
Mobility Service Based on Blockchain
Technology for SEAT MO

Degree Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by

Adrián Soria Montoya

In partial fulfillment of the requirements for the degree in
Telecommunications Technologies and Services Engineering

Advisors: Jose Luis Muñoz Tapia and Antonio Jimenez Viguer
Barcelona, Date 2022

Contents

List of Figures 4

List of Tables 5

1 Introduction 10
1.1 Statement of purpose . 10
1.2 Requirements and Specifications . 10

1.2.1 Requirements . 10
1.2.2 Specifications . 10

1.3 Methods and procedures . 11
1.4 Workplan, milestones and Gantt Diagram 12

1.4.1 Workplan . 12
1.4.2 Gantt Diagram . 15

1.5 Deviations from the initial plan . 15

2 State of the art of the technology used 16
2.1 Blockchain . 16

2.1.1 The blocks in the blockchain . 16
2.1.2 Transactions . 17
2.1.3 Smart Contracts . 18
2.1.4 Consensus mechanisms . 18
2.1.5 Wallets . 19
2.1.6 ECDSA and address recovering . 20

2.2 Polygon . 21
2.2.1 Heimdall . 21
2.2.2 Bor . 22

2.3 Amazon Web Services . 23
2.3.1 Lambda . 23
2.3.2 EC2 . 23
2.3.3 AWS KMS . 24

3 Development 25
3.1 Deployment of a Full Node in the mumbai testnet 26

3.1.1 Configuring the node files . 26
3.2 Registering and Signing with Key Management System of Amazon Web

Services . 28
3.2.1 Setting up the environment . 28
3.2.2 Programming the workflow . 29
3.2.3 Calls to the API Gateway . 31

3.3 Writing and deploying the contracts . 32
3.3.1 The Minimal Forwarder Contract 33
3.3.2 Token contract . 34
3.3.3 Compiling and deploying . 35

3.4 Developing the API . 37

2

3.4.1 Database . 37
3.4.2 Authentication . 38
3.4.3 User functions . 38
3.4.4 Interacting with the smart contracts 40

3.5 The Front-end . 41
3.5.1 Sing Up and Login Up . 42
3.5.2 Buying tokens . 42
3.5.3 Using the service . 43

4 Final result 45

5 Budget 51

6 Conclusions 52

7 Future of the project 53

References 54

Appendices 56

A Bor and Heimdall logs 56

B The v value 57

C API code 57
C.1 Routes in the API . 57
C.2 Sign Up Code . 58
C.3 Sign In Code . 58
C.4 User functions . 59
C.5 Handeling the transactions in the blockchain 61

D Contracts 62

E Seatoken Artifact 64

F Front-end Code 65
F.1 Signing functions . 65

3

List of Figures

1 Gantt Diagram . 15
2 Chain of blocks . 17
3 Metamask wallet showing the assets of SEAT 19
4 Visualization of an ECDSA . 20
5 Polygon architecture . 21
6 Merkle Tree . 22
7 Node architecture . 22
8 Amazon Lambda with logs of previous executions 23
9 Creation Key option in AWS KMS . 24
10 Purchasing block diagram . 25
11 Booking and releasing block diagram . 25
12 Node still catching up . 27
13 Structure of the service with KMS. Source [8] 28
14 Calling the register function . 31
15 Key in the AWS KMS . 32
16 Calling the sign function . 32
17 Structure of sending a metatransaction. Source Openzeppelin[21]. 33
18 Result of the deploy script . 36
19 Block of the creation of the forwarder contract 36
20 Block of the creation of the token contract 37
21 Capture of the mobility app by SEAT code. Source: SEAT MO web 41
22 Cache in the web when signing in . 42
23 Sign Up process . 45
24 DB with some users . 46
25 Sign In page . 46
26 Profile tab of a user in the web page . 47
27 Profile tab of a user in the web page . 47
28 Balance of SETK in Toni’s address . 47
29 Transaction details . 48
30 Booking vehicle web page . 48
31 Signature of a vehicle with Metamask. 49
32 User trying to reserve a vehicle while one is reserved. 49
33 Defender Relayer with the reserve and release transaction 50
34 Transactions of the tokens in the blockchain 50
35 Log Bor when starts running . 56
36 Log Bor syncing with Heimdall . 56
37 Log of Heimdall service running . 57

4

Listings
1 Main playbook of the node deployment. 26
2 Sync status of the Polygon Node . 27
3 Set up of the cdk deploy command to deploy the scripts. 28
4 Status function in the lambda service. 29
5 Funtion that returns the Ethereum Address 29
6 Function that the registers the user in AWS KMS 29
7 Main steps for signing a transaction with AWS KMS 30
8 Function that finds the r and s parameter of a transaction. 30
9 Function that recovers the address and the v parameter. 31
10 Verify function in the fowarder contract . 33
11 Execute function to send the request to the Token Contract. 33
12 Token contract with the basic functions. 34
13 ERC2711Context contract retriving the original sender. 34
14 Hardhat config file . 35
15 Script that deploy the contract in a chain. 36
16 Model of the user fields in the DB . 37
17 Post function to the sign up API endpoint 38
18 Verification of the password received. 38
19 Reserving vehicle function in the API . 38
20 Release function in the API . 39
21 Purchase function in the API . 40
22 Creating the providers to interact with the contracts in the chain. 40
23 Different calls of the methods in the SETK contract. 40
24 Connecting to the Defender Relayer Service 41
25 Validation and processing of a transaction by the Minimal Forwarder Con-

tract. 41
26 Button that executes the function purchase tokens 42
27 GET method to the purchase function in the API instance 42
28 Button that depending of the current state and signs and process a trans-

action. 43
29 Connecting and checking Metamask is operative. 43
30 Example of a signature and transaction. 44

List of Tables

1 Budget for the project . 51

5

Abbreviations

ABI Application Binary Interface

API Application Programming Interface

AWS KMS Key Management System of Amazon Web Services

CORS Cross Origin Resource Sharing

CPU Central Processing Unit

dApp Decentralized application

DB Data Base

DNS Domain Name System

ECDSA Elliptic Curve Digital Signature Algorithm

EIP Ethereum Improvement Proposal

ERC Ethereum Request for Comment

EVM Ethereum Virtual Machine

FIAT Type of currency that is declared legal by some entity as the European Union

GSN Gas Station Network

JWT Json Web Token

MATIC Base Coin used in the Polygon network

MBTN Mumbai Test Net

NFT Non-Fungible Token

PoC Prove of Concept

PoS Proof Of Stake

PoW Proof of Work

RAM Random Access Memory

RHEL Red Hat Enterprise Linux

RLP Recursive Length Prefix

RPC Remote Procedure Call

SETK Seat ERC-20 Token

UTC Central Universal Time

VM Virtual Machine

6

Special Thanks

I would like to thank SEAT and all the IT department for the opportunity of doing the
internship.
Also, I am very gratefull for the treatment received by all the FS-A3 team; Elena, Paco,
Toni, Alvaro, Marcos, Crisanto, Sara, Carlos, Alan and Cathi. For all the things that I
learned and to make me feel part of the team since the first day.
Specially I would like to thank Antonio Jimenez, my supervisor during my intership, for
the opportunity of doing this thesis and for including me in the Metahype project sessions
to learn how a project is developed in a big company.
To conclude, thanks to my project supervisors, Jose Luis Muñoz and Antonio Jimenez for
the advising provided to the project.

7

Abstract

Security and privacy are vital nowadays, with all the leaks and tracking that every service
uses. Because of that it is important to gain the trust of the users in our application.
This thesis presents a PoC of a web dApp for managing the flow of the reservation of a
vehicle. The technologies used are, React for the front-end, NodeJS for the back-end and
HardHat suite with ganache to deploy and manage the contracts in a local blockchain
and in the main blockchain. As for the blockchain, a layer 2 solution from the ethereum
net is used, the Polygon network, in particular MBTN for testing. The dApp provides a
transparent and secure solution that allows the user to truck all his movements in the
app in an anonymous way and works perfectly as a propose for an utility case for the
announced Metahype by Cupra [19].

8

Revision history and approval record

Revision Date Purpose
0 08/03/2022 Document creation
1 05/05/2022 Document revision
2 24/05/2022 Document revision
3 10/06/2022 Document revision
4 16/06/2022 Document revision
5 20/06/2022 Document validation

DOCUMENT DISTRIBUTION LIST

Name e-mail

[Student name]: Adrián Soria adrian.soria@estudiantat.upc.edu

[Project Supervisor 1]: Jose Luis Muñoz Tapia jose.luis.munoz@upc.edu

[Project Supervisor 2]: Antonio Jimenez Viguer antonio.jimenez@seat.es

Written by: Reviewed and approved by:
Date 08/03/2022 Date 20/06/2022

Name Adrián Soria Montoya Name
Jose Luis Muñoz Tapia and
Antonio Jimenez Viguer

Position Project Author Position Project Supervisor

9

1 Introduction

1.1 Statement of purpose

The purpose of this project is to implement a valid, transparent, and scalable solution to
the mobility service that SEAT MO offers based on blockchain technology. The proposal
should be functional, with good latency and response, and economically viable for a future
implementation in the market. As it is a PoC, calls to the SEATMO API or payments
with FIAT are simulated and the database used is local.

1.2 Requirements and Specifications

1.2.1 Requirements

Requirements are what the project must be in order to get completed. The requirements
of my projects are:

1. Develop a scalable, transparent solution.

2. Secure communication between the different modules.

3. The project must be economically viable.

4. The contract should be written using the net standard ERC-20, to be used across
new services.

5. The solution should be as decentralized as possible.

1.2.2 Specifications

Specifications make reference to the expected measured in order to see if the measures
have been accomplished:

1. Metatransactions in the MBTN a layer 2 solution, so the user don’t pay the gas
fees.

2. A secure key management using Metamask or AWS KMS.

3. Make sure that the user and the company can track all the movements.

4. System has to have low latency in the user side, taking into account that transactions
in the blockchain are not instantaneous and the user may take longer to release a
vehicle than a transaction to being processed.

10

1.3 Methods and procedures

This project starts as a service proposal for the upcoming Metahype [19] anounced by
Cupra. This project is a metaverse, a virtual environment where the user can be immersed
and perform all kind of tasks, being the most famous, Meta by Facebook [12].
The blockchain technology is constantly evolving, and there are multiple programs and
standards that this project will use. The most important one is the EIP-20 [24] which
introduces the ERC-20, a fungible token that is used as virtual currency. Also, the EIP-712
[2] is the structure for the meta transactions that we are going to use. For the contracts,
the project will be based in the Openzeppelin [3] contracts and use his Defender Relay
[20] to use meta-transactions and allow the user to make transactions without paying any
fee. The technology used in the front-end is React, and in the back-end are NodeJS and
MongoDB. For the node, to have a participation in the MBTN, I am going to use Ansible,
a Red Hat product to make the deployment and Heimdall and Bor are the core elements
of the blockchain node.
The developing of the smarts contracts are going to be made in the Solidity programming
language, and the for the deployment and testing, Hardhat and Ganache are going to be
used respectively. All the structure is deployed in the EC2 of the Amazon Web Services,
using internal communication when needed, and HTTPS when the communication is done
in the internet.

11

1.4 Workplan, milestones and Gantt Diagram

1.4.1 Workplan

12

13

14

1.4.2 Gantt Diagram

Figure 1: Final Gantt Diagram of the project

1.5 Deviations from the initial plan

One of the goals is to make the dApp as user friendly as possible, and to work with
the workflow that SEAT MO has. For that being possible, a creation of a wallet for the
user was necessary. That means that the final user didn’t have to know anything about
blockchain to use the service. Because the libraries for the AWS KMS doesn’t actually
support the signature of a meta-transaction, and the work around will take several weeks
of research and implementation that will delay the thesis, an alternative solution, involving
metamask is implemented.
Nevertheless, as we can verify which address belongs to which real person, since we will
have the email and phone number of the user, the potential loss of tokens are avoided by
transferring the tokens from the old account to the new one.

15

2 State of the art of the technology used

The purpose of this section is to introduce the reader to all the technologies that this
project is going to use, and why are they used instead other alternatives. This section will
be used as introduction to the blockchain technology including metatrasnactions, industry
standards, the second layers solutions and Smart contracts, adding an explanation of the
Amazon Web Services used.

2.1 Blockchain

When it is time to store information the majority of systems are centralized with a
database in which the users put trust on it. But what happens if the source cannot be
trusted? To solve this trust issue, Satoshi Nakamoto propose a decentralized system of
transactions, which is basically information. The Bitcoin [17] transaction protocol.
It has properties that makes very easy to the users to put trust in them:

1. Robustness
Blockchain Technology stores information in blocks which are chronologically syn-
chronised. And these blocks cannot be controlled by an individual, making blockchain
highly secured and trustable.

2. Decentralised Ledger
Decentralised Ledger operates on peer to peer basis. Because every node has a copy
of the blockchain and the longest match rule, makes that the blockchain is owned
by everyone so there is nobody to trust.

