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Abstract

Using ideas and tools of complexity science we
design a holistic measure of Scientific Fitness,
encompassing the scientific knowledge, capabil-
ities and competitiveness of a research system.
We characterize the temporal dynamics of Sci-
entific Fitness and R&D expenditures at the
geographical scale of nations, highlighting pat-
terns of similar research systems, and showing
how developing nations (China in particular) are
quickly catching up the developed ones. Down-
scaling the aggregation level of the analysis, we
find that even developed nations show a consid-
erable level of inequality in the Scientific Fitness
of their internal regions. Further, we assess com-
paratively how the competitiveness of each geo-
graphic region is distributed over the spectrum of
research sectors. Overall, the Scientific Fitness
represents the first high quality estimation of the
scientific strength of nations and regions, open-
ing new policy-making applications for better al-
locating resources, filling inequality gaps and ul-
timately promoting innovation.

1 Introduction

Science is based on the progressive augmentation
of existing knowledge building on past discover-
ies, through a recursive process involving empir-
ical observation and the formulation of testable

hypotheses. Similarly to what happens for tech-
nological innovation and economic growth [1, 2,
3], scientific progress requires appropriate capa-
bilities: previous knowledge, tools, human cap-
ital, resources, and so on. The combination
and interaction of such capabilities, even from
different contexts, pushes the boundary of sci-
ence through new knowledge and discoveries, as
well as through re-discoveries via previously un-
charted paths [4, 5, 6]. This process naturally oc-
cur mostly in geographic areas where many dif-
ferent capabilities are concentrated [7], whence
we can assume that the scientific output of a re-
gion reflects the set of relevant capabilities avail-
able.

The quantitative evaluation of scientific out-
comes, from the microscopic level of individual
researchers and institutions to the macroscopic
case of entire nations, is nowadays a common
practice [8, 9]. At the macro level, a seminal
work by May [10] assessed the performance of
national research systems using an index bor-
rowed from the economic literature: the Re-
vealed Comparative Advantage (RCA) [11], com-
puted on the number of scientific documents pro-
duced by each nation in the various research sec-
tors. King [12] pursued a different approach,
ranking nations according to the share of global
citations received by their document output, and
introduced funding as an additional variable of
the analysis. Subsequently, the use of citations
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became the gold standard for assessing research
quality, and several metrics with swinging perfor-
mance have been proposed – see [8] for a com-
prehensive review of the field. However this ap-
proach has recently been questioned, due for ex-
ample to the very different amount of resources
that nations invest in scientific research. In fact,
even for the most economically developed na-
tions, the scientific success measured on citations
and the public spending in research and develop-
ment (R&D) [13, 14] (as well as returns to inno-
vation [15]) are correlated but also present strong
deviations, and therefore should be considered as
complementary dimensions for a correct evalua-
tion of scientific performance. Another impor-
tant problem is given by the presence of bias and
distortions in citation patterns [16, 17]. Indeed
the dynamics of the citation process strongly de-
pend on sector-specific characteristics, and cita-
tion statistics are often distorted by the pres-
ence of outliers (the few documents attracting a
huge amount of citations) [18, 19]. These and
other issues may reduce the explanatory power
of citation-based metrics, as well as their variants
based on top-percentage citations [20], including
the H-index [21].

There are two additional key aspects that cita-
tion share metrics do not take into account. On
the macroscopic scale, nations do not specialize
in a few research sectors but tend to diversify
their activity into as many sectors as possible.
This is explained by the capability scheme, for
which a given geographic area is active in all re-
search sectors allowed by the capabilities that
are present on its territory. Since capabilities
are heterogeneously distributed, nations have a
heterogeneous level of diversification, thus diver-
sification itself can be used as a basic proxy of
scientific performance. In addition, while na-
tions with many different capabilities (typically,
the developed economies) are competitive in al-
most all existing research sectors, nations with
fewer capabilities (the less developed economies)
perform well only in a few research areas with
a lower degree of sophistication or complexity.
Such a nested structure, induced by the capabil-

ity scheme, indicates the presence of a competi-
tive mechanism shaping the connections amidst
the scientific actors – akin to what is observed
in natural ecosystems [22] as well as in human
productive activities [1]. Indeed, although the
scientific environment is neither directly nor indi-
rectly aimed at the production of physical goods
or services (for which there is a clear payoff)
and is not subject to the incentives of compet-
itive markets, there are actually many sources
of competition, since most research systems rely
on merit-based processes to determine funding,
hiring, careers, and thus indirectly scientific re-
search itself. Therefore, only naively science
can be considered as guided by non-competitive
actors who collaborate for the advancement of
knowledge.

