UNIVERSITAT POLITECNICA DE CATALUNYA e
BARCELONATECH "’ > telecos
E scola Técnica Superior d’Enginyeria BCN

de Telecomunicacié de Barcelona

Mobility Service Based on Blockchain
Technology for SEAT MO

Degree Thesis
submitted to the Faculty of the
Escola Tecnica d'Enginyeria de Telecomunicacié de Barcelona
Universitat Politecnica de Catalunya
by

Adrian Soria Montoya

In partial fulfillment of the requirements for the degree in
Telecommunications Technologies and Services Engineering

Advisors: Jose Luis Munoz Tapia and Antonio Jimenez Viguer
Barcelona, Date 2022

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

Contents
List of Figures 4
List of Tables 5
1 Introduction 10
1.1 Statement of purpose 10
1.2 Requirements and Specifications 10
1.2.1 Requirements 10
1.2.2 Specificationso 10
1.3 Methods and procedures 11
1.4 Workplan, milestones and Gantt Diagram 12
1.4.1 Workplan Lo 12
1.4.2 Gantt Diagram Lo 15
1.5 Deviations from the initial plan o000 15
2 State of the art of the technology used 16
2.1 Blockchain 16
2.1.1 The blocks in the blockchain 16
2.1.2 Transactions 17
2.1.3 Smart Contracts 18
2.1.4 Consensus mechanisms 18
2.1.5 Wallets. o o 19
2.1.6 ECDSA and address recovering 20
2.2 Polygon 21
221 Heimdall 21
222 Bor. . .. 22
2.3 Amazon Web Services 23
2.3.1 Lambda 23
232 EC2 . . . 23
233 AWSKMS. . . . 24
3 Development 25
3.1 Deployment of a Full Node in the mumbai testnet 26
3.1.1 Configuring the node files 26
3.2 Registering and Signing with Key Management System of Amazon Web
SETVICES 28
3.2.1 Setting up the environment 28
3.2.2 Programming the workflow 29
3.2.3 Calls to the API Gateway 31
3.3 Writing and deploying the contracts 32
3.3.1 The Minimal Forwarder Contract 33
3.3.2 Token contract 34
3.3.3 Compiling and deploying 35
3.4 Developing the APT 37

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — ,’\3
BARCELONATECH seAaT

6

7

3.4.1 Database
3.4.2 Authentication
3.4.3 User functions
3.4.4 Interacting with the smart contracts
3.5 The Front-end
3.5.1 Sing Upand Login Up
3.5.2 Buying tokens Lo o
3.5.3 Using the service

Final result
Budget
Conclusions

Future of the project

References

Appendices

A

B

Bor and Heimdall logs
The v value

API code

C.1 Routesinthe API
C.2 Sign Up Code e
C.3 SignIn Code
C.4 User functions
C.5 Handeling the transactions in the blockchain

Contracts

E Seatoken Artifact

Front-end Code
F.1 Signing functions

telecos

BCN

45

51

52

53

54

56

56

57

57
57
58
o8
29
61

62

64

65

@ S C@

BARCELONATECH seAaT BCN

List of Figures
1 Gantt Diagram Lo 15
2 Chain of blocks 17
3 Metamask wallet showing the assets of SEAT 19
4 Visualization of an ECDSA 20
D Polygon architecture 21
6 Merkle Tree o 22
7 Node architecture 22
8 Amazon Lambda with logs of previous executions 23
9 Creation Key option in A WS KMS 24
10 Purchasing block diagram o000 25
11 Booking and releasing block diagram 25
12 Node still catchingup oo 27
13 Structure of the service with KMS. Source [8] 28
14 Calling the register function 31
15 Keyinthe AWS KMS 32
16 Calling the sign function 32
17 Structure of sending a metatransaction. Source Openzeppelin[21]. 33
18 Result of the deploy script o 36
19 Block of the creation of the forwarder contract 36
20 Block of the creation of the token contract 37
21 Capture of the mobility app by SEAT code. Source: SEAT MO web 41
22 Cache in the web when signing in 42
23 Sign Up processo 45
24 DB withsomeusers. 46
25 SignInpage 46
26 Profile tab of a user in the web page 47
27 Profile tab of a user in the web page A7
28 Balance of SETK in Toni’s address 47
29 Transaction detailso 48
30 Booking vehicle web page oo 48
31 Signature of a vehicle with Metamask. 49
32 User trying to reserve a vehicle while one is reserved. 49
33 Defender Relayer with the reserve and release transaction 50
34 Transactions of the tokens in the blockchain 50
35 Log Bor when starts runningo Lo 56
36 Log Bor syncing with Heimdall 56
37 Log of Heimdall service running 57

@ S C@
BARCELONATECH s=aT BCN
Listings
1 Main playbook of the node deployment. 26
2 Sync status of the Polygon Node 27
3 Set up of the cdk deploy command to deploy the scripts. 28
4 Status function in the lambda service. L. 29
5 Funtion that returns the Ethereum Address 29
6 Function that the registers the user in AWS KMS 29
7 Main steps for signing a transaction with A WS KMS 30
8 Function that finds the r and s parameter of a transaction. 30
9 Function that recovers the address and the v parameter. 31
10 Verify function in the fowarder contract 33
11 Execute function to send the request to the Token Contract. 33
12 Token contract with the basic functions. 34
13 ERC2711Context contract retriving the original sender. 34
14 Hardhat config file 35
15 Script that deploy the contract in a chain. 36
16 Model of the user fieldsinthe DB 37
17 Post function to the sign up APl endpoint 38
18 Verification of the password received. 38
19 Reserving vehicle function in the API 38
20 Release function in the APT L. 39
21 Purchase function in the APT 40
22 Creating the providers to interact with the contracts in the chain. 40
23 Different calls of the methods in the SETK contract. 40
24 Connecting to the Defender Relayer Service 41
25 Validation and processing of a transaction by the Minimal Forwarder Con-
tract. L e 41
26 Button that executes the function purchase tokens 42
27 GET method to the purchase function in the API instance 42
28 Button that depending of the current state and signs and process a trans-
action. L 43
29 Connecting and checking Metamask is operative. 43
30 Example of a signature and transaction. 44
List of Tables
1 Budget for the project 51

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

Abbreviations

ABI Application Binary Interface

API Application Programming Interface

AWS KMS Key Management System of Amazon Web Services
CORS Cross Origin Resource Sharing

CPU Central Processing Unit

dApp Decentralized application

DB Data Base

DNS Domain Name System

ECDSA Elliptic Curve Digital Signature Algorithm
EIP Ethereum Improvement Proposal

ERC Ethereum Request for Comment

EVM Ethereum Virtual Machine

FIAT Type of currency that is declared legal by some entity as the European Union
GSN Gas Station Network

JWT Json Web Token

MATIC Base Coin used in the Polygon network
MBTN Mumbai Test Net

NFT Non-Fungible Token

PoC Prove of Concept

PoS Proof Of Stake

PoW Proof of Work

RAM Random Access Memory

RHEL Red Hat Enterprise Linux

RLP Recursive Length Prefix

RPC Remote Procedure Call

SETK Seat ERC-20 Token

UTC Central Universal Time

VM Virtual Machine

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

Special Thanks

I would like to thank SEAT and all the IT department for the opportunity of doing the
internship.

Also, I am very gratefull for the treatment received by all the FS-A3 team; Elena, Paco,
Toni, Alvaro, Marcos, Crisanto, Sara, Carlos, Alan and Cathi. For all the things that I
learned and to make me feel part of the team since the first day.

Specially T would like to thank Antonio Jimenez, my supervisor during my intership, for
the opportunity of doing this thesis and for including me in the Metahype project sessions
to learn how a project is developed in a big company.

To conclude, thanks to my project supervisors, Jose Luis Munoz and Antonio Jimenez for
the advising provided to the project.

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

Abstract

Security and privacy are vital nowadays, with all the leaks and tracking that every service
uses. Because of that it is important to gain the trust of the users in our application.
This thesis presents a PoC of a web dApp for managing the flow of the reservation of a
vehicle. The technologies used are, React for the front-end, NodeJS for the back-end and
HardHat suite with ganache to deploy and manage the contracts in a local blockchain
and in the main blockchain. As for the blockchain, a layer 2 solution from the ethereum
net is used, the Polygon network, in particular MBTN for testing. The dApp provides a
transparent and secure solution that allows the user to truck all his movements in the
app in an anonymous way and works perfectly as a propose for an utility case for the
announced Metahype by Cupra [19].

O

UNIVERSITAT POLITECNICA
DE CATALUNYA

BARCELONATECH

S

T

telecos
BCN

D)

Revision history and approval record

Revision | Date Purpose

0 08/03/2022 | Document creation

1 05/05/2022 | Document revision

2 24/05/2022 | Document revision

3 10/06/2022 | Document revision

4 16/06/2022 | Document revision

5 20/06/2022 | Document validation
DOCUMENT DISTRIBUTION LIST

Name e-mail

[Student name]: Adridn Soria

adrian.soria@estudiantat.upc.edu

[Project Supervisor 1]: Jose Luis Munioz Tapia

jose.luis.munoz@upc.edu

[Project Supervisor 2]: Antonio Jimenez Viguer

antonio.jimenez@seat.es

Written by: Reviewed and approved by:
Date 08/03/2022 Date 20/06/2022
.,) Jose Luis Munoz Tapia and
Name Adrian Soria Montoya Name L :
Antonio Jimenez Viguer
Position Project Author Position Project Supervisor

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

1 Introduction

1.1

Statement of purpose

The purpose of this project is to implement a valid, transparent, and scalable solution to
the mobility service that SEAT MO offers based on blockchain technology. The proposal
should be functional, with good latency and response, and economically viable for a future
implementation in the market. As it is a PoC, calls to the SEATMO API or payments
with FIAT are simulated and the database used is local.

1.2

Requirements and Specifications

1.2.1 Requirements

Requirements are what the project must be in order to get completed. The requirements
of my projects are:

1.

Develop a scalable, transparent solution.

. Secure communication between the different modules.

2
3.
4

The project must be economically viable.

. The contract should be written using the net standard ERC-20, to be used across

new services.

The solution should be as decentralized as possible.

1.2.2 Specifications

Specifications make reference to the expected measured in order to see if the measures
have been accomplished:

1.

Metatransactions in the MBTN a layer 2 solution, so the user don’t pay the gas
fees.

. A secure key management using Metamask or AWS KMS.

. Make sure that the user and the company can track all the movements.

System has to have low latency in the user side, taking into account that transactions
in the blockchain are not instantaneous and the user may take longer to release a
vehicle than a transaction to being processed.

10

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

1.3 Methods and procedures

This project starts as a service proposal for the upcoming Metahype [19] anounced by
Cupra. This project is a metaverse, a virtual environment where the user can be immersed
and perform all kind of tasks, being the most famous, Meta by Facebook [12].

The blockchain technology is constantly evolving, and there are multiple programs and
standards that this project will use. The most important one is the EIP-20 [24] which
introduces the ERC-20, a fungible token that is used as virtual currency. Also, the EIP-712
[2] is the structure for the meta transactions that we are going to use. For the contracts,
the project will be based in the Openzeppelin [3] contracts and use his Defender Relay
[20] to use meta-transactions and allow the user to make transactions without paying any
fee. The technology used in the front-end is React, and in the back-end are NodeJS and
MongoDB. For the node, to have a participation in the MBTN, I am going to use Ansible,
a Red Hat product to make the deployment and Heimdall and Bor are the core elements
of the blockchain node.

The developing of the smarts contracts are going to be made in the Solidity programming
language, and the for the deployment and testing, Hardhat and Ganache are going to be
used respectively. All the structure is deployed in the EC2 of the Amazon Web Services,
using internal communication when needed, and HTTPS when the communication is done
in the internet.

11

UNIVERSITAT POLITECNICA [~
DE CATALUNYA —
BARCELONATECH seAaT

C@ cecos

1.4 Workplan, milestones and Gantt Diagram

1.4.1 Workplan

BCN

Project: WP ref: 1
Major constituent: Documentation Sheet 1 0f 6
Short description: Start event: 14/02/2022
Decide which is the best way to proceed End event: 01/06/2022
Deliverables:
Presentation for SEAT MO

Schematic of the system

system
Internal task T2: Plan the future tasks

Internal task T3: Research about all the solutions
and parts of the system and about the state-of-
the-art current solutions.

Internal task T1: Decide the structure of the | Milestones:

Validation of SEAT MO
Defined structure

Project:

WP ref: 2

Major constituent: Software

Sheet 2 of 6

Short description: Configure the structure in AWS
KMS

Start event: 16/02/2022
End event: 11/03/2022

Deliverables: No

Internal task T1: Deploy the Polygon Node

Internal task T2: Deploy the API machine

Internal task T3: Deploy the Frontend Machine

Milestone:
- Have access to the
machines.
- Configure the network
to proper functions.

12

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — /‘% telecos
BARCELONATECH seaT BCN

Project: WP ref: 3

Major constituent: Software Sheet 3 of 6

Short description: Configure the Mumbai Testnet Start event: 14/03/2022
End event: 10/06/2022

Deliverables:
Proofs of the proper function

Internal task T1: Set up a node Milestones:

- Get the public key of
Internal task T2: Do the hello world smart contract the KMS.

- Sign with KMS.
Internal task T3: Setup an Amazon KMS signatureto | - Do a full transaction
valid the transactions. using KMS.

Internal task T4: Do a test transaction

Project: WP ref: 4
Major constituent: Software Sheet 4 of 6
Short description: Configure an API Start event: 11/04/2022

End event: 20/05/2022

Deliverables: No

Internal task T1: Connect the API with the blockchain | Milestones:

net, with the needed security. - Transactions can be
made.

Internal task T2: Set up a database to emulate the - We can make a

SEAT MO database. transaction with a
smart contract.

Internal task T3: Make the AP adaptative to the most - The database

common errors. response to
transactions.

13

O

telecos

BCN

UNIVERSITAT POLITECNICA [—
3
SEEALT S Q)
Project: WP ref: 5
Major constituent: Software and testing Sheet 5 of 6
Short description: Test the system and study | Start event:16/05/2022

scalability in the number of users.

End event: 17/06/2022

Deliverables: The scalability
proposal

Internal task T1: Create a frontend to make the
petitions.

Internal task T2: Test the system and correct errors

Internal task T3: Make a scalability proposal for
future implementation in the market.

Milestones:
Frontend is easy to use.
The system works

properly

Project:

WP ref: 6

Major constituent: Documentation

Sheet 6 of 6

Short description: Make all the documentation for the
project

Start event: 14/02/2022
End event: 21/06/2022

Deliverables:
Work Plan
Critical Review
Final report

Internal task T1: Documentation of all the steps
Internal task T2: Deliver the workplan
Internal task T3: Deliver the Critical Review

Internal task T4: Deliver the final report.