3. Immutable
Once a block is sealed cryptographically or added to main chain, it is impossible to
delete or edit, ensuring the immutability of the digital ledger, making it perfect for
storing permanent data such as transactions or other registers of use of any service.

4. Transparency
It is possible for a user to verify and track their transactions, with the entire record
of the transactions available in the blockchain in every node. As it is public and
immutable, everybody can see what it has been written in the blockchain and by
who. Regardless, the user anonymity is ensured by a nickname which corresponds
to the address of the wallet.

So considering all the benefits that the blockchain provides, it is the proper technology
to implement the mobility service that SEAT MO offers. Booking the vehicle, tracking it
and the implementation of tokens that can be used as engagement to other products and
offers of the company.

2.1.1 The blocks in the blockchain

As intuitive as it sounds, a blockchain is composed by blocks that stores the information.
You can think of it as a page of notebook where you can write, but everyone can look at
it and nobody can edit anything. The complete notebook will be the blockchain. To link
the pages we will use the previous hash of the previous block as a field in the next block

16

Figure 2: Chain of blocks

2.1.2 Transactions

Writing in a blockchain is what we call a transaction, and has to be differentiated from
the concept of transferring a token. We are going to transfer an ERC-20 token, but the
transaction will transfer a cryptocurrency, for instance transferring SETK costs some gas
as MATIC which is the equivalent to Polygon as Bitcoin is to the Bitcoin blockchain
network. The equivalent will be that, when you want to transfer euros to someone, the
bank may charge you a fee for the transfer.
Reading the blockchain it is free, since all the content is public but it does not mean
that there is no privacy because every user has an address but it is not linked to a
physical person. However, writing in the blockchain has costs. As the standard says, this
payment of writing in the blockchain is called gas fee, where the miner who validates
the transaction gets a reward that varies between consensus mechanisms. There are notes
about transactions that need to be clarified for this thesis.

Metatransactions The concept of Metatransaction is to put a transaction inside an-
other transaction. This means you can pay the gas for another person transaction. This
is essential to the development of a dApp oriented to the general users that do not know
how a blockchain works and is reluctant to spend any money in a system that does not
trust.

Relayer The function of a relayer in a blockchain is to act as a buffer and wait to vali-
dation of the block that contains the transaction. This technology allows more reliability
because if a transaction is not validated it can be retried any time in the future, or if
a dApp that uses a relayer goes down, it prevents the transaction lost. Working with
metatransactions, a relayer can sign the main transaction, allowing gas-less transactions
since the relayer would pay for the gas. For this function the relayer may be deployed in
a GSN, but for the project the Defender Relayer of Openzeppelin[20] will be used as it
funtions as a buffer and signer.

17

2.1.3 Smart Contracts

Smart Contracts are scripts that are written in the blockchain and have variables, methods
and can inherit other classes like other languages. Mapping is an important part of a smart
contract, which is how we store information from multiple users and allows to control
the actual nonce of an address. Nonce stands for, number once, and helps to prevent
replay attacks in a blockchain. A replay attack occurs when a blockchain forks and then
transactions can be duplicated and the attacker get benefited twice. The most extended
language to code is Solidity.
To get everyone to work in the same basis and make the blockchains to understand each
other there are standards that are followed, such the ERC-721[9] also known as NFT. For
this project the main standard is the ERC-20.

ERC-20 [24] An ERC-20 is an standardized token that provides an API for calling
methods. It has a mapping with the balance of all address that holds the token and
defined methods to be called such as transfer or mint. This standard is extended with
more functions: the burn method uses the original transfer function to send tokens from
the requester address to an empty address, or the pause method that calls all the allowance
transfer of the original ERC to stop all the transactions if any change has to be made.

ERC-777 [6] The ERC-777 starts as an intention to upgrade the ERC-20. It integrates
the burn and allowance function without the necessity of any modification, and adds to
main functions. The send function, that allows to send data in a token transfer and works
with operators. This functions add to a mapping the address that are allowed to mint and
burn tokens, which is restricted to the owner in the ERC-20.

2.1.4 Consensus mechanisms

When a transaction is submitted to the blockchain, we need a method to make sure that
the block is valid and no block has been corrupted. Those are the consensus mechanisms,
which need to pass the 51% proof to maintain the blockchain secure by definition.

Proof of Work The PoW[15] is a consensus mechanism that establish a difficulty in
the block. The miners have to proof that some computational work has been expended
by resolving a cryptographic puzzle. For that, when generating a transaction, a partial
hash is sent. Then the miner has to complete this hash in order to validate a block. The
main problem of this consensus validation mechanism is the power consumption[13] that
can be as high as an entire country, such Switzerland[14]. To valid a corrupted block,
someone has to have the 51% of computational power of all the blockchain, that makes
the consensus secure by definition.

Proof of Stake The PoS is a consensus mechanism to keep a decentralized system, in
this case the blockchain, secure. It was a created as an alternative for the PoW consensus
mechanism that consumes a lot of computational power and, therefore a lot of electricity.
This method uses the cryptocurrency (as Ethereum) as collateral to validate the block.
Everyone that puts some cryptocurrency in a deposit becomes a validator. Then blocks

18

are validated by the validators, known as miners in PoW. There are many consensus on
how to choose the validator. One is to choose randomly between the validators. Another
one is to let all the validators vote if the block is valid. If a percentage votes that a block
is valid then it is incorporated to the blockchain. By running this validation process, the
network gives rewards as an incentive to become a validator which may vary between
consensus. The gas fees that the block generates, and other rewards are examples on how
to engage the participants to stack his cryptocurrency and become validators. To valid a
corrupted block, someone has to stack the 51% of the stacked cryptocurrency of all the
blockchain, that makes the consensus secure by definition.

2.1.5 Wallets

A Wallet is the software that allows to interact with the cryptographic assets that a
person owns. One wallet has multiple accounts that are identified by an Address and can
interact with multiple networks. This account is created with a asymmetrical key pair.
Ethereum addresses are hexadecimal numbers, identifiers derived from the last 20 bytes
of the Keccak-256 (explained in 2.1.6) hash of the public key. There are several wallets.
Arkane is one of the most popular and works as an API and a web version to interact
with. However, the easiest one for a user to interact is Metamask because it works as
an expansion in any browser and allows an easy interaction with the different blockchain
networks and is very user friendly to make transactions and view the assets.

Figure 3: Metamask wallet showing the assets of SEAT

Metamask allows the user to enter his wallet with a password, but a mnemonic (a com-
bination of twelve words) is provided at the creation in case it is necessary to recover the
account. In a wallet is vital to have the private keys of the different accounts, and the
mnemonic stored in a secure place to prevent the robbery of information.

19

2.1.6 ECDSA and address recovering

When working with transactions we have to differentiate between hashing and signing a
transaction. Hashing provides a method to verify the input integrity, and it is used to link
the blocks. By providing the hash of the previous block (see Figure 2), you can verify that
this block is valid, so if any change is done in the blockchain, the hash of the block will
change and will not correspond the hash in the next block. Ethereum and Polygon uses
the Keccak-256 hashing algorithm with corresponds to the standardized SHA-3[18].With
that logic we can secure by definition that a blockchain is immutable. When a block is
valid you have to make sure that the transaction inside the block is valid. This is the
signature, that consist in a key pair where some data is encrypted but only the person
that encrypted can decrypted and it is used to verify the sender. To sum up, hashing is
for checking that data is valid, and signing is a the course of action to check where the
data comes.
The algorithm for signing is ECDSA[1], in specific the secp256k1[23].
The curve is defined as y2modp = (x3+7)mod(p) where p is p = 2256–232–29–28–27–26–24–1

Figure 4: Visualization of an ECDSA

The process of signing with the ECDSA secp256k1 curve are the following:

1. Hashing the transaction.

2. Generate a random number k between [1, n - 1] (n is the order of the curve).

3. Calculate a random point in the curve K = k ∗G being G(x,y) the generator base
point. Then r is defined as the x component of the K point.

4. Calculate the signature proof as: s = k(−1) ∗ (h+ r ∗ privateKey)(modn)

Now that we have the r and s, we have the signature, but we have to recover the address
to verify that is the correct user that signed the transaction. We can recover the address
by finding one of the two possible values of v. v is the recovery id and it can be one of

20

two possible values: 27 or 28. With one of this values the recovered message will be the
original message and we will have recovered the address and the recovery id.

2.2 Polygon

Because writing in a blockchain has costs, the gas fees might make the dApp non eco-
nomical viable. For solving this problem, a second layer solution is used. Polygon is a
second layer blockchain solution that provides hybrid Proof-of-Stake and Plasma-enabled
sidechains and it is fully integrated with Ethereum, that operates as the main chain. It has
public Heimdall nodes that works between the Ethereum main chain and only publishes
the hash root of a Merkle Tree, making that the blocks with the transactions are in a
side chain, which is more affordable, but the proof that all the blocks are valid are in the
Ethereum blockchain so the gas fees are heavily reduced.

Figure 5: Polygon architecture

2.2.1 Heimdall

Heimdall works as the governance layer between the Polygon and Ethereum net, authenti-
cates with the net using Proof-Of-Stake, controls the block production and the state-sync
mechanism. It uses Pulp to verify the transactions based on the RLP[10] encoding. RLP
is the actual standard for encode binary data, and it is used to encode certain types of
data, such strings, integers or floats among others, treating them as unique objects to
encode.
The bridge works as the following. It validates all the blocks provided by Bor and creates
a Merkle Tree of the block hashes and then writes the root of the tree in the Ethereum
chain, saving to the user a lot of gas fees in transactions.

21

Merkle Tree The Merkle Tree contains the hashes of all the data blocks produced by
the Bor layer. Then we reduce it all to one hash, the root hash. With only this hash, we
can have a proof that all the blockchain is valid and by only doing one transaction to the
main chain, Ethereum.

Figure 6: Structure of the Merkle Tree

2.2.2 Bor

Bor is the Polygon’s block productor. It assembles and generates all the incoming trans-
actions into blocks. As seen in the architecture figure [7] it contains an EVM that contains
a side chain with the blocks. The hashes of this blocks are the ones that are going to be
pulled to the Heimdall layer.

Figure 7: Architecture of the deployed node

22

2.3 Amazon Web Services

When developping the dApp and simulating and environment, Amazon Web Services
offers a wide variety of functionalities and it is the cloud solution selected because the
company is currently developing projects using this services and they can be reliable
as they use high-availability across all services. Some examples are: Cognito to user
credentials management, Pinpoint as a notification of event to user via email or sms or
Aurora as a high-availability DB.

2.3.1 Lambda

The Lambda service lets you execute code inside a VPC. This service interacts with other
services that are in the same account and region and provides the logs of the functions
executed. It has a similar function as a Docker container, it only has the interpreter and
the libraries installed and It does not contain or virtualize any operating system.

Figure 8: Amazon Lambda with logs of previous executions

The lambda function is connected to an API Gateway, this service is the one that when
receives a call, that can be configured as a POST, GET, DELETE, PATCH, HEAD PUT
or ANY call to handle every method in the endpoint. In the case it can be linked to a
other Amazon Services such as Aurora to interact with the DB, or to Lambda, to execute
the function that has to read an HTTPS method.

2.3.2 EC2

EC2 stands for Elastic Compute Cloud, and it is the server renting service that Amazon

23

offers. By paying for CPU usage, you can deploy a VM of any kind of operating system
with a different types of instances. The larger the instance, the more that cost per CPU
usage. For the project, the node is in a t3.xlarge instance with 4 virtual virtual CPU
and 16GB of RAM and the front-end and backend in a t2.micro instance with 1 vritual
CPU and 1GB of RAM. Other characteristics that change between instances types are the
speed of write/lecture of the storage and the maximum network performance. This service
is used because it provides security group management to accept specific IPs, and they
have internal communication to emulate connection of two servers in the same network
and offers a public DNS to host the front-end.

2.3.3 AWS KMS

The Key Management System allows to create a symmetric or an asymmetric key pair
to use it to cipher or sign a transaction depending on the necessity. The private key is
stored and cannot be copied, retrieved or checked in any way, that is why it is secures and
decentralizes the dApp even more because SEAT will not hold any key, only a reference
to the KMS ID which can only be called by the user. Also, if the user loses his credentials,
they can be restored because the key is secure and external to the system.

Figure 9: Creation Key option in AWS KMS

As we can specify a ECC SECG P256K1 key type, it will be compatible with the standard
in the Ethereum network transactions.

24

3 Development

This section will go through the development process followed and the structure of the
project. The project has 3 instances. The Front, that will contain a react code to view the
dApp in a web environment emulating the basic functions of the SEAT MO application
and Web3 to interact with contracts, the API with NodeJS, HardHat and Ganache that
will manage all the blockchain interaction and deployment of the contracts, and a Polygon
Node to be part of the blockchain. The signature is going to be using Metamask, but an
alternative with AWS KMS is developed and proposed but not implemented.