Overall, the nested pattern observed when
comparing national research systems [23] sug-
gests that diversification and composition of the
scientific research basket can be used to measure
the scientific competitiveness (or Fitness) of a
nation; at the same time, the complexity of a re-
search sector depends on its ubiquity and on the
Scientific Fitness of nations that are competitive
in that sector. The Economic Fitness and Com-
plexity (EFC) [24, 25, 26] algorithm is the ideal
tool to estimate the fixed point of this circular
relation. The purpose of this work is precisely
to develop a framework for quantifying scientific
competitiveness by leveraging the EFC toolbox.

In a nutshell, we build an appropriate
database for our analysis starting from the Open
Academic Graph (OAG)[27] [28, 29, 30], a freely
accessible collection of information about indi-
vidual scientific publications, covering a large
portion of the scientific production corpus. On
the one hand, OAG assigns documents to geo-
graphic areas according to the location of the
research institutes to which the authors are af-
filiated. On the other hand, OAG assigns docu-
ments to research sectors according to a hier-
archical classification of scientific topics, each
known as Field of Studies (FoS). The docu-
ments produced by a geographical area in a re-
search sector provide a basic measure of scien-
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tific performance through an appropriate count
of citations received. In this analysis we can
use a variable resolution both in terms of geo-
graphical scale (we follow the Territorial Level
scheme implemented by the OECD [31]) and of
FoS hierarchical level. Filtering this data us-
ing the RCA allows obtaining the scientific bi-
partite network (SBN hereafter) connecting geo-
graphic areas with the research sectors they are
competitive in, and finally computing the Sci-
entific Fitness of such areas through the EFC
algorithm [23]. Note that our approach follows
the path initially outlined by May [10], though
we compute RCA not on document production
but on citation counts, in accordance with the
ideas proposed by King [12] — and likewise we
complement the analysis with data about mone-
tary resources invested in scientific research. In
particular we use Higher Education expenditures
on Research & Development (HERD), again pro-
vided by the OECD [32]. We refer the reader to
the Materials and Methods section for a more
detailed description of the workflow.

2 Results
We start by discussing Scientific Fitness at the
geographic scale of nations – corresponding to
Territorial Level 1 (TL1) of the OECD classi-
fication. Unsurprisingly the geographical distri-
bution of Fitness values, reported in the top map
of Figure 1, shows that the most developed and
rich nations are also the top performers in sci-
ence, while the developing nations are ranked
lower [23]. Such heterogeneous patterns are simi-
lar to those associated with traditional measures
of economic size or relevance (such as GDP or
population) but have a more intensive charac-
ter, since small countries can display a high Sci-
entific Fitness while large ones may not, e.g.
Switzerland ranks higher than India. A higher
correlation is observed with the Economic Fit-
ness computed using export data [24, 25, 26],
which is also aimed to measure competitiveness
based on owned capabilities, tough there is not a
one-to-one correspondence between the two mea-

sures [33] (see SI for a further comparison). No-
tably, the raking of Scientific Fitness is also dif-
ferent from that obtained using metrics based
on citation shares, such as the Mean Normalized
Citation Score (MNCS) [8, 13], which measure
research efficiency rather than competitiveness.
Indeed, MNCS ranks at the top the small but
efficient research systems – such as Switzerland,
Israel and Singapore. Instead Scientific Fitness
accounts both for efficiency (through the use of
the RCA filter) and diversification (i.e., the cu-
mulative stock of capabilities owned by a na-
tion), and thus allows for a more fair compar-
ison between small and large research systems.
Remarkably the same patterns are observed also
when the analysis is performed using a different
dataset (we report in the Supporting Informa-
tion the case of Scimago [34], based on Scopus).

Following previous literature on Science of Sci-
ence [12, 16, 13], we obtain a richer picture
by complementing Scientific Fitness with the
amount of resources that are invested in scientific
research. A similar approach (with some caveats
discussed below) is also used in the classic EFC
literature, where Economic Fitness is scattered
against a monetary measure of income (typi-
cally the Gross Domestic Product per capita);
the dynamics in the two dimensional space de-
fined by these variables highlight clusters of sim-
ilar economies, allowing for a very precise eco-
nomic forecasting [35]. As already mentioned,
here we employ Higher Education expenditures
on R&D (HERD) [32], namely the expenditures
for basic research performed in the higher edu-
cation sector, which among the sources of pub-
lic funding are those most connected to scien-
tific performance as measured through citations
of published documents 1. This data is avail-