Milestones:

Be up to date with the
deliverables

14

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — 1))) telecos
BARCELONATECH s=aT BCN
.
1.4.2 Gantt Diagram
Febrero Marzo Abril Mayo Junio
Activity Inicio Final & |14-18 21- 25 IR 1 1418|2125 281 4-8 m-15[18-22 2528 2-6 9-13 |16-20[23-27 30-3 610 [13-17
WP1: Definition of the system 14-02-22 01-06-22 ~
Define structure of the system 14-02-22 18-03-22
Plan the future tasks 14-02-22 22-03-22
Research about state of the art 14-02-22 01-06-22
WP2: Configure the VMs 16-02-22 1-03-22
Configure the Polygon Node 16-02-22 07-03-22
Configure the API machine 16-02-22 1-03-22
Configure the frontend 16-02-22 11-03-22
WP3: Mumbai testnet 14-03-22 10-06-22 ~
Setup the node 14-03-22 25-03-22
Hello world smart contract 25-03-22 01-04-22
Do a test transaction 27-05-22 10-06-22
WP4: API configuration 11-04-22 20-05-22 ~
Connect the API 1-04-22 29-04-22
Database configuration 29-04-22 13-05-22
Correct errors 16-05-22 20-05-22 .
WPS: Frontend and testing 04-05-22 17-06-22
Create the frontend 04-05-22 10-06-22
Test errors 03-06-22 10-06-22
Scalability proposal | 03-06-22 17-06-22

Figure 1: Final Gantt Diagram of the project

1.5 Deviations from the initial plan

One of the goals is to make the dApp as user friendly as possible, and to work with
the workflow that SEAT MO has. For that being possible, a creation of a wallet for the
user was necessary. That means that the final user didn’t have to know anything about
blockchain to use the service. Because the libraries for the AWS KMS doesn’t actually
support the signature of a meta-transaction, and the work around will take several weeks
of research and implementation that will delay the thesis, an alternative solution, involving
metamask is implemented.

Nevertheless, as we can verify which address belongs to which real person, since we will
have the email and phone number of the user, the potential loss of tokens are avoided by
transferring the tokens from the old account to the new one.

15

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — /"-)3 telecos
BARCELONATECH seAaT BCN

2 State of the art of the technology used

The purpose of this section is to introduce the reader to all the technologies that this
project is going to use, and why are they used instead other alternatives. This section will
be used as introduction to the blockchain technology including metatrasnactions, industry
standards, the second layers solutions and Smart contracts, adding an explanation of the
Amazon Web Services used.

2.1 Blockchain

When it is time to store information the majority of systems are centralized with a
database in which the users put trust on it. But what happens if the source cannot be
trusted? To solve this trust issue, Satoshi Nakamoto propose a decentralized system of
transactions, which is basically information. The Bitcoin [17] transaction protocol.

It has properties that makes very easy to the users to put trust in them:

1. Robustness
Blockchain Technology stores information in blocks which are chronologically syn-
chronised. And these blocks cannot be controlled by an individual, making blockchain
highly secured and trustable.

2. Decentralised Ledger
Decentralised Ledger operates on peer to peer basis. Because every node has a copy
of the blockchain and the longest match rule, makes that the blockchain is owned
by everyone so there is nobody to trust.

3. Immutable
Once a block is sealed cryptographically or added to main chain, it is impossible to
delete or edit, ensuring the immutability of the digital ledger, making it perfect for
storing permanent data such as transactions or other registers of use of any service.

4. Transparency
It is possible for a user to verify and track their transactions, with the entire record
of the transactions available in the blockchain in every node. As it is public and
immutable, everybody can see what it has been written in the blockchain and by
who. Regardless, the user anonymity is ensured by a nickname which corresponds
to the address of the wallet.

So considering all the benefits that the blockchain provides, it is the proper technology
to implement the mobility service that SEAT MO offers. Booking the vehicle, tracking it
and the implementation of tokens that can be used as engagement to other products and
offers of the company.

2.1.1 The blocks in the blockchain

As intuitive as it sounds, a blockchain is composed by blocks that stores the information.
You can think of it as a page of notebook where you can write, but everyone can look at
it and nobody can edit anything. The complete notebook will be the blockchain. To link
the pages we will use the previous hash of the previous block as a field in the next block

16

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

. - | - = Previous Hash » Previous Hash » Previous Hash
= Transactions List = Transactions List = Transactions List
= Time Stamp = Time Stamp = Time Stamp
= Nonce = Nonce = Nonce E
Hash < Hash < Hash =t-

Figure 2: Chain of blocks

2.1.2 Transactions

Writing in a blockchain is what we call a transaction, and has to be differentiated from
the concept of transferring a token. We are going to transfer an ERC-20 token, but the
transaction will transfer a cryptocurrency, for instance transferring SETK costs some gas
as MATIC which is the equivalent to Polygon as Bitcoin is to the Bitcoin blockchain
network. The equivalent will be that, when you want to transfer euros to someone, the
bank may charge you a fee for the transfer.

Reading the blockchain it is free, since all the content is public but it does not mean
that there is no privacy because every user has an address but it is not linked to a
physical person. However, writing in the blockchain has costs. As the standard says, this
payment of writing in the blockchain is called gas fee, where the miner who validates
the transaction gets a reward that varies between consensus mechanisms. There are notes
about transactions that need to be clarified for this thesis.

Metatransactions The concept of Metatransaction is to put a transaction inside an-
other transaction. This means you can pay the gas for another person transaction. This
is essential to the development of a dApp oriented to the general users that do not know
how a blockchain works and is reluctant to spend any money in a system that does not
trust.

Relayer The function of a relayer in a blockchain is to act as a buffer and wait to vali-
dation of the block that contains the transaction. This technology allows more reliability
because if a transaction is not validated it can be retried any time in the future, or if
a dApp that uses a relayer goes down, it prevents the transaction lost. Working with
metatransactions, a relayer can sign the main transaction, allowing gas-less transactions
since the relayer would pay for the gas. For this function the relayer may be deployed in
a GSN, but for the project the Defender Relayer of Openzeppelin][20] will be used as it
funtions as a buffer and signer.

17

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

2.1.3 Smart Contracts

Smart Contracts are scripts that are written in the blockchain and have variables, methods
and can inherit other classes like other languages. Mapping is an important part of a smart
contract, which is how we store information from multiple users and allows to control
the actual nonce of an address. Nonce stands for, number once, and helps to prevent
replay attacks in a blockchain. A replay attack occurs when a blockchain forks and then
transactions can be duplicated and the attacker get benefited twice. The most extended
language to code is Solidity.

To get everyone to work in the same basis and make the blockchains to understand each
other there are standards that are followed, such the ERC-721[9] also known as NFT. For
this project the main standard is the ERC-20.

ERC-20 [24] An ERC-20 is an standardized token that provides an API for calling
methods. It has a mapping with the balance of all address that holds the token and
defined methods to be called such as transfer or mint. This standard is extended with
more functions: the burn method uses the original transfer function to send tokens from
the requester address to an empty address, or the pause method that calls all the allowance
transfer of the original ERC to stop all the transactions if any change has to be made.

ERC-777 [6] The ERC-777 starts as an intention to upgrade the ERC-20. It integrates
the burn and allowance function without the necessity of any modification, and adds to
main functions. The send function, that allows to send data in a token transfer and works
with operators. This functions add to a mapping the address that are allowed to mint and
burn tokens, which is restricted to the owner in the ERC-20.

2.1.4 Consensus mechanisms

When a transaction is submitted to the blockchain, we need a method to make sure that
the block is valid and no block has been corrupted. Those are the consensus mechanisms,
which need to pass the 51% proof to maintain the blockchain secure by definition.

Proof of Work The PoW][15] is a consensus mechanism that establish a difficulty in
the block. The miners have to proof that some computational work has been expended
by resolving a cryptographic puzzle. For that, when generating a transaction, a partial
hash is sent. Then the miner has to complete this hash in order to validate a block. The
main problem of this consensus validation mechanism is the power consumption[13] that
can be as high as an entire country, such Switzerland[14]. To valid a corrupted block,
someone has to have the 51% of computational power of all the blockchain, that makes
the consensus secure by definition.

Proof of Stake The PoS is a consensus mechanism to keep a decentralized system, in
this case the blockchain, secure. It was a created as an alternative for the PoW consensus
mechanism that consumes a lot of computational power and, therefore a lot of electricity.
This method uses the cryptocurrency (as Ethereum) as collateral to validate the block.
Everyone that puts some cryptocurrency in a deposit becomes a validator. Then blocks

18

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

are validated by the validators, known as miners in PoW. There are many consensus on
how to choose the validator. One is to choose randomly between the validators. Another
one is to let all the validators vote if the block is valid. If a percentage votes that a block
is valid then it is incorporated to the blockchain. By running this validation process, the
network gives rewards as an incentive to become a validator which may vary between
consensus. The gas fees that the block generates, and other rewards are examples on how
to engage the participants to stack his cryptocurrency and become validators. To valid a
corrupted block, someone has to stack the 51% of the stacked cryptocurrency of all the
blockchain, that makes the consensus secure by definition.

2.1.5 Wallets

A Wallet is the software that allows to interact with the cryptographic assets that a
person owns. One wallet has multiple accounts that are identified by an Address and can
interact with multiple networks. This account is created with a asymmetrical key pair.
Ethereum addresses are hexadecimal numbers, identifiers derived from the last 20 bytes
of the Keccak-256 (explained in 2.1.6) hash of the public key. There are several wallets.
Arkane is one of the most popular and works as an API and a web version to interact
with. However, the easiest one for a user to interact is Metamask because it works as
an expansion in any browser and allows an easy interaction with the different blockchain
networks and is very user friendly to make transactions and view the assets.

'-g METAMASK @ Polygon Mumbai Testnet v @

Redes

Show/hide test networks Ignorar

® Red principal de Ethereum

TFG account
[m]

Q
006638 MATIC v Polygon Mumbai Testnet

r'/
° \ Agregar red

Enviar

Activos Actividad

@ 0.6638 MATIC >

. 1000 SETK >

Figure 3: Metamask wallet showing the assets of SEAT

Metamask allows the user to enter his wallet with a password, but a mnemonic (a com-
bination of twelve words) is provided at the creation in case it is necessary to recover the
account. In a wallet is vital to have the private keys of the different accounts, and the
mnemonic stored in a secure place to prevent the robbery of information.

19

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

2.1.6 ECDSA and address recovering

When working with transactions we have to differentiate between hashing and signing a
transaction. Hashing provides a method to verify the input integrity, and it is used to link
the blocks. By providing the hash of the previous block (see Figure 2), you can verify that
this block is valid, so if any change is done in the blockchain, the hash of the block will
change and will not correspond the hash in the next block. Ethereum and Polygon uses
the Keccak-256 hashing algorithm with corresponds to the standardized SHA-3[18].With
that logic we can secure by definition that a blockchain is immutable. When a block is
valid you have to make sure that the transaction inside the block is valid. This is the
signature, that consist in a key pair where some data is encrypted but only the person
that encrypted can decrypted and it is used to verify the sender. To sum up, hashing is
for checking that data is valid, and signing is a the course of action to check where the
data comes.

The algorithm for signing is ECDSA[1], in specific the secp256k1[23].

The curve is defined as y2modp = (x3+7)mod(p) where p is p = 2256-232-29-28-27-26-24-1

A

~
\ J

A J

Figure 4: Visualization of an ECDSA

The process of signing with the ECDSA secp256k1 curve are the following:
1. Hashing the transaction.
2. Generate a random number k between [1, n - 1] (n is the order of the curve).

3. Calculate a random point in the curve K = k % G being G(x,y) the generator base
point. Then r is defined as the x component of the K point.

4. Calculate the signature proof as: s = k(71) % (h + r * private Key)(modn)

Now that we have the r and s, we have the signature, but we have to recover the address
to verify that is the correct user that signed the transaction. We can recover the address
by finding one of the two possible values of v. v is the recovery id and it can be one of

20

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — 7))) telecos
BARCELONATECH seAaT BCN

two possible values: 27 or 28. With one of this values the recovered message will be the
original message and we will have recovered the address and the recovery id.

2.2 Polygon

Because writing in a blockchain has costs, the gas fees might make the dApp non eco-
nomical viable. For solving this problem, a second layer solution is used. Polygon is a
second layer blockchain solution that provides hybrid Proof-of-Stake and Plasma-enabled
sidechains and it is fully integrated with Ethereum, that operates as the main chain. It has
public Heimdall nodes that works between the Ethereum main chain and only publishes
the hash root of a Merkle Tree, making that the blocks with the transactions are in a
side chain, which is more affordable, but the proof that all the blocks are valid are in the
Ethereum blockchain so the gas fees are heavily reduced.

' Fraud Proofs

[+ Plasma Exit Queue

Figure 5: Polygon architecture

2.2.1 Heimdall

Heimdall works as the governance layer between the Polygon and Ethereum net, authenti-
cates with the net using Proof-Of-Stake, controls the block production and the state-sync
mechanism. It uses Pulp to verify the transactions based on the RLP[10] encoding. RLP
is the actual standard for encode binary data, and it is used to encode certain types of
data, such strings, integers or floats among others, treating them as unique objects to
encode.

The bridge works as the following. It validates all the blocks provided by Bor and creates
a Merkle Tree of the block hashes and then writes the root of the tree in the Ethereum
chain, saving to the user a lot of gas fees in transactions.

21

UNIVERSITAT POLITECNICA [~
DE CATALUNYA —
BARCELONATECH seEAaT

@ tel(;cco'i

Merkle Tree The Merkle Tree contains the hashes of all the data blocks produced by
the Bor layer. Then we reduce it all to one hash, the root hash. With only this hash, we
can have a proof that all the blockchain is valid and by only doing one transaction to the
main chain, Ethereum.

Top Hash

hash(ho)

7

hash(it

Hash
0

o
o)

Wl

AN

A

Hash
hash(.

Hash
1

10
a)

S

~

Hash
0-0

hash(L1)

Hash
0-1

hash(L2)

Hash
1-0

hash(L3)

Hash
1-1

hash(L4)

f ! f 1

Data
Blocks

Figure 6: Structure of the Merkle Tree

2.2.2 Bor

Bor is the Polygon’s block productor. It assembles and generates all the incoming trans-
actions into blocks. As seen in the architecture figure [7] it contains an EVM that contains
a side chain with the blocks. The hashes of this blocks are the ones that are going to be
pulled to the Heimdall layer.

9 B (] B

Ethereum Staking Contracts Checkpoint Contracts
(Main Chain)

Rewards Contracts

Q @ Proof of Stake

Heimdall

EVM Fast Consensus

Figure 7: Architecture of the deployed node

22

UNIVERSITAT POLITECNICA

DE CATALUNYA ;E
SEA

BARCELONATECH T

\?@ e

2.3 Amazon Web Services

When developping the dApp and simulating and environment, Amazon Web Services
offers a wide variety of functionalities and it is the cloud solution selected because the
company is currently developing projects using this services and they can be reliable
as they use high-availability across all services. Some examples are: Cognito to user
credentials management, Pinpoint as a notification of event to user via email or sms or
Aurora as a high-availability DB.