Figure 10: Purchasing block diagram

When purchasing tokens, the transaction is signed in the node and calls directly the mint
method in the SETK contract, so the gas fee is payed by the SEAT account.

Figure 11: Booking and releasing block diagram

When creating a metatransaction, the gas is now payed by the relayer who signs the
transaction that calls the Forwarder contract, the cryptocurrency of the relayer has also
to be maintained by SEAT.

25

3.1 Deployment of a Full Node in the mumbai testnet

In order to get access to the MBTN network we are going to deploy a node in it. This
node will be our gateway to the net, to validate transactions and to push blocks. The
solution uses two main software components, Heimdall and Bor.

3.1.1 Configuring the node files

For the node deployment [22], the software used is Ansible Tower, an automation tool
that allows to perform commands in a remote machine. The destination machine is a
EC2 tx3.large instance with 16GB of ram, 8 core CPU and 750 GB of storage. As a
pre-requisite, it is important to notice that the playbook is implemented in a Debian
machine, because it uses the package manager apt to obtain the packages. This required a
redeploying of the instance node, because all the instances were initially RHEL that uses
dnf package manager and the ansible playbook will not be executed correctly.
From the Ansible Tower that SEAT uses for the automation tasks, we clone the repository
and edit the inventory.yml file putting our public node IP address. In the config file we
add the seeds for the Heimdall service to fetch the data and a public RPC provided by
Polygon to sync the state of the blocks of the current blockchain network. Finally, in
the start file we add the bootnodes to indicate where the bor service will sync his EVM,
consensus and block structure.

Ansible playbooks A playbook is a list of tasks that uses commands that invokes roles
to install all the necessary elements, deploy all the services and starts them. Here is an
example of the main playbook to execute, that calls other roles that are the ones that
executes the tasks with its own variables.

Listing 1: Main playbook of the node deployment.

1 - name: Network node management

2 hosts: all

3 tasks:

4 - name: Install dependencies

5 include_role:

6 name: roles/install -dependencies

7 apply:

8 tags: always

9 tags:

10 - install_dependencies

11 - name: Build Heimdall

12 include_role:

13 name: roles/install -heimdall

14 apply:

15 tags: always

16 tags:

17 - build

18 - name: Build Bor

19 include_role:

20 name: roles/install -bor

21 apply:

22 tags: always

23 tags:

26

24 - build

25 - name: Setup and deploy network

26 include_role:

27 name: roles/setup -network

28 apply:

29 tags: always

30 tags:

31 - deploy

Now we have to wait to make the node fully synced with the MBTN and we can check it
using curl localhost:26657/status command, which returns:

Figure 12: Node still catching up

Meanwhile the node is synchronizing with the blockchain we cannot vote to validate any
block. After 3 days the node is finally catched up with the MBTN blockchain, and we can
check it by rerunning the previous command.

Listing 2: Sync status of the Polygon Node

1 "sync_info": {
2 "latest_block_hash": "FA9D2BDEA84853595D0DC281E26685A41CB8A1DCE489CB5C

9C5CC56B10A9CAC5",

3 "latest_app_hash": "90716D6243A75873BDC9C7A7D1C48915DC254A3D2CE10255F5

4BD214DCFC0FCA",

4 "latest_block_height": "11370598",

5 "latest_block_time": "2022-06-14T09:21:59.034846299Z",

6 "catching_up": false

7 }

The ”catching up” variable is set up to False. That means that our node is fully sync
with the chain and all the blocks take 358GB of storage of the machine, which gradually
augments when new blocks are validated.

27

3.2 Registering and Signing with Key Management System of
Amazon Web Services

This implementation is based in an easy boarding paper[8], but could not be done due
the lack of time and research for adapting this solution to the metatransaction necessity
and make the validation with the Relayer.
Amazon Web Services offers a very wide variety of services, but we are going to use three
of them to implement the registration and signing of a transaction[7]: the Lambda service
to execute the code, the AWS KMS to sign and create new Ethereum address and API
gateway to manage the HTTPS petitions. The signature is going to be made following
the ECDSA with the keccak-256 curve.

Figure 13: Structure of the service with KMS. Source [8]

The user will call an API Gateway and recover the signature. Then it is passed to the
back-end to verify the request and process the transaction. This system it is not finally
implemented due to the complexity and the time limitation but a work around will be
developed and implemented in the final application.

3.2.1 Setting up the environment

We are going to use the CDK library that amazon provides to interact with the services.
Firstly we execute a cdk bootstrap with the credentials of the account to link it, and create
a App.py to deploy the lambda service.
It creats a lambda instance with the following permissions:

Listing 3: Set up of the cdk deploy command to deploy the scripts.

1 cmk = aws kms .Key(s e l f , ” eth−cmk−i d e n t i t y ” ,
2 r emova l po l i cy=core . RemovalPolicy .DESTROY)
3 cfn cmk = cmk . node . d e f a u l t c h i l d
4 cfn cmk . key spec = ’ECC SECG P256K1 ’
5 cfn cmk . key usage = ’SIGN VERIFY ’
6
7 e t h c l i e n t = EthLambda(s e l f , ” eth−kms−c l i e n t ” ,
8 dir=”aws kms lambda/ lambda/ func t i on s / e t h c l i e n t ” ,
9 env={”LOG LEVEL” : ”DEBUG” , ”KMS KEY ID” : cmk . key id , ”

ETHNETWORK” : eth network })
10 cmk . grant (e t h c l i e n t . l f , ’kms : GetPublicKey ’)
11 cmk . grant (e t h c l i e n t . l f , ’kms : Sign ’)
12 cmk . grant (e t h c l i e n t . l f , ’kms : CreateKey ’)
13 cmk . grant (e t h c l i e n t . l f , ’kms : ScheduleKeyDelet ion ’)

28

We grant the permissions to the lambda code to Create a Key, sign with the key, retrive
the public key and delete one key if a user leaves the dApp. Once this is done we can
deploy the code with cdk deploy with the requirements.txt file included.

3.2.2 Programming the workflow

Now we are going to create a file that reads the income function, and another one that
will handle the functions depending on what we need. We expect to receive an HTTPS
POST so an operation field is required. The first function is to calculate the Ethereum
Address:

Listing 4: Status function in the lambda service.

1 i f opera t ion == ’ s t a tu s ’ :
2 i f not (event . get (’ kms id ’)) :
3 return { ’ ope ra t i on ’ : ’ s t a tu s ’ ,
4 ’ e r r o r ’ : ’Not kms key provided ’ }
5 key id = event . get (’ kms id ’)
6 pub key = get kms pub l i c key (key id)
7 eth checksum address = ca l c e t h add r e s s (pub key)
8
9 return { ’ e th checksum address ’ : eth checksum address , ’KMS KEY ID ’ :

key id }

This operation calculates the Ethereum Address with the public key. The public key is a
native AWS KMS function so we only need to calculate the Wallet Address.

Listing 5: Funtion that returns the Ethereum Address

1 def c a l c e t h add r e s s (pub key) −> str :
2 key = asn1 too l s . c omp i l e s t r i n g (SUBJECT ASN)
3 key decoded = key . decode (’ SubjectPubl i cKeyInfo ’ , pub key)
4 pub key raw = key decoded [’ subjectPubl icKey ’] [0]
5 pub key = pub key raw [1 : len (pub key raw)]
6 hex addres s = w3 . keccak (bytes (pub key)) .hex ()
7 e th addre s s = ’ 0x{} ’ . format (hex addres s [−40 :])
8 eth checksum addr = w3 . toChecksumAddress (e th addre s s)
9
10 return eth checksum addr

We use the library asn1tools. The SUBJECT ASN [5] is a asn1 Schema that describes
the type of the algorithm. Then we decode the public key and with the keccak function,
that is the signing algorithm, and obtain the hex address. Now the only thing we have to
do is format the in a valid Ethereum Address using the web3 library.
For registering the user in the system we should have to create a new AWS KMS key, we
do this by using a boto client, and the kms createKey function.

Listing 6: Function that the registers the user in AWS KMS

1 def r e g i s t e r (user : str) −> dict :
2 c l i e n t = boto3 . c l i e n t (”kms”)
3
4 response = c l i e n t . c r e a t e k ey (
5 Desc r ip t i on= user ,

29

6 KeyUsage=’SIGN VERIFY ’ ,
7 CustomerMasterKeySpec=’ECC SECG P256K1 ’ ,
8 Or ig in=’AWSKMS’ ,
9 BypassPol icyLockoutSafetyCheck=False ,
10 MultiRegion=False)
11
12 return re sponse

It is important to notice that we use the ECC SECG P256K1, which is the signing algo-
rithm that follows the ECDSA, to create the key, because it is the standard used in the
Ethereum Network and therefore in the Polygon Network.
In order to sign a transaction it is mandatory to provide the KMS ID of the user and all
the data fields necessary to make a transaction. When lambda receives the call, creates a
python dictionary with the following fields: nonce, to, value, data, gas (which corresponds
to the gas limit) and gasPrice. Once it is assembled it is passed to a function that signs
it:

Listing 7: Main steps for signing a transaction with AWS KMS

1 def assemble tx (tx params : dict , params : EthKmsParams , eth checksum addr :
str) −> bytes :

2 tx uns igned = s e r i a l i z a b l e u n s i g n e d t r a n s a c t i o n f r om d i c t (
t r a n s a c t i o n d i c t=tx params)

3 tx hash = tx uns igned .hash ()
4
5 t x s i g = f i n d e t h s i g n a t u r e (params=params ,
6 p l a i n t e x t=tx hash)
7
8 tx e th recove r ed pub addr = g e t r e c o v e r y i d (msg hash=tx hash ,
9 r=t x s i g [’ r ’] ,
10 s=t x s i g [’ s ’] ,
11 eth checksum addr=

eth checksum addr)
12
13 tx encoded = encode t ran sac t i on (uns i gned t r an sa c t i on=tx uns igned ,
14 vrs=(tx e th recove r ed pub addr [’ v ’] ,

t x s i g [’ r ’] , t x s i g [’ s ’]))
15
16 return w3 . toHex (tx encoded)

Firstly it transforms the dictionary into a serializable transaction to the ethereum library
to understand. Here is where the main problem became. This library is not yet prepared
to handle metatransactions that requires the ”from” field of the original sender. After
hashing the transaction we find the signature, and obtain the r and s of the signature
using the following:

Listing 8: Function that finds the r and s parameter of a transaction.

1 def f i n d e t h s i g n a t u r e (params : EthKmsParams , p l a i n t e x t : bytes) −> dict :
2 s ignature schema = asn1 too l s . c omp i l e s t r i n g (SIGNATURE ASN)
3
4 s i gna tu r e = sign kms (params . ge t kms key id () , p l a i n t e x t)
5
6 s i gnature decoded = s ignature schema . decode (’ Ecdsa−Sig−Value ’ ,

s i gna tu r e [’ S ignature ’])

30

7 s = s ignature decoded [’ s ’]
8 r = s ignature decoded [’ r ’]
9
10 s e cp256 k1 n ha l f = SECP256 K1 N / 2
11
12 i f s > s e cp256 k1 n ha l f :
13 s = SECP256 K1 N − s
14
15 return { ’ r ’ : r , ’ s ’ : s }

The sign kms it is done in the register function, but instead of create key it calls the
function sign. When we obtain the s, according to the RFC, if it is superior than the half
of the elliptic curve, we have to invert it. Once we have the r and s we can check if we
can recover the original ethereum address.

Listing 9: Function that recovers the address and the v parameter.

1 def g e t r e c o v e r y i d (msg hash , r , s , eth checksum addr) −> dict :
2 for v in [2 7 , 2 8] :
3 recovered addr = Account . recoverHash (message hash=msg hash ,
4 vrs=(v , r , s))
5 i f r ecovered addr == eth checksum addr :
6 return { ’ r e covered addr ’ : recovered addr , ’ v ’ : v}
7 return {}

By using the recoveredHash function we can check if v corresponds to one of the two
possible [27,28] and return the v and the recovered address if it is the same as the one
that calls the function. The final step is to encode the transaction with all the parameters
and return it as a raw hex transaction.

3.2.3 Calls to the API Gateway

We can know create a key pair by a call to the API GATEWAY, that is previously
configured in the lambda service.

Figure 14: Calling the register function

And the key is properly created in the AWS KMS and can be seen in the web console.
Also a delete function is implemented, that will delete the selected key in 7 days to allow
the user to cancel the deletion if he wants.

31

Figure 15: Key in the AWS KMS

Now if we make a call with the operation status and the AWS KMS ID it will calculate
and return our Ethereum Address, and finally we can sign a transaction.

Figure 16: Calling the sign function

The signed tx field is the raw transaction, the signature is the field that should be
checked to recover the address, and the request is the transaction processed by the AWS
KMS service, that does not match the sent request because some fields are included in
the function when creating the complete transaction inside the lambda code.

3.3 Writing and deploying the contracts

The contracts are written in Solidity and have a forwarder that interacts with the contract.
The provider of the forwarder it is Defender Relay by Openzeppelin [20].