1The other sources of public funding are [32]: the
Business Expenditures on R&D (BERD), namely R&D
expenditures performed in the business sector, which is
mostly related to the creation of new products and pro-
duction techniques (patents); the Government Intramu-
ral Expenditures on R&D (GOVERD), namely expendi-
tures in the government sector, which is often mission-
oriented and therefore less connected to publication out-
puts (see [13] and the discussion therein). In the Support-
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Figure 1: Map of the Scientific Fitness of nations (TL1, panel a) and of regions (TL2) within North
America (panel b), Europe and Turkey (panel c) and China, Japan and South Korea (panel d).
The color scale indicates the average Fitness between 1998 and 2018 (missing entries are colored
in gray), with darker and lighter tone for higher and lower Fitness, respectively (the scale [0, 1] is
the same for the national and regional levels). Notice how the Fitness of a nation cannot be simply
obtained by summing nor averaging the Fitness of its regions (see Figure 3 below). The elliptic
projection of the map follows the Robinson projection (esri:54030).
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able only for OECD members and a few other
important economies (such as China and Rus-
sia); therefore the following analysis will be fo-
cused only on this subset of high and middle
income countries. Figure 2 in panel-(a) shows
the trajectories of these nations in the two di-
mensional plane defined by Scientific Fitness and
HERD per capita (HERD-pc). We observe that
the most developed economies usually concen-
trate in the top right corner of the diagram (en-
larged in the inset) characterized by high values
of both Fitness and HERD-pc. The other na-
tions are instead scattered along the diagonal,
for which Scientific Fitness is proportional to re-
sources invested, and their trajectories are typi-
cally directed towards the top-right region: these
countries are quickly catching up with the most
advanced ones. Off-diagonal trajectories provide
interesting information, similar to those obtained
within the economic framework [25]. The top
left corner contains small national research sys-
tems with peculiar features, where investments
are not efficiently turned into scientific competi-
tiveness. This is for instance the case of Iceland,
which does not attract much attention in terms
of citations, and of Luxembourg, where the pres-
ence several private firms headquarters may bias
the scientific production to patent-related docu-
ments [15]. In the opposite corner, China (and to
a minor extent Russia, South Africa and Mexico)
features a high scientific competitiveness despite
low public R&D expenditures, with both quan-
tities growing quickly in time.

A main advantage of our framework is the
possibility to perform the analysis of Scientific
Fitness at a more detailed geographic level, in
order to highlight the competitiveness of spe-
cific regions within nations. The bottom maps
of Figure 1 report the Scientific Fitness of re-
gions (as defined by Territorial Level 2 (TL2)
of the OECD classification) for three macro-
areas: North America, Europe and East Asia.
We observe a recurrent pattern for which the

ing Information we show results of analysis performed
using Gross Expenditure on R&D (GERD), given by the
sum of HERD, BERD and GOVERD.

Fitness of a nation is mostly concentrated in
its capital region (also because capitals typically
host the headquarters of the largest national re-
search institutions). The English-speaking na-
tions (United States and United Kingdom, and
the same happens for Australia) are the excep-
tion by featuring high Fitness in all their regions.
Such a widespread competitiveness can be also
due to the language bias of the dataset, which
covers non-English literature only partially, es-
pecially for Social Sciences and Humanities [37]
(see Materials and Methods and further analy-
sis in the Supporting Information), and possibly
to the advantage of native English speakers in
better writing scientific articles which therefore
attract more citations. The evolution of Scien-
tific Fitness and HERD-pc at the regional level
is shown in the right panel of Figure 2. We
see again that while most of the North Amer-
icans regions are top performers, Fitness val-
ues of European regions form a cloud ranging
from low to high competitiveness. The case of
China stands alone: only three provinces (Bei-
jing, Hong Kong and Tianjin) belong to the cloud
of EU regions, while the others follow a very reg-
ular flow with a steady increase both in compet-
itiveness and public expenditures. Indeed China
invested enormously in science starting from the
end of the last century, with growing expendi-
tures in R&D throughout the country. Apart
from the three outliers, the competitiveness of
Chinese provinces has not yet reached that of
the western countries regions, but it will eventu-
ally do [38, 39]. This can be clearly seen in panel-
(b) of Figure 3, where the trajectories of regional
Scientific Fitness are scattered with those of doc-
ument Fitness, i.e., competitiveness computed
on document production rather than citation ac-
crued (see the Materials and Methods). Main-
land Chinese provinces follow a unique pattern.
Their document Fitness has increased substan-
tially in the considered time span (2000-2018),
due to growing resources and the consequent ac-
quisition of new capabilities. However, initially
this research output was not able to capture
many citations from the international scientific
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Figure 2: (panel a) Trajectories of nations (TL1) in the plane defined by Scientific Fitness and
resources invested, the latter measured by Higher Education expenditures on R&D per capita
(HERD-pc). Line colors are used to group nations into macro-areas: dark blue for west EU nations
(plus Switzerland, Israel, Norway, Island), light blue for east EU nations, , green for the English-
speaking nations (United States, United Kingdom, Canada, Australia, New Zealand) red for China,
yellow for the other Asian nations (Singapore, South Korea, Japan) and purple for middle-income
countries (Russia, South Africa, Mexico, Argentina, Chile). Trajectories represent data from 2000 to
2017, with the arrow indicating the direction of time. The inset zooms on the top-right corner where
there is a concentration of highly competitive nations. (panel b) Trajectories are also displayed
for regions (TL2) belonging to China and a selection of EU west, EU east and North America
nations. (panel c) Cross-correlation between Scientific Fitness and HERD at the national scale
(TL1) averaged over the whole set of countries as a function of the temporal delay (∆ year) used
to compute these quantities. The blue contour represents the 25− 75% quantile, generated with a
bootstrapping technique. Note that a cross-correlation value of about 0.5 is comparable to analogous
estimations carried out in the economics context [36]
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Figure 3: (panel a) Comparison of Scientific Fitness and document Fitness (i.e., Fitness computed
using published documents) at the regional level (TL2). The black lines indicate the density level
contour of the cloud of points while each red trajectory indicates the evolution of a Chinese province.
The trajectories map the evolution from 2000 to 2018, with the arrow indicating the direction of
time. (panel b) Comparison between the Scientific Fitness of nations, computed either at the
national level (TL1) or as the mean (red line) or maximum (blue line) of the Fitness of internal
regions (TL2). (panel c) Gini coefficients of each nation, computed over the citation counts of
internal regions. We report values for two years: 1995 (full color bars) and 2015 (shade color bars).
Nations are ordered according to their average Scientific Fitness in the central decade (2000-2010).
The inset represents the temporal evolution of the Gini coefficient of the whole world.
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community, likely due to a low initial level of
competitiveness. Only recently Chinese research
became very competitive and started to attract
citations, with a consequent growth in Scientific
Fitness: the trajectories of Chinese provinces are
quickly moving towards the main cluster where
the regions of other countries are located.

