It is important to note that only the learning rate parameter has been modified for each
optimiser. The learning rate 1e-5 is chosen.
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3.2.2 Hyperparameter tuning using DESYNC. (50) TRACES

In this section, the experiments have been repeated and will be explained in a shorter way,
comparing the results with the synchronised traces to study the effect of desynchronisation
and the introduction of unclean data into the neural network. In addition, a search for an
optimal model adapted to this type of input data is performed again. See Annex B.2 for
all test results.

ASCAD AUTHOR’S
The results of training with the RMSprop and the Adam optimizer are:

Figure 29: MLP optimized model: Comparison RMSprop vs. Adam for desync50 traces

The RMSprop optimiser has a more correct behaviour in terms of Mean Rank while
ADAM diverges a bit more. The behaviours they are quite similar, although a quite
differentiated offset it is observed for the two optimisers. Mean Rank averaged is 66.484
for RMSprop and 132.212 for ADAM, as can be seen in the table in the annex B.2.

Figure 30: MLP searching best model: #layers for
desync50 traces

NUMBER OF LAYERS
The 3 layers option is enough
to perform quite well, with
a Mean Rank averaged of
54.635. Both 5 layers and
6 layers also give good re-
sults, with 55.299 and 66.484
respectively. The results are
far from the results obtained
with the synchronised traces.
The 5-layer model is chosen
because it has obtained bet-
ter results and because it al-
lows to define different tests
by varying the number of
neurons.
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NUMBEROF NEURONS
The results obtained are:

Figure 31: MLP searching best model: #neurons for desync50 traces

The best result is obtained with 512 neurons, with a Mean Rank averaged 33.934. Followed
by the 200 neurons model which has a Mean Rank averaged of 55.299. While the 320
neurons model used for the synchronised traces, has a Mean Rank averaged of 125.421.
Therefore the model chosen is the 512 neuron model.

OPTIMIZER
Between the RMSprop optimiser and ADAM, the results are very similar (see the above
Figure, where orange is ADAM and blue is RMSprop). They converge at about the same
number of traces, around 2000. While the Mean Rank averaged for RMSprop is 33.934
and for ADAM it is 38.523.

Figure 32: MLP searching best model: Adam and RMSprop for desync50 traces
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The results for all optimizers tested, are plotted below:

Figure 33: MLP searching best model: optimizers for desync50 traces

The optimiser of chose is RMSprop.

LEARNING RATE
The results obtained are:

Figure 34: MLP searching best model: learning rate for desync50 traces

The learning rate value with the best Mean Rank averaged is 8e.5 equal to 16.149. The
value of 1e-5 is still a good value to choose, with a Mean Rank averaged value equal to
33.934. Learning rate equal to 8e-6 is finally chosen.

39



3.2.3 Hyperparameter tuning using DESYNC. (100) TRACES

In this section, the experiments have been repeated and are explained in a shorter way,
comparing the results with the synchronised traces to study the effect of desynchronisation
(worst case, 100 random time delays) and the introduction of unclean data into the neural
network. In addition, a search for an optimal model adapted to this type of input data is
performed again. See Annex B.3 for all test results.

ASCAD AUTHOR’S
The results obtained are:

Figure 35: MLP optimized model: Comparison RMSprop vs. Adam for desync100 traces

A higher convergence and more successful behaviour is clearly observed for the ADAM
optimiser, unlike RMSprop which fails to converge. Mean Rank averaged for RMSprop is
214.750 and 125.951 for ADAM. ADAM is selected for the choice of the best model.

NUMBER OF LAYERS
The results obtained are:

Figure 36: MLP searching best model: #layers for desync100 traces
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The number of layers with the best Mean Rank averaged is 6, with a value of 125.95. It
converges to a lower value for 10k traces, together with practically 4 layers. It is important
to note that for about 500 traces for 7 and 8 layers we are talking about a good Rank (if
we limit the number of attack traces). The default number of layers is set to 6.

NUMBER OF NEURONS
The results for all neuron configurations tested, are:

Figure 37: MLP searching best model: #neurons for desync100 traces

Of all the neuron configurations, it can be observed that for the 256 configuration with
less than 2000 traces we can obtain a Mean Rank of less than 50.

It is interesting to note that when using models with a reduced number of neurons, for
ten thousand traces, it can be observed that end up with a fairly interesting Mean Rank
of less than 100. It should also be noted that the model with 200 neurons for 10 thousand
traces manages to be below the threshold of 100.

Even so, the L-S-L model (256-128-64-64-128-256) is chosen as the best model for
the following tests.
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OPTIMIZER
The best optimiser is chosen as ADAGRAD, with an averaged Mean Rank of 31,422.
The other optimisers do not manage to lower the Mean Rank to less than 100, so the
improvement is remarkable. The results obtained are:

Figure 38: MLP searching best model: optimizer for desync100 traces

LEARNING RATE
The best learning rate 1e-5 is chosen. The results of the experiments are as follows:

Figure 39: MLP searching best model: learning rate for desync100 traces
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3.2.4 Choosing the optimize model

SYNCHRONISED TRACES

The best model obtained after several tests are:

MLP(6, 320-320-320-320-320-256, RMSprop, 1e-5, Cross-Entropy)

With a Mean Rank of 0.348.

DESYNCHRONISED50 TRACES

The best model obtained after several tests are:

MLP(5, 512-512-512-512-256, RMSprop, 8e-5, Cross-Entropy)

With a Mean Rank of 16.149.

DESYNCHRONISED100 TRACES

The best model obtained after several tests are:

MLP(6, 256-128-64-64-128-256, Adagrad, 1e-5, Cross-Entropy)

With a Mean Rank of 31.422.

In addition to replace the loss function Cross-Entropy with Ranking Loss, analyzing the
differences between Mean Rank and Fast Guess Entropy metrics will be tested in the
second stage. Furthermore, for the three sets of traces, apart from the optimised model
found, four models will be studied using not the best options with Ranking Loss function.
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3.3 Second Stage

3.3.1 Experiment 1 - Ranking Loss vs. Cross-entropy

Once an optimal model based on the ANN MLP class has been found, the cross-entropy
cost function is replaced by the RL function, and the results obtained are studied. Previ-
ously to carrying out this experiment, it is necessary to have understood the functioning of
this cost function and the difference between the cross-entropy function and the Ranking
Loss function, see 2.2.

Different types of loss functions can be found to train different topologies of deep learning
models:

• Binary Classification: Binary Cross Entropy allows to classify between two classes.

• Multiclass Classification: Categorical Cross Entropy used in training in 3.2, Sparse
Categorical Cross Entropy if the data entered are integers and Poisson Loss for data
following a Poisson distribution.

• Object detection and Regression also are available.

In the ASCAD train models.py script, some of the functions included in the scripts pro-
vided by the authors of the RL function have been implemented in order to be able to
run training with this new cost function. The RL scripts are based on a CNN structure
and the guess entropy, similar to Mean Rank concept of learning to rank, is used as a
form of testing. The structure of these scripts has been modified to be able to use the
MLP topology, as well as to implement the testing procedure performed during 3.2 and to
obtain training results to be able to compare them with the cross-entropy cost function.

For the training performed with the RL function, it is important to highlight the selection
of the parameter alpha of the RL function equal to 10. According to the authors, this
parameter is considered to be optimal.

Comparisons have been made between the two cost functions for the best model obtained
for each set of traces. In addition, training has been carried out by modifying parameters
such as the number of layers, the number of neurons, etc. In this way, it has been verified
that the modification of the parameters can influence the behaviour of the new models
trained with the Ranking Loss cost function.

SYNCHRONISED TRACES

Comparing models with the Cross-Entropy and Ranking Loss function:

MLP (6, 320-320-320-320-320-256 , RMSprop, 1e-5, Cross-Entropy)
vs.

MLP (6, 320-320-320-320-320-256, RMSprop, 1e-5, Ranking Loss)

After training, it can be seen that the CE loss function still performs much better than
the RL loss function. Even so, for a little less than about 2000 traces, convergence with
the RL function is observed but then it diverges again and fails to behave properly. The
figure obtained is as follows:
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Figure 40: CE vs. RL comparison between best models for synchronised traces

To analyse the weight of parameters such as the number of layers, the number of neurons,
the optimiser, the learning rate in the Ranking Loss cost function, the following results
have been obtained after several trainings by modifying these parameters (see B.1 to check
the table results):

Figure 41: CE vs. RL comparison for different parameters for synchronised traces

Starting from the MLP model (6, 320-320-320-320-320-256, RMSprop, 1e-5, Ranking
Loss), the parameters have been changed to check the weight of these. We highlight as
an improvement the replacement of the RMSprop optimiser by ADAM, which results in
better performance. Also, the learning rate parameter has behaved better by increasing
it, as can be seen in the graph.
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DESYNCHRONISED (50) TRACES

Comparing models with the Cross-Entropy and Ranking Loss function:

MLP (5, 512-512-512-512-256, RMSprop, 8e-5, Cross-entropy)
vs.

MLP (5, 512-512-512-512-256, RMSprop, 8e-5, Ranking Loss)

The results obtained are as follows:

Figure 42: CE vs. RL comparison between best models for desync. 50 traces

After training, it can be seen that the CE loss function still performs much better than
the RL loss function. Even so, for about 2000 traces, the RL loss function performs well,
similar to the model trained with synchronised traces. We proceed with the modification
of the different parameters in the same way as with the synchronised traces. The results
are as follows:

Figure 43: CE vs. RL comparison for different parameters for desync. 50 traces

In the same way as with the synchronised traces, starting from the MLP model (6, 320-
...-256, RMSprop, 1e-5, RL), the parameters have been changed to check the weight of
these. No noticeable improvement is envisaged for any of the changed parameters.
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DESYNCHRONISED (100) TRACES

Comparing models with the Cross-Entropy and Ranking Loss function:

MLP (6, 256-128-64-64-128-256, Adagrad, 1e-5, Cross-entropy)
vs.

MLP (6, 256-128-64-64-128-256, Adagrad, 1e-5, Ranking Loss)

The results obtained are as follows:

Figure 44: CE vs. RL comparison between best models for desync. 100 traces

It can be seen that the CE loss function still performs much better than the RL loss
function. Even so, for before about 2000 traces, the RL cost function performs well. We
proceed with the modification of the various parameters. The results are as follows:

Figure 45: CE vs. RL comparison for different parameters for desync. 100 traces

Surprisingly, better results were obtained using models with a reduced number of layers.
Moreover, using the same number of neurons, good results were also obtained. The be-
haviour is similar when using the CE loss function, but the Mean Rank averaged values
obtained are 31.422 for CE and 24.064 for RL. This is an improvement of 23.41% in terms
of Mean Rank averaged with respect to CE.

47



3.3.2 Experiment 2 - Fast Guess Entropy and Rank metrics

Once an optimal model based on the ANN MLP class has been found, the Fast Guess
Entropy has been tested, and the results obtained are studied. Previously to carrying out
this experiment, it is necessary to have understood the functioning of the different metric
to train deep learning models with TensorFlow.

Metrics can be used during training and validation, and later in testing. Among the
metrics available in deep learning through the Keras library, there are Regression and
Classification metrics. For the Regression metrics, there are available the Mean Absolute
Error or the Mean Squared Error, among others. For Classification metrics, there are
available Accuracy, which is only used in the training carried out during the First Stage,
since Mean Rank is used for testing (it does not directly classify a single byte, but rather
the distance the network is from choosing the correct byte). This thesis is focused on the
classification metrics, since as introduced in 3.2 the goal is classifying the bytes used and
contained in the traces.

A good use of metrics is very important in order to improve a model and understanding
the behavior of the trained model.

This is where the FGE technique comes into play (based on the Guess-Entropy metric),
which consists of monitoring during each epoch the validation phase an ordered top with
the predictions made by the network, in order to check whether the byte that is really the
one that the network is getting the most correct. If the model is being trained correctly,
the metric should converge to 1, as it will always hit the actual byte in the number one
position of the top.

To implement the FGE technique the Guess-Entropy metric and early-stopping function
introduced in the introduction of ANN has been used. Within the early-stopping tech-
nique, a series of parameters are defined to modify this stop training, among which are
the monitor, which is the metric to ”analyse”, patience¸ the number of epochs that
the values need to be maintained and converge, verbose, to indicate when the training
ends indicating a message ’EPOCH X: early stopping’ and finally restore best weights,
which allows us once the training is finished, to reset the weights of the network to the
best model before convergence.

In this way, GE metric is defined such as the monitor in early-stopping technique, to
know when a good training point is achieved and not to train for more epochs. The
difference between monitoring the Guess-Entropy and the Fast Guess-Entropy is defining
a reduced number of traces for validation, for instance 1,000 instead of 10,000. The trained
model will be more trained for generalisation, according to what the authors propose.

The first step of this experiment is to implement and test Guess-Entropy. Depending on
the results obtained with the GE metric, models with the appropriate configuration will
be trained to test the FGE technique.
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Figure 46: Trained model during 200 epochs with GE

The results obtained after training the previously obtained best synchronised trace model
are not as expected. The Guess-Entropy metric does not reach 1 neither in the training
nor in the validation phase.

Figure 47: Testing results of trained model during 200 epochs with GE

Checking the behaviour of the trained model during the testing phase, and it is possible
to observe that it performs well. How is it possible if the network fails to guess the byte
correctly during training, but in the testing phase it identifies the correct byte?

This is because in the testing phase it is not analysed whether the network is able to
identify the byte correctly in a direct way, but a ”key guessing” is performed. This ”key
guessing” consists in checking with all the bytes that the network predicts the output of
the S-BOX of the AES algorithm, and since the plaintext and the output that the network
predicts are known, estimates are made of the possible key byte used. In this way, for a
larger number of traces, the approximation is adjusted towards the key byte used.
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Based on these unexpected results, it is proposed to carry out training with a number
of 1,000 epochs. Two models have been trained for 1,000 epochs with 10,000 traces for
validation and a smaller number of traces for validation, as proposed by the authors of
the FGE technique.

The results of the trained models were:

Figure 48: Trained model (1k val. traces) during 1,000 epochs

Figure 49: Trained model (10k val. traces) during 1,000 epochs

For the two models with different numbers of traces for validation, very similar results
were obtained. In fact, for the validation in both models converges close to 110 for the
Guess-Entropy metric. It would be interesting to train more models, but due to limited
time it has not been possible. The approximate training time for 1,000 epochs has resulted
in four to six hours.
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Once trained, the testing phase was carried out to analyse the behaviour of the models:

Figure 50: Testing results of trained models with GE and FGE duing 1,000 epochs

The Mean Rank averaged for GE is 9.10 and the Mean Rank averaged for FGE is 10.25.
The difference is not very distinguishable, so therefore the conclusion is that it is not an
improvement a priori. Further experiments with FGE should be carried out.