32

Figure 17: Structure of sending a metatransaction. Source Openzeppelin[21].

The user will wrap and sign the metatransaction and send it to the relayer. The signed
transaction will be a signed Type Structured Transaction (EIP-712) and will be signed
by the relayer and transmitted to the Forwarder Contract. Finally, the forwarder contract
will execute the ERC-20 that contains the SETK.

3.3.1 The Minimal Forwarder Contract

The minimal forwarder follows the structure of the EIP-712[2] a signed typed data, with
the from field that is the original sender. With this structure we have three main functions,
getting the actual nonce to prevent a replay attack, the verify function to recover the
original address and the execute function to use the relayer to sign and send the main
transaction.

Listing 10: Verify function in the fowarder contract

1 func t i on v e r i f y (ForwardRequest c a l l d a t a req , bytes c a l l d a t a s i gna tu r e)
public view re tu rn s (bool) {

2 address s i g n e r = hashTypedDataV4 (keccak256 (abi . encode (TYPEHASH, req .
from , req . to , req . value , req . gas , req . nonce , keccak256 (req . data)))) .
r e cove r (s i gna tu r e) ;

3 return nonces [req . from] == req . nonce && s i gn e r == req . from ;
4 }

The verify function uses the signature to recover the sender address. It uses the same
hashing algorithm keccak256 that is used to hash the transaction, so by passing the
encoded abi of the transaction we can recover the address. If it is the same that the
incoming address and the nonce also coincide, we return true as the transaction is verified.
The other function of the contract is to execute the transaction:

Listing 11: Execute function to send the request to the Token Contract.

1 func t i on execute (ForwardRequest c a l l d a t a req , bytes c a l l d a t a s i gna tu r e)
public payable

33

2 r e tu rn s (bool , bytes memory)
3 {
4 r e qu i r e (v e r i f y (req , s i gna tu r e) , ”MinimalForwarder : s i gna tu r e does

not match reque s t ”) ;
5 nonces [req . from] = req . nonce + 1 ;
6 (bool succes s , bytes memory returndata) = req . to . c a l l { gas : req . gas ,

va lue : req . va lue }(ab i . encodePacked (req . data , req . from)) ;
7 // Va l ida t e t ha t the r e l a y e r has enough gas f o r the c a l l , i f not

send i n v a l i d
8 i f (g a s l e f t () <= req . gas / 63) {
9 assembly {
10 i n v a l i d ()
11 }
12 }
13
14 return (succes s , re turndata) ;
15 }

In the function we require that the function verifies the transaction, we increment the
nonce to get a valid transaction and after that we call the relayer to process the transac-
tion, but we invalid it if the relayer do not has enough gas left to pay for the transaction.

3.3.2 Token contract

The token contract is a burnable ERC-20 that requires a forwarder to allow metatrans-
actions. We will also allow to pause all the transactions if any change has to be made in
the system.

Listing 12: Token contract with the basic functions.

1 cont rac t Seatoken i s ERC2771Context , ERC20, ERC20Burnable , Pausable ,
Ownable {

2 cons t ruc to r (MinimalForwarder forwarder) ERC2771Context (address (
forwarder)) ERC20(”Seatoken” , ”SETK”) {}

3 func t i on mint (address to , u int256 amount) public onlyOwner { mint (to ,
amount) ;}

4 func t i on msgSender () i n t e r n a l view ove r r i d e (Context , ERC2771Context)
r e tu rn s (address) {return ERC2771Context . msgSender () ;}

5 func t i on msgData () i n t e r n a l view ove r r i d e (Context , ERC2771Context)
r e tu rn s (bytes memory)

6 {return ERC2771Context . msgData () ;}
7 }

The contract inherits the ERC2771Context that is the recipient where the contract will
accept metatransactions. This ERC2771Context allow to get the original caller from the
transaction. Normally the sender is called by msg.sender, but if we use this parameter the
address will belong to the forwarder and not to the user. Then we will use the msgSender()
that returns the original sender when it is called.

Listing 13: ERC2711Context contract retriving the original sender.

1 func t i on isTrustedForwarder (address forwarder) public view v i r t u a l r e tu rn s
(bool) {

2 return forwarder == trustedForwarder ;

34

3 }
4 func t i on msgSender () i n t e r n a l view v i r t u a l ov e r r i d e r e tu rn s (address

sender) {
5 i f (i sTrustedForwarder (msg . sender)) {
6 assembly { sender := shr (96 , c a l l d a t a l o ad (sub (c a l l d a t a s i z e () , 20))) }
7 } else {return super . msgSender () ;}
8 }

When we created the ERC2771Context we passed the address of the forwarder as the
only trusted forwarder, so when we retrieve the original sender, if the forwarder is trusted
we assembly the original sender and return it. This function has to be overwritten since
the ERC-20 base contract has a function that has the same nomenclature, so our SETK
contract cannot compile.
The complete contracts can be found in Appendix D

3.3.3 Compiling and deploying

For the deploying we are going to use a simple script in hardhat. The hardhat suite needs
a configuration file. All this is going to be done in a local machine, because Ganache with
an interface and not in the command line, is more user friendly and easier to document.

Listing 14: Hardhat config file

1 r e qu i r e (’ dotenv ’) . c on f i g () ;
2 r e qu i r e (”@nomiclabs/hardhat−wa f f l e ”) ;
3 r e qu i r e (”@nomiclabs/hardhat−e th e r s ”) ;
4 /∗∗
5 ∗ @type import (’ hardhat / con f i g ’) . HardhatUserConfig
6 ∗/
7 module . export s = {
8 s o l i d i t y : ” 0 . 8 . 1 3 ” ,
9 networks : {
10 l o c a l : {
11 u r l : ’ http :// l o c a l h o s t :8545 ’
12 } ,
13 mumbai : {
14 u r l : ’ ht tps : // matic−mumbai . cha in s t a ck l ab s . com ’ ,
15 accounts : [p roce s s . env .PRIVATE KEY] ,
16 }
17 }
18 } ;

As the mumbai url we use an RPC public endpoint to deploy the contract. Later, when
we interact with the contract we are going to use the Polygon Node that we deployed. But
first we are going to start a Ganache chain that uses the RPC endpoint as the localhost
in the port 8545 and uses the first account in the list so it does not require an account
field.
First we compile the contracts by running hardhat compile. This command creates the
artifacts folder. The artifacts contains the name of the contract, the ABI that is a de-
scription of the functions and fields needed by the contract, a bytecode of the undeployed
contract and a deployedBytecode referencing the deployed contract. You can see a the

35

artifact of the SETK in Appendix E For the deploying we are going to use a very simple
script that runs the deployment and store the addresses in a JSON file.

Listing 15: Script that deploy the contract in a chain.

1 const { e th e r s } = requ i r e (’ hardhat ’) ;
2 const { wr i t eF i l eSync } = requ i r e (’ f s ’) ;
3 async func t i on deploy (name , . . . params) {
4 const Contract = await e th e r s . getContractFactory (name) ;
5 return await Contract . deploy (. . . params) . then (f => f . deployed ()) ;
6 }
7 async func t i on main () {
8 const forwarder = await deploy (’MinimalForwarder ’) ;
9 const token = await deploy (”Seatoken” , forwarder . address) ;
10 wr i t eF i l eSync (’ deploy . j son ’ , JSON. s t r i n g i f y ({
11 MinimalForwarder : forwarder . address ,
12 Seatoken : token . address ,
13 } , null , 2)) ;
14 conso l e . l og (‘ MinimalForwarder : ${ forwarder . address }\ nRegis t ry : ${ token .

address } ‘) ;
15 }

By running the script we obtain the contracts address as an output:

Figure 18: Result of the deploy script

Now in the block explorer the transaction must appear. Since is a local blockchain, the
transactions are validated immediately.

Figure 19: Block of the creation of the forwarder contract

36

Figure 20: Block of the creation of the token contract

Now that in the local chain is compiled and deployed we can replicate the process and
save the contract addresses in the API instance. In the MBTN the contracts are going
to be deployed with the SEAT account using the private key. This will make SEAT the
owner of the contracts.

3.4 Developing the API

This API is who will handle all the logic and operations and it is written in NodeJS and
uses HTTPS as a secure protocol. It also contains a MongoDB to store the users, vehicles
and the logs of using it, and uses the libraries of ethers and web3 to interact with the
contracts.

3.4.1 Database

We are going to emulate the SEAT MO database storing the vehicles, users and logs. For
that we declare the moongose model with the type of information we are going to store.
For instance here is the user information.

Listing 16: Model of the user fields in the DB

1 const mongoose = r equ i r e (”mongoose”) ;
2 const User = mongoose . model (”User” ,new mongoose . Schema({
3 username : Str ing ,
4 emai l : Str ing ,
5 password : Str ing ,
6 address : Str ing ,
7 v e h i c l e : Str ing ,
8 l a s tP i cked : Str ing ,
9 l a s tRe l e a s ed : Str ing ,
10 })
11) ;
12 module . export s = User ;

For the vehicles, we will store the plate, the last user that picked up, if it is currently
booked and when it was last reserved. For the logs, every time someone reserves a vehicle
we create a new instance with the plate of the vehicle, the user and both picked and
released times.

37

3.4.2 Authentication

Now that we know what are we going to store it is time to handle the sign up and the
login process.

Signing up First, when a request comes in and the headers and CORS are checked, it
is decided where to go. This is done in the route file. You can see all the routing in the
Appendix C.1

Listing 17: Post function to the sign up API endpoint

app . post (”/ api /auth/ s ignup ” , [ver i fyS ignUp . checkDuplicateUsernameOrEmail] ,
c o n t r o l l e r . s ignup) ;

Here we accept the post method and called a function that checks if there is a duplicated
user, email or wallet address already in the database. If not, we can sign up the user by
adding it to the database, with the actual vehicle, lastPicked and lastReleased empty. You
can see the code in Appendix C.2.

Signing in When logging in the user and password is provided via secure communi-
cation, and the user is found in the database. When we found the user we handle the
password requirement as follows:

Listing 18: Verification of the password received.

var passwordIsVal id = bcrypt . compareSync (req . body . password , user . password) ;
i f (! passwordIsVal id) {

return r e s . s t a tu s (401) . send ({ accessToken : null , message : ” Inva l i d
Password ! ” }) ;

}

With the bcrypt module we compare the passwords, so the database never has the pass-
word as plain text. If the password is incorrect we do not return an access token. If the
password is correct we create a JWT to the user that expires in 24 hours and this token
must come in every other call that the front-end makes in order to keep logged in. You
can see all the code in Appendix C.3.

3.4.3 User functions

The user must be able to book a vehicle and release it while paying with SETK but
paying without gas and to purchase tokens in exchange of a FIAT currency, euros in this
particular case.

Booking a vehicle When the API receives a call to the reserve endpoint it updates
the status of the vehicle of the plate received only if it is not booked, saves it in the log
collection and update the users as it has reserved the vehicle in the time. The system
uses the UTC+0 hour. Finally it is send to the handler to send the transaction with a
fixed price as a reserve fee to the relay in order to get signed and processed in the MBTN
blockchain.

Listing 19: Reserving vehicle function in the API

38

1 export s . bookVeichle = async (req , r e s) => {
2 const payload = req . query . t r an sa c t i on ;
3 conso l e . l og (’ Booking : ’ , payload) ;
4 const { RELAYER API KEY: apiKey , RELAYER API SECRET: ap iS e c r e t } =

proce s s . env ;
5 Veh ic l e . updateOne ({ p l a t e : req . query . p late , booked : 0} , { $ s e t :{ booked :

1 , l a s tUse r : req . query . username , reservedTime : Date () . t oLoca l eS t r i ng
() }} , f unc t i on (e r r) {

6 i f (e r r) {
7 r e s . s t a tu s (500) . send (e r r) ;
8 }
9 }) ;
10 Logs . c r e a t e ({ p l a t e : req . query . p late , User : req . query . username ,

re leasedTime : ”” , reservedTime : Date () . t oLoca l eS t r i ng () } , f unc t i on (
e r r) {

11 i f (e r r) {
12 r e s . s t a tu s (500) . send (e r r) ;
13 }
14 }) ;
15 User . updateOne ({ username : req . query . username } , { $ s e t :{ v eh i c l e : req .

query . p late , l a s tP i cked : Date () . t oLoca l eS t r i ng () }} , f unc t i on (e r r) {
16 i f (e r r) {
17 r e s . s t a tu s (500) . send (e r r) ;
18 }
19 }) ;
20 handler ({ apiKey , ap iSec re t , r eque s t : { body : JSON. parse (payload) } }) .

then (rsp => { r e s . s t a tu s (200) . send (rsp . txHash) ; })
21 . catch (e r r o r => {
22 conso l e . l og (’ Error ’ , e r r o r) ;
23 r e s . s t a tu s (500) . send (e r r o r) ;
24 }) ;
25 } ;

Releasing a vehicle This function is a mirror one of the previous one and follows the
same structure. Now, the price in SETK of the transaction is calculated in the front-end
taking into account the minutes that the vehicle has been used with a price of 0.02 SETK
per minute. For development and testing purposes the price is fixed to 0.99 SETK to
complete 1 SETK between reserving and releasing.