Overall the results of the analysis at TL2 indi-
cate that the Fitness of a nation is not obtained
by simply averaging or summing up the Fitness
of its regions, because the most exclusive capa-
bilities are typically concentrated only in a few
regions, which thus determine the national com-
petitiveness. This is confirmed by the plot in
panel-(a) of Figure 3, which shows that the na-
tional Fitness is more correlated to the Fitness
of its most competitive region (Pearson correla-
tion of about 0.96) rather than to the mean Fit-
ness of its regions (Pearson correlation of about
0.70). More importantly, our framework high-
lights the strong heterogeneity of Fitness values
both across and within nations, and thus allows
locating the geographical inequalities of the sci-
entific research system. Values of the Gini coeffi-
cients (see Materials and Methods for the precise
mathematical definition of the Gini coefficients
implemented) are shown in the bottom panel of
Figure 3 for the available nations with more than
4 TL2 regions, and for two reference years (1995
and 2015) spaced by two decades. The anal-
ysis shows that the United Kingdom and Aus-
tralia have the lower inequality score and in gen-
eral the English-speaking nations feature low in-
equalities, while mid-income countries are char-
acterized by the highest inequality levels. We
also compute the global Gini coefficient over all
available regions in the world; the Inset in panel-
(c) of Figure 3 shows that the global level of in-
equality is slowly decreasing in time.

Down-scaling the analysis from nations (TL1)
to regions (TL2) means increasing the geograph-
ical resolution of our method. Similarly, we can
increase the resolution regarding the research
sectors, by exploiting the hierarchical classifica-
tion of FoS. Thus, for example, instead of com-
puting the total Scientific Fitness of a geographic

area we can compute its sector Fitness restricted
to one of the 19 entries of the FoS main hier-
archical level. Figure 4 shows the radar plots
of the sector Fitness for some example regions.
The 19 research sectors are ordered clockwise in
the radar according to their complexity (com-
puted as the average complexity of their sub-
sectors), so that Business is the most complex
and Material Science is the less complex FoS.
Note that the EFC algorithm typically assigns
higher complexity to soft sciences (Economics,
Social Sciences and Humanities) rather than to
medical and hard sciences, because it turns out
that only the most competitive players are ac-
tive in the former sectors, while the latter sec-
tors are more ubiquitous. This pattern can be
partially due to the aforementioned bias of our
bibliometric data towards English-speaking na-
tions in soft sciences. However a more fundamen-
tal explanation exists: only the most developed
research systems have reached the level of ca-
pabilities required to perform scientific research
in, e.g., Business Administration, Environmen-
tal Ethics and Cognitive Science. These sectors
require solid prerequisites in the hard sciences,
but they are not necessarily related to high tech-
nological requirements2, rather they are aimed
at addressing the most advanced needs of a so-
ciety [23]. Overall, the analysis of the scientific
sector Fitness allows to quantitatively detect the
strengths and weaknesses of each region, as well
as their temporal evolution. For instance Fig-
ure 4 shows how the Beijing region experienced
a fast growth in competitiveness in the hard sci-
ences while it still falls back in artistic and cul-
tural areas with respect to western regions. Re-
gions like Zurich, Lazio and Alberta have instead
a more uniform pattern of competitiveness, espe-
cially in the last decades. Note how the top-