Due to the unexpected behaviour of GE, will no be able to apply this technique (basically
it would not make sense to apply GE as a monitoring metric for early-stopping when it
does not have a good behaviour due to the configuration of the model). Even so, in the
scripts it is possible to configure the training of the models to use early-stopping with the
Guess Entropy or FGE metric, adjusting the number of traces for validation to 1k.
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4 Results

4.1 Final Stage

In the First Stage (3.2), different models were trained with diverse configurations for
different sets of traces as input data.

For the synchronised traces, after training different MLP configurations, very accurate
results were obtained with 6 layers, with a configuration of 320 neurons, training with
the RMSprop optimiser and a learning rate of 1e-5. The chosen model was compared by
replacing the cost function with RL and no improvement was obtained.

For the desynchronised 50 time unit traces, after training different MLP configurations,
very accurate results were obtained with 5 layers, with a configuration of 512 neurons,
training with the RMSprop optimiser and a learning rate of 8e-6. The chosen model was
compared by replacing the cost function with RL and no improvement was obtained.

For the desynchronised 100 time unit traces, after training different MLP configurations,
very accurate results were obtained with 6 layers, with an L-S-L neuron model configura-
tion, training with the Adagrad optimiser and a learning rate of 1e-5. The chosen model
was compared by replacing the cost function by RL and the results obtained during the
testing phase were improved using Mean Rank, obtaining a value of 24.064 Mean Rank
averaged when training with a 4-layer MLP model, L-S-L neuron model, training with
the Adagrad model and a learning rate of 1e-5, below the value obtained of 31.422 when
training with cross-entropy loss function.

Based on these results, it is necessary to highlight the importance of synchronising the
traces obtained from the devices with information to be exploited, as this facilitates the
learning of the neural networks. Even so, it is also important to note the importance of
modifying the different parameters to be configured when training with ANN, as there
are large variations.

It is possible to conclude that the proposed function in [2] can be an improvement when
training the different ANN models. Even so, it would be necessary to carry out further
training to check the correct functioning of this technique, since an improvement was only
obtained for the desynchronised traces.

As for the experiments carried out with the GE metric and the technique proposed in [3],
the FGE, it has been found that the trained models do not have the expected behaviour.
This may be due to the MLP typology used or the training dataset not having the right
properties to allow the correct learning of the networks.

Due to the behaviour of the trained models, the FGE technique is not considered as a met-
ric for the early-stopping technique. However, the fact that it is indeed a very important
technique for reducing the training time it is not discarded, and further investigation.

It is concluded that the GE metric makes it easier for users to know the behaviour of the
ANN, being more useful than using Accuracy.

In order to replicate the experiments, Python scripts are provided with the RL cost
function added and the early-stopping technique, in addition to being able to use the
Accuracy or GE metric.
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5 Budget

This project has been carried out thanks to funding from Applus+ Laboratories, con-
tributing the working hours of a junior electronic engineer as well as providing the work
equipment. The following table shows a breakdown of the total amount of funding to
carry out the work.

Concepts Euros Details Total
Junior Electronic Engineer €30/h 450h €13,500

HP Probook 640 G3 €500 1 €500
Total price €14,000

Table 1: Budget breakdown
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6 Conclusions and future development

After performing a series of training sessions modifying the ANN parameters, the results
obtained were studied in order to select a good model for predicting the value of the bytes.

After a large number of trainings for synchronised traces, desynchronised 50 time unit
traces, and desynchronised 100 time unit traces, optimised models have been obtained
for each type of trace, improving the results obtained in [1] through very similar models
based on a more accurate search of their optimal parameters (see Section 3.2 for further
details).

These models have been trained with the Cross-Entropy loss function, and subsequently
replaced by the new Ranking Loss loss function proposed in [2] to check if the proposed
technique does improve the training of the models.

In order not to discriminate the new function to a single model, 5 different models have
been trained with the new Ranking Loss loss function and the results have been checked.
For the synchronised and desynchronised 50 time unit traces the results could not be
improved, while for the desynchronised 100 time unit traces the results could be improved.

Based on the results obtained with the new loss function, it can be concluded that it is a
technique that improves the ANN training applied to SCA.

As for the FGE technique proposed in [3], it has not been possible to conclude if it implies
an improvement in the training due to the behaviour of the models trained in this thesis.
The authors of [3] worked with the CNN network topology, while this thesis is based on
MLP topology and the results have differed. Therefore, it cannot be concluded whether
this technique can improve the training of users using ANN applied to SCA.

Due to the limited time to complete this thesis and the resources available to carry out the
training, the experiments have been limited to a single network topology and some specific
configurations. As future work, it would be interesting to perform the same experiments
but using other networks, for example CNN or other topologies, and to contrast the results
with MLP.

As it has been proved, Ranking Loss is an improvement for some models. As future work
it would also be useful to be able to carry out a more extensive search for optimal models
with this technique.
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Appendices

A AES Definition

The Advanced Encryption Standard algorithm was proposed by Vincent Rijmen y Joan
Daemen for a public contest organized by the National Institute of Standards and Tech-
nology (NIST) [20]. Also known as Rijndael, such as the names of the authors, is a
block-cipher and symmetric-key algorithm. Uses the same key as well as to cipher and
decipher. Nowadays, AES is the most implemented symmetric cryptographic algorithm.

The different phases and operation modes of the AES algorithm are explained in this
appendix. The explanation is based on the Christof Paar and Jan Pelzl book [43].

Figure A.51: AES general block schematic. Adapted from [43]

The first point to review is the length of the plaintext and the key. The plaintext consists
of 16 bytes (128 bits) and the key length is variable. If the length of the key is 16 bytes
(128 bits), the number of rounds is 10 and the subkeys needed for each round are 11. In
the case of 24 bytes (192 bits), there are 12 rounds and 13 subkeys. For 32 bytes (256
bits), there are 14 rounds and 15 subkeys. The subkey transformation depends on the key
length and consequently on the number of rounds.
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A.1 Encryption

The encryption mode consists of different steps. The first step is theKey Addition Layer
where the plaintext is XORed with the Transform 0 of the key defined. After the Key
Addition Layer, round execution starts which of consists of: Byte Substitution Layer,
Shift Rows Layer, Mix Column Layer, and another Key Addition Layer before
continue with the next round. When all the rounds less the last round has been completed,
the procedure of this last round is different. The layers change and the procedure is: Byte
Substitution Layer, Shift Rows Layer, and the last Key Addition Layer with the
latest key transformation. Once this last round has been completed, the plaintext has
already been encrypted. AES encryption mode follows the next scheme:

Figure A.52: AES encryption general scheme. Adapted from [43]

Before introducing the different layers, it is necessary to introduce the key schedule. The
Key Schedule consists of generating from the initial key each subkey used for each round
in Key Addition Layer. The total number of generated subkeys is equal to the number
of rounds based on the key length plus one. Thus, for a length of 128 bits, the number of
subkeys required is 11. For 192 bits, 13 subkeys are required. For 256, 15 subkeys. It is
important to note that these subkeys are generated using words, i.e. 4 bytes in 4 bytes.

The subkeys are generated as follows, using the function g which is bound:
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Figure A.53: AES key schedule scheme. Adapted from [43]

Once we have introduced how the subkeys are generated, we are going to see how the
other layers that we find in the rounds of the algorithm work. In the following image we
can see the modifications to which the data is subjected by each of the layers, as follows:

Figure A.54: AES encryption: internal layers structure scheme. Adapted from [43]

• Byte Substitution Layer: using defined matrices called S-BOXES, the input bytes
are replaced by the byte specified in the column and row that the input byte defines.
The first four bits of the input byte define the row and the other four bits define
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the column, thus selecting the output byte. It is important to note that this is a
non-linear function and that the inverse operation is performed with the inverse of
the S-BOX matrix itself. The matrix S-BOX is as follows:

Figure A.55: AES S-BOX Matrix. Adapted from [43]

• Shift Rows Layer: together with Mix Column, generates data diffusion, an im-
portant feature for a cryptographic algorithm to be secure. This layer consists of
applying left shifts. As can be seen in Figure A.54, the positions of the bytes [0...15]
have been modified because they are subjected to the shifts. The operation is as
follows:

Figure A.56: AES Shift Rows internal layer. Adapted from [43]

• Mix Column Layer: this layer consists of a linear transformation which mixes each
column of the matrix resulting from the output of Shift Rows Layer, multiplying
columns by the matrix below:

Figure A.57: AES Mix Column internal layer. Adapted from [43]

• Key Addition Layer: this layer consists of performing an XOR operation on the
subkeys generated with the output of the Mix Column Layer.

A.2 Decryption

The decryption mode is very similar, except that the order of the rounds is reversed. The
number of rounds is defined in the same way as for encryption, depending on the length
of the key used. If we look at Figure A.58, we can see how the order of the subkeys is
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inverted and Inv Byte Substitution Layer, Inv Shift Rows Layer and Inv Mix
Column Layer are used, inverting in most cases the matrices defined in the encryption.

Figure A.58: AES decryption general scheme

For the Key Addition Layer in decryption it is the same procedure but in reverse,
therefore the subkeys generated during encryption, are the same as the decryption but in
reverse order.
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Figure A.59: AES decryption: internal layers structure scheme

• Inv. Byte Substitution Layer: similar to Byte Sub. in encryption mode, it uses
defined matrices called INV S-BOXES, where the input bytes are replaced by the
byte specified in the column and row that the input byte defines. The first four bits
of the input byte define the row and the other four bits define the column, thus
selecting the output byte. It is important to note that this is a non-linear function.
The matrix INV S-BOX is as follows:

Figure A.60: AES Inv. S-BOX Matrix. Adapted from [43]

• Inv. Shift Rows Layer: the inverse layer of Shift Rows Layer. This layer consists
of applying left shifts. As can be seen in Figure A.61, the positions of the bytes
[0...15] have been modified because they are subjected to the shifts. The operation
is as follows:

Figure A.61: AES Inv. Shift Rows internal layer. Adapted from [43]
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• Inv. Mix Column Layer: the inverse layer of Mix Column Layer. this layer
consists of a linear transformation which mixes each column of the matrix resulting
from the output of Inv. Shift Rows Layer, multiplying columns by the matrix
below:

Figure A.62: AES Inv. Mix Column internal layer. Adapted from [43]

• Key Addition Layer: the same of encryption mode. This layer consists of per-
forming an XOR operation on the subkeys generated with the output of the Inv.
Mix Column Layer.
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B Experimental tables

B.1 MLP - Synchronised traces results

FIRST STAGE
MLP Configuration (ASCAD Sync)

Epochs Batch size Layers Neurons Optimizer LR LF MR averaged

200 100 6 200-...-256 RMSprop 1.00E-05 CE 3.445
200 100 6 200-...-256 ADAM 1.00E-05 CE 13.082

200 100 3 200-200-256 RMSprop 1.00E-05 CE 1.404
200 100 4 200-...-256 RMSprop 1.00E-05 CE 36.771
200 100 5 200-...-256 RMSprop 1.00E-05 CE 6.299
200 100 6 200-...-256 RMSprop 1.00E-05 CE 1.456
200 100 7 200-...-256 RMSprop 1.00E-05 CE 18.421
200 100 8 200-...-256 RMSprop 1.00E-05 CE 1.991

200 100 6 64-...-256 RMSprop 1.00E-05 CE 126.670
200 100 6 128-...-256 RMSprop 1.00E-05 CE 1.535
200 100 6 200-...-256 RMSprop 1.00E-05 CE 1.456
200 100 6 256-...256 RMSprop 1.00E-05 CE 2.366
200 100 6 320-...-256 RMSprop 1.00E-05 CE 0.348
200 100 6 512-...-256 RMSprop 1.00E-05 CE 0.875
200 100 6 L-S-L* RMSprop 1.00E-05 CE 38.930
200 100 6 S-L-S* RMSprop 1.00E-05 CE 0.599

200 100 6 320-...-256 RMSprop 1.00E-05 CE 0.348
200 100 6 320-...-256 ADAM 1.00E-05 CE 1.067
200 100 6 320-...-256 SGD 1.00E-05 CE 142.994
200 100 6 320-...-256 Adadelta 1.00E-05 CE 132.775
200 100 6 320-...-256 Adagrad 1.00E-05 CE 173.753

200 100 6 320-...-256 RMSprop 1.00E-03 CE 231.806
200 100 6 320-...-256 RMSprop 1.00E-04 CE 231.846
200 100 6 320-...-256 RMSprop 1.00E-05 CE 0.348
200 100 6 320-...-256 RMSprop 8.00E-06 CE 1.390
200 100 6 320-...-256 RMSprop 1.20E-05 CE 5.179
200 100 6 320-...-256 RMSprop 1.00E-06 CE 218.171

SECOND STAGE
200 100 6 320-...-256 RMSprop 1.00E-05 RL 217.304
200 100 5 320-...-256 RMSprop 1.00E-05 RL 184.733
200 100 6 256-...-256 RMSprop 1.00E-05 RL 204.983
200 100 6 320-...-256 Adam 1.00E-05 RL 114.037
200 100 6 320-...-256 RMSprop 1.20E-05 RL 96.849

Table 2: MLP sync. traces experimental results.
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B.2 MLP - Desynchronised (50 time units) traces results

FIRST STAGE
MLP Configuration (ASCAD Desync50)

Epochs Batch size Layers Neurons Optimizer LR LF MR averaged

200 100 6 200-...-256 RMSprop 1.00E-05 CE 66.484
200 100 6 200-...-256 ADAM 1.00E-05 CE 132.212

200 100 3 200-200-256 RMSprop 1.00E-05 CE 54.635
200 100 4 200-...-256 RMSprop 1.00E-05 CE 81.996
200 100 5 200-...-256 RMSprop 1.00E-05 CE 55.299
200 100 6 200-...-256 RMSprop 1.00E-05 CE 66.484
200 100 7 200-...-256 RMSprop 1.00E-05 CE 180.036
200 100 8 200-...-256 RMSprop 1.00E-05 CE 75.575

200 100 5 64-...-256 RMSprop 1.00E-05 CE 154.982
200 100 5 128-...-256 RMSprop 1.00E-05 CE 47.694
200 100 5 200-...-256 RMSprop 1.00E-05 CE 55.299
200 100 5 256-...256 RMSprop 1.00E-05 CE 62.197
200 100 5 320-...-256 RMSprop 1.00E-05 CE 125.421
200 100 5 512-...-256 RMSprop 1.00E-05 CE 33.934
200 100 5 L-S-L* RMSprop 1.00E-05 CE 153.841
200 100 5 S-L-S* RMSprop 1.00E-05 CE 82.839