2.3.1 Lambda

The Lambda service lets you execute code inside a VPC. This service interacts with other
services that are in the same account and region and provides the logs of the functions
executed. It has a similar function as a Docker container, it only has the interpreter and
the libraries installed and It does not contain or virtualize any operating system.

Funciones relacionadas:

Descripcién
aws-kms-lambda-ethereum-eth v
kmsclientFunctionCC521D-cD3P
gRX6LESC Ultima modificacion
hace 6 d
% Layers (0) acebdas

ARN de la funcién

m API Gateway + Agregar destino
+ Agregar desencadenador Aplicacién

aws-kms-lambda-ethereum

URL de la funcién Info

Cédigo Probar Monitorear Configuracién Alias Versiones

Métricas Registros Rastros Ver los registros de CloudWatch [5 | ‘ Ver los rastros de X-Ray en ServiceLens [3 ‘ ‘ Ver Lambda Insights [3 ‘ | Ver perfiles en CodeGuru [3

CloudWatch Logs Insights info
Lambda registra todas las solicitudes gestionadas por la funcion y almacena automaticamente los registros generados por el codigo a través de Amazon CloudWatch Logs. Para validar el codigo, debe instrumentarlo con instrucciones de registro

personalizadas. En las tablas siguientes se muestran las invocaciones de funciones més recientes y mds caras de toda la actividad de las funciones. Para ver los registros correspondientes a un alias 0 una versién especificos de una funcién, visite la seccién
de Monitoreo en ese nivel.

1h 3h 12h 1d 3d 1sem. Personalizado [- Afiadir al panel

Recent invocations

i Timestamp i RequestID i LogStream iDurationInMs :BilledDurationInMs iMemorySetInMB i MemoryUsedInMB

»i 2022-05-14T16:88:45. 8612 b2d72867-e505-4327-bdaz-c56d5d07163 2622/06/14/[$LA

19cd42b35715FFc74 1358.93 1359 256 144

»2 2022-06-14T15:59:57.461Z 1352451b-10e2 -4932-8073-2d2c 2256050 2022/06/14/[$ 14203 74 1.3 2 256 136
y3 Fa77ce16-5317-4602-9338-C32085378473 2622/06/1: 1.75 2 256 135
»a 791841d3-47ad- 4c79-96a8-6752260e8d82 2022/06/1¢ 1337.4 1338 256 144
»s 410445 eC-1621-462F-80CF-3eb950341d0 2022/0 1154.79 1155 256 144
»e d122¢718-beb1-4e2f-aca5-6304204e428¢ 1225.72 1225 256 144
»7 2022-06-10706:18 1babe3F2-Fecs-4n68-2426-09535170B4¢S 1276.33 1277 256 146
re 2022-06-10706:17:09. 6852 22775674-7976-4Ch7-9362-6463¢192CTC0 2.02 3 256 137
»a 2022-06-09719:33:19, 8052 1F16bF5F-8bbc-48d5-a4Fh-6b83FL4e5528 723.88 724 256 150

Figure 8: Amazon Lambda with logs of previous executions

The lambda function is connected to an API Gateway, this service is the one that when
receives a call, that can be configured as a POST, GET, DELETE, PATCH, HEAD PUT
or ANY call to handle every method in the endpoint. In the case it can be linked to a
other Amazon Services such as Aurora to interact with the DB, or to Lambda, to execute
the function that has to read an HT'TPS method.

2.3.2 EC2

EC2 stands for Elastic Compute Cloud, and it is the server renting service that Amazon

23

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — ,‘)3 telecos
BARCELONATECH seAaT BCN

offers. By paying for CPU usage, you can deploy a VM of any kind of operating system
with a different types of instances. The larger the instance, the more that cost per CPU
usage. For the project, the node is in a t3.xlarge instance with 4 virtual virtual CPU
and 16GB of RAM and the front-end and backend in a t2.micro instance with 1 vritual
CPU and 1GB of RAM. Other characteristics that change between instances types are the
speed of write/lecture of the storage and the maximum network performance. This service
is used because it provides security group management to accept specific IPs, and they
have internal communication to emulate connection of two servers in the same network
and offers a public DNS to host the front-end.

2.3.3 AWS KMS

The Key Management System allows to create a symmetric or an asymmetric key pair
to use it to cipher or sign a transaction depending on the necessity. The private key is
stored and cannot be copied, retrieved or checked in any way, that is why it is secures and
decentralizes the dApp even more because SEAT will not hold any key, only a reference
to the KMS ID which can only be called by the user. Also, if the user loses his credentials,
they can be restored because the key is secure and external to the system.

TiPO de clave ayuda para elegir [

Simétrico © Asimétrico
Una dnica clave de cifrado que se utiliza para las Un par de claves puablica y privada que se utiliza para
operaciones de cifrado y descifrado cifrar y descifrar datos o firmar y verificar mensajes

Uso de claves Ayuda para elegir E

Cifrado y descifrado © Firmar y verificar
Utilice la clave solo para cifrar y descifrar datos. Pares de claves para la firma digital

Utiliza la claw ivada para firmar y la clave publica

para la verificacion

Especificacién de la clave ayuda para elegir [A

RSA_2048
RSA_3072
RSA_4096
ECC_NIST_P256
ECC_NIST_P384
ECC_NIST_P521

© ECC_SECG_P256K1

Figure 9: Creation Key option in AWS KMS

As we can specify a ECC_SECG_P256K1 key type, it will be compatible with the standard
in the Ethereum network transactions.

24

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

3 Development

This section will go through the development process followed and the structure of the
project. The project has 3 instances. The Front, that will contain a react code to view the
dApp in a web environment emulating the basic functions of the SEAT MO application
and Web3 to interact with contracts, the API with NodeJS, HardHat and Ganache that
will manage all the blockchain interaction and deployment of the contracts, and a Polygon
Node to be part of the blockchain. The signature is going to be using Metamask, but an
alternative with AWS KMS is developed and proposed but not implemented.

Minimal

Defender Relayer Forwarder Smart ERC-20 Smart
Contract
Contract
(4) Executes the mint function
(2) Creates a fransacfion calling the mint method
{1) HTTPS POST Purchasing {3) Calling contract through the node—
AP Polygon Node
(6) Response if any error occurred {5) Response with the balance:

(7) Updates the balance from the blockchain

Figure 10: Purchasing block diagram

When purchasing tokens, the transaction is signed in the node and calls directly the mint
method in the SETK contract, so the gas fee is payed by the SEAT account.

(5] Signs the fransaction

(5 Exscutes Mimimal
Defender Relayer tkhé rd-\rxa-arder_" Forwarder Smart
Contract
Woaorks as provider (7) Calls the transfer function in

the embebed data

Polygon Mode
ERC-20 Smart
Contract

(1) Creats and signs a transfer (4) Sends (8) Response with
the transaction fransaction hash

(2) HTTPS the sign and requesi-m»

(9) Sends the resut——

(3) Updated the DB and validates the request

Figure 11: Booking and releasing block diagram

When creating a metatransaction, the gas is now payed by the relayer who signs the

transaction that calls the Forwarder contract, the cryptocurrency of the relayer has also
to be maintained by SEAT.

25

© 00 N O U W N =

I I I N e i T
W N P O © 0 O U = W N~ O

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — /"-)3 telecos
BARCELONATECH seAaT BCN

3.1 Deployment of a Full Node in the mumbai testnet

In order to get access to the MBTN network we are going to deploy a node in it. This
node will be our gateway to the net, to validate transactions and to push blocks. The
solution uses two main software components, Heimdall and Bor.

3.1.1 Configuring the node files

For the node deployment [22], the software used is Ansible Tower, an automation tool
that allows to perform commands in a remote machine. The destination machine is a
EC2 tx3.large instance with 16GB of ram, 8 core CPU and 750 GB of storage. As a
pre-requisite, it is important to notice that the playbook is implemented in a Debian
machine, because it uses the package manager apt to obtain the packages. This required a
redeploying of the instance node, because all the instances were initially RHEL that uses
dnf package manager and the ansible playbook will not be executed correctly.

From the Ansible Tower that SEAT uses for the automation tasks, we clone the repository
and edit the inventory.yml file putting our public node IP address. In the config file we
add the seeds for the Heimdall service to fetch the data and a public RPC provided by
Polygon to sync the state of the blocks of the current blockchain network. Finally, in
the start file we add the bootnodes to indicate where the bor service will sync his EVM,
consensus and block structure.

Ansible playbooks A playbook is a list of tasks that uses commands that invokes roles
to install all the necessary elements, deploy all the services and starts them. Here is an
example of the main playbook to execute, that calls other roles that are the ones that
executes the tasks with its own variables.

Listing 1: Main playbook of the node deployment.

- name: Network node management
hosts: all
tasks:
- name: Install dependencies
include_role:
name: roles/install -dependencies
apply:
tags: always
tags:
- install_dependencies
- name: Build Heimdall
include_role:
name: roles/install-heimdall
apply:
tags: always
tags:
- build
- name: Build Bor
include_role:
name: roles/install -bor
apply:
tags: always
tags:

26

24
25
26
27
28
29
30
31

UNIVERSITAT POLITECNICA [<

DE CATALUNYA — ":)3 telecos

BARCELONATECH seAaT BCN
- build

- name: Setup and deploy network
include_role:
name: roles/setup-network
apply:
tags: always
tags:
- deploy

Now we have to wait to make the node fully synced with the MBTN and we can check it
using curl localhost:26657/status command, which returns:

result™: |
"node info™:

c3e6d516a6e™,

"moniker
"othexr™: {
"t index™: "on",

: "tep://127.0.0.1:26657"

Figure 12: Node still catching up

Meanwhile the node is synchronizing with the blockchain we cannot vote to validate any
block. After 3 days the node is finally catched up with the MBTN blockchain, and we can
check it by rerunning the previous command.

Listing 2: Sync status of the Polygon Node

N O Ot

"sync_info": {
"latest_block_hash": "FA9OD2BDEA84853595D0ODC281E26685A41CB8A1DCE489CB5C
9C5CC56B10A9CACS",
"latest_app_hash": "90716D6243A75873BDCO9C7A7D1C48915DC254A3D2CE10255F5
4BD214DCFCOFCA™",
"latest_block_height": "11370598",
"latest_block_time": "2022-06-14T09:21:59.034846299Z",

"catching_up": false

The ”catching_up” variable is set up to False. That means that our node is fully sync
with the chain and all the blocks take 358GB of storage of the machine, which gradually
augments when new blocks are validated.

27

© 00 ~J O U Wi+

11
12
13

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

3.2 Registering and Signing with Key Management System of
Amazon Web Services

This implementation is based in an easy boarding paper|[8], but could not be done due
the lack of time and research for adapting this solution to the metatransaction necessity
and make the validation with the Relayer.

Amazon Web Services offers a very wide variety of services, but we are going to use three
of them to implement the registration and signing of a transaction[7]: the Lambda service
to execute the code, the AWS KMS to sign and create new Ethereum address and API
gateway to manage the HTTPS petitions. The signature is going to be made following
the ECDSA with the keccak-256 curve.

KMS e oo s Middleware
r APl Request

Ernail (1) Email
e @sc, T, ay, az..a,, 0, i
st +— Tl G

DQT‘M—’ED

AP| Response
HTTPS HTTPS

Os User

Figure 13: Structure of the service with KMS. Source [§]

The user will call an API Gateway and recover the signature. Then it is passed to the
back-end to verify the request and process the transaction. This system it is not finally
implemented due to the complexity and the time limitation but a work around will be
developed and implemented in the final application.

3.2.1 Setting up the environment

We are going to use the CDK library that amazon provides to interact with the services.
Firstly we execute a cdk bootstrap with the credentials of the account to link it, and create

a App.py to deploy the lambda service.
It creats a lambda instance with the following permissions:

Listing 3: Set up of the cdk deploy command to deploy the scripts.

cmk = aws_kms.Key(self , ”eth—cmk—-identity”
removal_policy=core.RemovalPolicy .DESTROY)

cfn_cmk = cmk.node. default_child

cfn_cmk . key_spec = "ECC_SECG_P256K1’

cfn_cmk . key_usage = ’SIGN_VERIFY’

eth_client = EthLambda(self , ”eth—kms—client”,
dir="aws_kms_lambda/_lambda/functions/eth_client” ,
env={"LOG_LEVEL” : "DEBUG” ,”KMS KEY_ID”: cmk.key_id ,”

ETHNETWORK” : eth_network })

cmk. grant (eth_client . 1f ; ’kms: GetPublicKey ’)

cmk. grant (eth_client . 1f ; ’kms: Sign’)

cmk. grant (eth_client .1f , ’kms: CreateKey)

cmk. grant (eth_client .1f , ’kms:ScheduleKeyDeletion)

28

© 00 O Ui Wi -

O © 00O Uk Wi+

—_

T W N

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

We grant the permissions to the lambda code to Create a Key, sign with the key, retrive
the public key and delete one key if a user leaves the dApp. Once this is done we can
deploy the code with cdk deploy with the requirements.txt file included.

3.2.2 Programming the workflow

Now we are going to create a file that reads the income function, and another one that
will handle the functions depending on what we need. We expect to receive an HTTPS

POST so an operation field is required. The first function is to calculate the Ethereum
Address:

Listing 4: Status function in the lambda service.

if operation = ’status’:
if not (event.get(’kms_id’)):
return {’operation’: ’status’,
"error ’: ’Not._kms_key._provided’}
key_id = event.get(kms_id’)
pub_key = get_kms_public_key (key_id)
eth_checksum_address = calc_eth_address (pub_key)

return {’eth_checksum_address’: eth_checksum_address, "KMSKEYID’:
key_id}

This operation calculates the Ethereum Address with the public key. The public key is a
native AWS KMS function so we only need to calculate the Wallet Address.

Listing 5: Funtion that returns the Ethereum Address

def calc_eth_address(pub_key) —> str:
key = asnltools.compile_string (SUBJECT_ASN)
key_decoded = key.decode(’SubjectPublicKeyInfo’, pub_key)
pub_key_raw = key_decoded [’ ’subjectPublicKey '][0]
pub_key = pub_key_raw[1l:len(pub_key_raw)]
hex_address = w3.keccak(bytes(pub_key)).hex()
eth_address = ’0x{}’.format(hex_address[—40:])
eth_checksum_addr = w3.toChecksumAddress(eth_address)

return eth_checksum_addr

We use the library asnltools. The SUBJECT_ASN [5] is a asnl Schema that describes
the type of the algorithm. Then we decode the public key and with the keccak function,
that is the signing algorithm, and obtain the hex address. Now the only thing we have to

do is format the in a valid Ethereum Address using the web3 library.
For registering the user in the system we should have to create a new AWS KMS key, we
do this by using a boto client, and the kms createKey function.