2Note that the average complexity of a research sector
does not fully reflect the complexity of the associated sub-
sectors. Indeed also in the hard sciences there are highly
sophisticated research sectors that require expensive in-
struments and large collaborations. For example, while
the average complexity of Business is 1.82, the complex-
ity of Polymer science, a child code of Material science
and Chemistry, is as high as 5.34.
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Figure 4: Radar plots of the scientific sector Fitness of different sample regions (TL2). Top row:
Nevada (USA), Alberta (Canada), New South Wales (Sydney). Central row: Zurich (Switzerland),
Lazio (Italy), Rhineland-Palatinate (Germany). Bottom row: Beijing (China), Hong Kong (China),
Rio de Janeiro (Brazil). Sectors are ordered clockwise with decreasing average complexity (Business
is the most complex and Material Science is the less complex sector). The radar lines indicate how
Fitness has evolved over the course of thirty years, from 1985 to 2015.
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performing regions like New South Wales can
also have competitive gaps but only in the less
complex sectors.

3 Discussions and Conclu-
sion

This work aims to bring together two recent lines
of research: Science of Science [8, 40, 9], which
develops quantitative methods and assessment
tools to study the evolution of science itself, and
Economic Fitness and Complexity [1, 24, 41],
which aims at measuring the productive capa-
bilities of economic systems. Indeed, our frame-
work to assess competitiveness in scientific re-
search builds on the theory of hidden capabilities
and employs properly calibrated bibliometric in-
dicators. The proposed methods allow for a con-
sistent comparison between different geograph-
ical areas and research sectors at varying level
of resolution. In this work we presented only a
handful of applications, highlighting the hetero-
geneity of scientific competitiveness among na-
tions as well as the inequalities within national
research systems. We further characterized the
performance of scientific actors across the vari-
ous research sectors, and showed that the evo-
lution of research systems can be properly de-
scribed using two dimensions, Scientific Fitness
and R&D expenditure. In the plane defined by
these variables, nations form clusters of similar
research systems operating within countries that
have reached comparable stages of development.

Similarly to other the classic applications in
the EFC literature, this study shows that a high
explanatory and forecasting power is achieved
when Economic Fitness is coupled with a vari-
able related to the amount of resources avail-
able in the system under enquiry. Typically,
the EFC literature proxies resource endowments
with Gross Domestic Product (GDP) [35]; for
our purposes, HERD is is the more appropriate
measure. However there is a fundamental differ-
ence between the use of GDP and HERD. GDP is
a measure of generated capital and wealth, hence

it reflects the outcome of the production pro-
cess; for this reason GDP can be interpreted as
a a consequence of Economic Fitness. Instead,
HERD measures the amount of public resources
that are fed into the scientific system and thus
is an input requisite for Scientific Fitness. Con-
sequently, while both the trajectories of coun-
tries in the GDP-Fitness plane and the trajec-
tories in the Scientific Fitness-HERD allow to
extract interesting patterns concerning the way
in which nations cluster in the plane, there are
also remarkable differences in their interpreta-
tion. For instance, there is evidence suggesting
that one can qualitatively predict 5-years trends
in GDP in the light of the historical evolution of
economic fitness [35]. However, it would be over-
confident to push the analogy between Economic
Fitness and Scientific Fitness to the point of try-
ing to infer future Scientific Fitness from histor-
ical HERD data. A comprehensive analysis of
the relation between Scientific Fitness and dif-
ferent measures of input and output of research
systems represents a promising avenue for future
research.

In addition to uncovering non-trivial patterns
in the evolution of national and regional knowl-
edge production systems, the application of the
EFC methodology to the realm of scientific pro-
duction data also has the potential relevance for
policy making. Even though the direct concern
of Economic policy is not so much knowledge
creation, but rather Economic output or innova-
tion, it is known that competitiveness in scien-
tific fields is robustly linked to the development
of competitive advantages in patenting as well as
export [3]. Since success in one of the above three
layers – knowledge, innovation, trade – tends to
be a precursor of success in the others, it is rea-
sonable to argue that a long-sighted approach to
growth and development policies can only ben-
efit from factoring knowledge production capa-
bilities into the equation. Finally, the analysis
of the scientific competitiveness of regional areas
add a tool in the analysis of local capabilities,
necessary in the developments of less wealthy re-
gions.
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4 Material and Methods

We extract the scientific database from
the Open Academic Graph (OAG)
(https://www.microsoft.com/en-us/
research/project/open-academic-graph/),
a freely available snapshot of a two billion-
scale academic graph resulting from the
unification of Microsoft Academic Graph and
AMiner [28, 29, 30]. We use OAG v2, created
at the end of November 2018. The database
is composed by a list of entries related to
various scientific literature: journal articles,
books, conference proceedings, reviews, and
others. The OAG coverage is estimated to be
comparable to that of Scopus or Wos [42], thus
likely presenting similar geographical and pho-
netic biases – in particular the partial coverage
of non-English written literature, especially
in the Social Sciences and Humanities where
research output is often published in the native
language [37]. The OAG data spans more than
a century, starting in principle at the beginning
of 1800. In practice, data before the Second
World War presents large fluctuations mainly
due to the scarce amount of scientific production
for most of the regions. Hence, we start the
analysis in 1960, although the core results are
presented only for the recent decades where also
expenditure data is available (see below).