200 100 5 320-...-256 RMSprop 1.00E-05 CE 33.934
200 100 5 320-...-256 ADAM 1.00E-05 CE 38.523
200 100 5 320-...-256 SGD 1.00E-05 CE 79.998
200 100 5 320-...-256 Adadecta 1.00E-05 CE 138.242
200 100 5 320-...-256 Adagrad 1.00E-05 CE 198.870

200 100 5 320-...-256 RMSprop 1.00E-03 CE 232.838
200 100 5 320-...-256 RMSprop 1.00E-04 CE 230.599
200 100 5 320-...-256 RMSprop 1.00E-05 CE 33.934
200 100 5 320-...-256 RMSprop 8.00E-06 CE 16.149
200 100 5 320-...-256 RMSprop 1.20E-05 CE 92.236
200 100 5 320-...-256 RMSprop 1.00E-06 CE 28.538

SECOND STAGE
200 100 5 512-...-256 RMSprop 8.00E-06 RL 133.489
200 100 6 512-...-256 RMSprop 8.00E-06 RL 182.039
200 100 5 128-...-256 RMSprop 8.00E-06 RL 162.163
200 100 5 512-...-256 Adam 8.00E-06 RL 159.790
200 100 5 512-...-256 RMSprop 1.00E-06 RL 199.189

Table 3: MLP desync50 traces experimental results.
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B.3 MLP - Desynchronised (100 time units) traces results

FIRST STAGE
MLP Configuration (ASCAD Desync100)

Epochs Batch size Layers Neurons Optimizer LR LF MR averaged

200 100 6 200-...-256 RMSprop 1.00E-05 CE 214.750
200 100 6 200-...-256 ADAM 1.00E-05 CE 125.951

200 100 3 200-200-256 RMSprop 1.00E-05 CE 193.720
200 100 4 200-...-256 RMSprop 1.00E-05 CE 152.135
200 100 5 200-...-256 RMSprop 1.00E-05 CE 232.401
200 100 6 200-...-256 RMSprop 1.00E-05 CE 125.951
200 100 7 200-...-256 RMSprop 1.00E-05 CE 213.970
200 100 8 200-...-256 RMSprop 1.00E-05 CE 200.983

200 100 6 64-...-256 RMSprop 1.00E-05 CE 94.274
200 100 6 128-...-256 RMSprop 1.00E-05 CE 198.689
200 100 6 200-...-256 RMSprop 1.00E-05 CE 125.951
200 100 6 256-...256 RMSprop 1.00E-05 CE 129.061
200 100 6 320-...-256 RMSprop 1.00E-05 CE 146.483
200 100 6 512-...-256 RMSprop 1.00E-05 CE 232.666
200 100 6 L-S-L* RMSprop 1.00E-05 CE 101.198
200 100 6 S-L-S* RMSprop 1.00E-05 CE 191.677

200 100 6 320-...-256 RMSprop 1.00E-05 CE 143.628
200 100 6 320-...-256 ADAM 1.00E-05 CE 101.198
200 100 6 320-...-256 SGD 1.00E-05 CE 235.313
200 100 6 320-...-256 Adadelta 1.00E-05 CE 134.612
200 100 6 320-...-256 Adagrad 1.00E-05 CE 31.422

200 100 6 320-...-256 RMSprop 1.00E-03 CE 204.311
200 100 6 320-...-256 RMSprop 1.00E-04 CE 84.417
200 100 6 320-...-256 RMSprop 1.00E-05 CE 31.422
200 100 6 320-...-256 RMSprop 8.00E-06 CE 74.347
200 100 6 320-...-256 RMSprop 1.20E-05 CE 87.804
200 100 6 320-...-256 RMSprop 1.00E-06 CE 213.793

SECOND STAGE
200 100 6 L-S-L Adagrad 1.00E-05 RL 205.787
200 100 4 L-S-L Adagrad 1.00E-05 RL 24.064
200 100 6 200-...-256 Adagrad 1.00E-05 RL 43.900
200 100 6 L-S-L Adam 1.00E-05 RL 227.044
200 100 6 L-S-L Adagrad 8.00E-05 RL 184.200

Table 4: MLP desync100 traces experimental results.
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C Python scripts

C.1 ASCAD training.py
import os
os . env i ron [ ’TF CPP MIN LOG LEVEL ’ ] = ’ 3 ’
import os . path
import h5py
import numpy as np
import time
import random
import matp lo t l i b . pyplot as p l t
import t en so r f l ow as t f
from tk i n t e r import ∗
from keras . models import load model
from keras . models import Model , S equent i a l
from keras . l a y e r s import Flatten , Dense , Input , Conv1D , MaxPooling1D , AveragePooling1D ,

Act ivat ion
from keras import backend as K
from ten so r f l ow . keras . op t im i z e r s import RMSprop , Adam, SGD, Adadelta , Adagrad
from keras . c a l l b a c k s import ModelCheckpoint , Ear lyStopping
from ten so r f l ow . keras . u t i l s import t o c a t e g o r i c a l

c l a s s c o l o r :
PURPLE = ’ \033[95m’
CYAN = ’ \033[96m’
DARKCYAN = ’ \033[36m’
BLUE = ’ \033[94m’
GREEN = ’ \033[92m’
YELLOW = ’ \033[93m’
RED = ’ \033[91m’
BOLD = ’ \033 [1m’
UNDERLINE = ’ \033 [4m’
END = ’ \033 [0m’

c l a s s Logger ( ob j e c t ) :
de f i n i t ( s e l f , n ame f i l e ) :

s e l f . t e rmina l = sys . s tdout
s e l f . l og = open ( s t r ( name f i l e ) + ” . l og ” , ”a” )

de f wr i t e ( s e l f , message ) :
s e l f . t e rmina l . wr i t e ( message )
s e l f . l og . wr i t e ( message )

de f f l u s h ( s e l f ) :
# t h i s f l u s h method i s needed for python 3 compa t i b i l i t y .
# th i s handles the f l u s h command by doing nothing .
# you might want to s p e c i f y some extra behavior here .
pass

de f s h u f f l e d a t a ( p r o f i l i n g x , l a b e l y ) :
l = l i s t ( z ip ( p r o f i l i n g x , l a b e l y ) )
random . s h u f f l e ( l )
s hu f f l e d x , s h u f f l e d y = l i s t ( z ip (∗ l ) )
s h u f f l e d x = np . array ( s hu f f l e d x )
s hu f f l e d y = np . array ( s hu f f l e d y )
return ( s hu f f l e d x , s h u f f l e d y )

de f l o s s s c a ( s c o r e v e c t o r , a lpha va lue =10, nb c l a s s =256) :
# Rank l o s s func t i on
de f r a n k i n g l o s s s c a ( y true , y pred ) :

alpha = K. constant ( a lpha va lue , dtype=’ f l o a t 3 2 ’ )
# Batch s i z e i n i t i a l i z a t i o n
y t r u e i n t = K. ca s t ( y true , dtype=’ in t32 ’ )
batch s = K. ca s t (K. shape ( y t r u e i n t ) [ 0 ] , dtype=’ in t32 ’ )
# Indexing the t r a i n i n g s e t ( range va lue = (? , ) )
range va lue = K. arange (0 , batch s , dtype=’ in t64 ’ )
# Get rank and s c o r e s a s s o c i a t ed with the s e c r e t key ( rank sk = (? , ) )
v a l u e s t o pk l o g i t s , i n d i c e s t o p k l o g i t s = t f . nn . top k ( s c o r e v e c t o r , k=nb c la s s ,

s o r t ed=True ) # va l u e s t o p k l o g i t s = shape (? , nb c l a s s ) ; i n d i c e s t o p k l o g i t s
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= shape (? , nb c l a s s )
rank sk = t f . where ( t f . equal (K. ca s t ( i n d i c e s t o p k l o g i t s , dtype=’ in t64 ’ ) , t f .

reshape (K. argmax ( y t r u e i n t ) , [ t f . shape (K. argmax ( y t r u e i n t ) ) [ 0 ] , 1 ] ) ) ) [ : , 1 ]
+ 1 # Index o f the c o r r e c t output among a l l the hypotheses ( shape ( ? , ) )

s c o r e s k = t f . gather nd ( v a l u e s t o pk l o g i t s , K. concatenate ( [ t f . reshape ( range va lue
, [ t f . shape ( v a l u e s t o p k l o g i t s ) [ 0 ] , 1 ] ) , t f . reshape ( rank sk − 1 , [ t f . shape (
rank sk ) [ 0 ] , 1 ] ) ] ) ) # Score o f the s e c r e t key ( shape ( ? , ) )

# Ranking Loss I n i t i a l i z a t i o n
l o s s r ank = 0
for i in range ( nb c l a s s ) :

# Score for each key hypothes i s ( s i s h ap e =(? ,) )
s i = t f . gather nd ( v a l u e s t o pk l o g i t s , K. concatenate ( [ t f . reshape ( range va lue ,

[ t f . shape ( v a l u e s t o p k l o g i t s ) [ 0 ] , 1 ] ) , i ∗ t f . ones ( [ t f . shape (
v a l u e s t o p k l o g i t s ) [ 0 ] , 1 ] , dtype=’ in t64 ’ ) ] ) )

# Ind i c a t o r func t i on i d e n t i f y i n g when ( i == s e c r e t key )
i n d i c a t o r f u n c t i o n = t f . ones ( batch s ) − (K. ca s t (K. equal ( rank sk − 1 , i ) ,

dtype=’ f l o a t 3 2 ’ ) ∗ t f . ones ( batch s ) )
# Log i s t i c l o s s computation
l o g i s t i c l o s s = K. log (1 + K. exp(− alpha ∗ ( s c o r e s k − s i ) ) ) / K. l og ( 2 . 0 )
# Ranking Loss computation
l o s s r ank = t f . reduce sum ( ( i n d i c a t o r f u n c t i o n ∗ l o g i s t i c l o s s ) ) + l o s s r ank

return l o s s r a nk / (K. ca s t ( batch s , dtype=’ f l o a t 3 2 ’ ) )
# Return the ranking l o s s func t i on
return r a n k i n g l o s s s c a

#### Training model
de f t r a i n mode l r ank i n g l o s s ( X pro f i l i n g , Y p ro f i l i n g , X test , Y test , model ,

s ave f i l e name , epochs , ba t ch s i z e , max lr , FGE boolean , metr ic ) :
# Save model every epoch
save model = ModelCheckpoint ( s av e f i l e n ame )
c a l l b a ck s =[ save model ]
p r i n t ( ”\nYour de f ined model i s : ” )
model . summary ( )
p r i n t ( ”\nTraining in 3 , 2 , 1 . . . \ n” )
# Get the input l ay e r shape
i npu t l ay e r shape = model . g e t l a y e r ( index=0) . input shape
Reshaped X pro f i l ing , Reshaped X test = X p r o f i l i n g . reshape ( ( X p r o f i l i n g . shape [ 0 ] ,

X p r o f i l i n g . shape [ 1 ] ) ) , X tes t . reshape ( ( X tes t . shape [ 0 ] , X tes t . shape [ 1 ] ) )
h i s t o r y = model . f i t ( x=Reshaped X pro f i l ing , y=t o c a t e g o r i c a l ( Y pro f i l i n g , num classes

=256) , b a t ch s i z e=bat ch s i z e , epochs=epochs , verbose=1, c a l l b a c k s=ca l l back s ,
v a l i d a t i on da t a=(Reshaped X test , t o c a t e g o r i c a l ( Y test , num classes=256) ) )

p l o t me t r i c s ( h i s to ry , ” accuracy ” , s av e f i l e n ame )
p l o t me t r i c s ( h i s to ry , ” l o s s ” , s av e f i l e n ame )
return h i s t o r y

# Checking for Sanity a l l path route s introduced
de f c h e c k f i l e e x i s t s ( f i l e p a t h ) :

f i l e p a t h = os . path . normpath ( f i l e p a t h )
i f os . path . e x i s t s ( f i l e p a t h ) == False :

p r i n t ( ”Error : provided f i l e path ’%s ’ does not e x i s t ! ” % f i l e p a t h )
sys . e x i t (−1)

return

# MLP Conf igurat ion model (X l a y e r s o f Y un i t s ) (ADAM, RMSprop or SGD) ( Cross−entropy ,
Ranking Loss , Fast Guess Entropy )

de f mlp con f ig ( t ra in ing mode l , l o s s f un c t i onop t i on , input dim=700) :
model = Sequent i a l ( )
p r i n t ( ”\n>>> How many neurons do you want to use in input l ay e r ?” )
input node = int ( input ( ) )
p r i n t ( ”\n>>> How many hidden l a y e r s do you want to use ?” )
l aye r nb = int ( input ( ) )
p r i n t ( ”\n>>> How many neurons do you want to use in hidden l a y e r s ?\n1 : Large−Small−

Large (256−128−64−64−128−256 or 256−128−64−128−256)\n2 : Small−Large−Small
(256−512−1024−1024−512−256 or 256−512−1024−512−256)” )

node = input ( )
node s t r = node
model . add (Dense ( input node , input dim=input dim , a c t i v a t i o n=’ r e l u ’ ) )
i f node == ”1” :

i f l aye r nb == 3 :
p r i n t ( ”Creat ing model L−S−L with 5 hidden l a y e r s . . . ” )
node = 256
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node s t r = ”L−S−L”
model . add (Dense ( node /2 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense ( node /4 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense ( node /2 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense (256 , a c t i v a t i o n=’ softmax ’ ) )

else :
p r i n t ( ”Creat ing model L−S−L with 6 hidden l a y e r s . . . ” )
node = 256
node s t r = ”L−S−L”
model . add (Dense ( node /2 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense ( node /4 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense ( node /4 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense ( node /2 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense (256 , a c t i v a t i o n=’ softmax ’ ) )

e l i f node == ”2” :
i f l aye r nb == 3 :

p r i n t ( ”Creat ing model S−L−S with 5 hidden l a y e r s . . . ” )
node = 256
node s t r = ”S−L−S”
model . add (Dense ( node ∗2 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense ( node ∗4 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense ( node ∗2 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense (256 , a c t i v a t i o n=’ softmax ’ ) )

else :
p r i n t ( ”Creat ing model S−L−S with 6 hidden l a y e r s . . . ” )
node = 256
node s t r = ”S−L−S”
model . add (Dense ( node ∗2 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense ( node ∗4 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense ( node ∗4 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense ( node ∗2 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense (256 , a c t i v a t i o n=’ softmax ’ ) )

else :
for i in range ( l aye r nb ) :

model . add (Dense ( node , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense (256 , a c t i v a t i o n=’ softmax ’ ) )

p r i n t ( ”\n>>> What opt imize r do you want to use ?\n1 : ADAM\n2 : RMSprop\n3 : SGD\n4 :
Adadelta\n5 : Adagrad” )

opt imize r = input ( )
p r i n t ( ”\n>>> What l e a rn i ng ra t e do you want to d e f i n e ?” )
l r = f loat ( input ( ) )
opt imizer aux = ””
i f opt imize r == ”1” :

opt imize r = Adam( l e a r n i n g r a t e=l r )
opt imizer aux = ”ADAM”

e l i f opt imize r == ”2” :
opt imize r = RMSprop( l e a r n i n g r a t e=l r )
opt imizer aux = ”RMSprop”

e l i f opt imize r == ”3” :
opt imize r = SGD( l e a r n i n g r a t e=l r )
opt imizer aux = ”SGD”

e l i f opt imize r == ”4” :
opt imize r = Adadelta ( l e a r n i n g r a t e=l r )
opt imizer aux = ”ADADELTA”

e l i f opt imize r == ”5” :
opt imize r = Adagrad ( l e a r n i n g r a t e=l r )
opt imizer aux = ”ADAGRAD”

else :
p r i n t ( ”ERROR: Optimizer doesn ’ t e x i s t . ” )

i f l o s s f u n c t i o n op t i o n == False :
p r i n t ( ”\n>>> What metr ic do you want to use f o r check ing the model l e a rn i ng ? (