Listing 20: Release function in the API

1 export s . r e l e a s eVe i c h l e = async (req , r e s) => {
2 const payload = req . query . t r an sa c t i on ;
3 conso l e . l og (’ Re l eas ing : ’ , payload) ;
4 const { RELAYER API KEY: apiKey , RELAYER API SECRET: ap iS e c r e t } =

proce s s . env ;
5 conso l e . l og (’ p l a t e ’ , req . query . p l a t e) ;
6 Veh ic l e . updateOne (. . .) ;
7 Logs . updateOne (. . .) ;
8 User . updateOne (. . .) ;
9 handler (. . .) ;
10 } ;

39

Minting SETK Minting is the process of creating tokens into an account and can only
be called by the owner, SEAT. That is why this transaction is not process by the relayer.
Because the project do not have access to the Volkswagen Payment Services, the part
of the code that should handle the bank transaction is omitted, but commented where
should it go and return a 500 status if any error occurs.

Listing 21: Purchase function in the API

1 export s . purchaseToken = async (req , r e s) => {
2 //Check bank t r an sac t i on and re turn s t a t e 500 i f e r ror
3 const minted = await token . mintTokens (req . query . address , req . query .

amount) ;
4 r e s . s t a tu s (200) . send (minted) ;
5 } ;

The completed user functions can be found in Appendix C.4.

3.4.4 Interacting with the smart contracts

We have three main functions that interacts with the contract. One is a call so it does
not cost any gas, the balanceOf function that return the actual balance of each user so
we don’t have to store it. The other ones are the transfer and mint function. The first
one is going to be relayed, but the second one is going to be send by SEAT since it is a
function that is only callable by the owner.

Listing 22: Creating the providers to interact with the contracts in the chain.

1 const { PRIVATE KEY: privateKey , RPC: rpc , TOKENADDRESS: tokenAddr ,
SEAT ADDR: seatAddr } = proce s s . env ;

2 const prov ide r = new Provider (privateKey , rpc) ;
3 const web3 = new Web3(prov ide r) ;
4 const token = new web3 . eth . Contract (ContractAbi , tokenAddr)

When we call the functions from the SEAT account, the structure is the same. Using
the library web3 and the Seat Private Key and the RPC, we connect with the contract
to execute a function. The connection with the blockchain network is defined as the
provider.

Listing 23: Different calls of the methods in the SETK contract.

1 const balance = token . methods . balanceOf (address) . c a l l ({ from : seatAddr }) .
then (ba lS t r => ba lS t r . t oS t r i ng ()) . then (r ea lBa l => web3 . u t i l s . fromWei (
r ea lBa l)) ;

2 const balance = await token . methods . mint (address , amountWei) . send ({ from :
seatAddr }) ;

We execute one method or the other depending in the context, and the only difference is
that we call the balanceOf function, that does not consume any gas as it is a lecture from
the blockchain, or sending the function mint that cost gas.

Note in decimals in the SETK The ERC-20 deployed uses a 18 decimals notation.
That means that 1 token in the blockchain has to be translated as 1e18 . We call the
fromWei function to make this transformation readable to the user. In the mint function
the amount has been previously converted, to be align with the contract requirements.

40

When we have to relay a transaction the procedure is similar and it is used when a
metatransaction is necessary. Now the provider is not the SEAT account, but the relayer
that is connected to the MBTN

Listing 24: Connecting to the Defender Relayer Service

1 const prov ide r = new DefenderRelayProvider (c r e d e n t i a l s) ;
2 const s i g n e r = new DefenderRelaySigner (c r e d en t i a l s , provider , { speed : ’

f a s t ’ }) ;
3 const forwarder = new e th e r s . Contract (forwAddr , ForwarderAbi , s i g n e r)

We create the forwarder by passing the signer, who is the relay with the credentials and
connect with the contract passing the Forwarder address and his ABI allowing the relayer
to call the Forwarder contract. Finally, we relay the transaction by validating the request
and executing to the relayer.

Listing 25: Validation and processing of a transaction by the Minimal Forwarder
Contract.

1 // Va l ida t e r e que s t on the forwarder con t rac t
2 const va l i d = await forwarder . v e r i f y (request , s i gna tu r e) ;
3 i f (! v a l i d) throw new Error (‘ I nva l i d request ‘) ;
4 // Send meta−t x through r e l a y e r to the forwarder con t rac t
5 const gasLimit = (par s e In t (r eque s t . gas) + 50000) . t oS t r i ng () ;
6 return await forwarder . execute (request , s i gnature , { gasLimit }) ;

The transaction is signed and sent by the relayer and the user does not have to pay for
any gas. The complete handling process is of a metatransaction is in the Appendix C.5.

3.5 The Front-end

The Front-End will establish the main functions but as an existing app is already devel-
oped, this part will be centered in the interaction with the smart contracts. Despite of
that, the web dApp will have the basic functions excluding, for example, the location of
the vehicles. In this section you will not find any interface that will be found in 4

Figure 21: Capture of the mobility app by SEAT code. Source: SEAT MO web

41

3.5.1 Sing Up and Login Up

When singing in we create a user in the database, sending the username, the email, our
wallet address, and when signing up we store the information in the cache the token and
all the necessary data.

Figure 22: Cache in the web when signing in

With this information we are ready to start using the service.

3.5.2 Buying tokens

When charging the site, we need to set the current state. We put the actual price at 0,
the SETK will be an input from the user and by clicking the button the getUserBoard
function is executed if the introduced value is valid.

Listing 26: Button that executes the function purchase tokens

<button onClick={() => {
i f (t h i s . s t a t e . pr iceEur > 0) {

UserServ i ce . purchaseTokens (currentUser . address , t h i s . s t a t e . pr iceEur) .
then (window . l o c a t i o n . r e l oad ()) . catch (func t i on (e) { conso l e . l og (’
Error ’ , e) ; }) ;

} e l s e {
t h i s . n o t i f y (’ I nva l i d number ’) ;

}
}} className=”btn btn−primary”>Buy</button>

We consider any positive value as a valid one.

Listing 27: GET method to the purchase function in the API instance

purchaseTokens (address , amount) {
return ax io s . get (API URL + ’ purchase ’ , { headers : authHeader () , params

:{ address , amount}}) ;
}

This functions makes a get to the purchase endpoint with the authHeader that contains
the token. The mint function is explained in the 3.4.4.
The user must wait to the transaction to be processed and refresh the web page to obtain
the new balance.

42

3.5.3 Using the service

As the purchasing tab, we update the local storage by calling the getUserBoard function.
This function calls the userBoard function of the line 13 in the Appendix C.4, who updates
the actual balance and returns some updated data. The vehicles field is an array of the
vehicles available to choose between.
To understand the logic we might understand the following function:

Listing 28: Button that depending of the current state and signs and process a
transaction.

1 <button onClick={() => {
2 i f (t h i s . s t a t e . booked === ”Reserve ”) {
3 signTx (currentUser , 0 . 01 , provider , token , t h i s . s t a t e . booked ,

document . getElementById (’ p late ’) . va lue) . then (rsp => t h i s . s e t S t a t e (
4 {booked : ”Release ” , pickTime : Date . now() , r e sponse : JSON.

s t r i n g i f y (rsp) , ba lance : (t h i s . s t a t e . ba lance − 0 . 01) ,
cu r r en tVeh i c l e : document . getElementById (’ p late ’) . va lue })) .
catch (func t i on (e) {

5 conso l e . l og (e) ;
6 }) ;
7 } e l s e i f (t h i s . s t a t e . booked === ”Release ”) {
8 l e t c u r r en tp r i c e = (((Date . now() − t h i s . s t a t e . pickTime) /(6 e4)) ∗

0 . 02) . toFixed (2) ;
9 t h i s . s e t S t a t e ({ p r i c e : ” f o r ” + cu r r en tp r i c e . t oS t r i ng () }) ;
10 signTx (currentUser , 0 . 99 , provider , token , t h i s . s t a t e . booked , t h i s .

s t a t e . cu r r en tVeh i c l e) . then (r sp tx => t h i s . s e t S t a t e (
11 { re sponse : r sp tx , booked : ”Reload” , ba lance : (t h i s . s t a t e . ba lance

− 0 . 99) })) . catch (func t i on (e) {
12 conso l e . l og (e) ;
13 }) ;
14 } e l s e {
15 window . l o c a t i o n . r e l oad () ;
16 }
17 }} c l a s s=”btn btn−primary”>
18 { t h i s . s t a t e . booked}
19 </button>

We have the initial state to reserve a vehicle (if there user has no vehicle already reserved),
and call the sign function with an initial fee of 0.01. When the function finishes we change
the actual state to the release mode, and we save the time when the function is called.
When it it time to release, the price is calculated with a fee of 0.02 tokens per minute and
the sign function it is called again to release the vehicle. Finally, the button can reload the
page and it is a requirement that the user waits some seconds to get the balance updated.
You can notice that a 0.99 fee is paid in the release vehicle for testing purposes.

Signing the transaction The provider for the frontend is Metamask, we will activate
the service, and get the current network and check is in the MBTN and the Metamask
account corresponds to the user.

Listing 29: Connecting and checking Metamask is operative.

1 i f (! window . ethereum) throw new Error (‘ User wa l l e t not found ‘) ;

43

2 await window . ethereum . enable () ;
3 const userProv ider = new e th e r s . p rov ide r s . Web3Provider (window . ethereum) ;
4 const userNetwork = await use rProv ider . getNetwork () ;
5 i f (userNetwork . cha inId !== 80001) throw new Error (‘ P lease switch to Mumbai

Network for s i gn ing ‘) ;
6 const s i g n e r = userProv ider . g e tS i gne r () ;
7
8 const forwarder = c r e a t e In s t an c e (prov ide r) ;
9 const from = await s i g n e r . getAddress () ;
10 i f (from !== currentUser . address) throw new Error (‘ P lease switch to your

account ‘) ;
11 const data = token . interface . encodeFunctionData (’ t r a n s f e r ’ , [”0

x40CDDe2b9BC7659C3349574Ec53db3B2bd9519BF” , e th e r s . u t i l s . parseEther (
va lue . t oS t r i ng ())]) ;

12 const to = token . address ;
13 const r eque s t = await signMetaTxRequest (s i g n e r . prov ider , forwarder , { to ,

from , data }) ;

The forwarding instance is created as a Minimal Forwarder (See createInsance function
in Appendix F.1) and the address is passed to sign the meta transaction. This function
(See in Appendix C.3) gets the nonce of the Forwarder contract, gets the network and
parses the data as an EIP-712 and signs it.

Listing 30: Example of a signature and transaction.

1 {
2 "signature": "0xf107ddb8e431e5b6517867f1dc52261ebcb8de5677dfdbe0

aabffaa06d0b472f5e8d2e50c944cbc9748e10488e1146e7de6e26c55c5f2737fe3

43453ced24af51b",

3 "request": {
4 "value": 0,

5 "gas": 1000000,

6 "nonce": "1",

7 "to": "0x86d269c9a6c3C9410228c10c8b933dEad4ab40e9",

8 "from": "0xF7E6465eA72468E38F8202BA2424402da2f15899",

9 "data": "0xa9059cbb0000000000000000000000005d4f37e5b030fadb3876f0608

ab40e95027a8504000

de0b6b3a7640000"

10 }
11 }

When the signature and request are returned, depending on the action that we want to
perform, we call the reserveVehicle or releaseVehicle functions that send to the corre-
sponding endpoint to call the corresponding function in the API (See Appendix C.4).

44

4 Final result

We are going to begin with the all the process that the user should see. The project can
be found here1 using the public DNS that Amazon offers and it is only for testing. It is
also possible that the service is no longer available because of the developing stage that
is at the moment of writting this thesis.
To use the dApp it is mandatory to have a Metamask account in the MBTN.

(a) Metamask account (b) Register fields

Figure 23: Sign Up process

Because the AWS KMS service is not used we need to import the Ethereum Address. If
any field (except the password) is already in the database, the Sign Up will fail.

1If you cannot click, the link is the following: https://ec2-18-197-1-4.eu-central-
1.compute.amazonaws.com:8081/

45

https://ec2-18-197-1-4.eu-central-1.compute.amazonaws.com:8081/

Figure 24: DB with some users

The password is encrypted when stored to prevent data leak. When the user is registered
in the DB we can Sign In in the app and go to our profile.

Figure 25: Sign In page

When the user properly signs in, it is redirected to his user page. Notice that now he can
navigate to the Purchase token and Book a vehicle tabs at the top of the window.

46

Figure 26: Profile tab of a user in the web page

We have 0 tokens in our account, so we are going to purchase some tokens.