The classification of research sectors is defined
by the Fields of Study (FoS), features which are
dynamically evaluated by an “in-house knowl-
edge base related entity relationship, which is cal-
culated based on the entity contents, hyperlinks
and web-click signals” [28]. The FoS are mostly
organized into a hierarchical structure, with the
main characteristic that a code may have more
parents 3. This structure presents a static layer 0
with 19 hand-defined codes, corresponding to the
main classification of the research sectors. Mov-
ing deeper in the hierarchy, layer 1 presents 294

3The very few exceptions of codes that are labelled
at a fine level but without information on their parents
are removed from the analysis. This does not represent a
problem, since we consider only the highest levels of the
FoS hierarchy.

codes while layer 2 has more than 80 000 codes
and this number may change in time when new
FoS are generated 4.

The OAG database is used to construct the
bipartite network linking geographical areas to
research sectors. To this end we select only the
OAG entries with full information on authors’
affiliation, FoS, citations count and year of publi-
cation. Using this data we build tables reporting,
for each year, the number of scientific documents
produced by each geographical areas in the var-
ious FoS, and their citations received up to the
OAG creation date. In order to assign a docu-
ment to a geographic area, OAG uses the loca-
tion of the authors’ main affiliation. Note that in
some cases it is not possible to select a precise lo-
cation because the affiliation may address gener-
ically to a multinational firm or a multi-location
research council (such as CNRS in France or
CNR in Italy). In these cases the location of the
headquarter is used, although this process may
artificially boost capital regions. Note also that
there are several documents labeled by multiple
FoS and/or with several author affiliations. In
these cases we employ a fractional counting ap-
proach, by assigning the document to FoS and
geographic areas with a weight that is inversely
proportional to number of FoS and number of
authors 5. Fractional counting has the main ad-
vantage that allows aggregating tables on both
the geographical and FoS dimensions without
increasing disproportionately the weight of the
most productive actors. Additionally, fractional
counting has to be preferred as it better bal-
ances the scientific outputs of large and small
geographical regions [43].

Following the classical approach of the Sci-
entometrics literature, we use citations received

4Deeper layers 3, 4 and 5 mostly split the larger topics,
but are not considered in the present work.

5For example, if a paper is labeled with FoS s1 and s2
and has three authors, the first two affiliated with (also
different) institutions in area g1 and the third with an
institution in area g2, the paper is assigned to FoS s1
and s2 with the same weight 1/2, while it is assigned to
geographic areas g1 and g2 respectively with weights 2/3
and 1/3. The paper’s citations are split according to the
same ratios.
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by scientific documents as a reliable proxy for
the quality of research [8]. However, the sim-
ple citations count presents a few drawbacks, es-
pecially when used to assess a small corpus of
papers. This is due to the time papers need to
reach a stable level of citations [44], to the high
skewness of the citation distribution for single
papers [45, 46], and to the dependence of cita-
tion patterns on the specific sector and journal
considered. Indeed the dynamical process un-
derlying the evolution of citation counts is well
modeled using a preferential attachment pro-
cess [47, 48, 49]. This means that the sum of the
citations accrued by a set of papers is dominated
by the citations of the few most cited outliers,
which are in turn subject to strong statistical
fluctuations (especially in small sets). A simple
yet effective approach to reduce such fluctuations
as well as the skewness of the citations distribu-
tion consists in using a logarithmic transforma-
tion [50, 51]. Thus we employ the log-citations
count

wgs = log(1 + cgs) (1)

where g labels a geographical area and s a re-
search sector, while cgs is the citation count of
documents assigned to area g for FoS s published
in a given year.

We further filter the log-citations counts to
build a Scientific Bipartite Network (SBN), re-
lating for each year the geographical areas on
one set with the research sectors in which they
are competitive on the other set. To this end
we use an index borrowed from the economics
literature, the Revealed Comparative Advantage
(RCA) [11], which measures competitiveness as
the ability of an actor to perform an activity
more that a reference level – the latter given by
the global average performance of the selected
activity. Applied to our case study, a geograph-
ical area is considered competitive in a research
sector if its RCA is above a threshold, typically
set to 1. In formula:

RCAgs =
wgs∑
s′ wgs′

/ ∑
g′ wg′s∑

g′s′ wg′s′
(2)

We thus build the SBN using the binary filter
Mgs = 1 if RCAgs ≥ 1 and Mgs = 0 otherwise.
Note that before implementing the filter we ap-
ply an exponential smoothing to the RCA series,
considering a half-life of 3 years in order to keep
a short persistence in the data.