Please , s e l e c t GE i f do you want execute FGE) \n1 : Accuracy\n2 : Guess−Entropy”
)

model metr ic = int ( input ( ) )
else :

model metr ic = 1
t ra in ing mode l += s t r ( l aye r nb + 2) + ” l a y e r s ” + s t r ( node s t r ) + ” neurons ” + s t r (

opt imizer aux ) + ” ” + s t r (
l r ) + ” ”

i f l o s s f u n c t i o n op t i o n == False :
i f model metr ic == 1 :
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pr in t ( ”>>> S e l e c t i n g accuracy such as t r a i n i n g and va l i d a t i o n phase metr ic . . .
” )

model . compi le ( l o s s=’ c a t e g o r i c a l c r o s s e n t r o p y ’ , opt imize r=opt imizer , met r i c s =[
’ accuracy ’ ] )

t r a in ing mode l += ” cro s s en t ropy accuracy ”
else :

p r i n t ( ”>>> S e l e c t i n g gues s ent ropy such as t r a i n i n g and va l i d a t i o n phase
metr ic . . . ” )

model . compi le ( l o s s=’ c a t e g o r i c a l c r o s s e n t r o p y ’ , opt imize r=opt imizer , met r i c s =[
gues s ent ropy ] , r un eage r l y=True )

t ra in ing mode l += ” cro s s en t ropy gue s s en t ropy ”
e l i f l o s s f un c t i o n op t i o n == True :

s c o r e l a y e r = model . l a y e r s [ l aye r nb +1] . output
p r i n t ( ”\n>>> What alpha value do you want to use f o r Ranking Loss func t i on ?” )
a lpha va lue = f loat ( input ( ) )
i f model metr ic == 1 :

p r i n t ( ”>>> S e l e c t i n g accuracy such as t r a i n i n g and va l i d a t i o n phase metr ic . . .
” )

model . compi le ( l o s s=l o s s s c a ( s c o r e l a y e r , nb c l a s s =256 , a lpha va lue=
a lpha va lue ) , opt imize r=opt imizer , met r i c s=[ ’ accuracy ’ ] )

t r a in ing mode l += ” rank i ng l o s s c r o s s en t r opy a c cu r a cy ”
else :

p r i n t ( ”ERROR: Loss func t i on doesn ’ t e x i s t . ” )
t ra in ing mode l = t ra in ing mode l +” . h5”
return model , t ra in ing mode l , l r , model metr ic

# CNN Conf igurat ion model (ADAM or RMSprop) ( Cross−entropy , Ranking Loss , Fast Guess
Entropy )

de f cnn con f i g ( t ra in ing mode l , l o s s f un c t i onop t i on , c l a s s e s =256 , input dim=700) :
p r i n t ( ”\n>>> How many #ConvBlocks do you want to use ?” )
convBlocks = int ( input ( ) )
p r i n t ( ”\n>>> How many #ConvLayers do you want to use ?” )
convLayers = int ( input ( ) )
p r i n t ( ”\n>>> How many F i l t e r s per Block do you want to use ? (Format :

64 ,128 ,256 ,512 ,512) ” )
f i l t e r sP e rB l o c k = input ( )
f i l t e r sP e rB l o c k = f i l t e r sP e rB l o c k . s p l i t ( ” , ” )
for i in range ( l en ( f i l t e r sP e rB l o c k ) ) :

f i l t e r sP e rB l o c k [ i ] = int ( f i l t e r sP e rB l o c k [ i ] )
p r i n t ( ”\n>>> What i s the s i z e o f the Kernel ( same f o r padding ) ?” )
k e r n e l S i z e = int ( input ( ) )
padding = ke rn e l S i z e
p r i n t ( ”\n>>> What type o f Pool ing Layers do you want to use ??\n1 . Average Pool ing \n2 .

Max Pool ing ” )
opt ionPoo l ing = int ( input ( ) )
input shape = ( input dim , 1 )
img input = Input ( shape=input shape )
for i in range ( convBlocks ) :
# Block n

for j in range ( convLayers ) :
x = Conv1D( f i l t e r sP e rB l o c k [ i ] , k e rne lS i z e , a c t i v a t i o n=’ r e l u ’ , padding=’ same ’ ,

name=’ block ’+s t r ( i +1)+’ conv ’+s t r ( j +1) ) ( img input )
i f opt ionPoo l ing == 1 :

x = AveragePooling1D (2 , s t r i d e s =2, name=’ block ’+s t r ( i +1)+’ poo l ’ ) ( x )
e l i f opt ionPoo l ing == 2 :

x = MaxPooling1D (2 , s t r i d e s =2, name=’ block ’+s t r ( i +1)+’ poo l ’ ) ( x )
# C l a s s i f i c a t i o n block
x = Flatten (name=’ f l a t t e n ’ ) ( x )
x = Dense (4096 , a c t i v a t i o n=’ r e l u ’ , name=’ f c 1 ’ ) ( x )
x = Dense (4096 , a c t i v a t i o n=’ r e l u ’ , name=’ f c 2 ’ ) ( x )
x = Dense ( c l a s s e s , a c t i v a t i o n=’ softmax ’ , name=’ p r e d i c t i o n s ’ ) ( x )
inputs = img input
# Creat ing the model . . .
model = Model ( inputs , x , name=’ cnn con f i g ’ )
#Choosing the opt imize r (ADAM, RMSprop or SGD) and the l e a rn i ng ra t e
p r i n t ( ”\n>>> What opt imize r do you want to use ?\n1 : ADAM\n2 : RMSprop\n3 : SGD” )
opt imize r = input ( )
p r i n t ( ”\n>>> What l e a rn i ng ra t e do you want to use ?” )
l r = f loat ( input ( ) )
opt imizer aux = ””
i f opt imize r == ”1” :
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opt imize r = Adam( l e a r n i n g r a t e=l r )
opt imizer aux = ”ADAM”

e l i f opt imize r == ”2” :
opt imize r = RMSprop( l e a r n i n g r a t e=l r )
opt imizer aux = ”RMSprop”

e l i f opt imize r == ”3” :
opt imize r = SGD( l e a r n i n g r a t e=l r )
opt imizer aux = ”SGD”

else :
p r i n t ( ”ERROR: Optimizer doesn ’ t e x i s t . ” )

#Choosing the l o s s func t i on ( Cross−Entropy or Ranking Loss )
i f l o s s f u n c t i o n op t i o n == False :

p r i n t ( ”\n>>> What metr ic do you want to use f o r check ing the model l e a rn i ng ? (
Please , s e l e c t GE i f do you want execute FGE) \n1 : Accuracy\n2 : Guess−Entropy”
)

model metr ic = int ( input ( ) )
else :

model metr ic = 1
i f l o s s f u n c t i o n op t i o n == False :

i f model metr ic == 1 :
p r i n t ( ”>>> S e l e c t i n g accuracy such as t r a i n i n g and va l i d a t i o n phase metr ic . . .

” )
model . compi le ( l o s s=’ c a t e g o r i c a l c r o s s e n t r o p y ’ , opt imize r=opt imizer , met r i c s =[

’ accuracy ’ ] )
else :

p r i n t ( ”>>> S e l e c t i n g gues s ent ropy such as t r a i n i n g and va l i d a t i o n phase
metr ic . . . ” )

model . compi le ( l o s s=’ c a t e g o r i c a l c r o s s e n t r o p y ’ , opt imize r=opt imizer , met r i c s =[
gues s ent ropy ] )

e l i f l o s s f un c t i o n op t i o n == True :
p r i n t ( ”\n>>> What alpha value do you want to use f o r Ranking Loss func t i on ?” )
a lpha va lue = f loat ( input ( ) )
s c o r e l a y e r = Dense ( c l a s s e s , a c t i v a t i o n=None , name=’ s co r e ’ ) ( x )
p r e d i c t i o n s = Act ivat ion ( ’ softmax ’ ) ( s c o r e l a y e r )
p r i n t ( ”>>> S e l e c t i n g accuracy such as t r a i n i n g and va l i d a t i o n phase metr ic . . . ” )
model . compi le ( l o s s=l o s s s c a ( s c o r e l a y e r , nb c l a s s =256 , a lpha va lue=a lpha va lue ) ,

opt imize r=opt imizer , met r i c s =[ ’ accuracy ’ ] )
else :

p r i n t ( ”ERROR: Loss func t i on doesn ’ t e x i s t . ” )
t ra in ing mode l += s t r ( convBlocks )+” convBlocks ”+s t r ( convLayers )+” convLayers ”+s t r (

f i l t e r sP e rB l o c k )+” f i l t e r s ”+s t r ( k e r n e l S i z e )+” k e r n e l ”+s t r ( opt imize r aux )+” ”+s t r (
l r )+” . h5”

return model , t ra in ing mode l , l r , model metr ic

de f p l o t me t r i c s ( h i s t o r y t r a i n i n g da t a , metric , save name ) : #Metr ics : ’ accuracy ’ , ’ l o s s ’ ,
’ va l a c curacy ’ , ’ v a l l o s s ’

i f metr ic == ”accuracy ” :
p l t . p l o t ( h i s t o r y t r a i n i n g d a t a . h i s t o r y [ ’ accuracy ’ ] )
p l t . p l o t ( h i s t o r y t r a i n i n g d a t a . h i s t o r y [ ’ va l a c curacy ’ ] )
p l t . t i t l e ( ’Model accuracy ’ )
p l t . y l ab e l ( ’ Accuracy ’ )
p l t . x l ab e l ( ’ Epoch ’ )
p l t . l egend ( [ ’ Tra in ing ’ , ’ Va l idat i on ’ ] , l o c=’ upper l e f t ’ )
s a v e f i l e = ” a c cu r a c y me t r i c s o f ” + s t r ( save name ) + ” . png”
p l t . s a v e f i g ( s a v e f i l e )
p l t . show ( )

e l i f metr ic == ” l o s s ” :
p l t . p l o t ( h i s t o r y t r a i n i n g d a t a . h i s t o r y [ ’ l o s s ’ ] )
p l t . p l o t ( h i s t o r y t r a i n i n g d a t a . h i s t o r y [ ’ v a l l o s s ’ ] )
p l t . t i t l e ( ’Model l o s s ’ )
p l t . y l ab e l ( ’ Loss ’ )
p l t . x l ab e l ( ’ Epoch ’ )
p l t . l egend ( [ ’ Tra in ing ’ , ’ Va l idat i on ’ ] , l o c=’ upper l e f t ’ )
s a v e f i l e = ” l o s s m e t r i c s o f ” + s t r ( save name ) + ” . png”
p l t . s a v e f i g ( s a v e f i l e )
p l t . show ( )

e l i f metr ic == ” gues s ent ropy ” :
p l t . p l o t ( h i s t o r y t r a i n i n g d a t a . h i s t o r y [ ’ gues s ent ropy ’ ] )
p l t . p l o t ( h i s t o r y t r a i n i n g d a t a . h i s t o r y [ ’ v a l gue s s en t r opy ’ ] )
p l t . t i t l e ( ’Model f o r Custom Guess Entropy Metric ’ )
p l t . y l ab e l ( ’ Guess entropy ’ )
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p l t . x l ab e l ( ’ Epoch ’ )
p l t . l egend ( [ ’ Tra in ing ’ , ’ Va l idat i on ’ ] , l o c=’ upper l e f t ’ )
s a v e f i l e = ” gu e s s e n t r opy me t r i c s o f ” + s t r ( save name ) + ” . png”
p l t . s a v e f i g ( s a v e f i l e )
p l t . show ( )

de f l oad sca mode l ( mod e l f i l e ) :
c h e c k f i l e e x i s t s ( mod e l f i l e )
t ry :

model = load model ( mod e l f i l e )
except :

p r i n t ( ”Error : can ’ t load Keras model f i l e ’%s ’ ” % mod e l f i l e )
sys . e x i t (−1)

return model

de f l oad ascad ( a s c ad da t aba s e f i l e , load metadata ) :
c h e c k f i l e e x i s t s ( a s c a d d a t a b a s e f i l e )
# Open the ASCAD database HDF5 for read ing
try :

i n f i l e = h5py . F i l e ( a s c ad da t aba s e f i l e , ” r ” )
except :

p r i n t ( ”Error : can ’ t open HDF5 f i l e ’%s ’ f o r read ing ( i t might be malformed ) . . . ”
% a s c a d d a t a b a s e f i l e )

sys . e x i t (−1)
# Load p r o f i l i n g t r a c e s
X p r o f i l i n g = np . array ( i n f i l e [ ’ P r o f i l i n g t r a c e s / t r a c e s ’ ] , dtype=np . f l o a t 6 4 )
# Load p r o f i l i n g l a b e l s
Y p r o f i l i n g = np . array ( i n f i l e [ ’ P r o f i l i n g t r a c e s / l a b e l s ’ ] )
# Load at tack ing t r a c e s
X attack = np . array ( i n f i l e [ ’ At tack t race s / t r a c e s ’ ] , dtype=np . f l o a t 6 4 )
# Load at tack ing l a b e l s
Y attack = np . array ( i n f i l e [ ’ At tack t race s / l a b e l s ’ ] )
i f load metadata == False :

return ( X pro f i l i n g , Y p r o f i l i n g ) , ( X attack , Y attack )
else :

return ( X pro f i l i n g , Y p r o f i l i n g ) , ( X attack , Y attack ) , ( i n f i l e [ ’
P r o f i l i n g t r a c e s /metadata ’ ] , i n f i l e [ ’ At tack t race s /metadata ’ ] )