Listing 6: Function that the registers the user in AWS KMS

def register (user: str) —> dict:
client = boto3.client ("kms”)

response = client .create_key (
Description= user,

29

— O © 00O Ui W

— =

12
13
14

15
16

SOl W N~

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

KeyUsage="SIGN_VERIFY ’ |
CustomerMasterKeySpec="ECC_SECG_P256K1 ",
Origin="AWSKMS’ ,
BypassPolicyLockoutSafetyCheck=False ,
MultiRegion=False)

return response

It is important to notice that we use the ECC_SECG_P256K1, which is the signing algo-
rithm that follows the ECDSA, to create the key, because it is the standard used in the
Ethereum Network and therefore in the Polygon Network.

In order to sign a transaction it is mandatory to provide the KMS ID of the user and all
the data fields necessary to make a transaction. When lambda receives the call, creates a
python dictionary with the following fields: nonce, to, value, data, gas (which corresponds
to the gas limit) and gasPrice. Once it is assembled it is passed to a function that signs
it:

Listing 7: Main steps for signing a transaction with AWS KMS

def assemble_tx (tx_params: dict, params: EthKmsParams, eth_checksum_addr:
str) — bytes:
tx_unsigned = serializable_unsigned_transaction_from _dict (
transaction_dict=tx_params)
tx_hash = tx_unsigned.hash()

tx_sig = find_eth_signature (params=params,
plaintext=tx_hash)

tx_eth_recovered_pub_addr = get_recovery_id (msg_hash=tx_hash ,
r=tx_sig[’r’],
s=tx_sig[’s’],
eth_checksum_addr=

eth_checksum_addr)

tx_encoded = encode_transaction (unsigned_transaction=tx_unsigned ,
vrs=(tx_eth_recovered_pub_addr[’'v’],

tx_sig['r’], tx_sig[’s’]))

return w3.toHex(tx_encoded)

Firstly it transforms the dictionary into a serializable transaction to the ethereum library
to understand. Here is where the main problem became. This library is not yet prepared
to handle metatransactions that requires the "from” field of the original sender. After
hashing the transaction we find the signature, and obtain the r and s of the signature
using the following:

Listing 8: Function that finds the r and s parameter of a transaction.

def find_eth_signature (params: EthKmsParams, plaintext: bytes) —> dict:
signature_schema = asnltools.compile_string (SIGNATURE_ASN)

signature = sign_kms (params. get_kms_key_id (), plaintext)

signature_decoded = signature_schema.decode(’Ecdsa—Sig—Value’,
signature [’Signature’])

30

10
11
12
13
14
15

~N O Uk W N

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

s = signature_decoded|’s’]
r = signature_decoded[’'r’]

secp256_kl_n_half = SECP256_.K1.N / 2

if s > secp256_kl_n_half:
s = SECP256_ KI.N — s

return {'r’: r, ’s’: s}

The sign_kms it is done in the register function, but instead of create_key it calls the
function sign. When we obtain the s, according to the RFC, if it is superior than the half
of the elliptic curve, we have to invert it. Once we have the r and s we can check if we
can recover the original ethereum address.

Listing 9: Function that recovers the address and the v parameter.

def get_recovery_id (msg_-hash, r, s, eth_checksum_addr) —> dict:
for v in [27, 28]:

recovered_addr = Account.recoverHash (message_hash=msg_hash ,
vrs=(v, 1, s))
if recovered_addr = eth_checksum_addr:

return {’recovered_addr’: recovered_addr, ’'v’: v}

return {}

By using the recoveredHash function we can check if v corresponds to one of the two
possible [27,28] and return the v and the recovered address if it is the same as the one
that calls the function. The final step is to encode the transaction with all the parameters
and return it as a raw hex transaction.

3.2.3 Calls to the API Gateway

We can know create a key pair by a call to the API GATEWAY, that is previously
configured in the lambda service.

POST - https:/{3bm4cieb9f.execute-api eu-central-l.amazonaws.com/default/aws-kms-lambda-ethereum-ethkmsclientFunctionCC521D-J23aklAhs]Ud
Params Authorization Headers (8) Body @ Pre-request Script Tests Settings

none form-data *®-www-form-urlencoded ® raw binary GraphQL Text -~

2 “"operation”: - "registexr",

3 “user”: "Toni"

2 “eth_checksum_address": "0xf545221b8030776290339c8d536a9A5134ba3dbe”,

3 "KMS_KEY_ID": "4ebfib78d-5all1-44b@-8366-017e891666bo"

Figure 14: Calling the register function

And the key is properly created in the AWS KMS and can be seen in the web console.
Also a delete function is implemented, that will delete the selected key in 7 days to allow
the user to cancel the deletion if he wants.

31

UNIVERSITAT POLITECNICA

DE CATALUNYA ;E
SEA

BARCELONATECH T

@ e

Claves administradas por el cliente (19) m

Q Una coincidencia 1 (o]
"4ebfb78d-5a11-44b0-8366-017e891666b6" X ‘ ‘ Quitar filtro
Alias v 1D de clave v Estado Especificacién de la clave ® Uso de claves
4ebfb78d-5a11-44b0-8366-017e891666b6 Habilitada ECC_SECG_P256K1 Firmar y verificar

Figure 15: Key in the AWS KMS

Now if we make a call with the operation status and the AWS KMS ID it will calculate
and return our Ethereum Address, and finally we can sign a transaction.

104
2 "operation": "sign",
3 "to": "0x40CDDe2b9BC7659C3349574Ec53db3B2bd9519BF ",
4 "value": 0,
5 "nonce": 0,
6 "data": "1111AAA",
7 "gas": 16000,
8 "kms_id": "74287be0-4a8e-49dc-b315-c3f0244c097a"
9 &
Body Cookies Headers (8) Test Results @j Status: 200 OK Time: 1403 ms Size: 870 B Save Response
Pretty Raw Preview Visualize JSON v = O Q
11
2 "signed_tx":

"0x£86580825208823e809440cdde2b9bc7659¢3349574ec53db3b2bd9519b£808401111aaalcad379c5abe90eabed6a915d262d554ea03a£5908506
53007cbf644573681e5£04fa0389ed6b2d3498bd4ae94eal22a92caab8921a958a51c6a8396£32aabb61d86£0",

3 "signature":
"0x30440220379c5abe90eabe06a915d262d554ea03af590850653007chf644573681e5£04£0220389%ed6b2d3498bd4ae94eal22a92caab8921a958a
51c6a8396f32aabb61dg8efo",

4 "request": {

5 “nonce": 0,

6 "to": "Ox40CDDe2h9BC7659C3349574Ec53db3B2bd9519BF ",
7 "value": 0,

8 "data": "1111AAA",

9 "gas": 16000,

10 "gasPrice": 21000

11 i

12 "Network": "mumbai"

13 3

Figure 16: Calling the sign function

The signed_tx field is the raw transaction, the signature is the field that should be
checked to recover the address, and the request is the transaction processed by the AWS
KMS service, that does not match the sent request because some fields are included in
the function when creating the complete transaction inside the lambda code.

3.3 Writing and deploying the contracts

The contracts are written in Solidity and have a forwarder that interacts with the contract.
The provider of the forwarder it is Defender Relay by Openzeppelin [20].

32

1

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

User Relayer Recipient
Sign tx
params

Send signed tx
params via HTTP

Verify tx
params

Wrap in own tx and
send to recipient

Unwrap & run
original action

Figure 17: Structure of sending a metatransaction. Source Openzeppelin[21].

The user will wrap and sign the metatransaction and send it to the relayer. The signed
transaction will be a signed Type Structured Transaction (EIP-712) and will be signed
by the relayer and transmitted to the Forwarder Contract. Finally, the forwarder contract
will execute the ERC-20 that contains the SETK.

3.3.1 The Minimal Forwarder Contract

The minimal forwarder follows the structure of the EIP-712[2] a signed typed data, with
the from field that is the original sender. With this structure we have three main functions,
getting the actual nonce to prevent a replay attack, the verify function to recover the
original address and the execute function to use the relayer to sign and send the main
transaction.

Listing 10: Verify function in the fowarder contract

function verify (ForwardRequest calldata req, bytes calldata signature)
public view returns (bool) {
address signer = _hashTypedDataV4 (keccak256 (abi.encode (. TYPEHASH, req.
from, req.to, req.value, req.gas, req.nonce, keccak256(req.data)))).
recover (signature) ;
return _nonces[req.from] = req.nonce && signer = req.from;

}

The verify function uses the signature to recover the sender address. It uses the same
hashing algorithm keccak256 that is used to hash the transaction, so by passing the
encoded abi of the transaction we can recover the address. If it is the same that the
incoming address and the nonce also coincide, we return true as the transaction is verified.
The other function of the contract is to execute the transaction:

Listing 11: Execute function to send the request to the Token Contract.

function execute(ForwardRequest calldata req, bytes calldata signature)
public payable

33

10
11
12
13
14
15

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

returns (bool, bytes memory)
{
require (verify (req, signature), ”MinimalForwarder:_signature._does.
not._match_request”) ;
_nonces [req.from| = req.nonce + 1;
(bool success, bytes memory returndata) = req.to.call{gas: req.gas,
value: req.value}(abi.encodePacked(req.data, req.from));
// Validate that the relayer has enough gas for the call, if not
send invalid
if (gasleft () <= req.gas / 63) {
assembly {
invalid ()
}

}

return (success, returndata);

In the function we require that the function verifies the transaction, we increment the
nonce to get a valid transaction and after that we call the relayer to process the transac-
tion, but we invalid it if the relayer do not has enough gas left to pay for the transaction.

3.3.2 Token contract

The token contract is a burnable ERC-20 that requires a forwarder to allow metatrans-
actions. We will also allow to pause all the transactions if any change has to be made in
the system.

Listing 12: Token contract with the basic functions.

contract Seatoken is ERC2771Context, ERC20, ERC20Burnable, Pausable,

Ownable {

constructor (MinimalForwarder forwarder) ERC2771Context(address(
forwarder)) ERC20(” Seatoken”, "SETK”) {}

function mint(address to, uint256 amount) public onlyOwner {_mint(to,
amount) ; }

function _msgSender () internal view override(Context, ERC2771Context)
returns (address) {return ERC2771Context._msgSender();}

function _msgData() internal view override (Context, ERC2771Context)
returns (bytes memory)

{return ERC2771Context._msgData () ;}

The contract inherits the ERC2771Context that is the recipient where the contract will
accept metatransactions. This ERC2771Context allow to get the original caller from the
transaction. Normally the sender is called by msg.sender, but if we use this parameter the
address will belong to the forwarder and not to the user. Then we will use the _msgSender()
that returns the original sender when it is called.

Listing 13: ERC2711Context contract retriving the original sender.

function isTrustedForwarder(address forwarder) public view virtual returns
(bool) {

return forwarder = _trustedForwarder;

34

W~

0 O Ot

0O Ui Wi+

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

}

function _msgSender () internal view virtual override returns (address
sender) {

if (isTrustedForwarder (msg.sender)) {
assembly {sender := shr (96, calldataload (sub(calldatasize (), 20)))}
} else {return super._msgSender();}
}

When we created the ERC2771Context we passed the address of the forwarder as the
only trusted forwarder, so when we retrieve the original sender, if the forwarder is trusted
we assembly the original sender and return it. This function has to be overwritten since
the ERC-20 base contract has a function that has the same nomenclature, so our SETK
contract cannot compile.

The complete contracts can be found in Appendix D

3.3.3 Compiling and deploying

For the deploying we are going to use a simple script in hardhat. The hardhat suite needs
a configuration file. All this is going to be done in a local machine, because Ganache with
an interface and not in the command line, is more user friendly and easier to document.

Listing 14: Hardhat config file

require (’dotenv’).config () ;
require (" @nomiclabs/hardhat—waffle”);
require (" @nomiclabs/hardhat—ethers”);
Jx
*x @type import(' hardhat/config’). HardhatUserConfig
*
/
module. exports = {
solidity: 70.8.137,
networks: {
local: {
url: "http://localhost:8545"
=
mumbai: {
url: ’"https://matic—mumbai. chainstacklabs.com’,
accounts: [process.env.PRIVATEKEY],
}
}
}s

As the mumbai url we use an RPC public endpoint to deploy the contract. Later, when
we interact with the contract we are going to use the Polygon Node that we deployed. But
first we are going to start a Ganache chain that uses the RPC endpoint as the localhost
in the port 8545 and uses the first account in the list so it does not require an account

field.

First we compile the contracts by running hardhat compile. This command creates the
artifacts folder. The artifacts contains the name of the contract, the ABI that is a de-
scription of the functions and fields needed by the contract, a bytecode of the undeployed
contract and a deployedBytecode referencing the deployed contract. You can see a the

35

© 00O Ui Wi+

— = e
Nt T)

—
ot

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

artifact of the SETK in Appendix E For the deploying we are going to use a very simple
script that runs the deployment and store the addresses in a JSON file.

Listing 15: Script that deploy the contract in a chain.

const { ethers } = require(hardhat’);

const { writeFileSync } = require(’fs’);
async function deploy(name, ...params) {
const Contract = await ethers.getContractFactory (name);
return await Contract.deploy (...params).then(f => f.deployed());
}
async function main() {
const forwarder = await deploy (’MinimalForwarder’);
const token = await deploy(”Seatoken”, forwarder.address);

writeFileSync (’deploy.json’, JSON.stringify ({
MinimalForwarder: forwarder.address,
Seatoken: token.address,

}, null, 2));
console.log (‘MinimalForwarder: ${forwarder.address}\nRegistry: ${token.
address }) ;

By running the script we obtain the contracts address as an output:

adrian@MacBook-Pro-de-Adrian hardhat_polygon % hardhat run --network local scripts/deploy.js

MinimalForwarder: 0xec8Ba9319D4700826E89346cCC710B4294a93be2
Token: 0x7B038800d36f2a7bD6EBB4C53a4ce7495095be00

Figure 18: Result of the deploy script

Now in the block explorer the transaction must appear. Since is a local blockchain, the
transactions are validated immediately.

<ok BLOCK 19

GAS USED GAS LIMIT MINED ON BLOCK HASH

1290936 6721975 2022-06-15 09:39:17 0xff083c30d4c7c98b7f14b7ab9a722d29e94e9c8ae598a39592b9f2651767¢c1f9
0x9e05e087cd13176ea2afe9f8b767a144bd895fb8aa54ac60d6408573daf8dobl

FROM ADDRESS CREATED CONTRACT ADDRESS GAS USED VALUE
0x3dE9B2301031FD3e9d5d4Af68AB22F941268997D 0xec8Ba9319D4700826E89346cCC710B4294a93be2 1290936 0

Figure 19: Block of the creation of the forwarder contract

36

0O Ui Wi

—
N = OO

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

<ok BLOCK 20

GAS USED GASLIMIT MINED ON BLOCK HASH
2080660 6721975 2022-06-15 09:39:17 0xa94d8346b65f0e3e12b3d50d9849a605c95467488a64e04f7a9bc3329f 54097

0xf76d86f31f89dfe31d644053ed9e60421c9284b618db0f02aa9f6775026e2cab

FROM ADDRESS CREATED CONTRACT ADDRESS GAS USED VALUE
0x3dE9B2301031FD3e9d5d4Af68AB22F941268997D 0x7B038800d362a7bD6EBB4C53akce7495b95be00 2080660 0

Figure 20: Block of the creation of the token contract

Now that in the local chain is compiled and deployed we can replicate the process and
save the contract addresses in the API instance. In the MBTN the contracts are going
to be deployed with the SEAT account using the private key. This will make SEAT the
owner of the contracts.