At last we feed to SBN to the Fitness and com-
plexity algorithm [24, 25, 52]. The method ex-
ploits the nested structure of the network and
obtains the Fitness F or competitiveness of a ge-
ographic area g by aggregating the complexities
of its basket of research sectors in a non-linear
way (so that the most complex sectors of activ-
ity weigh the most), and in the same way the
the complexity C of a research sector s is given
by the Fitness of the geographic areas that are
active in it (with low competitive regions weight-
ing the most). Operationally, the Fitness and
the complexity vectors are the fixed point of the
following non-linear iterative map

F̃
(n)
g =

∑
s MgsQ

(n−1)
s F (n)

g =
F̃

(n)
g

〈F̃ (n)
g 〉g

Q̃
(n)
s =

1∑
g Mgs

1

F
(n)
g

Q(n)
s =

Q̃
(n)
s

〈Q̃(n)
s 〉s

where the operator 〈·〉x indicates the arithmetic
mean with respect to the possible values assumed
by the variable dependent on the set x. Fixed
point values of the Fitness are finally normalized
by a reference value, which is taken to be the
Fitness of United States at TL1 and that of Cal-
ifornia at TL2. Fixed point values of the Fitness
are finally normalized by a reference value, which
is taken to be the Fitness of United States at TL1
and that of California at TL2 (US06). The nor-
malization aims to regularize the heterogeneous
distribution of Fitness among the years, enhanc-
ing the relative strength of the nations instead of
a global competitiveness. Note that we build two
kind of Fitness indicators: the Scientific Fitness
based on log-citations counts of eq. (1), and the
document Fitness when log-documents counts is
used in its place.

We quantify the degree of scientific inequality
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within a nation using the Gini coefficient esti-
mated on the dispersion of citation counts among
its regions [53] (in the Supporting Information
we consider a version of the Gini coefficient that
takes population size into account). For our pur-
poses, the Gini index can be written as follows:

G = 1−
∑n

i+1 f(yi)(Si−1 + Si)

Sn

where Si =
∑i

j=1 f(yj)yj , S0 = 0, f(yi) is the
fraction of regions within the same country that
has received at least yi citations, and yi < yj
whenever i < j.

We remark that the OAG database allows
obtaining the SBN at different levels of ge-
ographic aggregations, ranging from the fine-
grained description of individual institutions to
the macroscale of regions and nations. In this
work we focus on the macroscopic scale, in or-
der to compare with previous literature of EFC
and Science-of-Science. Leveraging the OECD
Territorial Level Classification [31] we generate
the SBN both at the Territorial Level 1 (TL1)
of nations (207 countries, following the nowa-
days world structure) as well as at the Territo-
rial Level 2 (TL2), which includes 577 distinct
regions 6 in 43 countries (some of which are not
OECD members).

The expenditure database is based on the
available data collected by the OECD on the
Gross Expenditure in Research and Develop-
ments (GERD) indices [32]. The database cov-
ers 48 countries, i.e. all the OECD members and
few other relevant nations for which the data is
made available, such as China and Russia. How-
ever, the data’ quality depends strongly on na-
tional features, and the HERD database imple-
mented in the analysis above is made available
for 42 nations (among the OECD members on
Colombia does not provide information of the ex-
penditure). We implement a linear interpolation
reconstructing the missing points, At TL2, the
database follows the same classification imple-
mented by the derivation of the territorial level

6There are in principle more than 700 regions but for
some of them there is no affiliation found.

SBN, edited by the OECD. However, the recon-
struction at the lower scales is interpolated keep-
ing constant the national performances, since the
data presents more than 50% of missing entries.

Data Availability

The datasets generated and analysed during
the current study are available in the Sci-
entific database repository, https://efcdata.
cref.it/.
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A Supporting Information
Appendix (SI)

A.1 Coverage Soft Science / Hard
Science

The Open Academic Graph (OAG) does not pro-
vide information on the uniformity of the cover-
age of the different sectors and nations. Indeed, a
problem faced by others databases, such as SCO-
PUS, is that English-speaking and developed na-
tions have a full coverage of the literature pro-
duced in all the scientific domains, from hard sci-
ences to soft and social sciences, while the rest of
the nations may have only a partial coverage, es-
pecially in the soft sciences that are mostly writ-
ten in national languages. This biases is not ad-
dressed by OAG but it can be estimated through
the computation of the ratio among the scien-
tific production in hard and soft sciences of the
nations. Defining soft sciences the set of FoS
sons of (Sociology, Political Science, Art, Busi-
ness, Philosophy, History) and hard science the
others, OAG presents a language bias that can
be visualized in figure 5.
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Figure 5: The world map where the color-map correspond to the ration of the overall production
of the nations in soft science with respect to hard science.