de f t ra in mode l ( X pro f i l i n g , Y p ro f i l i n g , model , s ave f i l e name , epochs , ba t ch s i z e ,
mu l t i l abe l , v a l i d a t i o n s p l i t , FGE boolean , metr ic ) :
c h e c k f i l e e x i s t s ( os . path . dirname ( s av e f i l e n ame ) )
save model = ModelCheckpoint ( s av e f i l e n ame )
c a l l b a ck s =[ save model ]
e a r l y s t opp i ng = 0
pr in t ( ”\n>>> Do you want to use e a r l y s t opp i ng techn ique ? :\ n1 : Yes\n2 : No” )
e a r l y s t opp i ng = int ( input ( ) )
i f e a r l y s t opp i ng == 1 :

i f FGE boolean == False :
i f metr ic == 1 :

moni tor opt ion = ’ accuracy ’
p r i n t ( ”>>> Accuracy has been s e l e c t e d as e a r l y s t opp i ng monitor ” )

else :
moni tor opt ion = gues s ent ropy
pr in t ( ”>>> Guess Entropy has been s e l e c t e d as e a r l y s t opp i ng monitor ” )

else :
moni tor opt ion = gues s ent ropy
pr in t ( ”>>> Guess Entropy has been s e l e c t e d as e a r l y s t opp i ng monitor ” )

p r i n t ( ”\n>>> Introduce the ’ pa t i ence ’ ( number o f epoch f o r execut ing
e a r l y s t opp i ng ) : ” )

pa t i en c e op t i on = int ( input ( ) )
c a l l b a c k s . append ( EarlyStopping ( monitor=monitor opt ion , mode=”min” , pa t i ence=

pat i ence opt i on , verbose=1, r e s t o r e b e s t w e i g h t s=True ) )
p r i n t ( ”\nYour de f ined model i s : ” )
model . summary ( )
p r i n t ( ”\nTraining in 3 , 2 , 1 . . . \ n” )
# Get the input l ay e r shape
i f i s i n s t a n c e (model . g e t l a y e r ( index=0) . input shape , l i s t ) :

i npu t l ay e r shape = model . g e t l a y e r ( index=0) . input shape [ 0 ]
else :

i npu t l ay e r shape = model . g e t l a y e r ( index=0) . input shape
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# Sanity check
i f i npu t l ay e r shape [ 1 ] != l en ( X p r o f i l i n g [ 0 ] ) :

p r i n t ( ”Error : model input shape %d in s t ead o f %d i s not expected . . . ” % (
i npu t l ay e r shape [ 1 ] , l en ( X p r o f i l i n g [ 0 ] ) ) )

sys . e x i t (−1)
# Adapt the data shape accord ing our model input
i f l en ( i npu t l ay e r shape ) == 2 :

# This i s a MLP
Reshaped X pro f i l i ng = X p r o f i l i n g

e l i f l en ( i npu t l ay e r shape ) == 3 :
# This i s a CNN: expand the dimensions
Reshaped X pro f i l i ng = X p r o f i l i n g . reshape ( ( X p r o f i l i n g . shape [ 0 ] , X p r o f i l i n g .

shape [ 1 ] , 1) )
else :

p r i n t ( ”Error : model input shape l ength %d i s not expected . . . ” % len (
i npu t l ay e r shape ) )

sys . e x i t (−1)
i f ( mu l t i l a b e l==1) :

y=mu l t i l a b e l t o c a t e g o r i c a l ( Y p r o f i l i n g )
e l i f ( mu l t i l a b e l==2) :

y=mu l t i l a b e l w i t h ou t p e rm ind t o c a t e g o r i c a l ( Y p r o f i l i n g )
else :

y=t o c a t e g o r i c a l ( Y pro f i l i n g , num classes=256)
s t a r t = time . time ( )
h i s t o r y = model . f i t ( x=Reshaped X pro f i l ing , y=y , b a t ch s i z e=bat ch s i z e , verbose = 1 ,

v a l i d a t i o n s p l i t=v a l i d a t i o n s p l i t , epochs=epochs , c a l l b a c k s=ca l l b a ck s )
end = time . time ( )
t o t a l t ime = end−s t a r t
p r i n t ( ”\nTotal time execut ion f o r t r a i n i n g phase : ” + s t r ( t o t a l t ime ) [ 0 : 8 ] + ” s . ” )
p l o t me t r i c s ( h i s to ry , ” l o s s ” , s av e f i l e n ame )
i f metr ic == 1 :

p l o t me t r i c s ( h i s to ry , ” accuracy ” , s av e f i l e n ame )
else :

p l o t me t r i c s ( h i s to ry , ” gues s ent ropy ” , s av e f i l e n ame )
return h i s t o r y

de f gues s ent ropy ( y true , y pred ) : #MORE QUICKLY
index = 0
p r obab i l i t y = 0
rank = 0
ranking = [ ]
y t rue = K. ge t va lu e ( y t rue )
y pred = K. ge t va lu e ( y pred )
for i in range ( y pred . shape [ 0 ] ) : #Batch s i z e

index = np . where ( y t rue [ i ] == 1)
p r obab i l i t y = y pred [ i ] [ index [ 0 ] [ 0 ] ]
#Save po int . . . l e t s continue
y pred [ i ] = np . s o r t ( y pred [ i ] )
y pred [ i ] = y pred [ i ] [ : : − 1 ]
rank = np . where ( y pred [ i ] == p robab i l i t y )
#pr in t ( s t r ( index [ 0 ] [ 0 ] ) + ” , ” + s t r ( rank [ 0 ] [ 0 ] ) )
ranking . append ( rank [ 0 ] [ 0 ] )

ranking = np . array ( ranking )
rank ing average = np . sum( ranking ) / y pred . shape [ 0 ]
return rank ing average

de f main ( r ank ing l o s s op t i on ) :
#To de f i n e the datase t
p r i n t ( ”\n>>> What type o f ASCAD t r a c e s do you want to load ?\n1 : Synchronised \n2 :

Desynchronised (50 time un i t s ) \n3 : Desynchronised (100 time un i t s ) ” )
database = int ( input ( ) )
i f database == 1 : ascad database = ”ASCAD. h5”
e l i f database == 2 : ascad database = ”ASCAD desync50 . h5”
e l i f database ==3: ascad database = ”ASCAD desync100 . h5”
p r in t ( ”∗∗∗ 50 .000 t r a c e s has been loaded ∗∗∗” )
#To de f i n e the t r a i n i n g and va l i d a t i o n t r a c e s
FGE boolean = False
i f r ank ing l o s s op t i on == False :

p r i n t ( ”\n>>> Do you want to use Fast Guess Entropy ?\n>>> I f you dec ide FGE, I
need to modify the t r a i n i n g t r a c e s to 98% and 2% f o r v a l i d a t i o n . . . \ n1 : Yes\n2
: No” )
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opt ion = int ( input ( ) )
i f opt ion == 2 :

p r i n t ( ”\n>>> Introduce the percentage (%) o f t r a c e s f o r t r a i n i n g : ” )
p e r c en t a g e t r a i n i n g = int ( input ( ) )
p r i n t ( ”\n>>> Introduce the percentage (%) o f t r a c e s f o r v a l i d a t i o n : ” )
p e r c en t a g e va l i d a t i on = int ( input ( ) )
t r a i n i n g t r a c e s = int ( ( p e r c en t a g e t r a i n i n g /100) ∗ 50000)
v a l i d a t i o n t r a c e s = int ( ( p e r c en t a g e va l i d a t i on /100) ∗ 50000)
p r i n t ( ” Sp l i t r e s u l t s : ” + s t r ( t r a i n i n g t r a c e s ) + ” t r a i n i n g t r a c e s and ” +

s t r ( v a l i d a t i o n t r a c e s ) + ” va l i d a t i o n t r a c e s . ” )
i f ( p e r c en t a g e t r a i n i n g+pe r c en t ag e va l i d a t i on ) != 100 :

p r i n t ( ”ERROR. The percentages are i n c o r r e c t . Adjust ing percentage f o r
t r a i n i g 80% and 20% f o r v a l i d a t i o n . . . ” )

p e r c en t a g e t r a i n i n g = 80
pe r c en t a g e va l i d a t i on = 20
t r a i n i n g t r a c e s = int ( ( p e r c en t a g e t r a i n i n g / 100) ∗ 50000)
v a l i d a t i o n t r a c e s = int ( ( p e r c en t a g e va l i d a t i on / 100) ∗ 50000)
p r i n t ( ” Sp l i t r e s u l t s : ” + s t r ( t r a i n i n g t r a c e s ) + ” t r a i n i n g t r a c e s and ”

+ s t r ( v a l i d a t i o n t r a c e s ) + ” va l i d a t i o n t r a c e s . ” )
else :

p r i n t ( ”Adjust ing percentage f o r t r a i n i n g 98% and 2% f o r v a l i d a t i o n . . . ” )
p e r c en t a g e t r a i n i n g = 98
pe r c en t a g e va l i d a t i on = 2
t r a i n i n g t r a c e s = int ( ( p e r c en t a g e t r a i n i n g /100) ∗ 50000)
v a l i d a t i o n t r a c e s = int ( ( p e r c en t a g e va l i d a t i on /100) ∗ 50000)
p r i n t ( ” Sp l i t r e s u l t s : ” + s t r ( t r a i n i n g t r a c e s ) + ” t r a i n i n g t r a c e s and ” +

s t r ( v a l i d a t i o n t r a c e s ) + ” va l i d a t i o n t r a c e s . ” )
FGE boolean = True

else :
p r i n t ( ”\n>>> Introduce the percentage (%) o f t r a c e s f o r t r a i n i n g : ” )
p e r c en t a g e t r a i n i n g = int ( input ( ) )
p r i n t ( ”\n>>> Introduce the percentage (%) o f t r a c e s f o r v a l i d a t i o n : ” )
p e r c en t a g e va l i d a t i on = int ( input ( ) )
t r a i n i n g t r a c e s = int ( ( p e r c en t a g e t r a i n i n g / 100) ∗ 50000)
v a l i d a t i o n t r a c e s = int ( ( p e r c en t a g e va l i d a t i on / 100) ∗ 50000)
p r i n t ( ” Sp l i t r e s u l t s : ” + s t r ( t r a i n i n g t r a c e s ) + ” t r a i n i n g t r a c e s and ” + s t r (

v a l i d a t i o n t r a c e s ) + ” va l i d a t i o n t r a c e s . ” )
i f ( p e r c en t a g e t r a i n i n g + pe r c en t ag e va l i d a t i on ) != 100 :

p r i n t (
”ERROR. The percentages are i n c o r r e c t . Adjust ing percentage f o r t r a i n i g

80% and 20% f o r v a l i d a t i o n . . . ” )
p e r c en t a g e t r a i n i n g = 80
pe r c en t a g e va l i d a t i on = 20
t r a i n i n g t r a c e s = int ( ( p e r c en t a g e t r a i n i n g / 100) ∗ 50000)
v a l i d a t i o n t r a c e s = int ( ( p e r c en t a g e va l i d a t i on / 100) ∗ 50000)
p r i n t ( ” Sp l i t r e s u l t s : ” + s t r ( t r a i n i n g t r a c e s ) + ” t r a i n i n g t r a c e s and ” +

s t r (
v a l i d a t i o n t r a c e s ) + ” va l i d a t i o n t r a c e s . ” )

v a l i d a t i o n s p l i t = f loat ( p e r c en t a g e va l i d a t i on /100)
mu l t i l a b e l = 0
t r a i n l e n = 0
#To de f i n e the epochs and the ba t ch s i z e
p r i n t ( ”\n>>> Introduce the number o f epochs to t r a i n i n g the network : ” )
epochs = int ( input ( ) )
p r i n t ( ”\n>>> Introduce the batch s i z e to t r a i n i n g the network : ” )
b a t ch s i z e = int ( input ( ) )
#To de f i n e the ANN topology
p r in t ( ”\n>>> Do you want to use Multi−l a y e r Perceptron (MLP) or Convolut iona l Neural

Network (CNN) ? :\ n1 : MLP\n2 : CNN” )
network type = input ( )
i f network type == ”1” : network type = ”mlp”
e l i f network type == ”2” : network type = ”cnn”
else :

network type = ”mlp”
pr in t ( ”ERROR, d e f i n i n g MLP topology . . . \ n” )

#To de f i n e the t r a ined model name depends on the datase t loaded
i f database == 1 : t ra in ing mode l = ” t ra ined mode l ” + s t r ( network type ) + ” ” + s t r (

epochs ) + ” epochs ” + s t r ( b a t ch s i z e ) + ”batchsize FGE” + s t r ( FGE boolean )+ ” ”
e l i f database == 2 : t ra in ing mode l = ” tra ined mode l desync50 ” + s t r ( network type ) +

” ” + s t r ( epochs ) + ” epochs ” + s t r ( b a t ch s i z e ) + ”batchsize FGE” + s t r (
FGE boolean )+ ” ”
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e l i f database == 3 : t ra in ing mode l = ” tra ined mode l desync100 ” + s t r ( network type ) +
” ” + s t r ( epochs ) + ” epochs ” + s t r ( b a t ch s i z e ) + ”batchsize FGE” + s t r (

FGE boolean ) + ” ”
pr in t ( ”\n∗∗∗∗∗ Dataset ” + co l o r .BLUE + s t r ( ascad database ) + co l o r .END + ” loaded ,

network topology s e t to ” + co l o r .RED + s t r ( network type ) . upper ( ) + co l o r .END + ”
, epochs s e t to ” + co l o r .YELLOW + s t r ( epochs ) + co l o r .END + ” and batch s i z e
equal to ” + co l o r .YELLOW + s t r ( b a t ch s i z e ) + co l o r .END + ” . . . . ∗ ∗ ∗ ∗ ∗ ” )

#To de f i n e the model depends on the ranking l o s s opt ion
i f r ank ing l o s s op t i on == True :

( X pro f i l i n g , Y p r o f i l i n g ) , ( X attack , Y attack ) , ( p l t p r o f i l i n g , p l t a t t a c k ) =
load ascad ( ascad database , True )

X p r o f i l i n g = X p r o f i l i n g . astype ( ’ f l o a t 3 2 ’ )
i f ( network type == ”mlp” ) :

best model , t ra in ing mode l , l r , metr ic = mlp con f ig ( t ra in ing mode l , True ,
input dim=len ( X p r o f i l i n g [ 0 ] ) )

e l i f ( network type == ”cnn” ) :
best model , t ra in ing mode l , l r , metr ic = cnn con f i g ( t ra in ing mode l , True ,