Figure 27: Profile tab of a user in the web page

The ratio is 2 token per euro. According the information provided by SEAT MO, the
average cost of a trip is 2.77€, so this ratio must be adjusted by the company to make
it economically valid (A brief analysis of this ratio can be found in 5). The converter is
dynamically adjusted to acknowledge the user how many euros will the purchase cost.
When we press buy a transaction is sent to the API and minted by the SEAT account.

Figure 28: Balance of SETK in Toni’s address

47

Figure 29: Transaction details

The most important part is that the gas is payed by the SEAT account (0x40cdd...)
and is who pays for the gas. When the user has tokens, it can use the service.
In the booking page we update the local storage cache every time we refresh the page
with the new information, when was last picked vehicle and when it was released and if
the user has a current vehicle.

Figure 30: Booking vehicle web page

In the booking web page we can see three vehicles that were previously created in respec-
tive collection in the DB. The main identification that we are going to use it the plate of

48

the vehicle.

Figure 31: Signature of a vehicle with Metamask.

When pressing the reserve button, the Metamask window pops up to sign the transaction.
Once it is mounted and sent, the status changes to Release the vehicle and accessing with
another user the vehicle reserved does not appear in the list.

Figure 32: User trying to reserve a vehicle while one is reserved.

When pressing the Release button, another Metamask window pops up to sign the Typed
Data Transaction, and after waiting until the transaction is processed in the blockchain,
the user may reload the web page to see the new token balance. In the defender relayer
we can see both transactions payed by the relayer

49

Figure 33: Defender Relayer with the reserve and release transaction

The flow of the application is completed with the two transactions in the relayer that
holds the transactions until they are confirmed. All transactions are going to have the
Minimal Forwarder contract as a receiver and this forwarder calls the transfer function.
In the MBTN block scan we can see all the transactions made.

Figure 34: Transactions of the tokens in the blockchain

The address is registered with a timestamp and the method called, with the quantity that
allow us to know if a vehicle is reserved or released. With this the flow of the service is
finished.

50

5 Budget

The budget for this project will take into account the instances created in the Amazon
Web Service despite of this servers are currently in SEAT so the will not have an extra
cost. It also contains the salary of the engineer and the estimated cost of MATIC to pay
the gas.

Table 1: Budget for the project

Time Transactions Cost Total
EC2 Instances 5 Months None 550€/month 2750€
Junior Engineer 620 hours None 9€/h 5580€
Senior Engineer 30 hours None 30€/h 900€
MATIC 3896 TX/day 0.003 MATIC/TX 0,7€/MATIC 1227.24€

Total 10457.24€

The MATIC cost has been calculated as the entire fleet of the 681 vehicles[16] made 2,86
trips per day2, that makes 1948 trips/day, which are 3896 transactions (reserving and
releasing) per day, then the cost has been calculated for the duration of the thesis, 5
months. With the maximum historic price of the euro per MATIC and rounding up the
max value of the gas fee payed while developing this project to get the worst case scenario.
We get the total cost of the MATIC by multiplying the number of transactions per day
with the MATIC/transaction ratio and the cost of one MATIC, then extended for the
extending it for 5 months.
In average, 2.77€ are expended by the user in every trip. With a price of 2 SETK per
euro, if the company maintains the euro/SETK cost, the user will expend half in the trip,
and since minting any amount of tokens costs 0.003 MATIC approximately in gas, SEAT
MO will receive more value for every trip.
In addition, a senior engineer is taken into account with a consulting role.

2Information of the vehicles and trips provided by SEAT MO

51

6 Conclusions

Blockchain is a growing technology with lots of potential.The project tries to put trust
in a decentralized system. Despite that it has a higher latency than the current system,
the user can trust all his movements, make secure payments and use tokens in a new, and
every day more popular, virtual world.

The dApp integrates the blockchain technology and the Solidity programming language
with the every day standards such as, Java, NodeJS or MongoDB and works with the
proper asynchronous processing. The front-end of the project implements the basic func-
tions and works as a PoC with limitations in the number of queries and some minor bugs
that the SEAT MOtosharing app does not have due to the application is in a production
environment. The contracts are developed in Solidity, which is the most use language to
developing smart contracts and can be deployed in any network that uses Ethereum stan-
dards which makes it a very scalable solution. The downside is that a completely usability
without any knowledge of a Blockchain or Wallet is not possible because the AWS KMS
service[8] is not implemented due the time expended working in an implementation from
the zero. Nevertheless, it could be implemented with more time.

To conclude, the objective of developing a use case for integrating a sharing mobility
service is completed and functional, and with a proper migration to the SEAT MO servers
can be quickly implemented, as it uses the standard ERC-20 and EIP-712 and it is able
to be implemented in another services and necessities that the company may have in the
future.

52

7 Future of the project

The future of the project will depend on how much the company will invest in the
Blockchain technology with other utility cases, such a digital twin or with Metahype[19].
In regard to this specific project, with more dedication and time, some improvements
should be done:

• Integrating the vehicles as an ERC-721[9]
Also known as NFT, the ERC-721 defines a non consumable token, a digital asset.
The interesting part regarding this project is that you can define a user that can call
the reserve and release function inside an ERC-721 contract, and with a mapping,
keep track of which person had which vehicle at any time. You can also define the
state of the vehicle and any other attribute that the implementation may need. If
this is done, the logs in the DB will not be mandatory as all the registers are in the
blockchain. The disadvantage is that more calls to the blockchain must be made so
the budget will increase, but the fee of reserving a vehicle can be omitted since his
only objective is to track that a vehicle is reserved.

• Integrating properly with the AWS KMS
Due to lack of knowledge and time, the author was not able to create a Wallet
and sign a metatransaction using the Key Management Service. This will increase
the engagement with the general public because they will not have to know that
the dApp is working in a blockchain, and eliminates the process of creating and
managing a wallet, making the flow more agile.

• Implementation of the own relayer and gas station[11]
In the project, the Defender Relayer free tier is used. For a develop stage works
perfectly fine with a maximum of 120 transactions per hour, but in a production
environment, the company should integrate his own relayer to not be obligated to
pay for a premium tier in the Defender Relayer service. This will increase the cost in
short term basis but the decision is more economically viable in a long term basis.

53

References

[1] Andreas M. Antonopoulos and Gavin Wood. Mastering Ethereum. O’Reilly Media,
Inc., November 2018. ISBN 9781491971949.

[2] Remco Bloemen, Leonid Logvinov, and Jacob Evans. Eip-712: Ethereum typed struc-
tured data hashing and signing, September 2017. URL https://eips.ethereum.

org/EIPS/eip-712.

[3] Demian Brener. Openzeppelin, 2017. URL https://docs.openzeppelin.com/.

[4] Vitalik Buterin. Eip-155: Simple replay attack protection, October 2016. URL https:

//github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md.

[5] D. Cooper, Trinity College Dublin S. Farrell, S. Boeyen, R. Housley Entrust, Vigil
Security, W. Polk, and NIST. Internet x.509 public key infrastructure certificate and
certificate revocation list (crl) profile, May 2008. URL https://datatracker.ietf.

org/doc/html/rfc5280#page-16.

[6] Jacques Dafflon, Jordi Baylina, and Thomas Shababi. Eip-777: Token standard,
November 2017. URL https://eips.ethereum.org/EIPS/eip-777.

[7] David Dornseifer. Use key management service (aws kms) to securely manage
ethereum accounts, 2021. URL https://aws.amazon.com/es/blogs/database/

part1-use-aws-kms-to-securely-manage-ethereum-accounts/.

[8] Rafael Genés Durán, Diana Yarlequé-Ruesta, Marta Bellés-Muñoz, Antonio Jimenez-
Viguer, and José L. Muñoz-Tapia. An architecture for easy onboarding and key life-
cycle management in blockchain applications. IEEE Access, 8:115005–115016, 2020.
doi: 10.1109/ACCESS.2020.3003995.

[9] William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. Eip-721: Non-
fungible token standard, January 2018. URL https://eips.ethereum.org/EIPS/

eip-721.

[10] Ethereum. Rlp, November 2020. URL https://eth.wiki/fundamentals/rlp.

[11] Ethereum. Gas station network, May 2021. URL https://docs.opengsn.org/.

[12] Meta (Facebook). Metaverse by meta, 2022. URL https://about.facebook.com/

en/meta.

[13] Cambridge Center for Alternative Finance. Cambridge bitcoin electricity consump-
tion index, September 2020. URL https://ccaf.io/cbeci/index.

[14] Prof. Dr. Robby HOUBEN and Alexander SNYERS. Cryptocurrencies and
blockchain: Legal context and implications for financial crime, money laundering and
tax evasion, July 2018. URL https://www.europarl.europa.eu/cmsdata/150761/

TAX3%20Study%20on%20cryptocurrencies%20and%20blockchain.pdf.

[15] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding proto-
cols(extended abstract), 1999. URL https://link.springer.com/chapter/10.

1007/978-0-387-35568-9_18.

54

https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-712
https://docs.openzeppelin.com/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://datatracker.ietf.org/doc/html/rfc5280#page-16
https://datatracker.ietf.org/doc/html/rfc5280#page-16
https://eips.ethereum.org/EIPS/eip-777
https://aws.amazon.com/es/blogs/database/part1-use-aws-kms-to-securely-manage-ethereum-accounts/
https://aws.amazon.com/es/blogs/database/part1-use-aws-kms-to-securely-manage-ethereum-accounts/
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://eth.wiki/fundamentals/rlp
https://docs.opengsn.org/
https://about.facebook.com/en/meta
https://about.facebook.com/en/meta
https://ccaf.io/cbeci/index
https://www.europarl.europa.eu/cmsdata/150761/TAX3%20Study%20on%20cryptocurrencies%20and%20blockchain.pdf
https://www.europarl.europa.eu/cmsdata/150761/TAX3%20Study%20on%20cryptocurrencies%20and%20blockchain.pdf
https://link.springer.com/chapter/10.1007/978-0-387-35568-9_18
https://link.springer.com/chapter/10.1007/978-0-387-35568-9_18

[16] SEAT MO. A day of moto-sharing, November 2020. URL https://www.seat.com/

company/news/company/a-day-of-moto-sharing.html.

[17] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, October 2008.
URL https://bitcoin.org/bitcoin.pdf.

[18] National Institute of Standards and Technology. SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions, August 2015. URL https://

nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

[19] Cupra Official. Metahype, 2022. URL https://www.cupraofficial.es/metahype.

html.

[20] OpenZeppelin. Openzeppelin defender, August 2019. URL https://defender.

openzeppelin.com.

[21] Santiago Palladino. Meta transactions powered by openzeppelin defender, March
2021. URL https://github.com/OpenZeppelin/workshops/blob/master/

01-defender-meta-txs/slides/20210211%20-%20Defender%20meta-txs%

20workshop.pdf.

[22] Polygon. Full node deployment, November 2021. URL https://docs.polygon.

technology/docs/develop/network-details/full-node-deployment.

[23] Certicom Research. Sec 2: Recommended elliptic curve domain parameters, January
2010. URL https://www.secg.org/sec2-v2.pdf.

[24] Fabian Vogelsteller and Vitalik Buterin. Eip-20: Token standard, November 2015.
URL https://eips.ethereum.org/EIPS/eip-20#token.

55

https://www.seat.com/company/news/company/a-day-of-moto-sharing.html
https://www.seat.com/company/news/company/a-day-of-moto-sharing.html
https://bitcoin.org/bitcoin.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://www.cupraofficial.es/metahype.html
https://www.cupraofficial.es/metahype.html
https://defender.openzeppelin.com
https://defender.openzeppelin.com
https://github.com/OpenZeppelin/workshops/blob/master/01-defender-meta-txs/slides/20210211%20-%20Defender%20meta-txs%20workshop.pdf
https://github.com/OpenZeppelin/workshops/blob/master/01-defender-meta-txs/slides/20210211%20-%20Defender%20meta-txs%20workshop.pdf
https://github.com/OpenZeppelin/workshops/blob/master/01-defender-meta-txs/slides/20210211%20-%20Defender%20meta-txs%20workshop.pdf
https://docs.polygon.technology/docs/develop/network-details/full-node-deployment
https://docs.polygon.technology/docs/develop/network-details/full-node-deployment
https://www.secg.org/sec2-v2.pdf
https://eips.ethereum.org/EIPS/eip-20#token

Appendices

A Bor and Heimdall logs

Once the execution is finished the Bor and Heimdall services are working and producing
blocks.

Figure 35: Log Bor when starts running

Figure 36: Log Bor syncing with Heimdall

We can see that Bor starts the HTTP server, and sync the current state with Heimdall
and looking for the necessary gas. As it generates blocks, it commits new states, that are
the hashes of the blocks synced in the side-chain.

56

Figure 37: Log of Heimdall service running

B The v value

The v value in a blockchain corresponds to the recovery ID. It is calculated as v =
0, 1 + CHAINID ∗ 2 + 35. To understand this, we have the r value, which is the x
component of the point in the curve used for signing. Then we have two candidates for
being the other component of the poind and, according to the EIP-155[4], v has two
possible values depending on the side of the curve you are, and those values are 27 and
28.