A.2 Scientific Fitness — Economic
Fitness

The Scientific Fitness is a measure of compet-
itiveness of the national and regional research
systems, as discussed in the main text. The sci-
entific competitiveness depends on the competi-
tiveness on the others sectors of innovations such
as the Economic Fitness [24, 33], since there is a
strong interaction among them. However, there
is no 1-1 relation among the different competi-
tiveness, as shown in figure 6. Indeed, high Eco-
nomic Fitness usually translate to high Scientific
Fitness while the contrary is not found.

A.3 GERD versus Scientific Fit-
ness

The scientific expenditure, collected by the
OECD, is aggregated in the Gross Expenditure
in Research and Developments (GERD), avail-
able for 42 nations. The database can be decom-
posed in the Governmental expense (GOVERD),
the Business part (BERD) and the Higher Ed-
ucational part (HERD). Although HERD corre-

lated well with the scientific success, it is pos-
sible to derive the same qualitative information
considering the gross expenditure, where simi-
lar research systems clusters in the expenditure-
Fitness diagram. Figure 7 indicate that the tra-
jectories of the developed nations follow the ones
shown in the main text. Remarkably, the larger
difference with the HERD diagram relies on the
position of China. Indeed, gap that China’s
HERD has with respect to the developed nations
can be partially explained by its higher amount
of GOVERD expenditures.

A.4 Inequality metrics with the in-
formation of the population
size

The inequality implemented in the main text
is computed following the procedure discussed
in [53]. However, the computation of the inequal-
ity does not account for the different population
density and the heterogeneity naturally available
on the countries. Remarkably, the OECD col-
lect the data on the number of permanent re-
searchers [32] that may be a good estimation of
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Figure 6: Trajectories of the nations in the diagram scattering the Scientific Fitness and the Eco-
nomic Fitness

Figure 7: Trajectories of nations (TL1, left panel) in the plane defined by Scientific Fitness and
resources invested, the latter measured by Gross Expenditures on R&D per capita (GERD-pc). Line
colors are used to group nations into macro-areas: dark blue for west EU nations (plus Switzerland,
Israel, Norway, Island), light blue for est EU nations, red for China, purple for middle-income
countries (Russia, South Africa, Mexico, Argentina, Chile), and green for the English-speaking
nations (United States, United Kingdom, Canada, Australia, New Zealand), and yellow for the
Asian nations (Singapore, South Korea, Japan). Trajectories represent data from 2000 to 2017,
with the arrow indicating the direction of time. The inset zooms on the top-right corner where
there is a concentration of highly competitive nations. Trajectories are also displayed for regions
(TL2, right panel) belonging to China and a selection of EU west, EU east and North America
nations. At last the central panel in the bottom displays the cross-correlation between Scientific
Fitness and GERD at the national scale (TL1) averaged over the whole set of countries as a function
of the temporal delay (∆ year) used to compute these quantities. The blue contour represents the
25− 75% quantile, generated with a bootstrapping technique.
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the population size in the case of the scientific
inequality. Figure 8 shows the bars of the Gini
index as it is implemented in the main text and
a weighted version, where the weight are propor-
tional to the sizes of the researcher’s population.

The difference among the measure appears rel-
evant only in some developed nations while it is
does not modify the global picture.

A.5 Comparison of OAG with
Scimago

A second source of data available for the con-
struction of the Scientific Bipartite Network is
the database offered by Scimago [34]. This
database is aggregated by Scimagolab using the
data available from the SCOPUS [54] database,
collected by Elsevier. The Scimago database of-
fers the matrices of scientific performance (ci-
tation counts and document productions among
the others) at the national level and implements
the full counting statistics: each document as-
signs a unitary value at each nation having at
least an affiliation among the authors. Thus
each national value corresponds to the number of
papers produced by researchers operating from
the nations, independently on the collaboration
sizes.

The scientific classification implemented on
the database is the All Science Journal Classifi-
cation (ASJC) [55], which gives at the finer level
327 codes, and it is based on the journal classifi-
cation on which the scientific documents appear.
Thus, the classes does not depend directly from
the context of the paper but rather on the topic
of the journal, reducing the precision of the anal-
ysis based on capabilities.

Despite these aforementioned differences with
respect to the OAG database implemented in
the main manuscript, the Scientific Fitness com-
puted on the Scimago database does not dif-
fers from the one obtained from OAG, except in
the subset of the English-speaking nations. In-
deed, the English-speaking nations and primar-
ily the USA outperform the competitiveness of
the other nations, collecting most of the global

Fitness. Figure 9 shows the scatter plot of the
not normalized Fitness using the SBN based on
Scimago and OAG and the English-speaking na-
tions (green dots) is the only set not ling in the
main cluster of points. Removing the outliers,
there is a very good correlation between the Fit-
ness based on Scimago and on OAG. Remark-
ably, the language bias found in OAG is less dom-
inant with respect to the bias of SCOPUS, in the
computation of the Scientific Fitness.
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