3.4 Developing the API

This API is who will handle all the logic and operations and it is written in NodeJS and
uses HTTPS as a secure protocol. It also contains a MongoDB to store the users, vehicles
and the logs of using it, and uses the libraries of ethers and web3 to interact with the
contracts.

3.4.1 Database

We are going to emulate the SEAT MO database storing the vehicles, users and logs. For
that we declare the moongose model with the type of information we are going to store.
For instance here is the user information.

Listing 16: Model of the user fields in the DB

const mongoose = require (”mongoose”) ;
const User = mongoose.model (” User” ;new mongoose . Schema ({
username: String ,
email: String,
password: String ,
address: String,
vehicle: String,
lastPicked: String,
lastReleased: String ,

)
);

module . exports = User;

For the vehicles, we will store the plate, the last user that picked up, if it is currently
booked and when it was last reserved. For the logs, every time someone reserves a vehicle
we create a new instance with the plate of the vehicle, the user and both picked and
released times.

37

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

3.4.2 Authentication

Now that we know what are we going to store it is time to handle the sign up and the
login process.

Signing up First, when a request comes in and the headers and CORS are checked, it
is decided where to go. This is done in the route file. You can see all the routing in the
Appendix C.1

Listing 17: Post function to the sign up API endpoint

app.post (”/api/auth/signup” ,[verifySignUp.checkDuplicateUsernameOrEmail],
controller .signup);

Here we accept the post method and called a function that checks if there is a duplicated
user, email or wallet address already in the database. If not, we can sign up the user by
adding it to the database, with the actual vehicle, lastPicked and lastReleased empty. You
can see the code in Appendix C.2.

Signing in When logging in the user and password is provided via secure communi-
cation, and the user is found in the database. When we found the user we handle the
password requirement as follows:

Listing 18: Verification of the password received.

var passwordIsValid = bcerypt.compareSync(req.body.password , user.password);
if (!passwordIsValid) {
return res.status(401).send({accessToken: null,message: ”Invalid.

Password!” });

With the berypt module we compare the passwords, so the database never has the pass-
word as plain text. If the password is incorrect we do not return an access token. If the
password is correct we create a JW'T to the user that expires in 24 hours and this token
must come in every other call that the front-end makes in order to keep logged in. You
can see all the code in Appendix C.3.

3.4.3 User functions

The user must be able to book a vehicle and release it while paying with SETK but
paying without gas and to purchase tokens in exchange of a FIAT currency, euros in this
particular case.

Booking a vehicle When the API receives a call to the reserve endpoint it updates
the status of the vehicle of the plate received only if it is not booked, saves it in the log
collection and update the users as it has reserved the vehicle in the time. The system
uses the UTC+0 hour. Finally it is send to the handler to send the transaction with a
fixed price as a reserve fee to the relay in order to get signed and processed in the MBTN
blockchain.

Listing 19: Reserving vehicle function in the API

38

=W N

ot

O © 0o~

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

= QO N

O © 0~ O WL

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

exports.bookVeichle = async (req, res) = {
const payload = req.query.transaction;
console.log(’Booking:.’, payload);
const { RELAYERAPIKEY: apiKey, RELAYER_APISECRET: apiSecret } =
process.env;
Vehicle .updateOne ({ plate: req.query.plate, booked: 0}, {$set:{booked:
1, lastUser: req.query.username, reservedTime: Date().toLocaleString

()}}, function(err){
if (err){

res.status (500).send(err);
}

P
Logs.create ({plate: req.query.plate, User: req.query.username,
releasedTime: ”” reservedTime: Date().toLocaleString ()}, function(
err){
if (err){
res.status (500).send(err);
}

1)

User .updateOne ({username: req.query.username}, {$set:{vehicle: req.
query.plate, lastPicked: Date().toLocaleString()}}, function(err){
if (err){

res.status (500) .send (err);
}

IOE
handler ({ apiKey, apiSecret, request: { body: JSON.parse(payload) } }).
then(rsp => {res.status(200).send(rsp.txHash);})
.catch(error = {
console.log(’Error’, error);
res.status (500).send (error);

1)

Releasing a vehicle This function is a mirror one of the previous one and follows the
same structure. Now, the price in SETK of the transaction is calculated in the front-end
taking into account the minutes that the vehicle has been used with a price of 0.02 SETK
per minute. For development and testing purposes the price is fixed to 0.99 SETK to
complete 1 SETK between reserving and releasing.

Listing 20: Release function in the API

exports.releaseVeichle = async (req, res) = {
const payload = req.query.transaction;
console.log(’Releasing:.’, payload);
const { RELAYERAPIKEY: apiKey, RELAYER APISECRET: apiSecret } =
process.env;
console.log(’plate’, req.query.plate);
Vehicle .updateOne (...) ;
Logs.updateOne (...) ;
User.updateOne (...) ;
handler (...) ;

)

39

w

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — /"-)3 telecos
BARCELONATECH seAaT BCN

Minting SETK Minting is the process of creating tokens into an account and can only
be called by the owner, SEAT. That is why this transaction is not process by the relayer.
Because the project do not have access to the Volkswagen Payment Services, the part
of the code that should handle the bank transaction is omitted, but commented where
should it go and return a 500 status if any error occurs.

Listing 21: Purchase function in the API

exports.purchaseToken = async (req, res) = {
//Check bank transaction and return state 500 if error
const minted = await token.mintTokens(req.query.address, req.query.
amount) ;
res.status (200) .send (minted) ;
b

The completed user functions can be found in Appendix C.4.

3.4.4 Interacting with the smart contracts

We have three main functions that interacts with the contract. One is a call so it does
not cost any gas, the balanceOf function that return the actual balance of each user so
we don’t have to store it. The other ones are the transfer and mint function. The first
one is going to be relayed, but the second one is going to be send by SEAT since it is a
function that is only callable by the owner.

Listing 22: Creating the providers to interact with the contracts in the chain.

const { PRIVATEKEY: privateKey, RPC: rpc, TOKENADDRESS: tokenAddr,
SEAT ADDR: seatAddr } = process.env;

const provider = new Provider (privateKey ,rpc);

const web3 = new Web3(provider);

const token = new web3.eth.Contract (ContractAbi, tokenAddr)

When we call the functions from the SEAT account, the structure is the same. Using
the library web3 and the Seat Private Key and the RPC, we connect with the contract
to execute a function. The connection with the blockchain network is defined as the
provider.

Listing 23: Different calls of the methods in the SETK contract.

const balance = token.methods.balanceOf(address).call ({from: seatAddr}).
then(balStr => balStr.toString()).then(realBal => web3. utils.fromWei(
realBal));

const balance = await token.methods.mint(address, amountWei).send ({from:
seatAddr});

We execute one method or the other depending in the context, and the only difference is
that we call the balanceOf function, that does not consume any gas as it is a lecture from
the blockchain, or sending the function mint that cost gas.

Note in decimals in the SETK The ERC-20 deployed uses a 18 decimals notation.
That means that 1 token in the blockchain has to be translated as 1e18. We call the
fromWei function to make this transformation readable to the user. In the mint function
the amount has been previously converted, to be align with the contract requirements.

40

ST W N

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

When we have to relay a transaction the procedure is similar and it is used when a
metatransaction is necessary. Now the provider is not the SEAT account, but the relayer
that is connected to the MBTN

Listing 24: Connecting to the Defender Relayer Service

const provider = new DefenderRelayProvider (credentials);

const signer = new DefenderRelaySigner(credentials, provider, { speed: ’
fast’ });

const forwarder = new ethers.Contract (forwAddr, ForwarderAbi, signer)

We create the forwarder by passing the signer, who is the relay with the credentials and
connect with the contract passing the Forwarder address and his ABI allowing the relayer
to call the Forwarder contract. Finally, we relay the transaction by validating the request
and executing to the relayer.

Listing 25: Validation and processing of a transaction by the Minimal Forwarder
Contract.

// Validate request on the forwarder contract

const valid = await forwarder.verify (request, signature);

if (!valid) throw new Error (‘Invalid request ‘);

// Send meta—tx through relayer to the forwarder contract

const gasLimit = (parselnt(request.gas) + 50000).toString();
return await forwarder.execute(request , signature, { gasLimit });

The transaction is signed and sent by the relayer and the user does not have to pay for
any gas. The complete handling process is of a metatransaction is in the Appendix C.5.

3.5 The Front-end

The Front-End will establish the main functions but as an existing app is already devel-
oped, this part will be centered in the interaction with the smart contracts. Despite of
that, the web dApp will have the basic functions excluding, for example, the location of
the vehicles. In this section you will not find any interface that will be found in 4

.
& 5108LHH ﬁ
@ 100 km

® ;Cudnto cuesta el viaje?

Figure 21: Capture of the mobility app by SEAT code. Source: SEAT MO web

41

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

3.5.1 Sing Up and Login Up

When singing in we create a user in the database, sending the username, the email, our
wallet address, and when signing up we store the information in the cache the token and
all the necessary data.

Figure 22: Cache in the web when signing in

With this information we are ready to start using the service.

3.5.2 Buying tokens

When charging the site, we need to set the current state. We put the actual price at 0,
the SETK will be an input from the user and by clicking the button the getUserBoard
function is executed if the introduced value is valid.

Listing 26: Button that executes the function purchase tokens

<button onClick={() = {
if (this.state.priceEur > 0){
UserService . purchaseTokens (currentUser.address , this.state.priceEur).
then (window. location .reload ()).catch(function(e){console.log(’
Error’, e);});
telse{

this.notify (’Invalid number’) ;
}

+} className="btn_btn—primary”>Buy</button>

We consider any positive value as a valid one.

Listing 27: GET method to the purchase function in the API instance

purchaseTokens (address , amount) {
return axios.get (API.URL + ’purchase’, { headers: authHeader (), params
:{address , amount}});

This functions makes a get to the purchase endpoint with the authHeader that contains
the token. The mint function is explained in the 3.4.4.

The user must wait to the transaction to be processed and refresh the web page to obtain
the new balance.

42

0 J O Ot

Ne

11

12
13
14
15
16
17
18
19

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

3.5.3 Using the service

As the purchasing tab, we update the local storage by calling the getUserBoard function.
This function calls the userBoard function of the line 13 in the Appendix C.4, who updates
the actual balance and returns some updated data. The vehicles field is an array of the

vehicles available to choose between.
To understand the logic we might understand the following function:

Listing 28: Button that depending of the current state and signs and process a
transaction.

<button onClick={() = {
if (this.state.booked == " Reserve”){
signTx (currentUser , 0.01, provider, token, this.state.booked,
document . getElementById (’plate ’) . value).then(rsp => this.setState(
{booked: ”Release”, pickTime: Date.now(), response: JSON.
stringify (rsp), balance:(this.state.balance — 0.01),
currentVehicle: document.getElementBylId (’plate) .value})).
catch (function (e){
console.log(e);
1
telse if(this.state.booked == ”Release”){
let currentprice = (((Date.now() — this.state.pickTime)/(6ed)) =
0.02) .toFixed (2);
this.setState ({ price: "for” + currentprice.toString()});
signTx (currentUser , 0.99, provider, token, this.state.booked, this.
state.currentVehicle).then(rsp_tx => this.setState(
{response: rsp_tx, booked: "Reload”, balance:(this.state.balance
— 0.99)})).catch(function(e){
console.log(e);
1)
telse{

window. location .reload () ;
}

+} class="btn_btn—primary”>
{this.state.booked}
</button>

We have the initial state to reserve a vehicle (if there user has no vehicle already reserved),
and call the sign function with an initial fee of 0.01. When the function finishes we change
the actual state to the release mode, and we save the time when the function is called.
When it it time to release, the price is calculated with a fee of 0.02 tokens per minute and
the sign function it is called again to release the vehicle. Finally, the button can reload the
page and it is a requirement that the user waits some seconds to get the balance updated.
You can notice that a 0.99 fee is paid in the release vehicle for testing purposes.

Signing the transaction The provider for the frontend is Metamask, we will activate
the service, and get the current network and check is in the MBTN and the Metamask
account corresponds to the user.

Listing 29: Connecting and checking Metamask is operative.

1 ’if (!window . ethereum) throw new Error(‘User wallet not found ‘) ;

43

T W N

S © 00N>

12
13

© 00 N O Otk W

10
11

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

await window.ethereum.enable () ;
const userProvider = new ethers.providers.Web3Provider (window . ethereum) ;

const userNetwork = await userProvider.getNetwork () ;

if (userNetwork.chainId !== 80001) throw new Error(‘Please switch to Mumbai
Network for signing ‘) ;

const signer = userProvider.getSigner ()

const forwarder = createlnstance (provider);

const from = await signer.getAddress();

if (from !== currentUser.address) throw new Error(‘Please switch to your
account) ;

const data = token.interface.encodeFunctionData(’transfer’, [70

x40CDDe2b9BC7659C3349574Ec53db3B2bd9519BF” , ethers. utils . parseEther (
value.toString ())]);

const to = token.address;

const request = await signMetaTxRequest(signer.provider, forwarder, { to,
from, data });

The forwarding instance is created as a Minimal Forwarder (See createlnsance function
in Appendix F.1) and the address is passed to sign the meta transaction. This function
(See in Appendix C.3) gets the nonce of the Forwarder contract, gets the network and
parses the data as an EIP-712 and signs it.

Listing 30: Example of a signature and transaction.

"signature": "0xf107ddb8e431e5b6517867f1dc52261ebcb8de5677dfdbeO
aabffaa06d0b472f5e8d2e50c944cbc9748e10488e1146e7deb6e26c55c5£2737fe3
43453ced24af51b",

"request": {

"value": O,

"gas": 1000000,

Ilnonce": lllll’

"to": "0x86d269c9a6c3C9410228c10c8b933dEad4ab40e9",

"from": "OxF7E6465eA72468E38F8202BA2424402da2f15899",

"data": "0xa9059cbb0000000000000000000000005d4£f37e5b030fadb3876£0608
ab40e95027a8504000
de0Ob6b3a7640000"

When the signature and request are returned, depending on the action that we want to
perform, we call the reserveVehicle or releaseVehicle functions that send to the corre-
sponding endpoint to call the corresponding function in the API (See Appendix C.4).