C API code

C.1 Routes in the API

1 const { ver i fyS ignUp } = requ i r e (” . . / middlewares ”) ;
2 const c o n t r o l l e r = r equ i r e (” . . / c o n t r o l l e r s /auth . c o n t r o l l e r ”) ;
3 module . export s = func t i on (app) {
4 app . use (func t i on (req , res , next) {
5 r e s . header (”Access−Control−Allow−Headers ” , ”x−access−token , Origin ,

Content−Type , Accept”) ;
6 next () ; }) ;
7 app . post (”/ api /auth/ signup ” , [ver i fyS ignUp . checkDuplicateUsernameOrEmail] ,

c o n t r o l l e r . s ignup) ;
8 app . post (”/ api /auth/ s i g n i n ” , c o n t r o l l e r . s i g n i n) ;
9 } ;

1 const { authJwt } = requ i r e (” . . / middlewares ”) ;
2 const c o n t r o l l e r = r equ i r e (” . . / c o n t r o l l e r s / user . c o n t r o l l e r ”) ;
3 module . export s = func t i on (app) {
4 app . use (func t i on (req , res , next) {
5 r e s . header (”Access−Control−Allow−Headers ” , ”x−access−token , Origin ,

Content−Type , Accept”) ;
6 next () ; }) ;
7 app . get (”/ api / t e s t / a l l ” , c o n t r o l l e r . a l lA c c e s s) ;
8 app . get (”/ api / t e s t / user ” , [authJwt . ver i fyToken] , c o n t r o l l e r . userBoard) ;
9 app . get (”/ api / t e s t / r e s e r v e ” , [authJwt . ver i fyToken] , c o n t r o l l e r .

bookVeichle) ;

57

10 app . get (”/ api / t e s t / r e l e a s e ” , [authJwt . ver i fyToken] , c o n t r o l l e r .
r e l e a s eVe i c h l e) ;

11 app . get (”/ api / t e s t / purchase ” , [authJwt . ver i fyToken] , c o n t r o l l e r .
purchaseToken) ;

12 } ;

C.2 Sign Up Code

1 export s . s ignup = async (req , r e s) => {
2 conso l e . l og (”USUARI: ” + req . body . username) ;
3 const user = new User ({
4 username : req . body . username ,
5 emai l : req . body . email ,
6 password : bcrypt . hashSync (req . body . password , 8) ,
7 address : req . body . address ,
8 v e h i c l e : ”” ,
9 l a s tP i cked : ”” ,
10 l a s tRe l e a s ed : ””
11 }) ;
12 user . save ((err , user) => {
13 i f (e r r) {
14 r e s . s t a tu s (500) . send ({ message : e r r }) ;
15 return ;
16 }
17 r e s . send ({ message : ”User was r e g i s t e r e d s u c c e s s f u l l y ! ” }) ;
18 }) ;
19 } ;

C.3 Sign In Code

1 export s . s i g n i n = (req , r e s) => {
2 User . findOne ({
3 username : req . body . username
4 }) . exec ((err , user) => {
5 i f (e r r) {
6 r e s . s t a tu s (500) . send ({ message : e r r }) ;
7 return ;
8 }
9 i f (! user) {
10 return r e s . s t a tu s (404) . send ({ message : ”User Not found . ” }) ;
11 }
12 var passwordIsVal id = bcrypt . compareSync (
13 req . body . password ,
14 user . password
15) ;
16 i f (! passwordIsVal id) {
17 return r e s . s t a tu s (401) . send ({
18 accessToken : null ,
19 message : ” Inva l i d Password ! ”
20 }) ;
21 }
22 var token = jwt . s i gn ({ id : user . id } , c on f i g . s e c r e t , {

58

23 exp i r e s I n : 86400 // 24 hours
24 }) ;
25 r e s . s t a tu s (200) . send ({
26 id : user . id ,
27 username : user . username ,
28 emai l : user . email ,
29 accessToken : token ,
30 address : user . address ,
31 v e h i c l e : user . v eh i c l e ,
32 l a s tP i cked : user . l a s tP icked ,
33 l a s tRe l e a s ed : user . l a s tRe l ea s ed ,
34 l a s tTran sac t i on : user . l a s tTran sac t i on
35 }) ;
36 }) ;
37 } ;

C.4 User functions

1 const db = requ i r e (” . . / models ”) ;
2 const Vehic l e = db . v e h i c l e s ;
3 const Logs = db . l o g s ;
4 const User = db . user ;
5 const token = r equ i r e (’ . . / eth / token ’) ;
6 const { handler } = requ i r e (’ . . / eth / r e l ay ’) ;
7 r e qu i r e (’ dotenv ’) . c on f i g () ;
8 export s . a l lA c c e s s = (req , r e s) => {
9 r e s . s t a tu s (200) . send (”Welcome to the Mobi l i ty Se rv i c e app ! ”) ;
10 } ;
11 export s . userBoard = async (req , r e s) => {
12 const actBalance = await token . getBalance (req . query [’ 0 ’]) ;
13 User . findOne ({ address : req . query [’ 0 ’] }) . exec ((err , user) =>{
14 i f (e r r) {
15 r e s . s t a tu s (500) . send ({message : e r r }) ;
16 }
17 Veh ic l e . f i nd ({ booked : 0} , { i d : 0 , p l a t e : 1}) . exec ((err , data)=>{
18 i f (e r r) {
19 r e s . s t a tu s (500) . send ({message : ”No v e h i c l e s a v a i l a b l e ” }) ;
20 }
21 r e s . s t a tu s (200) . send ({
22 balance : actBalance ,
23 v e h i c l e s : data ,
24 v eh i c l e : user . v eh i c l e ,
25 l a s tP i cked : user . l a s tP icked ,
26 l a s tRe l e a s ed : user . l a s tRe l e a s ed
27 }) ;
28 }) ;
29 }) ;
30 } ;
31 export s . bookVeichle = async (req , r e s) => {
32 const payload = req . query . t r an sa c t i on ;
33 conso l e . l og (’ Booking : ’ , payload) ;
34 const { RELAYER API KEY: apiKey , RELAYER API SECRET: ap iS e c r e t } =

proce s s . env ;

59

35 Veh ic l e . updateOne ({ p l a t e : req . query . p late , booked : 0} , { $ s e t :{ booked :
1 , l a s tUse r : req . query . username , reservedTime : Date () . t oLoca l eS t r i ng
() }} , f unc t i on (e r r) {

36 i f (e r r) {
37 r e s . s t a tu s (500) . send (e r r) ;
38 }
39 }) ;
40 Logs . c r e a t e ({ p l a t e : req . query . p late , User : req . query . username ,

re leasedTime : ”” , reservedTime : Date () . t oLoca l eS t r i ng () } , f unc t i on (
e r r) {

41 i f (e r r) {
42 r e s . s t a tu s (500) . send (e r r) ;
43 }
44 }) ;
45 User . updateOne ({ username : req . query . username } , { $ s e t :{ v eh i c l e : req .

query . p late , l a s tP i cked : Date () . t oLoca l eS t r i ng () }} , f unc t i on (e r r) {
46 i f (e r r) {
47 r e s . s t a tu s (500) . send (e r r) ;
48 }
49 }) ;
50 handler ({ apiKey , ap iSec re t , r eque s t : { body : JSON. parse (payload) } }) .

then (rsp => { r e s . s t a tu s (200) . send (rsp . txHash) ; })
51 . catch (e r r o r => {
52 conso l e . l og (’ Error ’ , e r r o r) ;
53 r e s . s t a tu s (500) . send (e r r o r) ;
54 }) ;
55 } ;
56 export s . r e l e a s eVe i c h l e = async (req , r e s) => {
57 const payload = req . query . t r an sa c t i on ;
58 conso l e . l og (’ Re l eas ing : ’ , payload) ;
59 const { RELAYER API KEY: apiKey , RELAYER API SECRET: ap iS e c r e t } =

proce s s . env ;
60 conso l e . l og (’ p l a t e ’ , req . query . p l a t e) ;
61 Veh ic l e . updateOne ({ p l a t e : req . query . p l a t e } , { $ s e t :{ booked : 0 ,

reservedTime : ”” }} , f unc t i on (e r r) {
62 i f (e r r) {
63 r e s . s t a tu s (500) . send (e r r) ;
64 }
65 }) ;
66 Logs . updateOne ({ p l a t e : req . query . p late , re leasedTime : ”” } , { $ s e t :{

re leasedTime : Date () . t oLoca l eS t r i ng () }} , f unc t i on (e r r) {
67 i f (e r r) {
68 r e s . s t a tu s (500) . send (e r r) ;
69 }
70 }) ;
71 User . updateOne ({ username : req . query . username } , { $ s e t :{ v eh i c l e : ”” ,

l a s tRe l e a s ed : Date () . t oLoca l eS t r i ng () }} , f unc t i on (e r r) {
72 i f (e r r) {
73 r e s . s t a tu s (500) . send (e r r) ;
74 }
75 }) ;
76 handler ({ apiKey , ap iSec re t , r eque s t : { body : JSON. parse (payload) } }) .

then (rsp => { r e s . s t a tu s (200) . send (rsp . txHash) ; })
77 . catch (e r r o r => {
78 conso l e . l og (’ Error ’ , e r r o r) ;

60

79 r e s . s t a tu s (500) . send (e r r o r) ;
80 }) ;
81
82 } ;
83 export s . purchaseToken = async (req , r e s) => {
84 //Check bank t r an sac t i on and re turn s t a t e 500 i f e r ror
85 conso l e . l og (’ Minit ing ’ + req . query . amount + ’ to ’ + req . query . address

) ;
86 const minted = await token . mintTokens (req . query . address , req . query .

amount) ;
87 r e s . s t a tu s (200) . send (minted) ;
88 } ;

The user functions are called by the react front-end but processed in the API. The request
is signed by the user to verify the identity.

C.5 Handeling the transactions in the blockchain

1 async func t i on r e l ay (forwarder , request , s i gna tu r e) {
2 // Va l ida t e r e que s t on the forwarder con t rac t
3 const va l i d = await forwarder . v e r i f y (request , s i gna tu r e) ;
4 i f (! v a l i d) throw new Error (‘ I nva l i d request ‘) ;
5 con so l e . l og (’ Val id ’ , v a l i d) ;
6
7 // Send meta−t x through r e l a y e r to the forwarder con t rac t
8 const gasLimit = (par s e In t (r eque s t . gas) + 50000) . t oS t r i ng () ;
9 return await forwarder . execute (request , s i gnature , { gasLimit }) ;
10 }
11
12 async func t i on handler (event) {
13 r e qu i r e (’ dotenv ’) . c on f i g () ;
14 const { FORWARDERADDRESS: forwAddr } = proce s s . env ;
15 // Parse webhook pay load
16 i f (! event . r eque s t | | ! event . r eque s t . body) throw new Error (‘ Miss ing

payload ‘) ;
17 const { request , s i gna tu r e } = event . r eque s t . body ;
18
19 // I n i t i a l i z e Relayer prov ide r and s igner , and forwarder con t rac t
20 const c r e d e n t i a l s = { . . . event } ;
21 const prov ide r = new DefenderRelayProvider (c r e d e n t i a l s) ;
22 const s i g n e r = new DefenderRelaySigner (c r e d en t i a l s , provider , { speed :

’ f a s t ’ }) ;
23 const forwarder = new e th e r s . Contract (forwAddr , ForwarderAbi , s i g n e r)
24 conso l e . l og (’ Relaying . . . ’) ;
25 // Relay t r an sac t i on !
26 const tx = await r e l a y (forwarder , request , s i gna tu r e) ;
27 conso l e . l og (‘ Sent meta−tx : ${ tx . hash } ‘) ;
28 return { txHash : tx . hash } ;
29 }

The API handles the event by connecting to the relayer and interacting with the forwarder
contract.