256 , input dim=len ( X p r o f i l i n g [ 0 ] ) )
else : # d i sp l ay an e r r o r and abort

p r i n t ( ”Error : no topology found f o r network ’%s ’ . . . ” % network type )
sys . e x i t (−1) ;

else :
( X p ro f i l i n g , Y p r o f i l i n g ) , ( X attack , Y attack ) = load ascad ( ascad database ,

Fa l se )
i f ( network type == ”mlp” ) :

best model , t ra in ing mode l , l r , metr ic = mlp con f ig ( t ra in ing mode l , False ,
input dim=len ( X p r o f i l i n g [ 0 ] ) )

e l i f ( network type == ”cnn” ) :
best model , t ra in ing mode l , l r , metr ic = cnn con f i g ( t ra in ing mode l , False ,

256 , input dim=len ( X p r o f i l i n g [ 0 ] ) )
else : # d i sp l ay an e r r o r and abort

p r i n t ( ”Error : no topology found f o r network ’%s ’ . . . ” % network type )
sys . e x i t (−1) ;

# Training for Cross−entropy Loss Function
i f ( t r a i n l e n == 0 and t ra in ing mode l . count ( ” r ank i ng l o s s ” ) == 0) :

# load t r a c e s
( X pro f i l i n g , Y p r o f i l i n g ) , ( X attack , Y attack ) = load ascad ( ascad database ,

Fa l se )
t ra in mode l ( X pro f i l i n g , Y p ro f i l i n g , best model , t ra in ing mode l , epochs ,

ba t ch s i z e , mu l t i l abe l , v a l i d a t i o n s p l i t , FGE boolean , metr ic )
# Training for Ranking Loss Function
e l i f ( t ra in ing mode l . count ( ” r ank i ng l o s s ” ) == 1) :

t r a i n mode l r ank i n g l o s s ( X p r o f i l i n g [ : t r a i n i n g t r a c e s ] , Y p r o f i l i n g [ :
t r a i n i n g t r a c e s ] , X p r o f i l i n g [ t r a i n i n g t r a c e s : ] , Y p r o f i l i n g [ t r a i n i n g t r a c e s
: ] , best model , t ra in ing mode l , epochs , ba t ch s i z e , l r , FGE boolean , metr ic )

return t ra in ing mode l

C.2 ASCAD testing.py
import os
os . env i ron [ ’TF CPP MIN LOG LEVEL ’ ] = ’ 3 ’
import os . path
import h5py
import numpy as np
import matp lo t l i b . pyplot as p l t
import time
import met r i c s
from ASCAD training import l o s s s c a , gues s ent ropy
from tk i n t e r import ∗
from tk i n t e r . f i l e d i a l o g import askopenf i l ename
from keras . models import Sequent i a l
from keras . models import load model
from keras . l a y e r s import Dense

c l a s s c o l o r :
PURPLE = ’ \033[95m’
CYAN = ’ \033[96m’
DARKCYAN = ’ \033[36m’
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BLUE = ’ \033[94m’
GREEN = ’ \033[92m’
YELLOW = ’ \033[93m’
RED = ’ \033[91m’
BOLD = ’ \033 [1m’
UNDERLINE = ’ \033 [4m’
END = ’ \033 [0m’

# The AES SBox that we w i l l use to compute the rank
AES Sbox = np . array ( [

0x63 , 0x7C , 0x77 , 0x7B , 0xF2 , 0x6B , 0x6F , 0xC5 , 0x30 , 0x01 , 0x67 , 0x2B , 0xFE , 0
xD7 , 0xAB, 0x76 ,

0xCA, 0x82 , 0xC9 , 0x7D , 0xFA, 0x59 , 0x47 , 0xF0 , 0xAD, 0xD4 , 0xA2 , 0xAF, 0x9C , 0
xA4 , 0x72 , 0xC0 ,

0xB7 , 0xFD, 0x93 , 0x26 , 0x36 , 0x3F , 0xF7 , 0xCC, 0x34 , 0xA5 , 0xE5 , 0xF1 , 0x71 , 0
xD8 , 0x31 , 0x15 ,

0x04 , 0xC7 , 0x23 , 0xC3 , 0x18 , 0x96 , 0x05 , 0x9A , 0x07 , 0x12 , 0x80 , 0xE2 , 0xEB, 0
x27 , 0xB2 , 0x75 ,

0x09 , 0x83 , 0x2C , 0x1A , 0x1B , 0x6E , 0x5A , 0xA0 , 0x52 , 0x3B , 0xD6 , 0xB3 , 0x29 , 0
xE3 , 0x2F , 0x84 ,

0x53 , 0xD1 , 0x00 , 0xED, 0x20 , 0xFC, 0xB1 , 0x5B , 0x6A , 0xCB, 0xBE, 0x39 , 0x4A , 0
x4C , 0x58 , 0xCF,

0xD0 , 0xEF , 0xAA, 0xFB, 0x43 , 0x4D , 0x33 , 0x85 , 0x45 , 0xF9 , 0x02 , 0x7F , 0x50 , 0
x3C , 0x9F , 0xA8 ,

0x51 , 0xA3 , 0x40 , 0x8F , 0x92 , 0x9D , 0x38 , 0xF5 , 0xBC, 0xB6 , 0xDA, 0x21 , 0x10 , 0
xFF , 0xF3 , 0xD2 ,

0xCD, 0x0C , 0x13 , 0xEC, 0x5F , 0x97 , 0x44 , 0x17 , 0xC4 , 0xA7 , 0x7E , 0x3D , 0x64 , 0
x5D , 0x19 , 0x73 ,

0x60 , 0x81 , 0x4F , 0xDC, 0x22 , 0x2A , 0x90 , 0x88 , 0x46 , 0xEE, 0xB8 , 0x14 , 0xDE, 0
x5E , 0x0B , 0xDB,

0xE0 , 0x32 , 0x3A , 0x0A , 0x49 , 0x06 , 0x24 , 0x5C , 0xC2 , 0xD3 , 0xAC, 0x62 , 0x91 , 0
x95 , 0xE4 , 0x79 ,

0xE7 , 0xC8 , 0x37 , 0x6D , 0x8D , 0xD5 , 0x4E , 0xA9 , 0x6C , 0x56 , 0xF4 , 0xEA, 0x65 , 0
x7A , 0xAE, 0x08 ,

0xBA, 0x78 , 0x25 , 0x2E , 0x1C , 0xA6 , 0xB4 , 0xC6 , 0xE8 , 0xDD, 0x74 , 0x1F , 0x4B , 0
xBD, 0x8B , 0x8A ,

0x70 , 0x3E , 0xB5 , 0x66 , 0x48 , 0x03 , 0xF6 , 0x0E , 0x61 , 0x35 , 0x57 , 0xB9 , 0x86 , 0
xC1 , 0x1D , 0x9E ,

0xE1 , 0xF8 , 0x98 , 0x11 , 0x69 , 0xD9 , 0x8E , 0x94 , 0x9B , 0x1E , 0x87 , 0xE9 , 0xCE, 0
x55 , 0x28 , 0xDF,

0x8C , 0xA1 , 0x89 , 0x0D , 0xBF, 0xE6 , 0x42 , 0x68 , 0x41 , 0x99 , 0x2D , 0x0F , 0xB0 , 0
x54 , 0xBB, 0x16

] )

# Two Tables to p roce s s a f i e l d mu l tp l i c a t i on over GF(256) : a∗b = alog ( l og ( a ) + log (b)
mod 255)

l o g t a b l e =[ 0 , 0 , 25 , 1 , 50 , 2 , 26 , 198 , 75 , 199 , 27 , 104 , 51 , 238 , 223 , 3 ,
100 , 4 , 224 , 14 , 52 , 141 , 129 , 239 , 76 , 113 , 8 , 200 , 248 , 105 , 28 , 193 ,
125 , 194 , 29 , 181 , 249 , 185 , 39 , 106 , 77 , 228 , 166 , 114 , 154 , 201 , 9 , 120 ,
101 , 47 , 138 , 5 , 33 , 15 , 225 , 36 , 18 , 240 , 130 , 69 , 53 , 147 , 218 , 142 ,
150 , 143 , 219 , 189 , 54 , 208 , 206 , 148 , 19 , 92 , 210 , 241 , 64 , 70 , 131 , 56 ,
102 , 221 , 253 , 48 , 191 , 6 , 139 , 98 , 179 , 37 , 226 , 152 , 34 , 136 , 145 , 16 ,
126 , 110 , 72 , 195 , 163 , 182 , 30 , 66 , 58 , 107 , 40 , 84 , 250 , 133 , 61 , 186 ,
43 , 121 , 10 , 21 , 155 , 159 , 94 , 202 , 78 , 212 , 172 , 229 , 243 , 115 , 167 , 87 ,
175 , 88 , 168 , 80 , 244 , 234 , 214 , 116 , 79 , 174 , 233 , 213 , 231 , 230 , 173 , 232 ,
44 , 215 , 117 , 122 , 235 , 22 , 11 , 245 , 89 , 203 , 95 , 176 , 156 , 169 , 81 , 160 ,
127 , 12 , 246 , 111 , 23 , 196 , 73 , 236 , 216 , 67 , 31 , 45 , 164 , 118 , 123 , 183 ,
204 , 187 , 62 , 90 , 251 , 96 , 177 , 134 , 59 , 82 , 161 , 108 , 170 , 85 , 41 , 157 ,
151 , 178 , 135 , 144 , 97 , 190 , 220 , 252 , 188 , 149 , 207 , 205 , 55 , 63 , 91 , 209 ,
83 , 57 , 132 , 60 , 65 , 162 , 109 , 71 , 20 , 42 , 158 , 93 , 86 , 242 , 211 , 171 ,
68 , 17 , 146 , 217 , 35 , 32 , 46 , 137 , 180 , 124 , 184 , 38 , 119 , 153 , 227 , 165 ,
103 , 74 , 237 , 222 , 197 , 49 , 254 , 24 , 13 , 99 , 140 , 128 , 192 , 247 , 112 , 7 ]

a l o g t a b l e =[1 , 3 , 5 , 15 , 17 , 51 , 85 , 255 , 26 , 46 , 114 , 150 , 161 , 248 , 19 , 53 ,
95 , 225 , 56 , 72 , 216 , 115 , 149 , 164 , 247 , 2 , 6 , 10 , 30 , 34 , 102 , 170 ,
229 , 52 , 92 , 228 , 55 , 89 , 235 , 38 , 106 , 190 , 217 , 112 , 144 , 171 , 230 , 49 ,
83 , 245 , 4 , 12 , 20 , 60 , 68 , 204 , 79 , 209 , 104 , 184 , 211 , 110 , 178 , 205 ,
76 , 212 , 103 , 169 , 224 , 59 , 77 , 215 , 98 , 166 , 241 , 8 , 24 , 40 , 120 , 136 ,
131 , 158 , 185 , 208 , 107 , 189 , 220 , 127 , 129 , 152 , 179 , 206 , 73 , 219 , 118 , 154 ,
181 , 196 , 87 , 249 , 16 , 48 , 80 , 240 , 11 , 29 , 39 , 105 , 187 , 214 , 97 , 163 ,
254 , 25 , 43 , 125 , 135 , 146 , 173 , 236 , 47 , 113 , 147 , 174 , 233 , 32 , 96 , 160 ,
251 , 22 , 58 , 78 , 210 , 109 , 183 , 194 , 93 , 231 , 50 , 86 , 250 , 21 , 63 , 65 ,
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195 , 94 , 226 , 61 , 71 , 201 , 64 , 192 , 91 , 237 , 44 , 116 , 156 , 191 , 218 , 117 ,
159 , 186 , 213 , 100 , 172 , 239 , 42 , 126 , 130 , 157 , 188 , 223 , 122 , 142 , 137 , 128 ,
155 , 182 , 193 , 88 , 232 , 35 , 101 , 175 , 234 , 37 , 111 , 177 , 200 , 67 , 197 , 84 ,
252 , 31 , 33 , 99 , 165 , 244 , 7 , 9 , 27 , 45 , 119 , 153 , 176 , 203 , 70 , 202 ,
69 , 207 , 74 , 222 , 121 , 139 , 134 , 145 , 168 , 227 , 62 , 66 , 198 , 81 , 243 , 14 ,
18 , 54 , 90 , 238 , 41 , 123 , 141 , 140 , 143 , 138 , 133 , 148 , 167 , 242 , 13 , 23 ,
57 , 75 , 221 , 124 , 132 , 151 , 162 , 253 , 28 , 36 , 108 , 180 , 199 , 82 , 246 , 1 ]

# Mul t i p l i c a t i on func t i on in GF(2ˆ8)
de f multGF256 (a , b) :

i f ( a==0) or (b==0) : return 0
else : return a l o g t a b l e [ ( l o g t a b l e [ a]+ l o g t a b l e [ b ] ) %255]

# Checking for Sanity a l l path route s introduced
de f c h e c k f i l e e x i s t s ( f i l e p a t h ) :

f i l e p a t h = os . path . normpath ( f i l e p a t h )
i f os . path . e x i s t s ( f i l e p a t h ) == False :

p r i n t ( ”Error : provided f i l e path ’%s ’ does not e x i s t ! ” % f i l e p a t h )
sys . e x i t (−1)

return

de f l oad sca mode l ( mod e l f i l e ) :
c h e c k f i l e e x i s t s ( mod e l f i l e )
model = Sequent i a l ( )
model . add (Dense (200 , input dim=700 , a c t i v a t i o n=’ r e l u ’ ) )
model . add (Dense (256 , a c t i v a t i o n=’ softmax ’ ) )
s c o r e l a y e r = model . l a y e r s [ 1 ] . output
i f mode l f i l e . endswith ( ” r ank i ng l o s s . h5” ) : model = load model ( f i l e p a t h=mode l f i l e ,

cus tom objec t s={ ’ r a n k i n g l o s s s c a ’ : l o s s s c a ( s c o r e l a y e r ) })
else : model = load model ( f i l e p a t h= mode l f i l e , cus tom objec t s={ ’ gues s ent ropy ’ :

gues s ent ropy })
return model

# Compute the rank o f the r e a l key for a g ive s e t o f p r e d i c t i o n s
de f rank ( p r ed i c t i on s , metadata , r ea l key , min t race idx , max trace idx ,

l a s t k ey by t e s p roba , ta rge t byte , s imulated key ) :
# Compute the rank
i f l en ( l a s t k ey by t e s p r oba ) == 0 :