44

UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

@ tel(;cco'i

4 Final result

We are going to begin with the all the process that the user should see. The project can
be found here! using the public DNS that Amazon offers and it is only for testing. It is
also possible that the service is no longer available because of the developing stage that
is at the moment of writting this thesis.

To use the dApp it is mandatory to have a Metamask account in the MBTN.

’ @ Polygon Mumbai Testnet v @

Toni

O Mo conectado H

[m]

@ Userrtame
OMATIC

Wallet
e 0x5112fEaBB2e5bBf82F9b50CE272
Enviar Email

tonijimenez@seat.es

Activos Actividad
Password

@ 0 MATIC > | =

Don't see your token?

Import tokens

(a) Metamask account (b) Register fields

Figure 23: Sign Up process

Because the AWS KMS service is not used we need to import the Ethereum Address. If
any field (except the password) is already in the database, the Sign Up will fail.

If you cannot click, the link is the following: https://ec2-18-197-1-4.eu-central-
1.compute.amazonaws.com:8081/

45

https://ec2-18-197-1-4.eu-central-1.compute.amazonaws.com:8081/

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — ’:)3 telecos
BARCELONATECH seAaT BCN

app_db> db.users.find()
[
i
_did: ObjectId("62atecddas04%240a%311a51") .,
usSsernaime - s
email: r
password:

lastReleased:
roles: [CbhjectId("E2ates78a=s04%=40a9311a48") 1.
w: 1

_id: ObjectId({"62a82de629fe781598Ffc234b"™)
username

email: -

password:

1.

username :
email: -
password:

ObjectId("6t2Zatee78ac04%9=40a9311a48™) 1.,

Figure 24: DB with some users

The password is encrypted when stored to prevent data leak. When the user is registered
in the DB we can Sign In in the app and go to our profile.

Mobility Service Login Sign Up

Username

toni

Password

Figure 25: Sign In page

When the user properly signs in, it is redirected to his user page. Notice that now he can
navigate to the Purchase token and Book a vehicle tabs at the top of the window.

46

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — ")3 telecos
BARCELONATECH =e=AaT BCN
Mobility Service
toni Profile

Token: ey)hbGciQillUzINils ... _qkClgvDzllqeCTCEIqU
Id: 62adce1ad44bd1fbalc12462
Email: tonijimenez@seat.es

Address: 0x5112EaBB2e5bBf32F9bS0CE27AbBIeSCEeTEDSA

Figure 26: Profile tab of a user in the web page

We have 0 tokens in our account, so we are going to purchase some tokens.

Purchasing [Demo]

Details on Mumbai

User: toni

o)

Address: ex5112fEaBB2e5bBf82F9b5@c

@

Tokens: @

[d Buy

It will cost you: 5€

The tokens might take a little time to appear in your account

Figure 27: Profile tab of a user in the web page

The ratio is 2 token per euro. According the information provided by SEAT MO, the
average cost of a trip is 2.77€), so this ratio must be adjusted by the company to make
it economically valid (A brief analysis of this ratio can be found in 5). The converter is
dynamically adjusted to acknowledge the user how many euros will the purchase cost.
When we press buy a transaction is sent to the API and minted by the SEAT account.

Co, polygonscan & AllFilters ~ | Search by Address / Txn Hash / Block / Token n

Home Blockehain ~ Tokens - Misc ~ Testnet

@ Address 0x5112fEaBB2e5bBf82F9b50CE27AbBIe5CEe7E0SA ©

Overview More Info
Balance: 0 MATIC My Name Tag: Not Available
Token 50.00 @ -
Search for Token Name
Transactions ERC-20 Token 1

> ERC-20 Tokens (1) e

@ Seatoken (SETK)
Txn Hash Method @ Bio LIS To Y Value [Txn Fee]

There are no matching entries

Figure 28: Balance of SETK in Toni’s address

47

UNIVERSITAT POLITECNICA

DE CATALUNYA =:
SEA

BARCELONATECH T

@ e

Transaction Details
Overview Logs (2)

[This is a Polygon PoS Testnet transaction only]

() Transaction Hash: Oxd74bdd209cafid4ddfedcdScde4e01 562 1ccdf5th7edte84ca6a184f1c31b3b (D

(@ Status: @ Success

) Block: 26755382 10 Block Confirmations

@ Timestamp @ 1 min agoe (Jun-15-2022 12:24:00 PM +UTC)

) From Ox40cdde2b3Sbc7652c3349574ec53db3b2bda519bf (D

) Interacted With {To): Contract Ox520604e11547 23 1c4adc244d8didcf8afa0icbad & [

7 Tokens Transferred: » From Ox0000000000000 To 0x5112feabb2eSb For 10 Seatoken (SETK)
) walue: 0 MATIC ($0.00)

() Transaction Fee: 0.000136867501313928 MATIC (50.00)

@ Txn Type: Z (EIP-1558)

Click to see More 4

(2 Private Note To access the Private Note feature, you must be Logged In

Figure 29: Transaction details

The most important part is that the gas is payed by the SEAT account (0x40cdd...)
and is who pays for the gas. When the user has tokens, it can use the service.

In the booking page we update the local storage cache every time we refresh the page
with the new information, when was last picked vehicle and when it was released and if
the user has a current vehicle.

Transactions [Demo]
Details on Mumbai
User: toni
Address: ex5112fEaBB2e5bEFB2FObSRCE27AbBO2E(527EBGA

Tokens: 18

TT1T1AAA
2222BBB

Network: Mumbai

Reserved:

Figure 30: Booking vehicle web page

In the booking web page we can see three vehicles that were previously created in respec-
tive collection in the DB. The main identification that we are going to use it the plate of

48

UNIVERSITAT POLITECNICA [
DE CATALUNYA — f‘)j telecos
BARCELONATECH ==aT BCN
the vehicle.
Transactions [Demo] .
. Toni @ Polygon Mumbai Testnet

Details on Mumbai

User: toni

Address: @x5112fEaBB2e5hBF32F9h5ACE2TADBIRSCGe7EBSA

Tokens: 18

Reserve

Network: Mumbai

Reserved:

Solicitud de firma

M

MinimalForwarder
http://ec2-18-197-1-4.eu-central-
l.compute.amazonaws.com:8081

OxBl12fe...céeTelba

Mensaje

value: 0 =

gas: 1000000

nonce: 0

to: Ox620604E11547231c4adc244d8

dFDcf8aFAQIChaD

from: Ox5112fEcBB2e5bBf82F9b50
CE27AbBPe5CEe7EO5A

data: 0xa?059cbb000000000000
00000000000040cdde2b%b
c7659c3349574ec53db3b2d .

AAEIALEANANANANANANAANN

CANCEL AR hd

Figure 31: Signature of a vehicle with Metamask.

When pressing the reserve button, the Metamask window pops up to sign the transaction.

Once it is mounted and sent, the status changes to Release the vehicle and accessing with

Transactions [Demo]

Details on Mumbai
User: toni
Address: @x5112fEaBB2e5bB32F9b50CE27AbBIESCEETERSA

Tokens: 9.99

Release

Network: Mumbai

Reserved: 2222888

another user the vehicle reserved does not appear in the list.

Transactions [Demo]
Details on Mumbai
User: adrian
Address: 8xF7E6465eA72468E38F8282BA2424482da2f15899
Tokens: 56
1111AAA

Network: Mumbai

Figure 32: User trying to reserve a vehicle while one is reserved.

When pressing the Release button, another Metamask window pops up to sign the Typed
Data Transaction, and after waiting until the transaction is processed in the blockchain,
the user may reload the web page to see the new token balance. In the defender relayer
we can see both transactions payed by the relayer

49

UNIVERSITAT POLITECNICA
DE CATALUNYA

BARCELONATECH

q7)

D)

telecos
BCN

Relay dashboard / Relay-mshbt

Relay-msbbt

Address Network

@ ox6e38.. caz1 O =

Status

MUMEAT RUNNING

Policies API

Max gas price cap

No gas price cap set <

Whitelisted addresses

to send tr:

Relayer is
address

to any

Manage

‘Wired Autotasks

test

Unconfirmed Transactions ©C

NONCE CREATED LAST SENT

50 5 minutes ago

5 minutes ago

51 2 minutes ago 2 minutes ago

= Seein Logging

Keys

76vXf5cMWNNfwdtkNEBSdrJZ5wx9P3qw 10

reated on 26 Msy 2022
vALID UNTIL o
in 8 hours EE oxsrbs. .. 8640
in 8 hours EE oxsrbs. .. 8640

&

0.29 MATIC

Balance

Withdraw funds

GAs PRICE
30.0 gwei

30.0 gwei

VALUE

0.0 eth (]

0.0 eth (]

Figure 33: Defender Relayer with the reserve and release transaction

The flow of the application is completed with the two transactions in the relayer that
holds the transactions until they are confirmed. All transactions are going to have the
Minimal Forwarder contract as a receiver and this forwarder calls the transfer function.

In the MBTN block scan we can see all the transactions made.

Token Seatoken @

Overview ERC20
Total Supply 1,086.03 SETK ()

Holders: 5 addresses.

£ FILTERED BY TOKEN HOLDER
0x5112fEaBB2e5bBf82F9bS0CE27AbBIe5C6e7EOSA
Transfers Contract

Actotal of 3 transactions found

Txn Hash Method @ Age
Ox4f67eaccc1501566a€5.. 0x47153f82 1 min ago
0x002c3eB8ad1eae536e.. 0x47153182 3 mins ago
0xd74bdd209caf3d44dfe. . Mink 7 mins ago

Profile Summary

Contract:
Decimals:
BALANCE
9 SETK
From
0x5112feabb2e5bbf82f9. ..
0x5112feabb2e5bbf82f9.
0x000000000000000000

0x5112fEaBB2e5bBB2F90S0CEL

First

0x40cdde2b9bcT659¢33

0x40cdde2b9bcT659¢33

0x5112feabb2e5bbig2f9. .

Figure 34: Transactions of the tokens in the blockchain

<

0x520604e11547231c4adc244ddfdct8ata0icbad

L

Pagetof1 > Last

Quantity
0.99
0.01

10

The address is registered with a timestamp and the method called, with the quantity that
allow us to know if a vehicle is reserved or released. With this the flow of the service is

finished.

20

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

5 Budget

The budget for this project will take into account the instances created in the Amazon
Web Service despite of this servers are currently in SEAT so the will not have an extra
cost. It also contains the salary of the engineer and the estimated cost of MATIC to pay
the gas.

Table 1: Budget for the project

Time Transactions Cost Total
EC2 Instances | 5 Months None 550€ /month | 2750€
Junior Engineer | 620 hours None 9€ /h 5580€
Senior Engineer | 30 hours None 30€/h 900€
MATIC 3896 TX/day | 0.003 MATIC/TX | 0,7€/MATIC | 1227.24€
Total 10457.24€

The MATIC cost has been calculated as the entire fleet of the 681 vehicles[16] made 2,86
trips per day?, that makes 1948 trips/day, which are 3896 transactions (reserving and
releasing) per day, then the cost has been calculated for the duration of the thesis, 5
months. With the maximum historic price of the euro per MATIC and rounding up the
max value of the gas fee payed while developing this project to get the worst case scenario.
We get the total cost of the MATIC by multiplying the number of transactions per day
with the MATIC/transaction ratio and the cost of one MATIC, then extended for the
extending it for 5 months.

In average, 2.77€ are expended by the user in every trip. With a price of 2 SETK per
euro, if the company maintains the euro/SETK cost, the user will expend half in the trip,
and since minting any amount of tokens costs 0.003 MATIC approximately in gas, SEAT
MO will receive more value for every trip.

In addition, a senior engineer is taken into account with a consulting role.

2Information of the vehicles and trips provided by SEAT MO

51

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

6 Conclusions

Blockchain is a growing technology with lots of potential. The project tries to put trust
in a decentralized system. Despite that it has a higher latency than the current system,
the user can trust all his movements, make secure payments and use tokens in a new, and
every day more popular, virtual world.

The dApp integrates the blockchain technology and the Solidity programming language
with the every day standards such as, Java, NodeJS or MongoDB and works with the
proper asynchronous processing. The front-end of the project implements the basic func-
tions and works as a PoC with limitations in the number of queries and some minor bugs
that the SEAT MOtosharing app does not have due to the application is in a production
environment. The contracts are developed in Solidity, which is the most use language to
developing smart contracts and can be deployed in any network that uses Ethereum stan-
dards which makes it a very scalable solution. The downside is that a completely usability
without any knowledge of a Blockchain or Wallet is not possible because the AWS KMS
service|[8] is not implemented due the time expended working in an implementation from
the zero. Nevertheless, it could be implemented with more time.

To conclude, the objective of developing a use case for integrating a sharing mobility
service is completed and functional, and with a proper migration to the SEAT MO servers
can be quickly implemented, as it uses the standard ERC-20 and EIP-712 and it is able
to be implemented in another services and necessities that the company may have in the
future.

52

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

7 Future of the project

The future of the project will depend on how much the company will invest in the
Blockchain technology with other utility cases, such a digital twin or with Metahype[19].
In regard to this specific project, with more dedication and time, some improvements
should be done:

e Integrating the vehicles as an ERC-721[9]

Also known as NFT, the ERC-721 defines a non consumable token, a digital asset.
The interesting part regarding this project is that you can define a user that can call
the reserve and release function inside an ERC-721 contract, and with a mapping,
keep track of which person had which vehicle at any time. You can also define the
state of the vehicle and any other attribute that the implementation may need. If
this is done, the logs in the DB will not be mandatory as all the registers are in the
blockchain. The disadvantage is that more calls to the blockchain must be made so
the budget will increase, but the fee of reserving a vehicle can be omitted since his
only objective is to track that a vehicle is reserved.

e Integrating properly with the AWS KMS
Due to lack of knowledge and time, the author was not able to create a Wallet
and sign a metatransaction using the Key Management Service. This will increase
the engagement with the general public because they will not have to know that
the dApp is working in a blockchain, and eliminates the process of creating and
managing a wallet, making the flow more agile.

e Implementation of the own relayer and gas station[11]
In the project, the Defender Relayer free tier is used. For a develop stage works
perfectly fine with a maximum of 120 transactions per hour, but in a production
environment, the company should integrate his own relayer to not be obligated to
pay for a premium tier in the Defender Relayer service. This will increase the cost in
short term basis but the decision is more economically viable in a long term basis.

23

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — /"-)3 telecos
BARCELONATECH seAaT BCN

References

[1]

2]

ECS)

[15]

Andreas M. Antonopoulos and Gavin Wood. Mastering Ethereum. O’Reilly Media,
Inc., November 2018. ISBN 9781491971949.

Remco Bloemen, Leonid Logvinov, and Jacob Evans. Eip-712: Ethereum typed struc-
tured data hashing and signing, September 2017. URL https://eips.ethereun.
org/EIPS/eip-712.

Demian Brener. Openzeppelin, 2017. URL https://docs.openzeppelin.com/.

Vitalik Buterin. Eip-155: Simple replay attack protection, October 2016. URL https:
//github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md.