61

D Contracts

1 // SPDX−License−I d e n t i f i e r : MIT
2 pragma s o l i d i t y ˆ 0 . 8 . 0 ;
3 import ”@openzeppel in / con t r a c t s / token/ERC20/ERC20 . s o l ” ;
4 import ”@openzeppel in / con t r a c t s / token/ERC20/ ex t en s i on s /ERC20Burnable . s o l ” ;
5 import ”@openzeppel in / con t r a c t s / s e c u r i t y /Pausable . s o l ” ;
6 import ”@openzeppel in / con t r a c t s / a c c e s s /Ownable . s o l ” ;
7 import ”@openzeppel in / con t r a c t s /metatx/ERC2771Context . s o l ” ;
8 import ”@openzeppel in / con t r a c t s /metatx/MinimalForwarder . s o l ” ;
9
10 cont rac t Seatoken i s ERC2771Context , ERC20, ERC20Burnable , Pausable ,

Ownable {
11 cons t ruc to r (MinimalForwarder forwarder) ERC2771Context (address (

forwarder)) ERC20(”Seatoken” , ”SETK”) {
12 }
13 func t i on pause () public onlyOwner {
14 pause () ;
15 }
16 func t i on unpause () public onlyOwner {
17 unpause () ;
18 }
19 func t i on mint (address to , u int256 amount) public onlyOwner {
20 mint (to , amount) ;
21 }
22 func t i on msgSender () i n t e r n a l view ove r r i d e (Context , ERC2771Context)

r e tu rn s (address) {
23 return ERC2771Context . msgSender () ;
24 }
25 func t i on msgData () i n t e r n a l view ove r r i d e (Context , ERC2771Context)

r e tu rn s (bytes memory)
26 {
27 return ERC2771Context . msgData () ;
28 }
29 func t i on be foreTokenTrans fe r (address from , address to , u int256 amount)
30 i n t e r n a l
31 whenNotPaused
32 ove r r i d e
33 {
34 super . be foreTokenTrans fe r (from , to , amount) ;
35 }
36 }

1 // SPDX−License−I d e n t i f i e r : MIT
2 // OpenZeppelin Contracts (l a s t updated v4 . 5 . 0) (metatx /MinimalForwarder .

s o l)
3 pragma s o l i d i t y ˆ 0 . 8 . 0 ;
4 import ” . . / u t i l s / cryptography /ECDSA. s o l ” ;
5 import ” . . / u t i l s / cryptography / dra f t−EIP712 . s o l ” ;
6
7 cont rac t MinimalForwarder i s EIP712 {
8 us ing ECDSA for bytes32 ;
9 s t r u c t ForwardRequest {
10 address from ;
11 address to ;

62

12 uint256 value ;
13 uint256 gas ;
14 uint256 nonce ;
15 bytes data ;
16 }
17 bytes32 private constant TYPEHASH = keccak256 (”ForwardRequest (address

from , address to , u int256 value , u int256 gas , u int256 nonce , bytes data) ”
) ;

18
19 mapping (address => uint256) private nonces ;
20 con s t ruc to r () EIP712 (”MinimalForwarder” , ” 0 . 0 . 1 ”) {}
21
22 func t i on getNonce (address from) public view re tu rn s (u int256) {
23 return nonces [from] ;
24 }
25 func t i on v e r i f y (ForwardRequest c a l l d a t a req , bytes c a l l d a t a s i gna tu r e)

public view re tu rn s (bool) {
26 address s i g n e r = hashTypedDataV4 (
27 keccak256 (abi . encode (TYPEHASH, req . from , req . to , req . value ,

req . gas , req . nonce , keccak256 (req . data)))
28) . r e cove r (s i gna tu r e) ;
29 return nonces [req . from] == req . nonce && s i gn e r == req . from ;
30 }
31 func t i on execute (ForwardRequest c a l l d a t a req , bytes c a l l d a t a s i gna tu r e)

public payable r e tu rn s (bool , bytes memory) {
32 r e qu i r e (v e r i f y (req , s i gna tu r e) , ”MinimalForwarder : s i gna tu r e does

not match reque s t ”) ;
33 nonces [req . from] = req . nonce + 1 ;
34 (bool succes s , bytes memory returndata) = req . to . c a l l { gas : req . gas ,

va lue : req . va lue }(
35 abi . encodePacked (req . data , req . from)
36) ;
37 // Va l ida t e t ha t the r e l a y e r has enough gas f o r the c a l l .
38 i f (g a s l e f t () <= req . gas / 63) {
39 assembly {
40 i n v a l i d ()
41 }
42 }
43 return (succes s , re turndata) ;
44 }
45 }

1 // SPDX−License−I d e n t i f i e r : MIT
2 // OpenZeppelin Contracts (l a s t updated v4 . 5 . 0) (metatx /ERC2771Context . s o l)
3 pragma s o l i d i t y ˆ 0 . 8 . 9 ;
4 import ” . . / u t i l s /Context . s o l ” ;
5 abstract cont rac t ERC2771Context i s Context {
6 address private immutable t rustedForwarder ;
7
8 con s t ruc to r (address trustedForwarder) {
9 trustedForwarder = trustedForwarder ;
10 }
11 func t i on isTrustedForwarder (address forwarder) public view v i r t u a l

r e tu rn s (bool) {
12 return forwarder == trustedForwarder ;

63

13 }
14 func t i on msgSender () i n t e r n a l view v i r t u a l ov e r r i d e r e tu rn s (address

sender) {
15 i f (i sTrustedForwarder (msg . sender)) {
16 assembly {
17 sender := shr (96 , c a l l d a t a l o ad (sub (c a l l d a t a s i z e () , 20)))
18 }
19 } else {
20 return super . msgSender () ;
21 }
22 }
23 func t i on msgData () i n t e r n a l view v i r t u a l ov e r r i d e r e tu rn s (bytes

c a l l d a t a) {
24 i f (i sTrustedForwarder (msg . sender)) {
25 return msg . data [: msg . data . l ength − 2 0] ;
26 } else {
27 return super . msgData () ;
28 }}
29 }

E Seatoken Artifact
{

” format ” : ”hh−so l−a r t i f a c t −1” ,
”contractName” : ”Seatoken” ,
”sourceName” : ” con t r a c t s /Seatoken . s o l ” ,
” abi ” : [

{
” inputs ” : [

{
” interna lType ” : ” cont rac t MinimalForwarder” ,
”name” : ” forwarder ” ,
” type” : ” address ”

}
] ,
” s t a t eMutab i l i t y ” : ”nonpayable ” ,
” type” : ” con s t ruc to r ”

} ,
{

”anonymous” : f a l s e ,
” inputs ” : [

{
” indexed ” : true ,
” interna lType ” : ” address ” ,
”name” : ” from” ,
” type” : ” address ”

} ,
{

” indexed ” : true ,
” interna lType ” : ” address ” ,
”name” : ” to ” ,
” type” : ” address ”

} ,

64

{
” indexed ” : f a l s e ,
” interna lType ” : ” uint256 ” ,
”name” : ” va lue ” ,
” type” : ” uint256 ”

}
] ,
”name” : ”Trans fe r ” ,
” type” : ” event ”

}
. . .

] ,
”byteCode” : . . .

}

The bytecode has been deleted because of his longitude and some other functions decla-
rations just to make clear how an artifact and an ABI works. In the ABI we can see the
functions. For instance, the transfer function has an address input with the name to and
an unit256 named amount, and returns a boolean.

F Front-end Code

Here is presented the complete necessary code to understand the front-end.

F.1 Signing functions

1 export async func t i on signTx (currentUser , value , provider , token , act ion ,
p l a t e) {

2 i f (! window . ethereum) throw new Error (‘ User wa l l e t not found ‘) ;
3 await window . ethereum . enable () ;
4 const userProv ider = new e th e r s . p rov ide r s . Web3Provider (window . ethereum)

;
5 const userNetwork = await use rProv ider . getNetwork () ;
6 i f (userNetwork . cha inId !== 80001) throw new Error (‘ P lease switch to

Mumbai Network for s i gn ing ‘) ;
7 const s i g n e r = userProv ider . g e tS i gne r () ;
8 const forwarder = c r e a t e In s t an c e (prov ide r) ;
9 const from = await s i g n e r . getAddress () ;
10 i f (from !== currentUser . address) throw new Error (‘ P lease switch to

your account ‘) ;
11 const data = token . interface . encodeFunctionData (’ t r a n s f e r ’ , [”0

x40CDDe2b9BC7659C3349574Ec53db3B2bd9519BF” , e th e r s . u t i l s . parseEther (
va lue . t oS t r i ng ())]) ;

12 const to = token . address ;
13
14 const r eque s t = await signMetaTxRequest (s i g n e r . prov ider , forwarder , {

to , from , data }) ;
15 i f (ac t i on === ”Reserve ”) {
16 conso l e . l og (’ Sending r e s e r v e t r an sa c t i on . . . ’ , r eque s t) ;
17 return await UserServ i ce . r e s e r v eVeh i c l e (p late , currentUser . username

, r eque s t) . catch (func t i on (e) {
18 conso l e . l og (e) ;

65

19 }) ;
20 } else i f (ac t i on === ”Release ”) {
21 conso l e . l og (’ Sending r e l e a s i n g t r an sa c t i on . . . ’ , r eque s t) ;
22 return await UserServ i ce . r e l e a s eVeh i c l e (p late , currentUser . username

, r eque s t) . catch (func t i on (e) {
23 conso l e . l og (e) ;
24 }) ;
25 }
26 return ”Error ” ;
27 }

1 const EIP712Domain = [
2 { name : ’name ’ , type : ’ s t r i n g ’ } ,
3 { name : ’ v e r s i on ’ , type : ’ s t r i n g ’ } ,
4 { name : ’ cha inId ’ , type : ’ u int256 ’ } ,
5 { name : ’ v e r i f y i ngCont ra c t ’ , type : ’ address ’ }
6] ;
7 const ForwardRequest = [
8 { name : ’ from ’ , type : ’ address ’ } ,
9 { name : ’ to ’ , type : ’ address ’ } ,
10 { name : ’ va lue ’ , type : ’ u int256 ’ } ,
11 { name : ’ gas ’ , type : ’ u int256 ’ } ,
12 { name : ’ nonce ’ , type : ’ u int256 ’ } ,
13 { name : ’ data ’ , type : ’ bytes ’ } ,
14] ;
15 func t i on getMetaTxTypeData (chainId , v e r i f y i ngCont ra c t) {
16 return {
17 types : {
18 EIP712Domain ,
19 ForwardRequest ,
20 } ,
21 domain : {
22 name : ’ MinimalForwarder ’ ,
23 ve r s i on : ’ 0 . 0 . 1 ’ ,
24 chainId ,
25 ve r i f y ingCont rac t ,
26 } ,
27 primaryType : ’ ForwardRequest ’ ,
28 }
29 } ;
30 async func t i on signTypedData (s i gne r , from , data) {
31 const i sHardhat = data . domain . cha inId === 31337 ;
32 const [method , argData] = isHardhat
33 ? [’ eth signTypedData ’ , data]
34 : [’ eth signTypedData v4 ’ , JSON. s t r i n g i f y (data)]
35 return await s i g n e r . send (method , [from , argData]) ;
36 }
37
38 async func t i on bui ldRequest (forwarder , input) {
39 const nonce = await forwarder . getNonce (input . from) . then (nonce => nonce .

t oS t r i ng ()) ;
40 return { value : 0 , gas : 1e6 , nonce , . . . input } ;
41 }
42 async func t i on buildTypedData (forwarder , r eque s t) {
43 const cha inId = await forwarder . p rov ide r . getNetwork () . then (n => n .

66

cha inId) ;
44 const typeData = getMetaTxTypeData (chainId , forwarder . address) ;
45 return { . . . typeData , message : r eque s t } ;
46 }
47 async func t i on signMetaTxRequest (s i gne r , forwarder , input) {
48 const r eque s t = await bui ldRequest (forwarder , input) ;
49 const toS ign = await buildTypedData (forwarder , r eque s t) ;
50 const s i gna tu r e = await signTypedData (s i gne r , input . from , toSign) ;
51 return { s i gnature , r eque s t } ;
52 }

1 import { e th e r s } from ’ e th e r s ’ ;
2 import { MinimalForwarder as address } from ’ . . / deploy . j son ’ ;
3 const abi = [. . .] ;
4 export func t i on c r e a t e In s t an c e (prov ide r) {
5 return new e th e r s . Contract (address , abi , p rov ide r) ;
6 }

Note: The abi has been removed for longitude purposes. an example of an ABI can be
found in Appendix E

67

	List of Figures
	List of Tables
	Introduction
	Statement of purpose
	Requirements and Specifications
	Requirements
	Specifications

	Methods and procedures
	Workplan, milestones and Gantt Diagram
	Workplan
	Gantt Diagram

	Deviations from the initial plan

	State of the art of the technology used
	Blockchain
	The blocks in the blockchain
	Transactions
	Smart Contracts
	Consensus mechanisms
	Wallets
	ECDSA and address recovering

	Polygon
	Heimdall
	Bor

	Amazon Web Services
	Lambda
	EC2
	AWS KMS

	Development
	Deployment of a Full Node in the mumbai testnet
	Configuring the node files

	Registering and Signing with Key Management System of Amazon Web Services
	Setting up the environment
	Programming the workflow
	Calls to the API Gateway

	Writing and deploying the contracts
	The Minimal Forwarder Contract
	Token contract
	Compiling and deploying

	Developing the API
	Database
	Authentication
	User functions
	Interacting with the smart contracts

	The Front-end
	Sing Up and Login Up
	Buying tokens
	Using the service

	Final result
	Budget
	Conclusions
	Future of the project
	References
	Appendices
	Bor and Heimdall logs
	The v value
	API code
	Routes in the API
	Sign Up Code
	Sign In Code
	User functions
	Handeling the transactions in the blockchain

	Contracts
	Seatoken Artifact
	Front-end Code
	Signing functions