# I f t h i s i s the f i r s t rank we compute , i n i t i a l i z e a l l the e s t imate s to zero
key bytes proba = np . z e r o s (256)

else :
# This i s not the f i r s t rank we compute : we opt imize th ings by us ing the
# prev ious computations to save time !
key bytes proba = l a s t k ey by t e s p r oba

for p in range (0 , max trace idx−min t race idx ) :
# Go back from the c l a s s to the key byte . ’ 2 ’ i s the index o f the byte ( th i rd

byte ) o f i n t e r e s t .
p l a i n t e x t = metadata [ m in t rac e idx + p ] [ ’ p l a i n t e x t ’ ] [ t a r g e t by t e ]
key = metadata [ m in t rac e idx + p ] [ ’ key ’ ] [ t a r g e t by t e ]
for i in range (0 , 256) :

# Our candidate key byte p r obab i l i t y i s the sum of the p r e d i c t i o n s l o g s
i f ( s imulated key !=1) :

proba = p r ed i c t i o n s [ p ] [ AES Sbox [ p l a i n t e x t ˆ i ] ]
else :

proba = p r ed i c t i o n s [ p ] [ AES Sbox [ p l a i n t e x t ˆ key ˆ i ] ]
i f proba != 0 :

key bytes proba [ i ] += np . l og ( proba )
else :

# We do not want an − i n f here , put a very smal l e p s i l o n
# that co r r e spond i s to a power o f our min non zero proba
min proba pred i c t i on s = p r ed i c t i o n s [ p ] [ np . array ( p r e d i c t i o n s [ p ] ) != 0 ]
i f l en ( min proba pred i c t i on s ) == 0 :

p r i n t ( ”Error : got a p r ed i c t i o n with only z e r o e s . . . t h i s should not
happen ! ” )

sys . e x i t (−1)
min proba = min ( min proba pred i c t i on s )
key bytes proba [ i ] += np . l og ( min proba ∗∗2)

# Now we f i nd where our r e a l key candidate l i e s in the e s t imat i on .
# We do t h i s by s o r t i n g our e s t imate s and f i nd the rank in the so r t ed array .
so r t ed proba = np . array ( l i s t (map( lambda a : key bytes proba [ a ] , key bytes proba .

a r g s o r t ( ) [ : : − 1 ] ) ) )
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r e a l k ey r ank = np . where ( so r t ed proba == key bytes proba [ r e a l k e y ] ) [ 0 ] [ 0 ]
return ( r ea l key rank , key bytes proba )

de f f u l l r a n k s ( p r ed i c t i on s , dataset , metadata , min t race idx , max trace idx , rank step ,
ta rge t byte , s imulated key ) :
p r i n t ( ”>>> Computing rank f o r ta rge t ed byte { } . . . \ n” . format ( t a r g e t by t e ) )
# Real key byte value that we w i l l use . ’ 2 ’ i s the index o f the byte ( th i rd byte ) o f

i n t e r e s t .
i f ( s imulated key !=1) :

r e a l k e y = metadata [ 0 ] [ ’ key ’ ] [ t a r g e t by t e ]
else :

r e a l k e y = 0
# Check for over f l ow
i f max trace idx > datase t . shape [ 0 ] :

p r i n t ( ”Error : asked t r a c e index %d ove r f l ows the t o t a l t r a c e s number %d” % (
max trace idx , datase t . shape [ 0 ] ) )

sys . e x i t (−1)
index = np . arange ( min t rac e idx+rank step , max trace idx , rank s tep )
f r ank s = np . z e r o s ( ( l en ( index ) , 2) , dtype=np . u int32 )
key bytes proba = [ ]
for t , i in z ip ( index , range (0 , l en ( index ) ) ) :

r ea l key rank , key bytes proba = rank ( p r e d i c t i o n s [ t−rank s tep : t ] , metadata ,
r ea l key , t−rank step , t , key bytes proba , ta rge t byte , s imulated key )

f r ank s [ i ] = [ t − min trace idx , r e a l k ey r ank ]
return f r ank s

de f l oad ascad ( a s c ad da t aba s e f i l e , load metadata=False ) :
c h e c k f i l e e x i s t s ( a s c a d d a t a b a s e f i l e )
# Open the ASCAD database HDF5 for read ing
try : i n f i l e = h5py . F i l e ( a s c ad da t aba s e f i l e , ” r ” )
except :

p r i n t ( ”Error : can ’ t open HDF5 f i l e ’%s ’ f o r read ing ( i t might be malformed ) . . . ”
% a s c a d d a t a b a s e f i l e )

sys . e x i t (−1)
# Load p r o f i l i n g t r a c e s
X p r o f i l i n g = np . array ( i n f i l e [ ’ P r o f i l i n g t r a c e s / t r a c e s ’ ] , dtype=np . in t8 )
# Load p r o f i l i n g l a b e l s
Y p r o f i l i n g = np . array ( i n f i l e [ ’ P r o f i l i n g t r a c e s / l a b e l s ’ ] )
# Load at tack ing t r a c e s
X attack = np . array ( i n f i l e [ ’ At tack t race s / t r a c e s ’ ] , dtype=np . in t8 )
# Load at tack ing l a b e l s
Y attack = np . array ( i n f i l e [ ’ At tack t race s / l a b e l s ’ ] )
i f load metadata == False : return ( X pro f i l i n g , Y p r o f i l i n g ) , ( X attack , Y attack )
else : return ( X pro f i l i n g , Y p r o f i l i n g ) , ( X attack , Y attack ) , ( i n f i l e [ ’

P r o f i l i n g t r a c e s /metadata ’ ] , i n f i l e [ ’ At tack t race s /metadata ’ ] )

# Compute Pr ( Sbox (pˆk ) ∗ alpha | t )
de f p r oba d i s s e c t b e t a ( proba sboxmuladd , proba beta ) :

proba = np . z e r o s ( proba sboxmuladd . shape )
for j in range ( proba beta . shape [ 1 ] ) :

proba sboxdeadd = proba sboxmuladd [ : , [ ( beta ˆ j ) for beta in range (256) ] ]
proba [ : , j ] = np . sum( proba sboxdeadd∗proba beta , ax i s=1)

return proba

# Compute Pr ( Sbox (pˆk ) | t )
de f p r oba d i s s e c t a l pha ( proba sboxmul , proba alpha ) :

proba = np . z e r o s ( proba sboxmul . shape )
for j in range ( proba alpha . shape [ 1 ] ) :

proba sboxdemul = proba sboxmul [ : , [ multGF256 ( alpha , j ) for alpha in range (256) ] ]
proba [ : , j ] = np . sum( proba sboxdemul∗proba alpha , ax i s=1)

return proba

# Compute Pr ( Sbox (p [ permind ] ˆ k [ permind ] ) | t )
de f p roba d i s s e c t pe rmind ( proba x , proba permind , j ) :

proba = np . z e r o s ( ( proba x . shape [ 0 ] , proba x . shape [ 2 ] ) )
for s in range ( proba x . shape [ 2 ] ) :

proba 1 = proba x [ : , : , s ]
proba 2 = proba permind [ : , : , j ]
proba [ : , s ] = np . sum( proba 1 ∗proba 2 , ax i s=1)

return proba
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# Check a saved model aga in s t one o f the ASCAD databases Attack t r a c e s
de f check model ( mode l f i l e , ascad database , num traces , t a rge t byte , mu l t i l abe l ,

s imulated key , s a v e f i l e , parameter ) :
c h e c k f i l e e x i s t s ( mod e l f i l e )
c h e c k f i l e e x i s t s ( ascad database )
# Load p r o f i l i n g and attack data and metadata from the ASCAD database
( X pro f i l i n g , Y p r o f i l i n g ) , ( X attack , Y attack ) , ( Metadata pro f i l i ng ,

Metadata attack ) = load ascad ( ascad database , load metadata=True )
# Load model
model = load sca mode l ( mod e l f i l e )
# Get the input l ay e r shape
i npu t l ay e r shape = model . g e t l a y e r ( index=0) . input shape [ 0 ]
i f i s i n s t a n c e (model . g e t l a y e r ( index=0) . input shape , l i s t ) :

i npu t l ay e r shape = model . g e t l a y e r ( index=0) . input shape [ 0 ]
else :

i npu t l ay e r shape = model . g e t l a y e r ( index=0) . input shape
# Sanity check
i f i npu t l ay e r shape [ 1 ] != l en ( X attack [ 0 , : ] ) :

p r i n t ( ”Error : model input shape %d in s t ead o f %d i s not expected . . . ” % (
i npu t l ay e r shape [ 1 ] , l en ( X attack [ 0 , : ] ) ) )

sys . e x i t (−1)
# Adapt the data shape accord ing our model input
i f l en ( i npu t l ay e r shape ) == 2 :

# This i s a MLP
input data = X attack [ : num traces , : ]

e l i f l en ( i npu t l ay e r shape ) == 3 :
# This i s a CNN: reshape the data
input data = X attack [ : num traces , : ]
input data = input data . reshape ( ( input data . shape [ 0 ] , input data . shape [ 1 ] , 1) )

else :
p r i n t ( ”Error : model input shape l ength %d i s not expected . . . ” % len (

i npu t l ay e r shape ) )
sys . e x i t (−1)

# Pred i c t our p r o b a b i l i t i e s
p r e d i c t i o n s = model . p r ed i c t ( input data )
i f ( mu l t i l a b e l !=0) :

i f ( mu l t i l a b e l==1) :
p r ed i c t i on s sbox = mu l t i l a b e l p r e d i c t ( p r e d i c t i o n s )

else :
p r ed i c t i on s sbox = mu l t i l ab e l w i thou t pe rm ind pr ed i c t ( p r e d i c t i o n s )

for t a r g e t by t e in range (16) :
r ank s i = f u l l r a n k s ( p r ed i c t i on s sbox [ t a r g e t by t e ] , X attack , Metadata attack

, 0 , num traces , 10 , ta rge t byte , s imulated key )
# We p lo t the r e s u l t s
x i = [ r ank s i [ i ] [ 0 ] for i in range (0 , r a nk s i . shape [ 0 ] ) ]
y i = [ r ank s i [ i ] [ 1 ] for i in range (0 , r a nk s i . shape [ 0 ] ) ]
p l t . p l o t ( x i , y i , l a b e l=”key ”+s t r ( t a r g e t by t e ) )

i f mode l f i l e . count ( ”desync50” ) == 1 :
p l t . t i t l e ( ’ Performance o f ’ + mod e l f i l e [ 2 3 : 2 6 ] . upper ( ) + ’ in ’ + mod e l f i l e

[ 2 7 : 3 0 ] + ’ epochs and ’ + mod e l f i l e [ 3 7 : 4 0 ] + ’ o f batch s i z e ( check ing
’ + parameter + ’ ) ’ )

e l i f mod e l f i l e . count ( ”desync100” ) == 1 :
p l t . t i t l e ( ’ Performance o f ’ + mod e l f i l e [ 2 4 : 2 7 ] . upper ( ) + ’ in ’ + mod e l f i l e

[ 2 8 : 3 1 ] + ’ epochs and ’ + mod e l f i l e [ 3 8 : 4 1 ] + ’ o f batch s i z e ( check ing
’ + parameter + ’ ) ’ )

else :
p l t . t i t l e ( ’ Performance o f ’ + mod e l f i l e [ 1 4 : 1 7 ] . upper ( ) + ’ in ’ + mod e l f i l e

[ 1 8 : 2 1 ] + ’ epochs and ’ + mod e l f i l e [ 2 8 : 3 1 ] + ’ o f batch s i z e ( check ing
’ + parameter + ’ ) ’ )

p l t . x l ab e l ( ’Number o f t r a c e s ’ )
p l t . y l ab e l ( ’Rank ’ )
p l t . g r i d (True )
p l t . l egend ( l o c=’ upper r i g h t ’ )
i f ( s a v e f i l e != ”” ) :

p l t . s a v e f i g ( s a v e f i l e )
else :

p l t . show ( block=False )
else :

p r e d i c t i o n s s b o x i = p r ed i c t i o n s
# We t e s t the rank over t r a c e s o f the Attack dataset , with a step o f 10 t r a c e s

ranks = f u l l r a n k s ( p r e d i c t i o n s s b ox i , X attack , Metadata attack , 0 , num traces ,
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10 , ta rge t byte , s imulated key )
# We p lo t the r e s u l t s
x = [ ranks [ i ] [ 0 ] for i in range (0 , ranks . shape [ 0 ] ) ]
y = [ ranks [ i ] [ 1 ] for i in range (0 , ranks . shape [ 0 ] ) ]

i f mode l f i l e . count ( ”desync50” ) == 1 :
p l t . t i t l e ( ’ Performance o f ’ + mod e l f i l e [ 2 3 : 2 6 ] . upper ( ) + ’ in ’ + mod e l f i l e

[ 2 7 : 3 0 ] + ’ epochs and ’ + mod e l f i l e [ 3 7 : 4 0 ] + ’ o f batch s i z e ( check ing
’ + parameter + ’ ) ’ )

e l i f mod e l f i l e . count ( ”desync100” ) == 1 :
p l t . t i t l e ( ’ Performance o f ’ + mod e l f i l e [ 2 4 : 2 7 ] . upper ( ) + ’ in ’ + mod e l f i l e

[ 2 8 : 3 1 ] + ’ epochs and ’ + mod e l f i l e [ 3 8 : 4 1 ] + ’ o f batch s i z e ( check ing
’ + parameter + ’ ) ’ )

else :
p l t . t i t l e ( ’ Performance o f ’ + mod e l f i l e [ 1 4 : 1 7 ] . upper ( ) + ’ in ’ + mod e l f i l e

[ 1 8 : 2 2 ] + ’ epochs and ’ + mod e l f i l e [ 2 9 : 3 2 ] + ’ o f batch s i z e ( check ing
’ + parameter + ’ ) ’ )

p l t . x l ab e l ( ’Number o f t r a c e s ’ )
p l t . y l ab e l ( ’Mean Rank ’ )
s a v e f i l e += ” Rank . png”
p l t . g r i d (True )
aux = 0
for i in range ( l en (x ) ) :

aux += y [ i ]
aux = aux / l en (x )
p r i n t ( ”Mean Rank averaged f o r ” + s a v e f i l e + ” i s : ” + co l o r .BOLD + s t r ( aux ) +

co l o r . END +”\n” )
p l t . p l o t (x , y )
i f ( s a v e f i l e != ”” ) :

p l t . s a v e f i g ( s a v e f i l e )
else :

p l t . show ( block=False )
x . c l e a r ( )
y . c l e a r ( )
met r i c s . x vec to r . append (y )
metr i c s . y vec to r . append (y )
metr i c s . y average . append ( aux )

de f ma in o r i g i na l (model name , parameter ) :
#Defau l t parameters va lue s for t e s t i n g
ascad database=t r a c e s f i l e=”ASCAD. h5”
num traces=10000
t a r g e t by t e= 2
mu l t i l a b e l=0
s imulated key=0
model name = model name [ : : − 1 ] [ 3 : ] [ : : − 1 ]
s a v e f i l e=” r e s u l t s o f t e s t i n g ”+parameter+” ”+s t r (model name )
#Checking model
p r i n t ( ”\nTest ing in 3 , 2 , 1 . . . \ n” )
s t a r t = time . time ( )
check model (model name , ascad database , num traces , t a rge t byte , mu l t i l abe l ,

s imulated key , s a v e f i l e , parameter )
end = time . time ( )
t o t a l t ime = end − s t a r t
p r i n t ( ”Total time execut ion f o r t e s t i n g phase : ” + s t r ( t o t a l t ime ) [ 0 : 8 ] + ” s .\n” )
p r i n t ( c o l o r .BOLD + ”\n