D. Cooper, Trinity College Dublin S. Farrell, S. Boeyen, R. Housley Entrust, Vigil
Security, W. Polk, and NIST. Internet x.509 public key infrastructure certificate and
certificate revocation list (crl) profile, May 2008. URL https://datatracker.ietf.
org/doc/html/rfc5280#page-16.

Jacques Dafflon, Jordi Baylina, and Thomas Shababi. Eip-777: Token standard,
November 2017. URL https://eips.ethereum.org/EIPS/eip-777.

David Dornseifer. Use key management service (aws kms) to securely manage
ethereum accounts, 2021. URL https://aws.amazon.com/es/blogs/database/
partl-use-aws-kms-to-securely-manage-ethereum-accounts/.

Rafael Genés Duran, Diana Yarlequé-Ruesta, Marta Bellés-Munoz, Antonio Jimenez-
Viguer, and José L. Munoz-Tapia. An architecture for easy onboarding and key life-
cycle management in blockchain applications. IEEE Access, 8:115005-115016, 2020.
doi: 10.1109/ACCESS.2020.3003995.

William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. Eip-721: Non-
fungible token standard, January 2018. URL https://eips.ethereum.org/EIPS/
eip-721.

Ethereum. Rlp, November 2020. URL https://eth.wiki/fundamentals/rlp.
Ethereum. Gas station network, May 2021. URL https://docs.opengsn.org/.

Meta (Facebook). Metaverse by meta, 2022. URL https://about.facebook.com/
en/meta.

Cambridge Center for Alternative Finance. Cambridge bitcoin electricity consump-
tion index, September 2020. URL https://ccaf.io/cbeci/index.

Prof. Dr. Robby HOUBEN and Alexander SNYERS. Cryptocurrencies and
blockchain: Legal context and implications for financial crime, money laundering and
tax evasion, July 2018. URL https://www.europarl.europa.eu/cmsdata/150761/
TAX37%20Study%200on%20cryptocurrencies’20and%20blockchain. pdf.

Markus Jakobsson and Ari Juels. Proofs of work and bread pudding proto-
cols(extended abstract), 1999. URL https://link.springer.com/chapter/10.
1007/978-0-387-35568-9_18.

o4

https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-712
https://docs.openzeppelin.com/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://datatracker.ietf.org/doc/html/rfc5280#page-16
https://datatracker.ietf.org/doc/html/rfc5280#page-16
https://eips.ethereum.org/EIPS/eip-777
https://aws.amazon.com/es/blogs/database/part1-use-aws-kms-to-securely-manage-ethereum-accounts/
https://aws.amazon.com/es/blogs/database/part1-use-aws-kms-to-securely-manage-ethereum-accounts/
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://eth.wiki/fundamentals/rlp
https://docs.opengsn.org/
https://about.facebook.com/en/meta
https://about.facebook.com/en/meta
https://ccaf.io/cbeci/index
https://www.europarl.europa.eu/cmsdata/150761/TAX3%20Study%20on%20cryptocurrencies%20and%20blockchain.pdf
https://www.europarl.europa.eu/cmsdata/150761/TAX3%20Study%20on%20cryptocurrencies%20and%20blockchain.pdf
https://link.springer.com/chapter/10.1007/978-0-387-35568-9_18
https://link.springer.com/chapter/10.1007/978-0-387-35568-9_18

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

[16] SEAT MO. A day of moto-sharing, November 2020. URL https://www.seat.com/
company/news/company/a-day-of-moto-sharing.html.

[17] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, October 2008.
URL https://bitcoin.org/bitcoin.pdf.

[18] National Institute of Standards and Technology. SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions, August 2015. URL https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

[19] Cupra Official. Metahype, 2022. URL https://www.cupraofficial.es/metahype.
html.

[20] OpenZeppelin. Openzeppelin defender, August 2019. URL https://defender.
openzeppelin.com.

[21] Santiago Palladino. Meta transactions powered by openzeppelin defender, March
2021. URL https://github.com/OpenZeppelin/workshops/blob/master/
O0l1-defender-meta-txs/slides/20210211%20-%20Defender),20meta-txs%
20workshop.pdf.

[22] Polygon. Full node deployment, November 2021. URL https://docs.polygon.
technology/docs/develop/network-details/full-node-deployment.

[23] Certicom Research. Sec 2: Recommended elliptic curve domain parameters, January
2010. URL https://www.secg.org/sec2-v2.pdf.

[24] Fabian Vogelsteller and Vitalik Buterin. Eip-20: Token standard, November 2015.
URL https://eips.ethereum.org/EIPS/eip-20#token.

25

https://www.seat.com/company/news/company/a-day-of-moto-sharing.html
https://www.seat.com/company/news/company/a-day-of-moto-sharing.html
https://bitcoin.org/bitcoin.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://www.cupraofficial.es/metahype.html
https://www.cupraofficial.es/metahype.html
https://defender.openzeppelin.com
https://defender.openzeppelin.com
https://github.com/OpenZeppelin/workshops/blob/master/01-defender-meta-txs/slides/20210211%20-%20Defender%20meta-txs%20workshop.pdf
https://github.com/OpenZeppelin/workshops/blob/master/01-defender-meta-txs/slides/20210211%20-%20Defender%20meta-txs%20workshop.pdf
https://github.com/OpenZeppelin/workshops/blob/master/01-defender-meta-txs/slides/20210211%20-%20Defender%20meta-txs%20workshop.pdf
https://docs.polygon.technology/docs/develop/network-details/full-node-deployment
https://docs.polygon.technology/docs/develop/network-details/full-node-deployment
https://www.secg.org/sec2-v2.pdf
https://eips.ethereum.org/EIPS/eip-20#token

UNIVERSITAT POLITECNICA

DE CATALUNYA —)) telecos
SEA

BARCELONATECH T BCN

Appendices

A Bor and Heimdall logs

Once the execution is finished the Bor and Heimdall services are working and producing
blocks.

root@ip-172-31-44-183:/usr/binf journalctl -u bor.service
-~ Togs begin at Sun 7 11:55:50 UTC. -
1 3 bash[11639]: WARN [03 03] Caller gas above allowance, capping
bash[11639]= INFO [03 tching state updates from Heimdall
sh[11639]

Started P2P networking

IEC endpoint opened url=/root/
HITE server started endpoint
New local node record
Deep froze chain segment
Deep froze chain segment
Deep froze chain segment
Block synchronisation started
Downloader queue stats
Caller gas above allowance, capping
Caller gas above allowanc pping
Fetching state updates from Heimdall
state sync events
gas above allowance, capping
above allowance, capping
state updates from Heimdall

pping
capping
state updates from Heimdall
3 events queryParan:
ash[11639]: INFO 8] Imported new chain segment blocks=1 0 mgas=0.0 apsed=102.116ms mgasps=0.000 number=433,215 hash=6ef445.

Caller gas above allowance, capping
pping
te updates from Heimdall

pping

above allowancs, capping requestad=9,22
g state updates from Heimdall fromIp:

state sync events

ash[11639]
bash[11635]: INFO

88383388

state updates from Heimdall

state updates from Heimdall
state sync events
bash[116
4512947 0900 bba784££2129394b7£44e1b:
0

bash[11639]: W 3 3 pping
h[116 ing state updates from Heimdall
bash[11639]: g state sync events
bash[11 gas above allowa: pping
bash(11 above allowance, capping
bash[11 state updates from Heimdall
state sync events
Caller gas above allowance, capping
Caller ga: pping requested=9,
Fetehing state updates from Heimdall fromT!

] Fetching state sy: queryParams
Caller gas above allowance, g requested=9,
Caller gas above allowance, capping requested=9, 372,036,854, 775,807
™ro 03 Fetching state updates from Heimdall £roml]
INFO (03 3 queryParam:

WARN [03 pping
WARN [03 pping
NFO [03 8 state updneu from Heimdall
INFO [03 3 ing state sync events

above allowance, capping
pping
INFO [03 ing state updates from Heimdall
INFO [03
caller ga + capping
Caller gas above allowance, capping
state updates from Heimdall
state sync events
gas above allowance, capping
s above allowance, capping requested=9,
INFO [03 state updates from Heimdall fromT!
INFO (03 state sync events
WARN [03 c gas above allowance, capping
c above allowance, Gapping
state updates from Heimdall
538] Fetching state sync events
NFO (03 38.541] - committing new state
>4e9d0 0 ba784££21;
txilash: 0x921 231db86625£1532008d8a34c9
WARN [03] Caller gas above allowa
559] Caller gas above allowance, capping
38.559] Fetching state updates from Heimdall
] Fetching state sync events

Figure 36: Log Bor syncing with Heimdall

We can see that Bor starts the HT'TP server, and sync the current state with Heimdall
and looking for the necessary gas. As it generates blocks, it commits new states, that are
the hashes of the blocks synced in the side-chain.

26

Uk W N~

~N o

Uk W N~ Ne}

© 00 O

UNIVERSITAT POLITECNICA
DE CATALUNYA

BARCELONATECH

q7)

\'@ BN

rootfip-172-31-44-18
begin &t Non 2
nodule=state height=T26415 txs=0 appHash=R430BE04247TFF(714540E8B42RC951 9BFR3991794

cuted block nodule=state hei
itted state

15] Comnitted state nodule=state height=126417 txs<0

00.183] Executed block nodule=state helg
.661) Committed state nodule=state hei § txa=0 appHash=24) 47Fr071454028B42PC951 98FIEIS91794

Figure 37: Log of Heimdall service running

B The v value

The v value in a blockchain corresponds to the recovery ID. It is calculated as v =
0,1+ CHAIN;D % 2 + 35. To understand this, we have the r value, which is the x
component of the point in the curve used for signing. Then we have two candidates for
being the other component of the poind and, according to the EIP-155[4], v has two
possible values depending on the side of the curve you are, and those values are 27 and
28.

C API code

C.1 Routes in the API

const { verifySignUp } = require(” ../ middlewares”);

const controller = require(” ../ controllers/auth.controller”);
module. exports = function (app) {
app.use (function (req, res, next) {
res. header (” Access—Control—Allow—Headers” ,”x—access—token , .Origin , .
Content—Type, Accept”) ;
next ():}) ;

app . post (”/api/auth/signup” ,[verifySignUp.checkDuplicateUsernameOrEmail | ,
controller .signup);
app.post(”/api/auth/signin”, controller.signin);

};
const { authJwt } = require(” ../ middlewares”);
const controller = require(”../controllers/user.controller”);
module. exports = function (app) {
app.use (function (req, res, mnext) {
res . header (” Access—Control—Allow—Headers” ,”x—access—token , .Origin , .
Content—Type, Accept”) ;
next ():}) ;

app.get(”/api/test/all”, controller.allAccess);

app.get (”/api/test/user”, [authJwt.verifyToken], controller.userBoard);

app.get(”/api/test/reserve”, [authJwt.verifyToken], controller.
bookVeichle) ;

o7

10

11

12

0O Ui Wi+

e el e e el el
© 00 IO UL i W N —= OO

00 O Uik W N

DO RO DD = = b b e e e e
N — O O© 00O Uik Wk~ OO

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — ,’\3
BARCELONATECH seAaT

app.get(”/api/test/release”, [authJwt.verifyToken], controller.
releaseVeichle);
app.get(”/api/test/purchase”, [authJwt.verifyToken], controller.

purchaseToken) ;

}s

telecos
BCN

C.2 Sign Up Code

exports.signup = async (req, res) => {
console.log ("USUARI:.” + req.body.username);
const user = new User ({

username: req.body.username,

email: req.body.email

password: berypt.hashSync(req.body.password, 8),
address: req.body.address,

vehicle: 77|

lastPicked: 77,

lastReleased: 77

})s

user .save ((err, user) => {

if (err) {
res.status (500) .send ({ message: err });
return;
}
res.send ({ message: ”"User_.was.registered._successfully!” });

1)
}s

C.3 Sign In Code

exports.signin = (req, res) = {
User . findOne ({
username: req.body.username
}).exec((err, user) => {

if (err) {
res.status (500) .send ({ message: err });
return;
if (luser) {
return res.status(404).send ({ message: ”User_.Not_found.” });

}

var passwordIsValid = bcrypt.compareSync(
req .body . password ,
user . password
)
if (!passwordIsValid) {
return res.status(401).send ({
accessToken: null,
message: ”Invalid_Password!”

1)
}

var token = jwt.sign({ id: user.id }, config.secret, {

o8

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

OO UL W N+

W W WWWNNNNNNDNNDNDDN = = =
WP O OO WNDRFE O OO0 Ok W~ OO

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT

expiresIn: 86400 // 24 hours
1
res.status (200) .send ({
id: user._id,
username: user.username,
email: user.email
accessToken: token,
address: user.address,
vehicle: user.vehicle ,
lastPicked: user.lastPicked,
lastReleased: user.lastReleased ,
lastTransaction: user.lastTransaction

BCN

C.4 User functions

const db = require(” ../ models”);
const Vehicle = db.vehicles;
const Logs = db.logs;

const User = db.user;

const token = require(’../eth/token’);
const { handler } = require(’../eth/relay’);
require (’dotenv’) . config () ;
exports.allAccess = (req, res) => {
res.status (200) .send (”Welcome_to._the_Mobility._.Service_app!”);
};

exports.userBoard = async (req, res) => {
const actBalance = await token.getBalance(req.query[’07]);
User.findOne ({address: req.query[’0’]}) .exec((err, user) =>{
if(err){

res.status (500) .send ({message: err});

Vehicle. find ({booked:0}, {-id: 0, plate: 1}).exec((err, data)=>{
if (err){
res.status (500).send ({ message: "No_vehicles_available”});
}

res.status (200) .send ({
balance: actBalance,
vehicles: data,
vehicle: user.vehicle ,
lastPicked: user.lastPicked ,
lastReleased: user.lastReleased

1)
oK
1)
}s
exports.bookVeichle = async (req, res) = {
const payload = req.query.transaction;
console.log(’Booking:.’, payload);
const { RELAYERAPIKEY: apiKey, RELAYER APISECRET: apiSecret } =
process.env;

29

35

36
37
38
39
40

41
42
43
44
45

46
47
48
49
50

51
52
53
54
55
56
57
o8
99

60
61

62
63
64
65
66

67
68
69
70
71

72
73
74
75
76

7
78

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

Vehicle .updateOne ({ plate: req.query.plate, booked: 0}, {$set:{booked:
1, lastUser: req.query.username, reservedTime: Date().toLocaleString
()}}, function (err)q
if (err){

res.status (500).send(err);
}

1)

Logs.create ({plate: req.query.plate, User: req.query.username,
releasedTime: ”” jreservedTime: Date().toLocaleString ()}, function(
err){
if (err){

res.status (500) .send (err);
}

1)

User .updateOne ({username: req.query.username}, {$set:{vehicle: req.
query . plate , lastPicked: Date().toLocaleString()}}, function(err){
if (err){

res.status (500) .send (err);
}

1)
handler ({ apiKey, apiSecret, request: { body: JSON.parse(payload) } }).
then(rsp => {res.status(200).send(rsp.txHash);})
.catch(error = {
console.log(’Error’, error);
res.status (500).send (error);

1)
}s
exports.releaseVeichle = async (req, res) => {
const payload = req.query.transaction;

)

console.log(’Releasing:.’, payload);
const { RELAYER APIKEY: apiKey, RELAYER_APISECRET: apiSecret } =
process.env;
console.log(’plate’, req.query.plate);
Vehicle.updateOne ({ plate: req.query.plate}, {$set:{booked: 0,
reservedTime: ””}}, function(err){
if (err){
res.status (500).send(err);
}

)

P
Logs.updateOne({plate: req.query.plate, releasedTime: 7”7}, {$set:{
releasedTime: Date().toLocaleString()}}, function(err){
if (err){
res.status (500).send(err);
}
1)

9

User .updateOne ({username: req.query.username}, {$set:{vehicle: ,
lastReleased: Date().toLocaleString()}}, function (err){
if (err){
res.status (500).send(err);
}

)
handler ({ apiKey, apiSecret, request: { body: JSON.parse(payload) } }).
then(rsp => {res.status(200).send(rsp.txHash);})
.catch(error = {
console.log(’Error’, error);

60

79
80
81
82
83
84
85

86

87
88

0O Ui Wi+

e el e
DU W~ O O

17
18
19
20
21
22

23
24
25
26
27
28
29

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

res.status (500) .send (error);
P
}s
exports.purchaseToken = async (req, res) = {
//Check bank transaction and return state 500 if error
console.log(’Miniting.’ 4+ req.query.amount + ’_to.’ + req.query.address
);
const minted = await token.mintTokens(req.query.address, req.query.
amount) ;
res.status (200) .send (minted) ;
}s

The user functions are called by the react front-end but processed in the API. The request
is signed by the user to verify the identity.