#####################################################################\n” + co l o r .
END)

de f automatic main ( model saved ) :
p r i n t ( c o l o r .BOLD + ”\n

#####################################################################\n” + co l o r .
END)

parameters = [ ]
p r i n t ( ”What i s the va r i ab l e to check ? (#Layers , #Neurons , Optimizer , Learning Rate

. . . ) ” )
v a r i ab l e = input ( )
p r i n t ( ”What i s the ”+va r i ab l e+” to t e s t ?” )
parameter = input ( )
parameters . append ( parameter )
i f model saved . endswith ( ’ r ank i ng l o s s . h5 ’ ) :
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pr in t ( ”Waiting , t h i s model has been t ra ined with Ranking Loss . . . I need to change
the f i l e s t r u c tu r e . . . ” )

model saved = con f i g mode l s ( model saved )
model saved += ” . h5”
ma in o r i g i na l ( model saved , parameter )
met r i c s . p l o t a l l r a n k s ( va r i ab l e , parameters )

de f manual main ( ) :
p r i n t ( c o l o r .BOLD + ”\n

#####################################################################\n” + co l o r .
END)

pr in t ( ”How many times do you want to execute a t e s t i n g phase/ t e s t i n g models ?” )
t e s t i n g pha s e = int ( input ( ) )
parameters = [ ]
p r i n t ( ”What i s the va r i ab l e to check ? (#Layers , #Neurons , Optimizer , Learning Rate

. . . ) ” )
v a r i ab l e = input ( )
for i in range ( t e s t i n g pha s e ) :

p r i n t ( ” Introduce the path to the t ra in ed model f o r t e s t i n g ( or ente r to s e l e c t in
f i l e e xp l o r e r ) : ” )

model = input ( )
i f model == ”” :

root = Tk( )
while model == ”” :

model = askopenf i l ename ( ) # show an ”Open” d i a l o g box and return the
path to the s e l e c t e d f i l e

model = os . path . basename (model ) # return only the f i l e name o f the
complete path

root . des t roy ( )
i f model . endswith ( ’ r ank i ng l o s s . h5 ’ ) :

p r i n t ( ”Waiting , t h i s model has been t ra in ed with Ranking Loss . . . I need to
change the f i l e s t r u c tu r e . . . ” )

model = con f i g mode l s (model )
p r i n t ( s t r (model ) + ” LOADED SUCCESFULLY!\n” )
p r i n t ( ”What i s the ”+va r i ab l e+” to t e s t ?” )
parameter = input ( )
parameters . append ( parameter )
model += ” . h5”
ma in o r i g i na l (model , parameter )

met r i c s . p l o t a l l r a n k s ( va r i ab l e , parameters )

de f con f i g mode l s (model ) :
# datet ime ob j e c t conta in ing cur rent date and time

model updated = model [ : : − 1 ] [ 3 : ] [ : : − 1 ]+ ’ updated . h5 ’
with h5py . F i l e ( model updated , ’w ’ ) as f d e s t :

with h5py . F i l e (model , ’ r ’ ) as f s r c :
with h5py . F i l e ( ’ s t r u c tu r e . h5 ’ , ’ r ’ ) as f example :

#pr in t ( l i s t ( f s r c . keys ( ) ) )
f d e s t . a t t r s . c r e a t e ( ’ backend ’ , f s r c . a t t r s [ ’ backend ’ ] )
f d e s t . a t t r s . c r e a t e ( ’ k e r a s v e r s i o n ’ , f s r c . a t t r s [ ’ k e r a s v e r s i o n ’ ] )
f d e s t . a t t r s . c r e a t e ( ’ mode l con f ig ’ , f s r c . a t t r s [ ’ mode l con f ig ’ ] )
f d e s t . a t t r s . c r e a t e ( ’ t r a i n i n g c o n f i g ’ , f s r c . a t t r s [ ’ t r a i n i n g c o n f i g ’ ] )

f d e s t . copy ( f s r c [ ’ model weights ’ ] , ’ model weights ’ , name=”model weights ”
) #Copy a l l in fo rmat ion in model weights

f d e s t . copy ( f example [ ’ op t im i z e r we i gh t s ’ ] , ’ op t im i z e r we i gh t s ’ , name=”
opt im i z e r we i gh t s ” ) #Copy the f o l d e r op t im i z e r we i gh t s

f d e s t . copy ( f s r c [ ’ op t im i z e r we i gh t s ’ ] [ ’ t r a i n i n g ’ ] , f d e s t [ ’
op t im i z e r we i gh t s ’ ] ) #Copy a l l in fo rmat ion in opt im i z e r we i gh t s

f d e s t [ ’ op t im i z e r we i gh t s ’ ] [ ’ t r a i n i n g ’ ] . c l e a r ( )
de l f d e s t [ ’ op t im i z e r we i gh t s ’ ] [ ’ t r a i n i n g ’ ]
#pr in t ( l i s t ( f d e s t [ ’ op t im i z e r we i gh t s ’ ] . keys ( ) ) )
f example . c l o s e ( )

f s r c . c l o s e ( )
f d e s t . c l o s e ( )

return model updated

C.3 Metrics.py
import matp lo t l i b . pyplot as p l t
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x vec to r = [ ]
y vec to r = [ ]
y average = [ ]

de f l egends ( parameters ) :
i f l en ( parameters ) == 1 : p l t . l egend ( [ parameters [ 0 ] ] )
i f l en ( parameters ) == 2 : p l t . l egend ( [ parameters [ 0 ] , parameters [ 1 ] ] )
i f l en ( parameters ) == 3 : p l t . l egend ( [ parameters [ 0 ] , parameters [ 1 ] , parameters [ 2 ] ] )
i f l en ( parameters ) == 4 : p l t . l egend ( [ parameters [ 0 ] , parameters [ 1 ] , parameters [ 2 ] ,

parameters [ 3 ] ] )
i f l en ( parameters ) == 5 : p l t . l egend ( [ parameters [ 0 ] , parameters [ 1 ] , parameters [ 2 ] ,

parameters [ 3 ] , parameters [ 4 ] ] )
i f l en ( parameters ) == 6 : p l t . l egend ( [ parameters [ 0 ] , parameters [ 1 ] , parameters [ 2 ] ,

parameters [ 3 ] , parameters [ 4 ] , parameters [ 5 ] ] )
i f l en ( parameters ) == 7 : p l t . l egend ( [ parameters [ 0 ] , parameters [ 1 ] , parameters [ 2 ] ,

parameters [ 3 ] , parameters [ 4 ] , parameters [ 5 ] , parameters [ 6 ] ] )
i f l en ( parameters ) == 8 : p l t . l egend ( [ parameters [ 0 ] , parameters [ 1 ] , parameters [ 2 ] ,

parameters [ 3 ] , parameters [ 4 ] , parameters [ 5 ] , parameters [ 6 ] , parameters [ 7 ] ] )
i f l en ( parameters ) == 9 : p l t . l egend ( [ parameters [ 0 ] , parameters [ 1 ] , parameters [ 2 ] ,

parameters [ 3 ] , parameters [ 4 ] , parameters [ 5 ] , parameters [ 6 ] , parameters [ 7 ] ,
parameters [ 8 ] ] )

i f l en ( parameters ) == 10 : p l t . l egend ( [ parameters [ 0 ] , parameters [ 1 ] , parameters [ 2 ] ,
parameters [ 3 ] , parameters [ 4 ] , parameters [ 5 ] , parameters [ 6 ] , parameters [ 7 ] ,
parameters [ 8 ] , parameters [ 9 ] ] )

i f l en ( parameters ) == 11 : p l t . l egend ( [ parameters [ 0 ] , parameters [ 1 ] , parameters [ 2 ] ,
parameters [ 3 ] , parameters [ 4 ] , parameters [ 5 ] , parameters [ 6 ] , parameters [ 7 ] ,
parameters [ 8 ] , parameters [ 9 ] , parameters [ 1 0 ] ] )

i f l en ( parameters ) == 12 : p l t . l egend ( [ parameters [ 0 ] , parameters [ 1 ] , parameters [ 2 ] ,
parameters [ 3 ] , parameters [ 4 ] , parameters [ 5 ] , parameters [ 6 ] , parameters [ 7 ] ,
parameters [ 8 ] , parameters [ 9 ] , parameters [ 1 0 ] , parameters [ 1 1 ] ] )

de f p l o t a l l r a n k s ( va r i ab l e , parameters ) :
#Plot ranks
p l t . t i t l e ( ’ Checking the performance o f ’ + s t r ( l en ( parameters ) ) + ’ d i f f e r e n t ’ +

va r i ab l e )
p l t . x l ab e l ( ’Number o f t r a c e s ’ )
p l t . y l ab e l ( ’Mean Rank ’ )
p l t . g r i d (True )
l egends ( parameters )
p l t . p l o t ( x vector , y vec to r )
p l t . s a v e f i g ( ” compar i son o f ”+s t r ( l en ( parameters ) )+” ”+va r i ab l e+”

in terms of MEAN RANK . png” )
p l t . show ( )

#Plot ranks averaged
p l t . t i t l e ( ’ Checking the performance o f ’ + s t r ( l en ( parameters ) ) + ’ ’ + va r i ab l e )
p l t . x l ab e l ( v a r i ab l e )
p l t . y l ab e l ( ’Mean Rank ( average f o r 10k t r a c e s ) ’ )
p l t . g r i d (True )
l egends ( parameters )
p l t . p l o t ( parameters , y average )
p l t . s a v e f i g ( ” compar i son o f ”+s t r ( l en ( parameters ) )+” ”+va r i ab l e+”

in terms of MEAN RANK AVERAGED . png” )
p l t . show ( )

C.4 Main.py
import ASCAD testing
import ASCAD training
from ten so r f l ow . python . framework . ops import d i s a b l e e a g e r e x e c u t i o n

c l a s s c o l o r :
PURPLE = ’ \033[95m’
CYAN = ’ \033[96m’
DARKCYAN = ’ \033[36m’
BLUE = ’ \033[94m’
GREEN = ’ \033[92m’
YELLOW = ’ \033[93m’

85



RED = ’ \033[91m’
B = ’ \033 [1m’
UNDERLINE = ’ \033 [4m’
E = ’ \033 [0m’

model saved = ””

de f p r i n t i n i t ( ) :
p r i n t ( c o l o r .B+co l o r .BLUE+”\n

###################################################################\n”+co l o r .E)
p r i n t ( c o l o r .B+co l o r .BLUE+”\ t ASCAD Python S c r i p t s ”+co l o r .E+”modi f i ed by Cr i s t i an

Fernandez\n\ t \ t Only f o r academic purposes | UPC 2022” )
p r i n t ( c o l o r .B+co l o r .BLUE+”\n

###################################################################\n”+co l o r .E)
de f p r i n t t e s t i n g ( ) :

p r i n t ( c o l o r .B+co l o r .RED+”\n
#####################################################################”+co l o r .E)

p r i n t ( ”\n\ t \ t \ t \ t Executing ”+co l o r .B+co l o r .RED+”ASCAD testing ”+co l o r .E+” s c r i p t ”+
co l o r .E)

p r i n t ( c o l o r .B+co l o r .RED+”\n
#####################################################################\n”+co l o r .E)

de f p r i n t t r a i n i n g ( ) :
p r i n t ( c o l o r .B+co l o r .YELLOW+”\n

#####################################################################”+co l o r .E)
p r i n t ( ”\n\ t \ t \ t \ t Executing ”+co l o r .B+co l o r .YELLOW+”ASCAD training ”+co l o r .E+” s c r i p t ”

+co l o r .E)
p r i n t ( c o l o r .B+co l o r .YELLOW+”\n

#####################################################################”+co l o r .E)
de f p r i n t e x i t ( ) :

p r i n t ( c o l o r .B+”\n
#####################################################################\n”+co l o r .E)

p r i n t ( ”Goodbye ! ! ! ” )
p r i n t ( c o l o r .B+”\n

#####################################################################\n”+co l o r .E)

p r i n t i n i t ( )
p r i n t ( ”>>> Do you want t r a i n or t e s t ?\n1 : Train ing \n2 : Test ing \n3 : Exit ” )
opt ion = int ( input ( ) )

### Training phase ###
i f opt ion == 1 :

p r i n t t r a i n i n g ( )
p r i n t ( ”\n>>> Will you use Cross−Entropy l o s s func t i on or Ranking Loss func t i on ?\n1 :

Cross−entropy \n2 : Ranking Loss ” )
opt ion = int ( input ( ) )
i f opt ion == 2 :

p r i n t ( ”Di sab l ing eager execut ion f o r t r a i n i n g models with Ranking Loss func t i on
. . . ” )

d i s a b l e e a g e r e x e c u t i o n ( )
r ank ing l o s s op t i on = True

else : r ank ing l o s s op t i on = False
model saved = ASCAD training . main ( r ank ing l o s s op t i on )
p r i n t ( ”\n>>> Do you want to execute t e s t i n g phase ?\n1 : YES\n2 : NO” )
opt ion 2 = int ( input ( ) )
i f opt ion 2 == 1 :

### Test ing phase ###
p r i n t t e s t i n g ( )
ASCAD testing . automatic main ( model saved )
p r i n t e x i t ( )

else :
p r i n t e x i t ( )

### Test ing phase ###
e l i f opt ion == 2 :

p r i n t t e s t i n g ( )
ASCAD testing . manual main ( )
p r i n t e x i t ( )

### Exit ###
else :

p r i n t e x i t ( )
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Glossary

AES - Advanced Encryption Standard
S-BOX - Substitution-box
DES - Data Encryption Standard
ANN - Artificial Neural Network
SCA - Side Channel Analysis
CNN - Convolutional Neural Network
MLP - Multi-layer Perceptron
RL - Ranking Loss (loss function)
GE - Guess Entropy (metric)
FGE - Fast Guess Entropy
LR - Learning rate
LF - Loss function
L-S-L - Large-small-large
S-L-S - Small-large-small
MR - Mean Rank
SYNC - Synchronised
DESYNC - Desynchronised
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