C.5 Handeling the transactions in the blockchain

async function relay (forwarder, request, signature) {
// Validate request on the forwarder contract
const valid = await forwarder.verify (request, signature);
if (!valid) throw new Error(‘Invalid request ‘);
console.log(’Valid’, valid);

// Send meta—tx through relayer to the forwarder contract
const gasLimit = (parselnt(request.gas) + 50000).toString();
return await forwarder.execute(request, signature, { gasLimit });

}

async function handler(event) {
require ("dotenv’).config();
const { FORWARDER ADDRESS: forwAddr } = process.env;
// Parse webhook payload

if (levent.request || !event.request.body) throw new Error(‘Missing
payload ‘) ;
const { request, signature } = event.request.body;

// Initialize Relayer provider and signer, and forwarder contract

const credentials = { ... event };

const provider = new DefenderRelayProvider (credentials);

const signer = new DefenderRelaySigner(credentials, provider, { speed:
“fast’ });

const forwarder = new ethers.Contract (forwAddr, ForwarderAbi, signer)

console.log(’Relaying ... ") ;

// Relay transaction!

const tx = await relay (forwarder, request, signature);

console.log (‘Sent meta—tx: ${tx.hash}‘);
return { txHash: tx.hash };

The API handles the event by connecting to the relayer and interacting with the forwarder
contract.

61

O © 00O Ui W+

—_

—_
—_

12
13
14
15
16
17
18
19
20
21
22

23
24
25

26
27
28
29
30
31
32
33
34
35
36

[N

— O © 00 O Ui W

— =

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

D Contracts

// SPDX—License—Identifier: MIT

pragma solidity ~0.8.0;

import ”@openzeppelin/contracts/token/ERC20/ERC20. sol” ;

import ”@openzeppelin/contracts/token /ERC20/extensions/ERC20Burnable. sol” ;
import ”@openzeppelin/contracts/security /Pausable.sol”;

import ”@openzeppelin/contracts/access/Ownable. sol”;

import " @openzeppelin/contracts/metatx/ERC2771Context. sol”;

import ”@openzeppelin/contracts/metatx/MinimalForwarder.sol” ;

contract Seatoken is ERC2771Context, ERC20, ERC20Burnable, Pausable,
Ownable {
constructor (MinimalForwarder forwarder) ERC2771Context(address (
forwarder)) ERC20(” Seatoken”, ”"SETK”) {
}

function pause() public onlyOwner {
_pause () ;
}

function unpause() public onlyOwner {
_unpause () ;

function mint(address to, uint256 amount) public onlyOwner {
_mint (to, amount);
}

function _msgSender () internal view override (Context, ERC2771Context)
returns (address) {
return ERC2771Context. _msgSender () ;

}

function _msgData() internal view override (Context, ERC2771Context)
returns (bytes memory)

{

}

function _beforeTokenTransfer (address from, address to, uint256 amount)
internal

whenNotPaused

override

{
}

return ERC2771Context._msgData () ;

super. _beforeTokenTransfer (from, to, amount);

}

// SPDX—License—Identifier: MIT

// OpenZeppelin Contracts (last updated v4.5.0) (metatz/MinimalForwarder.
sol)

pragma solidity 70.8.0;

import ” ../ utils/cryptography /ECDSA. sol” ;

import ” ../ utils/cryptography/draft—EIP712.s0l”;

contract MinimalForwarder is EIP712 {
using ECDSA for bytes32;
struct ForwardRequest {
address from;
address to;

62

12
13
14
15
16
17

18
19
20
21
22
23
24
25

26
27

28
29
30
31

32

33
34

35
36
37
38
39
40
41
42
43
44
45

H O © 0O Utk Wi+

—_ =

—
\o}

UNIVERSITAT POLITECNICA [~
DE CATALUNYA — "% telecos
BARCELONATECH seAaT BCN

uint256 value;

uint256 gas;

uint256 nonce;

bytes data;
}
bytes32 private constant TYPEHASH = keccak256 (” ForwardRequest (address.
from , address.to,uint256 _value , uint256 .gas , uint256 .nonce , bytes.data)”

)5

mapping (address => uint256) private _nonces;
constructor () EIP712(” MinimalForwarder”, 70.0.1”7) {}

function getNonce(address from) public view returns (uint256) {
return _nonces [from|;
}

function verify (ForwardRequest calldata req, bytes calldata signature)
public view returns (bool) {
address signer = _hashTypedDataV4(
keccak256 (abi.encode (.TYPEHASH, req.from, req.to, req.value,
req.gas, req.nonce, keccak256(req.data)))
).recover (signature);
return _nonces[req.from] = req.nonce && signer = req.from;
}
function execute(ForwardRequest calldata req, bytes calldata signature)
public payable returns (bool, bytes memory){

require (verify (req, signature), ”MinimalForwarder:._signature_does.
not.match.request”);

_nonces [req.from]| = req.nonce + 1;

(bool success, bytes memory returndata) = req.to.call{gas: req.gas,

value: req.value }(

abi.encodePacked(req.data, req.from)
)
// Validate that the relayer has enough gas for the call.
if (gasleft () <= req.gas / 63) {

assembly {

invalid ()

}

}

return (success, returndata);

}

// SPDX—License—Identifier : MIT
// OpenZeppelin Contracts (last updated v4.5.0) (metatz/ERC2771Context. sol)
pragma solidity 70.8.9;
import ” ../ utils/Context.sol”;
abstract contract ERC2771Context is Context {
address private immutable _trustedForwarder;

constructor (address trustedForwarder) {
_trustedForwarder = trustedForwarder;
}

function isTrustedForwarder(address forwarder) public view virtual

returns (bool) {
return forwarder — _trustedForwarder;

63

13
14

15
16
17
18
19
20
21
22
23

24
25
26
27
28
29

UNIVERSITAT POLITECNICA

DE CATALUNYA ;E
SEA

BARCELONATECH T

\?@ e

}

function _msgSender () internal view virtual override returns (address

sender) {
if (isTrustedForwarder (msg.sender)) {
assembly {
sender := shr (96, calldataload (sub(calldatasize (), 20)))
} else {

return super. _msgSender () ;
}
}
function _msgData() internal view virtual override returns (bytes
calldata) {
if (isTrustedForwarder (msg.sender)) {
return msg.data [: msg.data.length — 20];

} else {
return super. _msgData() ;

1

E Seatoken Artifact

{

7 _format”: ”"hh—sol—artifact —17,
”contractName” : ” Seatoken” |
”sourceName” : ”contracts/Seatoken.sol” |
” abi” : [
“inputs”: |
"internalType”: ”contract.MinimalForwarder” ,
"name” : ” forwarder” ,
"type”: ”address”
b
7stateMutability”: "nonpayable”
"type”: ”constructor”
I
”7anonymous” : false ,
“inputs”: |
”indexed” : true,
”internalType”: ”address”,
"name” : 7 from” ,
"type”: 7address”
s
”indexed” : true,
"internalType”: ”address”,
bl name” : 7 t077 ,
"type”: ”"address”

64

[=p}

O © 00

12
13
14

15
16
17

18

UNIVERSITAT POLITECNICA

DE CATALUNYA =:
SEA

BARCELONATECH T

\?@ e

”indexed”: false ,
7internalType”: "uint2567 ,
"name” : ”value”

"type”: ”uint256”

)
]7 7’ .

"name” :
)

Ptype”:

}

” Transfer” |
7event”

]

"byteCode” :

The bytecode has been deleted because of his longitude and some other functions decla-
rations just to make clear how an artifact and an ABI works. In the ABI we can see the
functions. For instance, the transfer function has an address input with the name to and
an unit256 named amount, and returns a boolean.

F Front-end Code

Here is presented the complete necessary code to understand the front-end.

F.1 Signing functions

export async function signTx(currentUser, value, provider, token, action,

plate){
if (!window.ethereum) throw new Error (‘User wallet not found ‘) ;

await window.ethereum.enable () ;

const userProvider = new ethers.providers.Web3Provider (window. ethereum)

const userNetwork = await userProvider.getNetwork () ;

if (userNetwork.chainld !== 80001) throw new Error(‘Please switch to
Mumbai Network for signing ‘) ;

const signer = userProvider.getSigner () ;

const forwarder = createlnstance (provider);

const from = await signer.getAddress();

if (from !== currentUser.address) throw new Error(‘Please switch to
your account ‘) ;

const data = token.interface.encodeFunctionData(’transfer’, [70

x40CDDe2b9BC7659C3349574Ec53db3B2bd9519BF” | ethers. utils.parseEther (
value.toString ())]);
const to = token.address;

const request = await signMetaTxRequest(signer.provider, forwarder, {
to, from, data });
if (action == ”Reserve”){
console.log(’Sending._reserve._transaction...’, request);
return await UserService.reserveVehicle(plate, currentUser.username
, request).catch(function (e){
console.log(e);

)

65

19
20
21
22

23
24
25
26

0O Ui Wi

Lo W W WWWWWWWhNnNNDNNDNDNNNDDN F == =
C O DU WNNHFRF OO UUER WNNRHFE OOWNO U WD R OO

40
41
42
43

UNIVERSITAT POLITECNICA

DE CATALUNYA ;E
SEA

BARCELONATECH T

\?@ e

1)

telse if (action == ”"Release”){
console.log(’Sending._releasing._transaction...’, request);
return await UserService.releaseVehicle (plate, currentUser.username
, request).catch(function (e){
console.log (e);
P
}

return " Error”;

const EIP712Domain = |

{ name: ’name’, type: ’string’ },

{ name: ’version’, type: ’string’ },

{ name: ’chainld’, type: ’uint256’ },

{ name: ’verifyingContract’, type: ’address’ }

const ForwardRequest = |

{ name: ’from’, type: ’'address’ },
name : o’, type: ’address ,
"to, t “add ’
{ name: ’value’, type: ’uint256’ },
{ name: ’gas’, type: ’'uint256°’ },
{ name: ’nonce’, type: ’'uint256°’ },
name: ’data’, type: ’bytes’ },
y

I
function getMetaTxTypeData(chainld, verifyingContract) {
return {
types: {
EIP712Domain ,
ForwardRequest ,

}

domain: {

name: ’MinimalForwarder’,
version: '0.0.17,
chainld ,

verifyingContract ,

}s

primaryType: ’ForwardRequest’,

}

I

async function signTypedData(signer , from, data) {
const isHardhat = data.domain.chainld =—= 31337;
const [method, argData] = isHardhat

? [’eth_signTypedData’, data]
["eth_signTypedData_v4’, JSON.stringify (data)]

return await signer.send(method, [from, argData]);

}

async function buildRequest(forwarder, input) {

const nonce = await forwarder.getNonce(input.from).then(nonce => nonce.
toString ());
return { value: 0, gas: le6, nonce, ...input };

}

async function buildTypedData(forwarder, request) {
const chainld = await forwarder.provider.getNetwork().then(n => n.

66

44
45
46
47
48
49
50
o1
52

SOl W N~

UNIVERSITAT POLITECNICA

DE CATALUNYA ;E
SEA

BARCELONATECH T

telecos
BCN

chainld);
const typeData = getMetaTxTypeData(chainld, forwarder.address);
return { ...typeData, message: request };
}
async function signMetaTxRequest(signer , forwarder, input) {
const request = await buildRequest (forwarder, input);
const toSign = await buildTypedData(forwarder, request);
const signature = await signTypedData(signer , input.from, toSign);
return { signature, request };
}
import { ethers } from ’ethers’;
import { MinimalForwarder as address } from ’../deploy.json’;
const abi = [...];
export function createlnstance(provider) {
return new ethers.Contract(address, abi, provider);
}

Note: The abi has been removed for longitude purposes. an example of an ABI can be

found in Appendix E

67

	List of Figures
	List of Tables
	Introduction
	Statement of purpose
	Requirements and Specifications
	Requirements
	Specifications

	Methods and procedures
	Workplan, milestones and Gantt Diagram
	Workplan
	Gantt Diagram

	Deviations from the initial plan

	State of the art of the technology used
	Blockchain
	The blocks in the blockchain
	Transactions
	Smart Contracts
	Consensus mechanisms
	Wallets
	ECDSA and address recovering

	Polygon
	Heimdall
	Bor

	Amazon Web Services
	Lambda
	EC2
	AWS KMS

	Development
	Deployment of a Full Node in the mumbai testnet
	Configuring the node files

	Registering and Signing with Key Management System of Amazon Web Services
	Setting up the environment
	Programming the workflow
	Calls to the API Gateway

	Writing and deploying the contracts
	The Minimal Forwarder Contract
	Token contract
	Compiling and deploying

	Developing the API
	Database
	Authentication
	User functions
	Interacting with the smart contracts

	The Front-end
	Sing Up and Login Up
	Buying tokens
	Using the service

	Final result
	Budget
	Conclusions
	Future of the project
	References
	Appendices
	Bor and Heimdall logs
	The v value
	API code
	Routes in the API
	Sign Up Code
	Sign In Code
	User functions
	Handeling the transactions in the blockchain

	Contracts
	Seatoken Artifact
	Front-end Code
	Signing functions

